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Abstract

The properties of microwave circuits and optical structures can be de-

scribed in terms of their scattering matrix which is extracted from the or-

thogonal decomposition of the electric �eld. We discretize the Maxwell's

equations with orthogonal grids using the Finite Integration Technique (FIT).

Maxwellian grid equations are formulated for staggered nonequidistant rect-

angular grids and for tetrahedral nets with corresponding dual Voronoi cells.

The surface of the computation domain is assumed to be an electric or a mag-

netic wall, open-region problems require uniaxial Perfectly Matched Layer

(PML) absorbing boundary conditions. Calculating the excitations at the

ports, one obtains eigenvalue problems and then large-scale systems of linear

algebraic equations.
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1 Introduction

Today, electromagnetic simulation forms an indispensable part in the development

of microwave circuits as well as in diode laser design. Since the simulation methods

are computationally too expensive to handle complete microwave circuits, analysis

has to concentrate on critical parts, such as transmission-line discontinuities and

junctions. These elements can be represented by the basic description shown in

Fig. 1: a structure of arbitrary geometry which is connected to the remaining circuit

by transmission lines. The passive structure (e.g. coplanar waveguide, coupled spiral

inductors, via hole, impedance step) forms the central part of the problem. Short

transmission line sections are attached to it in order to describe its interaction with

other circuit elements.
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Figure 1: The basic structure under investigation

2 Scattering Matrix

The aim consists in the computation of the scattering matrix, which describes the

structure in terms of the wave modes on the transmission line sections at the ports.

The wave-mode quantities are derived by assuming the transmission-line sections

to be in�nitely long and longitudinally homogeneous. The generalized scattering

matrix is de�ned as follows:

S = (S�;�); �; � = 1(1)ms; with ms =

pX
p=1

m(p); � = l +

p�1X
q=1

m(q): (1)

m(p) denotes the number of modes which have to be taken into account at the port p.

p is the number of ports. The modes on a port p are numbered with l; l = 1(1)m(p).

That means, the dimension ms of this matrix is determined by the total number

of modes at all ports. The scattering matrix can be extracted from the orthogonal

decomposition of the electric �eld into a sum of mode �elds [2]. This has to be done

at a pair of neighboring cross-sectional planes zp and zp+�p on each waveguide for a
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number of linearly independent excitations. The electric �elds at the planes zp and

zp+�p are calculated solving an eigenvalue problem for the in�nitely long waveguide

(see section 5) and a boundary value problem for the 3D structure (see section 3),

respectively.

The computation of the scattering matrix is based on the orthogonality relation for

the electric and magnetic �elds of di�erent modesZ



( ~Et;l(z)� ~Ht;m(z)) � d~
 = �mÆl;m: (2)

Here, ~Ht;m denotes the transverse magnetic mode �elds. In the case of degenerate

modes, i.e., the algebraic multiplicity of the corresponding eigenvalues is larger than

unity, we have to use �rst (2) in order to orthogonalize the modes. Details and an

example can be found in [5].

3 Boundary Value Problem

A three-dimensional boundary value problem can be formulated using the integral

form of Maxwell's equations in the frequency domain [1] in order to compute the

electromagnetic �eld within the structure of interest:I
@


~H � d~s =
Z



|![�] ~E � d~
;
I
[


([�] ~E) � d~
 = 0; (3)I
@


~E � d~s = �
Z



|![�] ~H � d~
;
H
[

([�] ~H) � d~
 = 0; (4)

~D = [�] ~E; ~B = [�] ~H; [�] = diag (�x; �y; �z) ; [�] = diag (�x; �y; �z) : (5)

The electric and magnetic ux densities ~D and ~B are complex functions of the

spatial coordinates. ! = 2�f is the angular frequency of the sinusoidal excitation,

and |2 = �1. f denotes the frequency.

At the ports p the transverse electric �eld ~Et(zp) is given by superposing weighted

transmission line modes ~Et;l(zp):

~Et(zp) =

m
(p)X

l=1

wl(zp) ~Et;l(zp): (6)

The transverse electric mode �elds have to be computed solving an eigenvalue prob-

lem for the transmission lines (see section 5). All other parts of the surface of the

computation domain are assumed to be an electric or a magnetic wall:

~E � ~n = 0 or ~H � ~n = 0: (7)
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The simulation of open-region problems usually requires absorbing boundary con-

ditions to properly truncate the computational domain. Using the uniaxial Per-

fectly Matched Layer (PML) absorbing boundary conditions [9] the original form

of Maxwell's equations is retained. A complex permittivity [�] and a complex per-

meability [�] diagonal tensor are introduced, resulting in a reection-free interface

between the computational area and the lossy PML region. On the one hand, the

PML allows computing the leakage due to radiation e�ects, on the other hand, the

PML can be used to suppress the inuence of the boundary on the electric behavior

of the structure.

4 Maxwellian Grid Equations

Maxwellian grid equations are formulated for staggered nonequidistant rectangular

grids [1, 12, 7] and for tetrahedral nets with corresponding dual Voronoi cells using

the Finite Integration Technique with lowest order integration formulae:I
@


~f � d~s �
X

(�fisi);
Z




~f � d~
 � f
: (8)

4.1 Staggered Nonequidistant Rectangular Grids

The use of rectangular grids is the standard approach. In general, it is very well

adapted to planar microwave structures, since most circuits have a basically rectan-

gular geometry. Using (8) Eqs. (3,4) are transformed into a set of grid equations:

ATDs=�
~b = |!�0�0DA�

~e; BDA�
~e = 0; (9)

ADs~e = �|!DA
~b; ~BDA

~b = 0: (10)

The vectors ~e and ~b contain the components of the electric �eld intensity and the

magnetic ux density of the elementary cells, respectively. The diagonal matrices

Ds=�, DA�
, Ds, and DA contain the information on cell dimension and material. A,

B, and ~B are sparse.

By eliminating the components of the magnetic ux density from the two equations

on the left-hand sides of (9) and (10), we obtain the system of linear algebraic

equations

(ATDs=�D
�1
A
ADs � k20DA�

)~e = 0; k0 = !
p
�0�0; (11)

which have to be solved using the boundary conditions (6) and (7), possibly supple-

mented by PML. k0 denotes the wavenumber in vacuum.

4.2 Tetrahedral Grids and Voronoi Cells

Using rectangular grids a mesh re�nement in one point results in an accumulation of

small elementary cells in all coordinate directions, although the re�nement is needed
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Table 1: Notations

X; Y; Z;W nodes lXY distance of X to Y

XY edge between X and Y lW
XY Z

distance of TXY ZW to XY Z

XY Z triangle dZ
XY

distance of SXY Z to XY

XY ZW tetrahedron aXY Z area of XY Z

SXY center of XY �XY ZW permeability in XY ZW

SXY Z circumcenter of XY Z �XY ZW permittivity in XY ZW

TXY ZW circumcenter of XY ZW

EXY magnitude of the electric �eld on SXY

BXY Z magnitude of the magnetic ux density on SXY Z

only in inner regions. In addition, rectangular grids are not well suited for treat-

ment of curved and non-rectangular structures. A �nite-volume method, which uses

tetrahedral nets with corresponding Voronoi cells for the three-dimensional bound-

ary value problem, reduces the number of elementary cells by local grid re�nement

and improves the description of curved structures. The primary grid is formed by

tetrahedra and the dual grid by the corresponding Voronoi cells. In this paper, for

sake of simplicity, we �rst assume that the circumcenter of a tetrahedron is located

within the tetrahedron. We consider a tetrahedron ABCD with the internal edge

AB (see Fig. 2) and the neighbouring elements, which share the edge AB with it.

The electric �eld intensity components are located at the centers of the edges of the

tetrahedra, and the magnetic ux density components are normal to the circumcen-

ters of the triangular faces. The Voronoi cells are polytopes. We use the notations

given in Table 1 withX; Y; Z;W 2 fA;B;C;Dg, where X; Y; Z;W are di�erent from

each other, in order to develop the grid equations for tetrahedral nets. EXY and

BXY Z satisfy

EXY = �EY X ;

BXY Z = BY ZX = BZXY = �BY XZ = �BXZY = �BZY X ;
(12)

respectively. The PML boundary conditions are not implemented for tetrahedral

grids, i.e. one has (see (5)),

�x = �y = �z = �XY ZW ; �x = �y = �z = �XY ZW : (13)

Using a �nite volume approach with the lowest-order integration formulae (8), Eqs.

(3) and (4) are transformed into a set of grid equations.

Taking into account the constitutive relations (5) the �rst equation of (3) is dis-

cretized on the dual grid. The internal edge AB is orthogonal to the corresponding

Voronoi cell face over which we have to integrate (see Fig. 2). The closed integration

path @
 (see (3) and (8)) consists of the edges with length si = lW
XY Z

, and is the

polygon around the periphery of the mentioned Voronoi cell face. The vertices of

the polygon are the circumcenters of the tetrahedra which share the edge AB with
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Figure 2: Tetrahedron with partial areas of the Voronoi cell faces related to node A

the tetrahedron ABCD. fi = BXY Z denotes the function values on SXY Z. 
 is the

area of the Voronoi cell face. f = EAB denotes the function value on the center

SAB. Thus, the discretized equation takes the form:

X
CD

1

�ABCD

�
lD
ABC

BABC + lC
ABD

BABD

�
=

|!

"X
CD

1

2
�ABCD

�
dC
AB

lD
ABC

+ dD
AB

lC
ABD

�#
EAB (14)

where the sum is over those tetrahedra ABCD which share the edge AB.

The �rst equation of (4) is discretized using (8) on the primary grid. We have to

integrate over the triangle ABC. This yields the following form:

lAB EAB + lBC EBC + lCAECA = �|!aABC BABC : (15)

Now we address the �rst of the surface integrals (second equation of (3)) reverting to

the dual grid. Here, [
 is a closed surface with an interior volume. The discretiza-

tion formula (16), with a form similar to the right-hand side of (14) is obtained,

except for the additional outer summation taken over all the nodes B neighboring

A (in the primary grid). For our �nal integral equation (second equation of (4))

the primary grid is used again, but now the integration is over the surface of the

6



tetrahedron ABCD. As a consequence, the discretized form (17) can be deduced:

X
B

 "X
CD

1

2
�ABCD

�
dC
AB

lD
ABC

+ dD
AB

lC
ABD

�#
EAB

!
= 0; (16)

�aABC BABC � aACD BACD + aABD BABD + aBCD BBCD = 0: (17)

Substituting the components of the magnetic ux density in (14), (15) the number

of unknowns in this system can be reduced by a factor of two:

X
CD

1

�ABCD

��
lD
ABC

aABC
+

lC
ABD

aABD

�
lAB EAB +

+
lD
ABC

lBC

aABC
EBC +

lD
ABC

lCA

aABC
ECA+

+
lC
ABD

lBD

aABD
EBD +

lC
ABD

lDA

aABD
EDA

�
=

!2

2

"X
CD

�ABCD
�
dC
AB

lD
ABC

+ dD
AB

lC
ABD

�#
EAB: (18)

Here, summation is taken over these tetrahedra ABCD, which possess the common

edge AB. (18) has to be solved using (12) and the boundary conditions (6) and (7).

5 Eigenvalue Problem Including PML

For the eigenvalue problem, we refer to the rectangular grid [2].

The transverse electric mode �elds (see (6)) at the ports of the three-dimensional

structure, which is discretized by means of tetrahedral grids, are computed interpo-

lating the results of the rectangular discretization.

The �eld distribution at the ports is computed assuming longitudinal homogeneity

for the transmission line structure. Thus, any �eld can be expanded into a sum of

so-called modal �elds which vary exponentially in the longitudinal direction:

~E(x; y; z � 2h) = ~E(x; y; z)e�|kz2h: (19)

kz is the propagation constant. 2h is the length of an elementary cell in z-direction.

Using ansatz (19) and eliminating the longitudinal electric �eld components Ez

by means of the electric-�eld divergence equation (see second equation of (3)) we

obtain an eigenvalue problem for the transverse electric �eld ~y on the transmission

line region:

G~y = ~y;  = e�|kz2h + e+|kz2h � 2 = �4 sin2(hkz): (20)

The sparse matrix G is general complex. The order of G is n = 2nxny � nb. nxny
is the number of elementary cells at the port. The size nb depends on the number
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of cells with perfectly conducting material. The solutions of the eigenvalue problem

correspond to the propagation constants of the modes. Using a conformal mapping

it can be shown that the eigenvalues corresponding to the few interesting modes of

smallest attenuation are located in a region bounded by two parabolas. The modes

are found solving a controlled sequence of eigenvalue problems of modi�ed matrices

[5] applying the invert mode of the Arnoldi iteration with shifts.

The PML inuences the mode spectrum. Modes that are related to the PML bound-

ary can be detected, using a criterion which is based on the comparison between

the power concentration inside the PML region to the whole computational domain

[11].

This method, developed initially for a reliable calculation of all interesting com-

plex eigenvalues of microwave structures, was expanded then to meet the special

requirements of optoelectronic structure calculations. Relatively large cross sections

and highest frequencies (i.e., small wavelengths) yield increased dimensions for the

eigenvalue problems. Using the results of a coarse grid calculation within the �nal

�ne grid reduces the numerical e�orts signi�cantly. The use of two levels of paral-

lelization results in an additional speedup in terms of computation time. A laser

application can be found in [5].

6 Systems of Linear Algebraic Equations Includ-

ing PML

All boundary conditions are known after the computation of the eigen mode problem,

and the systems of linear algebraic equations can be solved.

Besides the locations and values of the entries, the matrix representations of (14) -

(18) have the same structure as (9) - (11). Thus, we refer to (11) for the solution of

the linear algebraic equations.

An example, a microwave structure with a microstrip changing its width (impedance

step) can be found in [6]. There, for comparison the structure is subdivided in

nonequidistant rectangular three-dimensional elementary cells on the one hand and

in tetrahedra on the other hand.

Multiplying (11) by D
1=2
s yields a symmetric form of linear algebraic equations:

�A~x = 0; �A = (D1=2
s
ATDs=~�D

�1
A
AD1=2

s
� k20DA~�

) (21)

with ~x = D
1=2
s ~e. Moreover, the gradient of the electric �eld divergence

[�]r([�]�2r � [�] ~E) = 0 (22)

is used. It can be written as matrix equation

�B~x = 0; �B = D�1=2
s

DA~�
BTD�1

V~�~�
BDA~�

D�1=2
s

: (23)
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Table 2: Inuence of the PML layers on computational e�orts.

Number of Iteration

! = 1:00 ! = 1:30 ! = 1:58

f/GHz

Structure
10 50 100 10 50 100 10 50 100

no PML 63 72 127 51 58 104 45 53 91

z-PML 649 647 716 501 518 591 431 452 543

yz-PML 13912 27 924 32 298 13 501 29 077 45 371 16457 44 824 104 642

xyz-PML 12307 44 723 213 358 11 475 55 221 322 155 15983 111965 > 106

xyz-PML

(nonov.)
628 591 742 527 479 609 493 436 624

The diagonal matrix DV~�~�
is a volume matrix for the 8 partial volumes of the dual

elementary cell. In case of tetrahedral grids, the gradient of the divergence at an

internal point is obtained considering the partial volumes of the appropriate Voronoi

cell.

Taking into account the boundary conditions (6) and (7), Eqs. (21) and (23) yield

the form Â~x = ~b and B̂~x = 0, respectively, and

(Â+ B̂)~x = ~b; Â+ B̂ complex inde�nite symmetric; (24)

can be solved faster than Â~x = ~b.

Independent set orderings [8], Jacobi and SSOR preconditioning using Eisenstat's

trick [3] are applied to accelerate the speed of convergence of the used block Krylov

subspace method [4, 10] for the system of linear algebraic equations (24) that has

to be solved with the same coeÆcient matrix, but ms (see (1)) right-hand sides.

In comparison to the simple lossy case the number of iterations of Krylov subspace

methods increases signi�cantly if the structure contains a PML. In this case, among

others, the speed of convergence depends on the relations of the edge lengths in an

elementary cell of the nonequidistant rectangular. The best results can be obtained

using nearly cubic cells. Moreover, overlapping conditions at the corner regions of

the computational domain cause an increase of the magnitude of the corresponding

o�-diagonal elements in comparison to the diagonal of the coeÆcient matrix. This

deteriorates the properties of the matrix. Thus, overlapping PML should be avoided.

The PML layers, which form the absorbing boundary condition, have a signi�cant

inuence on computational e�orts, which is demonstrated in Table 2 for a quasi-

TEM waveguide (in Table 2, ! denotes the relaxation parameter of the Krylov

subspace method). A nonequidistant mesh of 27 � 24 � 21 elementary cells including

graded PML regions is used, that means the order of the system of linear algebraic

equations is 40 824. The structure is symmetric with respect to the (x; z)-plane.

Here, a magnetic wall is used, all other parts of the surface are assumed to be
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electric walls covered by PML. The longitudinal z-PML region consists of 10 layers,

the lateral (x; y)-PML's of 5 layers. The number of iterations also depends on the

frequency f and the relaxation parameter !.
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