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Abstract

We suppose a convergent sequence of curved rods made from an isotropic

elastic material and clamped on the lower basis or on both bases, and the

linearized elasticity system posed on the sequence of the curved rods. We

study the asymptotic behaviour of the stress tensor and the solution to this

system, when the radius of the domains tends to zero. The curved rods with

a nonsmooth line of centroids are covered by the used asymptotic method as

well.

1 Introduction

The aim of this paper is to continue with the study of thin elastic curved rods

which started in Tiba, Vod�ak [8]. We suppose the sequence of smooth curved rods,

converging to a unit speed curve which has generally absolutely continuous regular

parametrization, with the radius �. In the general case of a nonsmooth curve, we

introduce another small parameter �r associated to the approximating sequence of

the smooth curved rods. We derive an asymptotic one dimensional model for the

curved rod from the three dimensional linearized elasticity system posed on the

sequence of the smooth curved rods, and we show that the used asymptotic method

requires for the proof of the strong convergence of the stress tensors and the solutions

to this three dimensional model in special cases the suitable choice of the body force

H = (Hij)
3
i;j=1 or the approximating sequence of the curved rods, which can a�ect

the form of the limit stress tensor as well.

The related results concerning with the asymptotic methods for isotropic or

anisotropic straight rods can be found in Aganovi�c, Tutek [1] and Murat, Sili [6],

respectively. The case of the smooth curved rods was studied in Jurak, Tamba�ca

[4], [5]. The construction of the approximating sequence of the smooth rods and

the relaxation of the regularity assumptions was done in Tiba, Vod�ak [8], where the

above mentioned one dimensional model was derived for the curved rods clamped

on both bases and H = 0. We refer also the reader to [2] for the related theory for

shells.

The paper is organized as follows: In Section 2, we establish the basic notation used

throughout the paper. The Section 3 contains auxiliary lemmas. In Section 4, we

introduce the linearized elasticity systems for the curved rods clamped on the lower

basis and on both bases, and we transform the models on a cylinder, which does not

depend on the parameter �. Section 5 deals with the derivation of the asymptotic

one dimensional model and with the analysis of the asymptotic behaviour of the

displacements and the stress tensors. Section 6 contains a corrector result for the

stress tensor.

Our main results can be summarized in the following theorems and corollary:

Theorem 1.1 Assume that the function � 2 W
1;1(0; l)3 is the parametrization of

a unit speed curve generating the local frame t, n, b. Let the functions t�, n�, b�
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satisfying (3:2){(3:5) form the smooth approximation of this local frame. Let, further,

F 2 L
2(
)3, G 2 L

2(0; l;L2(@S)3), H 2 L
2(
)9, K 2 L

2(S)3 and the functions
�FF+G and �K be de�ned in Lemma 5:5. Then there exists a unique pair hU; �i 2

V
t;n;b
b

(0; l), generating the unique solution U� to the boundary value problem (5:77),

such that

U� ! U in H1(
)3; (1.1)

1

2�
((@2U�;b�)� (@3U�;b�))* � in L2(
); (1.2)

where the functions U� 2 Vb(
) are the unique solutions to the equation (4:6). In

addition,
1

�
!
�(U�)! � in L2(
)9; (1.3)

where the tensors !�(U�) and � are de�ned by the relations (4:8){(4:11) and (5:71){

(5:76).

Theorem 1.2 Let the assumptions of Theorem 1:1 be ful�lled and K = 0. Then the

convergences (1:1)-(1:3) remain valid for the functions U� 2 Vbb(
) and hU; �i 2

V
t;n;b
bb

(0; l), U� 2 H
1
bb
(0; l)3 solving the equations (4:12) and (5:77) (for all hV;  i 2

V
t;n;b
bb

(0; l)), respectively, if one of the following conditions holds:

1. there exist no constants C10, C11 2 R such that t2 = C10t1 and t3 = C11t1,

where ti, i = 1; 2; 3, are the components of the tangent vector t;

2. there exist the functions t�, n�, b� satisfying (3:2){(3:5) such that t1;�(x1) =

n1;�(x1) = 0, b1;�(x1) = 1 for x1 2 [bx1 � �
q
; bx1 + �

q] � [0; l], where q 2 (0; 2
3
).

3. there exist constants C10, C11, C13 2 R and the functions t�, n�, b� satisfying

(3:2){(3:5) such that t2 = C10t1, t3 = C11t1 and tj;� = C13t1;� 6= 0, nj;� =

C13n1;�, bj;� = C13b1;� on an interval I�, jI�j ! 0 for � ! 0, for all � 2 (0; 1)

and for j = 2 or j = 3, where C13 6= C10 or C13 6= C11, respectively;

4. there exist constants C10, C11 2 R such that t2 = C10t1 and t3 = C11t1, and

the identity Z
l

0

t1

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3dx1 = 0: (1.4)

holds;

5. the vectors t, n, b are constant vectors and the functions t�, n�, b� are

their smooth approximations in C
1([0; l])3 satisfying (3:2) and such that

kt� � tkC([0;l]) � C�
p, p > 1.

In the cases 1:{4:, the form of the tensor � is given by the relations (5:71){(5:76).

In the last case, we get the form of the tensor � adding the constant t1

l

R
l

0
�

�+2�
(H22+

H33)�H11 dx2dx3dx1 to the relations (5:71), (5:74) and (5:75).
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Corollary 1.3 Let the function U be given by Theorem 1:1 or 1:2 and let U�

1 be its

approximation introduced in Proposition 3:4 (see also Remark 3:7). Then there exist

functions U�

2 and U3
�
bounded in L2(
)3 such that

1

�
!
�(U�)�

1

�
!
�(bU�)! 0 in L2(
)9; (1.5)

where bU� = U�

1 + �U�

2 + �
2U�

3.

2 Preliminaries

Without risk of confusion, we denote by the symbol j � j the Lebesgue measure of

some measurable set, absolute value of a scalar function and the norm in the three

dimensional Euclidean space R3 . This norm is generated by the usual scalar product

(�; �). We shall denote by h�; �i any ordered pair. The summation convention with

respect to repeated indices will be also used, if not otherwise explicitly stated.

We denote by S � R
2 a bounded simply connected domain of class C1 satisfying

the symmetry conditionZ
S

x2 dx2dx3 =

Z
S

x3 dx2dx3 =

Z
S

x2x3 dx2dx3 = 0: (2.1)

The symbols 
 and 
� stand for the open cylinders (0; l)�S and (0; l)� �S, respec-

tively, where l > 0 and � > 0 small, are given.

We use for constants the symbols C or Ci, i 2 N0 = f0; 1; 2; : : :g. We adopt the

usual notation for the function spaces and their norms, i.e. Cm(O), with m 2 N0 ,

denotes the space of continuous functions, whose derivatives up to the order m are

continuous in the domain O, with the norm k�k
Cm(O), H

1(O) and Lp(O), p 2 [1;1],

mean the standard Sobolev and Lebesgue spaces endowed with the norms k � kH1(O)

and k � kLp(O), respectively, and the symbols Lp(0; l;X) and C([0; l];X), where X is

a Banach space, stand for the Bochner spaces with the norms

kvkLp(0;l;X) =

�Z
l

0

kv(x1)k
p

X
dx1

� 1

p

and kvkC([0;l];X) = max
x12[0;l]

kv(x1)kX :

Further, we de�ne the spaces:

H
1
b
(0; l) = fv 2 H

1(0; l); v(0) = 0g;

H
1
bb
(0; l) = fv 2 H

1(0; l); v(0) = v(l) = 0g;

rd2(S) = fhv2; v3i; v2 = C1x3 + C2; v3 = �C1x2 + C3; Ci 2 R; i = 1; 2; 3g;

rd
?

2 (S) = fhv2; v3i 2 L
2(S)2;

Z
S

vi dx2dx3 = 0; i = 2; 3;
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Z
S

[�x2v3 + x3v2] dx2dx3 = 0g:

Let C represent a unit speed curve in R3 de�ned by its parametrization � : [0; l]!

R
3 . The local frame of this curve is formed by its tangent, normal and binormal

vectors denoted by t, n, b, respectively. We use the analogous notation, i.e. ��,

t�, n�, b�, for the smooth approximation of the curve C and its local frame t, n, b,

where the curves C� de�ned by its parametrization �� remain unit speed curves for

arbitrary � > 0. We refer the reader to Proposition 3.1 for other properties of the

functions t�, n� and b�.

Using the assumed orthonormality of the local basis t�, n�, b�, we can derive the

laws of motion of the local frame:

t0
�
= ��b� + ��n�;

n0
�
= ���t� � �b�; (2.2)

b0
�
= ���t� + �n�:

The mappings R� and �P�, de�ned by

R� : 
! 
�; R�(x1; x2; x3) = (x1; �x2; �x3); (2.3)

�P� : 
� ! R
3
; �P�(y) = ��(y1) + y2n�(y1) + y3b�(y1); (2.4)

(y1; y2; y3) 2 (0; l) � �S, represent the parametrization of the curved rod e
� =

(�P� ÆR�)(
). From Corollary 3.2 and (2.10), it follows that

�d�(y) = det ( �r�P�(y)) = 1� ��(y1)y2 � ��(y1)y3 > 0 for all y 2 
� (2.5)

and thus the mapping �P� : 
� !
e
� is a C

1-di�eomorphism, Ciarlet [2], Theorem 3.1-

1. We distinguish by the notation e@i eV (ey) = @

@eyi

eV (ey), ey = (ey1; ey2; ey3) 2 e
�, �@i �V (y) =
@

@yi

�V (y), y = (y1; y2; y3) 2 
�, @iV (x) = @

@xi
V (x), x = (x1; x2; x3) 2 
, where a

function and its derivatives are de�ned. We suppose throughout this subsection

that all needed derivatives exist which follows from Proposition 3.1.

Using the relations �gi;�(y) = �@i �P�(y), y 2 
�, and (�gi;�; �g
j;�) = Æ

ij, i; j = 1; 2; 3, we

can establish the covariant and contravariant basis by the vectors

�g1;�(y) = (1� y2��(y1)� y3��(y1))t�(y1) + y3�(y1)n�(y1)� y2�(y1)b�(y1);

�g2;�(y) = n�(y1); �g3;�(y) = b�(y1); (2.6)

and

�g1;�(y) =
t�(y1)
�d�(y)

; �g2;�(y) =
�y3�(y1)t�(y1)

�d�(y)
+ n�(y1);

�g3;�(y) =
y2�(y1)t�(y1)

�d�(y)
+ b�(y1); (2.7)
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respectively, and the covariant and contravariant metric tensors (�gij;�)
3
i;j=1 and

(�gij;�)3
i;j=1 by the matrices with the components

�gij;� = (�gi;�; �gj;�) and �gij;� = (�gi;�; �gj;�); (2.8)

respectively. After substitution y = R�(x), we adopt the notation

g
ij;�(x) = �gij;�(R�(x)); gij;�(x) = �gij;�(R�(x)); gi;�(x) = �gi;�(R�(x)); (2.9)

gj;�(x) = �gj;�(R�(x)); d�(x) = �d�(R�(x)); (2.10)

where x 2 
. We can derive analogously the covariant and contravariant basis at

the point ( �P� ÆR�)(x), x 2 
, and the covariant and contravariant metric tensors

(oij;�)
3
i;j=1 and (oij;�)3

i;j=1, where the last one has the form

(oij;�)3
i;j=1 =

0B@
1
d2
�

�x3�

d2
�

x2�

d2
�

�x3�

d2
�

1
�2
+

x
2

3

2
�

d2
�

�x2x3
2
�

d2
�

x2�

d2
�

�x2x3
2
�

d2
�

1
�2
+

x
2

2

2
�

d2
�

1CA : (2.11)

We refer the reader to [8] for the more detailed derivation.

The de�nitions of the domains e
� and 
 enable us to introduce the function spaces

Vbb(e
�) = feV 2 H
1(e
�)

3 : eVj�P�(f0g��S) = eVj�P�(flg��S) = 0g;

Vbb(
) = fV 2 H
1(
)3 : Vj(f0g�S) = Vj(flg�S) = 0g

and further we introduce the space

V
t;n;b
bb

(0; l) = fhV;  i 2 H1
bb
(0; l)3 � L

2(0; l) : (V0
; t) = 0

and V� = � t+ (V0
;b)n� (V0

;n)b 2 H
1
bb
(0; l)3g: (2.12)

From the above de�nitions, we can deduce easily the de�nitions of the spaces

Vb(e
�), Vb(
) and V
t;n;b
b

(0; l) (compare with the de�nition of the spaces H1
b
(0; l)

and H1
bb
(0; l)).

3 Auxiliary propositions

Proposition 3.1 [8] Let � 2 W
1;1(0; l)3 be the parametrization of the unit speed

curve C. Then there exist vectors t, n, b, which belong to L1(0; l)3 and form the

local frame corresponding to the curve C, such that

jtj = jnj = jbj = 1; t?n?b a.e. in (0; l): (3.1)

In addition, there exist functions

f��g�2(0;1); ft�g�2(0;1); fn�g�2(0;1); fb�g�2(0;1) � C
1([0; l])3

5



such that

jt�j = jn�j = jb�j = 1; t�?n�?b� on [0; l] (3.2)

for all � 2 (0; 1),

t� ! t; n� ! n; b� ! b in measure in (0; l) (3.3)

for �! 0,
kt0

�
kL1(0;l)3 ; kn

0

�
kL1(0;l)3 ; kb

0

�
kL1(0;l)3 � O( 1

�r
);

kt00
�
kL1(0;l)3 ; kn

00

�
kL1(0;l)3 ; kb

00

�
kL1(0;l)3 � O( 1

�2r
)

(3.4)

and
k��kL1(0;l); k��kL1(0;l); k�kL1(0;l) � O( 1

�r
);

k�0
�
kL1(0;l); k�

0

�
kL1(0;l); k

0

�
kL1(0;l) � O( 1

�2r
); r 2 (0; 1

3
);

(3.5)

where the functions ��, ��, � 2 C
1([0; l]) are determined by (2:2).

Corollary 3.2 [8] There exist constants Cj, j = 4; 5; 6, such that the function d�

de�ned by (2:5) and (2:10) satis�es 0 < C4 � d�(x) � C5 for all x 2 
, and the

function �d�
p
�io

ij;��j de�ned by (2:11), where �i, i = 1; 2; 3, are the components of

the unit outward normal for (0; l)�@S, satis�es 0 � d�(x)�
p
�i(x)oij;�(x)�j(x) � C6

for all x 2 (0; l)� @S and � 2 (0; 1). In addition,

d� ! 1 in C(
); (3.6)

�d�(x)

q
�i(x)oij;�(x)�j(x)! 1 in C((0; l)� @S); (3.7)

for �! 0.

Remark 3.3 After a simple modi�cation of the proof of Proposition 3.1 in [8] and

Theorem 3.1 in [3], we can construct the functions t�, n�, b�, which satisfy the

condition 2. or 3. from Theorem 1.2.

Proposition 3.4 [8] Let t�, n�, b� be the functions from Proposition 3:1 and let

the space V
t�;n�;b�
bb

(0; l) be de�ned by (2:12) using the functions t�, n�, b� instead of

t, n, b. Let, further, hV;  i 2 V
t;n;b
bb

(0; l) be an arbitrary but �xed couple. Then

there exist couples hV�;  �i 2 V
t�;n�;b�
bb

(0; l) generating the functions V�;� such that

fV�g�2(0;1), fV�;�g�2(0;1) � C
1

bb
(0; l)3, f �g�2(0;1) � C

1

bb
(0; l),

V� ! V; V�;� ! V� in H
1
bb
(0; l)3;  � !  in Lp(0; l); (3.8)

for �! 0 and p 2 [1;1), and

kV00

�
kL2(0;l)3 � O(

1

�r
); k 0

�
kL2(0;l) � O(

1

�r
); r 2 (0;

1

3
): (3.9)
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Proposition 3.5 [8] Let � � 0, � > 0 and

A
ijkl

�
= �g

ij;�
g
kl;� + �(gik;�gjl;� + g

il;�
g
jk;�): (3.10)

Then there exists a constant C > 0 independent of � such that the estimate

kVk2
H1(
)3 �

C

�
k!

�(V)k2
L2(
)9 � C

Z



A
ijkl

�

1

�
!
�

kl
(V)

1

�
!
�

ij
(V) dx (3.11)

holds for all V 2 Vbb(
) and � 2 (0; 1).

Proposition 3.6 [8] Suppose that f�ng
1

n=1 � (0; 1) and �n ! 0. Let, in addition, a

sequence fU�n
g1
n=1 � Vbb(
) be such that

U�n
* U in H1(
)3; (3.12)

1

�n
!
�n(U�n

)* � in L2(
)9 (3.13)

for �n ! 0. Then the couple hU; �i 2 V
t;n;b
bb

(0; l) (in the sense @jU = 0, j = 2; 3),

where the function � is such that

1

2�n

�
(@2U�n

;b�n)� (@3U�n
;n�n)

�
* �

in L
2(
) for �n ! 0. In addition, the couple hU; �i generates the function U� 2

H
1
bb
(0; l)3 which together with the function U satisfy the relations

(U0
; t) = 0 a.e. on [0; l]; (3.14)

(U0

�
; t) = @3�12 � @2�13 in L2(0; l;H�1(S)); (3.15)

(U0

�
;n) = �@3�11 a.e. on [0; l]; (3.16)

(U0

�
;b) = @2�11 a.e. on [0; l]: (3.17)

If the sequence f 1
�n
!
�n(U�n

)g1
n=1 converges strongly in L2(
)9, then the convergence

in (3:12) is strong as well.

Remark 3.7 Proposition 3.4, 3.5 and 3.6 can be analogously checked on the spaces

C
1

b
(0; l), Vb(
) and V

t;n;b
b

(0; l).

4 Transformation of variational equations for the

curved rods

Let e
� be a three-dimensional homogeneous isotropic elastic body with the Lam�e

constants � � 0 and � > 0 de�ned by the mapping �P� Æ R� (see (2.3){(2.4)), for

7



� 2 (0; 1) arbitrary but �xed, and clamped on the basis �P�(f0g � �S). We consider

the variational equation posed on e
�Z
e
�

eAijkl
ekl(eU�)eij(eV) dey = Z

e
�

(eF�;
eV) dey + Z

e
�

eHij;�eij(eV) dey
+

Z
( �P�ÆR�)((0;l)�@S)

(eG�;
eV) deS�dey1+Z

( �P�ÆR�)(flg�S)

(eK�;
eV) deSl;�; 8eV 2 Vb(e
�); (4.1)

where eF� and ( eHij;�)
3
i;j=1 are the body forces, eG� and eK� are the surface tractions

acting on the curved rod e
� such that eF� 2 L
2(e
�)

3, eG� 2 L
2(( �P�ÆR�)((0; l)�@S))

3,eK� 2 L
2(( �P� Æ R�)(flg � S))3 and ( eHij;�)

3
i;j=1 2 L

2(e
�)
9 for � 2 (0; 1). Further,eS� = (�P�ÆR�)((0; l)�@S), eSl;� = (�P�ÆR�)(flg�S) , eAijkl = �Æ

ij
Æ
kl+�(ÆikÆjl+ÆilÆjk)

and (eij(eV))3
i;j=1 stands for the symmetric part of the gradient of the function eV.

According to Theorem 1.2-1. (b) from [2], we can transform the last term in (4.1)

as Z
( �P�ÆR�)(flg�S)

(eK�;
eV) deSl;� = Z

flg��S

( �K�;
�V�)d�

p
�i;��gij;��j;� d �Sl;�

=

Z
�S

( �K�(l); �V�(l)) dy2y3 = �
2

Z
S

(K�;V�(l)) dx2x3;

where �i;�, i = 1; 2; 3, are the components of the unit outer normal vector to flg��S

(i.e. �1;� = 1, �2;� = 0 and �3;� = 0), and �K� = eK� Æ
�P�, K� = ( �K� Æ R�)(l),

�V� = eV Æ �P� and V� = �V� ÆR�. Now, we decompose the tensor ( eHij;�)
3
i;j=1 in the

covariant basis eHij;� Æ
�P� = bH

ibj;�
[�g

bj;�
]j (4.2)

for arbitrary but �xed i = 1; 2; 3. We apply the same decomposition on bH
ibj;�
[�g

bj;�
]j,

for arbitrary but �xed j = 1; 2; 3, which yieldsbH
ibj;�
[�g

bj;�
]j = �H

bibj;�
[�g
bi;�
]i[�gbj;�]j: (4.3)

In [8] it was proved that

eij(eV) Æ �P� = �!�

kl
( �V�)[�g

k;�]i[�g
l;�]j; i; j = 1; 2; 3: (4.4)

Hence, together with the properties of the covariant and contravariant basis, we

deduce after the substitution R� thatZ
e
�

eHij;�eij(eV) dey = �
2

Z



Hij;�!
�

ij
(V�)d� dx (4.5)

for Hij;� = �Hij;� Æ R�. We refer the reader to [8] for the detailed transformation

of the other terms in (4.1). Using the scaling F� = �
2F, G� = �

3G, (Hij;�)
3
i;j=1 =

�(Hij)
3
i;j=1 = �H, K� = �

2K, we can rewrite the equation (4.1) asZ



A
ijkl

�

1

�
!
�

kl
(U�)

1

�
!
�

ij
(V)d� dx =

Z



(F;V)d� dx +

Z



Hij

1

�
!
�

ij
(V)d� dx

8



+

Z
(0;l)

Z
@S

(G;V)�d�
p
�io

ij;��j dSdx1 +

Z
S

(K;V(l)) dx2dx3 (4.6)

for all V 2 Vb(
), where �i, i = 1; 2; 3, are the components of the unit outward

normal to (0; l)� @S, and

A
ijkl

�
= �g

ij;�
g
kl;� + �(gik;�gjl;� + g

il;�
g
jk;�): (4.7)

The symmetric tensor !�(V) , obtained from (4.4) after the composition with R�,

has the form

!
�(V) =

1

�
�
�(V) + �

�(V); (4.8)

where the individual nonzero components of the symmetric tensors �� and �
� are

de�ned by

�
�

12(V) =
1

2
(@2V; g1;�); �

�

22(V) = (@2V;n�); �
�

33(V) = (@3V;b�); (4.9)

�
�

13(V) =
1

2
(@3V; g1;�); �

�

23(V) =
1

2

�
(@2V;b�) + (@3V;n�)

�
; (4.10)

�
�

11(V) = (@1V; g1;�); �
�

12(V) =
1

2
(@1V;n�); �

�

13(V) =
1

2
(@1V;b�): (4.11)

The other components of �� and �� are equal to zero.

Analogously we can derive the equationZ



A
ijkl

�

1

�
!
�

kl
(U�)

1

�
!
�

ij
(V)d� dx =

Z



(F;V)d� dx +

Z



Hij

1

�
!
�

ij
(V)d� dx

+

Z
(0;l)

Z
@S

(G;V)�d�
p
�io

ij;��j dSdx1; 8V 2 Vbb(
); (4.12)

for the curved rods clamped on both bases.

5 Proofs of Theorem 1.1 and 1.2

The proofs of Theorem 1.1 and 1.2 will be decomposed in this section to several

propositions, lemmas and corollaries.

Using (3.11), (4.6) and Corollary 3.2, we can derive easily the estimate

1

�2
k!

�(U�)k
2
L2(
)9 �

C
2

C4�
2

Z



A
ijkl

�
!
�

kl
(U�)!

�

ij
(U�)d� dx =

C
2

C4

 Z



Hij

1

�
!
�

ij
(U�)d� dx

+

Z



(F;U�)d� dx+

Z
l

0

Z
@S

(G;U�)d��
p
�jo

ij;��j dSdx1 +

Z
S

(K;U�(l)) dx2dx3

!

9



�
C

2
C5

C4

�
kHkL2(
)9

1

�
k!

�(U�)kL2(
)9 + kFkL2(
)3kU�kH1(
)3

+kGkL2(0;l;L2(@S)3)kU�kL2(0;l;L2(@S)3) + kKkL2(S)3kU�(l)kL2(S)3

�
� C(kU�kH1(
)3 +

1

�
k!

�(U�)kL2(
)9) � C
1

�
k!

�(U�)kL2(
)9 (5.1)

for all � 2 (0; 1), because U� 2 Vb(
) which implies that U� 2 C([0; l];L2(S)3) and

U� 2 L
2(0; l;L2(@S)3) in the sense of the trace. By the inequalities (3.11) and (5.1)

(passing to a subsequence), we have that

U�n
* U in H1(
)3; (5.2)

1

�n
!
�n(U�n

)* � in L2(
)9 (5.3)

for �n ! 0, where U 2 H
1
b
(0; l)3 according to Proposition 3.6 and Remark 3.7. To

simplify the notation, we will use further � instead of �n.

Now, we will study the properties of the tensor �.

Proposition 5.1 Let the tensor � be the limit determined by (5:3). Then it satis�es

the equationZ



A
ijkl

0 �kl�
0
ij
(V) dx =

Z



Hij�
0
ij
(V) dx; 8V 2 L

2(0; l;H1(S)3); (5.4)

where the tensor �0(V) is de�ned by

�
0(V) =

0B@ 0
(@2V;t)

2

(@3V;t)

2
(@2V;t)

2
(@2V;n)

(@2V;b)+(@3V;n)

2
(@3V;t)

2

(@2V;b)+(@3V;n)

2
(@3V;b)

1CA : (5.5)

P r o o f: Analogously as in [8] we can prove that ��(V)+���(V)! �
0(V) in L2(
)9

for �! 0 and that

A
ijkl

�
! A

ijkl

0 in C(
); where A
ijkl

0 = �Æ
ij
Æ
kl + �(ÆikÆjl + Æ

il
Æ
jk); (5.6)

for i; j; k; l = 1; 2; 3. The rest of the proof follows from density of the space Vb(
) in

L
2(0; l;H1(S)3) and from (5.5) and (5.6). 2

Now, we introduce the notation:

b�22 = �22 +
1

2

�

�+ �
�11;

b�33 = �33 +
1

2

�

�+ �
�11;

b�23 = �23: (5.7)

10



Corollary 5.2 Let the equation (5:4) hold. Then (we do not use the summation

convention here)Z
S

�1j =
1

2�

Z
S

H1j;

Z
S

�1jxj =
1

2�

Z
S

H1jxj; j = 2; 3;Z
S

�12x3 + �13x2 =
1

2�

Z
S

H12x3 +H13x2; (5.8)Z
S

b�23 = 1

2�

Z
S

H23;

Z
S

b�23x2 = 1

2�

Z
S

H23x2;

Z
S

b�23x3 = 1

2�

Z
S

H23x3; (5.9)Z
S

b�22 + b�33 = 1

�+ 2�

Z
S

H22 +H33;

Z
S

(b�22 + b�33)x2 = 1

�+ 2�

Z
S

(H22 +H33)x2;Z
S

(b�22 + b�33)x3 = 1

�+ 2�

Z
S

(H22 +H33)x3: (5.10)

P r o o f: Using in the equation (5.4) the test functions Vx2, Vx3, Vx
2
2=2, Vx

2
3=2

and Vx2x3, where V = vt, V = vn and V = vb for some function v 2 L
2(0; l), we

deduce the relations (5.8){(5.10) in the same way as in the proof of Corollary 8.2 in

[8] for Hij = 0, i; j = 1; 2; 3. 2

Corollary 5.3 We haveZ



[�(b�22 + b�33)2 + 2�(b�222 + b�233 + 2b�223)] dx
=

Z



[H22�22 +H33�33 + 2H23�23 +
�

�+ 2�
(H22 +H33)�11] dx: (5.11)

P r o o f: If we take an arbitrary function V 2 L2(0; l;H1(S)3) such that (V; t) = 0,

we get from (5.4) thatZ



[�(�11 + �22 + �33)((@2V;n) + (@3V;b)) + 2�(�22(@2V;n) + �33(@3V;b)

+2�23
(@2V;b) + (@3V;n)

2
)] dx =

Z



[H22(@2V;n) +H33(@3V;b)

+2H23

(@2V;b) + (@3V;n)

2
] dx: (5.12)

Now, we de�ne the function

VU�
=

1

�2
((U�;n�)n+ (U�;b�)b):

Since U� 2 Vb(
), n�, b� 2 C
1([0; l])3 and n, b 2 L

1(0; l)3, we can easily check

that VU�
2 L

2(0; l;H1(S)3) for all � 2 (0; 1). After the substitution of the function

VU�
to the equality (5.12), we obtain, using the notation from (4.8){(4.11), thatZ



[�(�11 + �22 + �33)(
1

�
!
�

22(U�) +
1

�
!
�

33(U�)) + 2�(�22
1

�
!
�

22(U�) + �33
1

�
!
�

33(U�)

11



+2�23
1

�
!
�

23(U�))] dx =

Z



[H22

1

�
!
�

22(U�)+H33

1

�
!
�

33(U�)+2H23

1

�
!
�

23(U�)] dx: (5.13)

The functions �11, �22, �33 and �23 belong to L
2(
) and thus the convergence in (5.3)

enables us to pass from the equality (5.13) to the equalityZ



[�(�11 + �22 + �33)(�22 + �33) + 2�(�222 + �
2
33 + 2�223)] dx

=

Z



[H22�22 +H33�33 + 2H23�23] dx: (5.14)

The term on the left-hand side can be rewritten as

�(�11 + �22 + �33)(�22 + �33) + 2�(�222 + �
2
33 + 2�223)

(5:7)
= �(b�22 + b�33 + �

�+ �
�11)(b�22 + b�33 � �

�+ �
�11) + 2�((b�22 � 1

2

�

�+ �
�11)

2

+(b�33 � 1

2

�

�+ �
�11)

2 + 2b�223) = �(b�22 + b�33)2 � ��11(b�22 + b�33)
+2�(b�222 + b�233 + 2b�223): (5.15)

From (3.16) and (3.17), it follows that

�11 = Q0 + (U0

�
;b)x2 � (U0

�
;n)x3 (5.16)

for some function Q0 2 L
2(0; l). After the substitution (5.15) to (5.14) and using

(5.10) and (5.16), we get (5.11). 2

Lemma 5.4 Let S be a simply connected domain and let @S 2 C1. Then

h�12; �13i = �
1

2
(U0

�
; t)h@2p� x3; @3p+ x2i+ h@2pH ; @3pHi; (5.17)

where the functions p 2 H1(S) and pH 2 L2(0; l;H1(S)) are the unique solutions to

the Neumann problemsZ
S

[(@2p� x3)@2r + (@3p+ x2)@3r] dx2dx3 = 0;

Z
S

p dx2dx3 = 0; (5.18)

for all r 2 H1(S), andZ
S

[@2pH@2r + @3pH@3r] dx2dx3 =
1

2�

Z
S

[H12@2r +H13@3r] dx2dx3; (5.19)

for all r 2 H1(S), Z
S

pH dx2dx3 = 0; (5.20)

respectively, where (5:19){(5:20) are ful�lled on the whole interval (0; l).
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P r o o f: After putting V = 't, ' 2 L
2(0; l;H1(S)), as a test function in the

equation (5.4) and taking the equality (3.15), we get the system of equationsZ



(h�12; �13i;r23')2 dx =
1

2�

Z



(hH12; H13i;r23')2 dx; (5.21)

for all ' 2 L
2(0; l;H1(S)),Z




(h�12; �13i; rot23 )2 dx =

Z



(U0

�
; t) dx; 8 2 H

1
bb
(
); (5.22)

where we have denoted r23' = h@2'; @3'i, rot23 = h�@3 ; @2 i, and (�; �)2 means

the scalar product in the usual two dimensional Euclidean space R2 . Substituting

(5.17) to (5.21){(5.22), we can check that this couple is a solution to the system

(5.21){(5.22). We refer the reader to [4] or [8] for the proof of uniqueness. 2

Now, we derive the asymptotic one-dimensional model. First, we introduce the

notation

Ix2
2
=

Z
S

x
2
2 dx2dx3; Ix23

=

Z
S

x
2
3 dx2dx3; (5.23)

E = �
3�+ 2�

�+ �
; K =

Z
S

[(@2p� x3)
2 + (@3p+ x2)

2] dx2dx3; (5.24)

where p 2 H1(S) is the unique solution of the Neumann problem (5.18).

Lemma 5.5 Let the functions U� be the solutions of the problem (4:6) satisfying

(5:2) and (5:3). Then the limit couple hU; �i 2 V
t;n;b
b

(0; l) obtained in Proposi-

tion 3:6 (see Remark 3:7) generates the function U�, which satis�es the equationZ
l

0

[E(Q0jSj(W
0

P
; t)+Ix2

2
(U0

�
;b)(V0

�
;b)+Ix2

3
(U0

�
;n)(V0

�
;n))+�K(U0

�
; t)(V0

�
; t)] dx1

= �
�

�+ 2�

Z



(H22 +H33)(x2(V
0

�
;b)� x3(V

0

�
;n) + (W0

P
; t)) dx

+

Z



[H12(V
0

�
; t)(�@2p+ x3)�H13(V

0

�
; t)(@3p+ x2)] dx

+

Z



H11((V
0

�
;b)x2�(V

0

�
;n)x3+(W

0

P
; t)) dx+

Z
l

0

(�FF+G;V) dx1+( �K;V(l)) (5.25)

for all functions WP 2 H
1
b
(0; l)3 and V� 2 H

1
b
(0; l)3 generated by any arbitrary

couple hV;  i 2 V
t;n;b
b

(0; l) (see (2:12)), where �FF+G(x1) =
R
S
F dx2dx3+

R
@S
G dS,

x1 2 (0; l), and �K =
R
S
K dx2dx3.

P r o o f: Let hV;  i be an arbitrary couple from the space V
t;n;b
b

(0; l). Proposi-

tion 3.4 and Remark 3.7 enable us to approximate the couple hV;  i with couples

13



hV�;  �i 2 V
t�;n�;b�
b

(0; l) satisfying (3.8), (3.9). Further, we de�ne the functions

W� 2 C
1(
)3 by

W�(x1; x2; x3) = �

�
(V0

�
(x1);n�(x1))x2 + (V0

�
(x1);b�(x1))x3

�
t�(x1)

�x3 �(x1)n�(x1) + x2 �(x1)b�(x1) (5.26)

for (x1; x2; x3) 2 
. Let WP be an arbitrary function from H
1
b
(0; l)3. Using the

functions V�, W� and WP , we establish the function bV� bybV� = V� + �W� + �WP 2 C
1(
)3 \ Vb(
): (5.27)

Analogously as in [8] Lemma 8.4, we can derive that the tensor B� = (Bij

�
)3
i;j=1 is

such that Bij

�
= 0 except for i = j = 1 and

B
11
�
= �

2
�
(��x2 + ��x3)(x2(V

0

�
;n�)

0 + x3(V
0

�
;b�)

0
� ��x3 � + ��x2 � � (W0

P
; t�))

+�x3((@1W�;n�) + (W0

P
;n�))� �x2((@1W�;b�) + (W0

P
;b�))

�
: (5.28)

Hence and from (4.8){(4.11), it follows that

!
�(bV�) = ���(V�;�;W

0

P
) +B�; (5.29)

where

��

11(V�;�;W
0

P
) = �(V0

�;�
;n�)x3 + (V0

�;�
;b�)x2 + (W0

P
; t�); (5.30)

��

12(V�;�;W
0

P
) = ��

21(V�;�;W
0

P
) =

x3

2
(V0

�;�
; t�) +

1

2
(W0

P
;n�); (5.31)

��

13(V�;�;W
0

P
) = ��

31(V�;�;W
0

P
) = �

x2

2
(V0

�;�
; t�) +

1

2
(W0

P
;b�) (5.32)

and

��

ij
(V�;�;W

0

P
) = 0; i; j = 2; 3: (5.33)

Since we know that t� ! t, n� ! n, b� ! b in measure in (0; l), we can prove that

��

ij
(V�;�;W

0

P
)! �ij(V�;W

0

P
) in L2(
); i; j = 1; 2; 3: (5.34)

Moreover, using (3.4), (3.5), (3.9) and (5.28), we can easily check that

kB�k2 = kB
11
�
k2 � C�

2(1�r)
; r 2 (0;

1

3
): (5.35)

These convergences and estimates together with (3.6), (3.7), (5.2), (5.3), (5.6) enable

us to pass to the limit in the equation (since bV� 2 C
1(
)3 \ Vb(
))Z




A
ijkl

�

1

�
!
�

kl
(U�)

1

�
!
�

ij
(bV�)d� dx =

Z



(F; bV�)d� dx+

Z



Hij

1

�
!
�

ij
(bV�)d� dx
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+

Z
l

0

Z
@S

(G; bV�)�d�
p
�jo

ij;��j dSdx1 +

Z
S

(K; bV�(l)) dx2dx3

and to establishZ



A
ijkl

0 �kl�ij(V�;W
0

P
) dx =

Z



(F;V) dx+

Z



Hij�ij(V�;W
0

P
) dx

+

Z
l

0

Z
@S

(G;V) dSdx1 +

Z
S

(K;V(l)) dx2dx3 (5.36)

for allWP 2 H
1
b
(0; l)3 and hV;  i 2 V

t;n;b
b

(0; l), where the last couples generate the

functions V� (see (2.12)).

By the form of the tensor (A
ijkl

0 )3
i;j;k;l=1 (see (5.6)), we have after the substitution

(5.30){(5.33) for \� = 0" (see (5.34)) to (5.36) thatZ



A
ijkl

0 �kl�ij(V�;W
0

P
) dx =

Z



[�(�11 + �22 + �33) + 2��11]�11(V�;W
0

P
) dx

+

Z



[4�(�12�12(V�;W
0

P
) + �13�13(V�;W

0

P
))] dx:

Hence, using (5.7), (5.24) and (5.30){(5.32), we can rewrite (5.36) as

I1 + I2 =

Z



(F;V) dx+

Z



Hij�ij(V�;W
0

P
) dx

+

Z
l

0

Z
@S

(G;V) dSdx1 +

Z
S

(K;V(l)) dx2dx3; (5.37)

where

I1 =

Z



[E�11 + �(b�22 + b�33)][(V0

�
;b)x2 � (V0

�
;n)x3 + (W0

P
; t)] dx; (5.38)

I2 = 2�

Z



[�12(V
0

�
; t)x3 + �12(W

0

P
;n)� �13(V

0

�
; t)x2 + �13(W

0

P
;b)] dx: (5.39)

After the substitution of (5.10) and (5.16) to (5.38), we can conclude using (2.1)

and (5.23){(5.24) that

I1 =

Z
l

0

E[Q0jSj(W
0

P
; t) + Ix2

2
(U0

�
;b)(V0

�
;b) + Ix2

3
(U0

�
;n)(V0

�
;n)] dx1

+
�

�+ 2�

Z



[(H22 +H33)(x2(V
0

�
;b)� x3(V

0

�
;n) + (W0

P
; t))] dx: (5.40)

After the substitution of (5.17) to (5.39), we obtain

I2 = �

Z



[(�(@2p� x3)x3 + (@3p+ x2)x2)(U
0

�
; t)
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+2@2pHx3 � 2@3pHx2](V
0

�
; t) dx + 2�

Z



�12(W
0

P
;n)� �13(W

0

P
;b) dx; (5.41)

where the functions p and pH are the unique solutions to the Neumann problems

(5.18) and (5.19){(5.20), respectively. Analogously as in [8], we can verify that

�

Z



(�(@2p� x3)x3 + (@3p+ x2)x2) (U
0

�
; t)(V0

�
; t) dx1

=

Z
l

0

�K(U0

�
; t)(V0

�
; t) dx1: (5.42)

In addition, from (5.18){(5.20), it follows that

2�

Z



@2pHx3(V
0

�
; t)� @3pHx2(V

0

�
; t) dx = 2�

Z



[@2pH(�@2p+ x3)(V
0

�
; t)

�@3pH(@3p+ x2)(V
0

�
; t)] dx+ 2�

Z



@2pH@2p(V
0

�
; t) + @3pH@3p(V

0

�
; t) dx

=

Z



(H12@2p +H13@3p)(V
0

�
; t) dx; (5.43)

and we deduce from (5.8) that

2�

Z



�12(W
0

P
;n) + �13(W

0

P
;b) dx =

Z



H12(W
0

P
;n) +H13(W

0

P
;b) dx: (5.44)

The relations (5.29){(5.34) enable us to express the second term from the right-hand

side of the equation (5.37) as a sum of the integralsZ



H11�11(V�;W
0

P
) dx =

Z



�H11(V
0

�
;n)x3 +H11(V

0

�
;b)x2 +H11(W

0

P
; t) dx;

(5.45)

2

Z



H12�12(V�;W
0

P
) dx =

Z



H12(V
0

�
; t)x3 +H12(W

0

P
;n) dx; (5.46)

2

Z



H13�13(V�;W
0

P
) dx =

Z



�H13(V
0

�
; t)x2 +H13(W

0

P
;b) dx: (5.47)

Substituting (5.38){(5.47) to (5.37) we obtain (5.25). 2

Corollary 5.6 Let the assumptions of Lemma 5:5 hold. Then

EQ0jSj+

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3 = 0 in (0; l): (5.48)

P r o o f: If we put V� = 0 (i.e. V = 0 and  = 0) as a test function in (5.25), we

get thatZ
l

0

[EQ0jSj+ (

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3)](W

0
; t) dx1 = 0 (5.49)
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for allW 2 H1
b
(0; l)3. If we putW = (W1; 0; 0),W = (0;W2; 0) andW = (0; 0;W3),

where Wj 2 H
1
bb
(0; l), j = 1; 2; 3, we conclude that

[EQ0jSj+(

Z
S

�

�+ 2�
(H22+H33)�H11 dx2dx3)]ti = Ci+6 in (0; l); i = 1; 2; 3: (5.50)

But we can take also the functions Wj such that Wj(l) = 1, j = 1; 2; 3, because

W 2 H1
b
(0; l)3. Then the relations (5.49) and (5.50) give (5.48). 2

Lemma 5.7 The sequence f 1
�n
!
�n(U�n

)g1
n=1 from (5:3) converges strongly to � in

L
2(
)9 for �n ! 0.

P r o o f: In the proof, we will write � instead of �n to simplify the notation. Let us

de�ne

�� =

Z



A
ijkl

�

�
1

�
!
�

kl
(U�)� �kl

��
1

�
!
�

ij
(U�)� �ij

�
d� dx: (5.51)

According to Proposition 3.5 and Remark 3.7, there exists a constant C > 0 inde-

pendent of � such that 1�!�(U�)� �

2
L2(
)9

� C��: (5.52)

Equation (4.6) implies that

�� =

Z



(F;U�)d� dx +

Z
l

0

Z
@S

(G;U�)d��
p
�io

ij;��j dSdx1

+

Z
S

(K;U�(l)) dx2dx3 +

Z



Hij

1

�
!
�(U�)d� dx

+

Z



A
ijkl

�

��
�kl �

1

�
!
�

kl
(U�)

�
�ij � �kl

1

�
!
�

ij
(U�)

�
d� dx: (5.53)

As a result of (3.6), (3.7), (5.2), (5.3) and (5.6), we obtain the convergence of the

sequence ��, i.e.

� = lim
�!0

�� =

Z
l

0

(�FF+G;U) dx1+( �K;U(l))+

Z



Hij�ij dx�

Z



A
ijkl

0 �kl�ij dx: (5.54)

In the same way as in [8] we can derive the identityZ



A
ijkl

0 �kl�ij dx =Z



[E�211 + 4�(�212 + �
2
13) + �(b�22 + b�33)2 + 2�((b�22)2 + (b�33)2 + 2(b�23)2)] dx: (5.55)

The expressions for �11, �12 and �13, i.e (5.16) and (5.17), imply after their substitu-

tion to (5.55) thatZ



A
ijkl

0 �kl�ij dx =

Z



[E�211 + 4�(�212 + �
2
13) + �(b�22 + b�33)2

17



+2�((b�22)2 + (b�33)2 + 2(b�23)2)] dx (5:16);(5:17)
=

Z



[E(Q0 + (U0

�
;b)x2 � (U0

�
;n)x3)

2

+4�
�
�
1

2
(U0

�
; t)(@2p�x3)+@2pH

�2
+4�

�
�
1

2
(U0

�
; t)(@3p+x2)+@3pH

�2
+�(b�22+b�33)2

+2�((b�22)2 + (b�33)2 + 2(b�23)2)] dx (2:1);(5:18)
=Z

l

0

[E(Ix2
2
(U0

�
;b)2 + Ix3

3
(U0

�
;n)2) + �K(U0

�
; t)2] dx1

+

Z



[EQ2
0 + 4�(@2pH)

2 + 4�(@3pH)
2] dx+

Z



[�(b�22 + b�33)2
+2�((b�22)2 + (b�33)2 + 2(b�23)2)] dx (5:19);(5:25) for WP=0

=

Z
l

0

(�FF+G;U) dx1 + ( �K;U(l))

�
�

�+ 2�

Z



(H22 +H33)(x2(U
0

�
;b)� x3(U

0

�
;n)) dx

+

Z



[H12(U
0

�
; t)(�@2p+ x3)�H13(U

0

�
; t)(@3p+ x2)] dx

+

Z



H11((U
0

�
;b)x2 � (U0

�
;n)x3) dx+

Z
l

0

EQ
2
0jSj dx1

+2

Z



H12@2pH +H13@3pH dx +

Z



�(b�22 + b�33)2 + 2�((b�22)2 + (b�33)2 + 2(b�23)2) dx
(5:11);(5:16);(5:17)

=

Z
l

0

(�FF+G;U) dx1 + ( �K(l);U(l))

+

Z
l

0

Q0(EQ0jSj+

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3) dx1+

Z



Hij�ij dx: (5.56)

Using (5.48) we get, after the substitution of (5.56) to (5.54), that � = 0. 2

It remains to express the components �22, �33, �23 of the tensor �. To �nd their

forms, we use the decomposition of the space H1(S)2 given by

H
1(S)2 = rd2(S)� rd

?

2 (S) (5.57)

([7]), where rd2(S) can be also de�ned by

rd2(S) = fv = (v2; v3) 2 H
1(S)2; eij(v) = 0; i; j = 2; 3g; (5.58)

where (eij(v))i;j=2;3 means the symmetric part of the gradient of the function v. It

is easy to verify that rd?2 (S) is a nontrivial Hilbert space with the scalar product

((v;w)) =

Z
S

eij(v)eij(w) dx2dx3 (5.59)

18



and that the Korn inequality

kvk1;2 � C

3X
i;j=2

keij(v)kL2(S) (5.60)

holds for all v 2 rd?2 (S). Then the problem

�

Z
S

(@2bpH2 + @3bpH3 )(@2v2 + @3v3) dx2dx3 + 2�

Z
S

eij(bpH)eij(v) dx2dx3
=

Z
S

Hijeij(v) dx2dx3 (5.61)

has a unique solution bpH 2 L
2(0; l; rd?2 (S)) satisfying the estimate (see (5.60) and

(5.61))

kbpHkL2(0;l;H1(S)2) � C

3X
i;j=2

keij(bpH)kL2(0;l;L2(S)) � C

3X
i;j=2

kHijkL2(0;l;L2(S)): (5.62)

Analogously as we have derived the relations (5.9) and (5.10), we can check thatZ
S

@2bpH3 + @3bpH2
2

=
1

2�

Z
S

H23;

Z
S

@2bpH3 + @3bpH2
2

x2 =
1

2�

Z
S

H23x2;

Z
S

@2bpH3 + @3bpH2
2

x3 =
1

2�

Z
S

H23x3; (5.63)Z
S

@2bpH2 + @3bpH3 =
1

�+ 2�

Z
S

H22 +H33;Z
S

(@2bpH2 + @3bpH3 )x2 = 1

�+ 2�

Z
S

(H22 +H33)x2;Z
S

(@2bpH2 + @3bpH3 )x3 = 1

�+ 2�

Z
S

(H22 +H33)x3: (5.64)

Lemma 5.8 We have

b�22 = @2bpH2 ; b�33 = @3bpH3 ; b�23 = @2bpH3 + @3bpH2
2

: (5.65)

P r o o f: If we use the function v = (v2; v3), where v2 = (V;n) and v3 = (V;b) for

V 2 L2(0; l;H1(S)3), as a test function in the equation (5.61), we get that the right-

hand side in the equation (5.61) is nothing but the right-hand side in the equation

(5.12). Subtracting (5.61), after the above substitution, from (5.12), we obtain thatZ



[�(�11 + �22 � @2bpH2 + �33 � @3bp3)((@2V;n) + (@3V;b)) + 2�((�22 � @2bpH2 )(@2V;n)
19



+(�33�@3bpH3 )(@3V;b))+2(�23�
@2bpH3 + @3bpH2

2
)
(@2V;b) + (@3V;n)

2
] dx = 0: (5.66)

Further, we de�ne the function

VU�;bpH = [(
U�

�2
;n�)� (bPH

;n)]n+ [(
U�

�2
;b�)� (bPH

;b)]b; (5.67)

where

PH = bpH2 n+ bpH3 b: (5.68)

Using the estimate (5.62) and the fact that U� 2 Vb(
), we can easily check that

VU�;bpH 2 L
2(0; l;H1(S)3) for all � 2 (0; 1). After the substitution of the function

VU�;bpH to the equality (5.66), we obtain analogously as in (5.13) and (5.14) thatZ



[�(�11 + �22 � @2bpH2 + �33 � @3bpH3 )(�22 � @2bpH2 + �33 � @3bpH3 )
+2�((�22 � @2bpH2 )2 + (�33 � @3bpH3 )2 + 2(�23 �

@2bpH3 + @3bpH2
2

)2)] dx = 0: (5.69)

Using the analogous computation as in (5.15), we conclude thatZ



[�(b�22 � @2bpH2 + b�33 � @3bpH3 )2
+2�((b�22 � @2bpH2 )2 + (b�33 � @3bpH3 )2 + 2(b�23 � @2bpH3 + @3bpH2

2
)2)] dx

= �

Z



�11(b�22 + b�33 � @2bpH2 � @3bpH3 ) dx (5:10);(5:16);(5:64)
= 0: (5.70)

2

Corollary 5.9 The tensor � has the following form:

�11
(5:16);(5:48)

= (U0

�
;b)x2 � (U0

�
;n)x3

�
1

EjSj

 Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3

!
; (5.71)

�12
(5:17)
= �

1

2
(U0

�
; t)(@2p� x3) + @2pH ; (5.72)

�13
(5:17)
= �

1

2
(U0

�
; t)(@3p+ x2) + @3pH ; (5.73)

�22
(5:7);(5:16);(5:48);(5:65)

= @2bpH2 �
1

2

�

� + �

"
(U0

�
;b)x2 � (U0

�
;n)x3

�
1

EjSj

 Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3

!#
; (5.74)
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�33
(5:7);(5:16);(5:48);(5:65)

= @3bpH3 �
1

2

�

� + �

"
(U0

�
;b)x2 � (U0

�
;n)x3

�
1

EjSj

 Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3

!#
; (5.75)

�23
(5:7);(5:65)

=
@2bpH3 + @3bpH2

2
; (5.76)

where the functions p, pH and bpH are the unique solutions to the problems (5:18),

(5:19){(5:20) and (5:61), respectively.

Remark 5.10 In Lemma 5.5 for WP = 0, we have proved that the asymptotic

one-dimensional model for the curved rods has the formZ
l

0

[E(Ix2
2
(U0

�
;b)(V0

�
;b) + Ix2

3
(U0

�
;n)(V0

�
;n)) + �K(U0

�
; t)(V0

�
; t)] dx1

= �
�

�+ 2�

Z



[(H22 +H33)(x2(V
0

�
;b)� x3(V

0

�
;n))] dx

+

Z



[H12(V
0

�
; t)(�@2p+ x3)�H13(V

0

�
; t)(@3p + x2)] dx

+

Z



[H11((V
0

�
;b)x2 � (V0

�
;n)x3)] dx+

Z
l

0

(�FF+G;V) dx1 + ( �K;V(l)); (5.77)

for all functions V� 2 H
1
b
(0; l)3 generated by any arbitrary couple hV;  i 2

V
t;n;b
b

(0; l) (see (2:12)). We refer the reader to Proposition 8.7 in [8] for the proof of

the uniqueness. Thus it is not necessary to pass to weak convergent subsequences in

(5.2) and (5.3), which are actually strong convergent according to Proposition 3.6,

Remark 3.7 and Lemma 5.7.

Now, we will concentrate our attention on the curved rods clamped on both bases.

Remark 5.11 In the case of the curved rods clamped on both bases, we can derive

in the same way the assertions of Proposition 5.1, Corollary 5.2, 5.3 and Lemma 5.4,

5.5, 5.8, and thus the asymptotic one-dimensional model has the form (5.77) for
�K = 0, V� 2 H

1
bb
(0; l)3 and hV;  i 2 V

t;n;b
bb

(0; l). In what follows, we want to

express the function Q0 from the relation (5.16) and thus to �nd the form of the

tensor �. We saw in the proof of Lemma 5.7 that this problem is connected via

the identity (5.48) with the problem about the strong convergence of the tensors
1
�
!
�(U�).

Lemma 5.12 Let there exist no constants C10, C11 2 R such that t2 = C10t1 and

t3 = C11t1, where ti, i = 1; 2; 3, are the components of the tangent vector t. Then

EQ0jSj+

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3 = 0 in (0; l) (5.78)
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and
1

�
!
�(U�)! � in L2(
)9 for �! 0:

Otherwise,

EQ0jSjt1 + t1

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3 = C12 2 [�Il(H); Il(H)] (5.79)

on (0; l), where

Il(H) =

����1l
Z

l

0

t1

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3dx1

���� : (5.80)

P r o o f: We start with the proof of the �rst part of the lemma. Analogously as in

the proof of Corollary 5.6, we can check the relation (5.50). Assuming the contrary,

we suppose that the function EQ0jSj+
R
S

�

�+2�
(H22+H33)�H11 dx2dx3 is not equal

to zero on (0; l) and without loss of generality we can suppose that t1 6= 0 on (0; l)

and thus the constant C7 from (5:50) is not equal to zero. Thus the relation (5.50)

enables us to express the components of the tangent vector t as

tj =
Cj+6

EQ0jSj+
R
S

�

�+2�
(H22 +H33)�H11 dx2dx3

on (0; l); j = 1; 2; 3; (5.81)

and thus

tj =
Cj+6C7

C7EQ0jSj+
R
S

�

�+2�
(H22 +H33)�H11 dx2dx3)

=
Cj+6

C7

t1; j = 2; 3; (5.82)

which is a contradiction.

If there exist constants C10, C11 such that t2 = C10t1, t3 = C11t1, we have only one

identity, namely,

EQ0jSjt1 + t1

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3 = C12 on (0; l): (5.83)

We assume again the contrary, i.e. jC12j > Il(H). ThenZ
l

0

Q0(EQ0jSj+

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3)dx1

=
1

EjSj

Z
l

0

�
EQ0jSj+

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3

�2

dx1

�
1

EjSj

Z
l

0

(

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3)(EQ0jSj

+

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3) = (Z)
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(new notation). Using the identity uv = (ut; vt), the dependence of the functions

t2, t3 on t1, (5.83) and the assumption jC12j > Il(H), we deduce that

(Z) =
1

EjSj

�
(1 + C

2
10 + C

2
11)C

2
12l

�(1 + C
2
10 + C

2
11)C12

Z
l

0

t1

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3dx1

�
� 0: (5.84)

Now, we can repeat the proof of Lemma 5.7 and from (5.52), (5.54), (5.56) and

(5.84), it follows thatZ
l

0

Q0(EQ0jSj+

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3)dx1 = 0: (5.85)

On the other hand, we get from (5.83) thatZ
l

0

Q0(EQ0jSj+

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3)dx1

= (1 + C
2
10 + C

2
11)C12

Z
l

0

Q0t1 dx1; (5.86)

which together with (5.85) imply that either C12 = 0 or
R
l

0
Q0t1 dx1 = 0. Then the

identity (5.83) gives a contradiction. 2

Remark 5.13 In the proof of Lemma 5.12, we could see that the straightforward

way, which was possible in the proof of Corollary 5.6 for the curved rods clamped on

the lower basis, does not provide in general an analogous expression for the function

Q0 as (5.48). Thus we infer that the form of the constant C12 in (5.83) depends on

1. the properties of the function Q0, which can be also de�ned by the weak

convergence Z
S

(@1U�; g1;�)

�
dx2dx3 * Q0jSj in L

2(0; l) (5.87)

(see (2.1), (5.3) and (5.16));

2. the properties of the functions Hii, i = 1; 2; 3;

3. the properties of the approximating local frames given by the vector functions

t�, n�, b�.

Hereafter, we concentrate our attention on two last cases, because it has no sense

to suppose some properties of the functions Q0 or
R
S

(@1U�;g1;�)

�
dx2dx3 in a general

case.
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Lemma 5.14 1. Let the components ti, ni, bi, i = 1; 2; 3, of the vectors t, n, b be

constant vectors and let the functions t�, n�, b� be their smooth approximations

in C1([0; l])3 satisfying (3:2) and such that kt� � tkC([0;l]) � C�
p, p > 1. ThenZ

l

0

Q0(EjSjQ0 +

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3)dx1 = 0; (5.88)

Q0 =
1

EjSj

 
t1

l

Z
l

0

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3dx1

�

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3

!
on (0; l); (5.89)

2. Let there exist constants C10, C11 2 R such that t2 = C10t1 and t3 = C11t1,

and let Z
l

0

t1

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3dx1 = 0: (5.90)

Then

EQ0jSj+

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3 = 0 on (0; l): (5.91)

In both cases
1

�
!
�(U�)! � in L2(
)9 for �! 0: (5.92)

P r o o f:

1. The convergence in (5.87) together with (2.6) and the assumptions of this

lemma imply thatZ
l

0

Q0jSj dx1 =

Z
l

0

Z
S

�11 dx = lim
�!0

Z



(@1U�; g1;�)

�
dx

(2:2);(2:6)
�

lim
�!0

Z



(@1U�; t�)

�
dx � lim

�!0

Z
l

0

Z
S

(@1U�; t)

�
dx

= lim
�!0

Z
l

0

@1

Z
S

(U�; t)

�
dx = 0; (5.93)

because U� 2 Vbb(
) and thus
R
S
(U�; t) dx2dx3 2 H

1
bb
(0; l) for all � 2 (0; 1).

The rest of the proof follows from (5.56) and (5.83).

2. Analogously as in (5.84) we can derive thatZ
l

0

Q0(EQ0jSj+

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3)dx1 � 0; (5.94)
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which together with (5.56) imply the strong convergence of the functions
1
�
!
�(U�) and provide the identityZ

l

0

Q0(EQ0jSj+

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3)dx1 = 0: (5.95)

Hence we can conclude using (5.86) that either the constant C12 in (5.83) is

equal to zero or
R
l

0
Q0t1 dx1 = 0. The rest follows from (5.83).

2

Lemma 5.15 Let the functions t�, n�, b� satisfy (3:2){(3:5) and the condition 2:

from Theorem 1:2. Then

EQ0jSj+

Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3 = 0 on (0; l) (5.96)

and the functions 1
�
!
�(U�) converge strongly to � in L2(
)9.

P r o o f: Let us take the function V = �W, W 2 H
1
bb
(0; l)3, as a test function in

the equation (4.12). Since

!
�

11(�W) = �(W0
; g1;�); !

�

12(�W) =
�

2
(W0

;n�); !
�

13(�W) =
�

2
(W0

;b�); (5.97)

!
�

22(�W) = !
�

33(�W) = !
�

23(�W) = 0 (5.98)

according to (4.8){(4.11) (compare with (5.29){(5.33)), we can rewrite the left-hand

side of the equation (4.12) asZ



A
ijkl

�

1

�
!
�

kl
(U�)

1

�
!
�

ij
(�W)d� dx

=

Z
l

0

(IU�

1 (g1;�) + I
U�

2 (n�) + I
U�

3 (b�);W
0) dx1; (5.99)

where

I
U�

1 (g1;�) =

Z
S

(�g11;�gkl;� + 2�g1k;�g1l;�)
1

�
!
�

kl
(U�)d�g1;� dx2dx3; (5.100)

I
U�

2 (n�) =

Z
S

(�g12;�gkl;� + �(g1k;�g2l;� + g
2k;�
g
1l;�))

1

�
!
�

kl
(U�)d�n� dx2dx3; (5.101)

I
U�

3 (b�) =

Z
S

(�g13;�gkl;� + �(g1k;�g3l;� + g
3k;�
g
1l;�))

1

�
!
�

kl
(U�)d�b� dx2dx3: (5.102)

We get analogously for the right-hand side of the equation (4.12) that

�

Z



(F;W)d� dx +

Z



Hij

1

�
!
�

ij
(�W)d� dx + �

Z
(0;l)

Z
@S

(G;W)�d�
p
�io

ij;��j dSdx1
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= �

Z
l

0

(IF+G4 ;W) dx1 +

Z
l

0

(IH11

1 (g1;�) + I
H12

2 (n�) + I
H13

3 (b�);W
0) dx1; (5.103)

where

I
F+G
4 =

Z
S

Fd� dx2dx3 +

Z
@S

G�d�
p
�io

ij;��j dS; (5.104)

I
H11

1 (g1;�) =

Z
S

H11g1;�d� dx2dx3; I
H12

2 (n�) =

Z
S

H12n�d� dx2dx3; (5.105)

I
H13

3 (b�) =

Z
S

H13b�d� dx2dx3: (5.106)

Further, we will use the notation IU�

j
(w), IH1i

j
(w) and Iw4 , i; j = 1; 2; 3, if we have

a function w instead of the functions g1;�, n� and b�. Using (5.99) and (5.103), we

can rewrite the equation (4.12) asZ
l

0

(IU�

1 (g1;�)� I
H11

1 (g1;�) + I
U�

2 (n�)� I
H12

2 (n�) + I
U�

3 (b�)� I
H13

3 (b�);W
0) dx1

= �

Z
l

0

(IF+G4 ;W) dx1: (5.107)

Hence we get that

d

dx1

�
I
U�

1 ([g1;�]i)� I
H11

1 ([g1;�]i) + I
U�

2 (ni;�)� I
H12

2 (ni;�) + I
U�

3 (bi;�)� I
H13

3 (bi;�)
�

= �I
Fi+Gi

4 in (0; l) (5.108)

for i = 1; 2; 3, and both terms belong to L2(0; l). After integration of (5.108) over

an interval [z1; z2] � (0; l), we obtain the equality

(IU�

1 ([g1;�]i)� I
H11

1 ([g1;�]i) + I
U�

2 (ni;�)� I
H12

2 (ni;�) + I
U�

3 (bi;�)� I
H13

3 (bi;�))(z1)

�(IU�

1 ([g1;�]i)� I
H11

1 ([g1;�]i) + I
U�

2 (ni;�)� I
H12

2 (ni;�) + I
U�

3 (bi;�)� I
H13

3 (bi;�))(z2)

= �

Z
z1

z2

I
Fi+Gi

4 (x1) dx1; i = 1; 2; 3: (5.109)

We can take z2 2 [bx1 � �
q
; bx1 + �

q] =
S

bx22[bx1�
�q

2
;bx1+

�q

2
][bx2 � �

q

2
; bx2 + �

q

2
] (see the

condition 2. from Theorem 1.2) and integrate the equality (5.109) over the intervals

[bxj � �
q

2
; bxj + �

q

2
], j = 1; 2. Then using the properties of the functions t1;�, n1;�, b1;�

and (2.6) lead to the estimate

j(IU�

1 ([g1;�]1)� I
H11

1 ([g1;�]1) + I
U�

2 (n1;�)� I
H12

2 (n1;�) + I
U�

3 (b1;�)� I
H13

3 (b1;�))(z1)j

� j
1

�q

Z
bx1+

�
q

2

bx1�
�q

2

1

�q

Z
bx2+

�
q

2

bx2�
�q

2

(IU�

1 (���z2)� I
H11

1 (���z2) + I
U�

3 (1)� I
H13

3 (1))(z2) dz2dbx2j
+j

1

�q

Z
bx1+

�
q

2

bx1�
�q

2

1

�q

Z
bx2+

�
q

2

bx2�
�q

2

�

Z
z1

z2

I
F1+G1

4 (x1) dx1dz2dbx2j; (5.110)
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for all z1 2 (0; l), which implies that

kI
U�

1 ([g1;�]1)� I
H11

1 ([g1;�]1) + I
U�

2 (n1;�)� I
H12

2 (n1;�) + I
U�

3 (b1;�)� I
H13

3 (b1;�)kL2(0;l) �

C

�
j
1

�q

Z
bx1+

�
q

2

bx1�
�q

2

1

�q

Z
bx2+

�
q

2

bx2�
�q

2

(IU�

1 (���z2)� I
H11

1 (���z2)+ I
U�

3 (1)� IH13

3 (1))(z2) dz2dbx2j
+�(kFkL2(
)3 + kGkL2(0;l;L2(@S)3))

�
: (5.111)

Let us suppose for a moment that the convergence

j
1

�2q

Z
bx1+

�
q

2

bx1�
�q

2

Z
bx2+

�
q

2

bx2�
�q

2

[(IU�

1 (���z2)� I
H11

1 (���z2)

+IU�

3 (1)� I
H13

3 (1))(z2)] dz2dbx2 ! 0 (5.112)

holds for �! 0. Then the estimate (5.111) yields

kI
U�

1 ([g1;�]1)� I
H11

1 ([g1;�]1) + I
U�

2 (n1;�)� I
H12

2 (n1;�)

+IU�

3 (b1;�)� I
H13

3 (b1;�)kL2(0;l) ! 0 (5.113)

for �! 0. Further, we can derive from (2.7){(2.8) and (3.4){(3.5) that

kg
ii;�
kL1(0;l) � 1 +O(�2(1�r)); i = 1; 2; 3; kg12;�kL1(0;l) � O(�1�r); (5.114)

kg
13;�
kL1(0;l) � O(�1�r); kg23;�kL1(0;l) � O(�2(1�r)): (5.115)

Using the boundedness of the tensors 1
�
!
�(U�) in L

2(
)9, (5.100){(5.102), (5.104){

(5.106), (5.111) and (5.113){(5.115) lead to the convergence

k

Z
S

[�g11;�gkk;�
1

�
!
�

kk
(U�)[g1;�]1 + 2�(g11;�g11;�

1

�
!11;�(U�)[g1;�]1

+g22;�g11;�
1

�
!
�

12(U�)n1;� + g
33;�
g
11;�1

�
!
�

13(U�)b1;�)

�H11[g1;�]1 �H12n1;� �H13b1;�]d� dx2dx3kL2(0;l) ! 0 for �! 0: (5.116)

Furthermore, we know thatZ
S

[2�g22;�g11;�
1

�
!
�

12(U�)�H12]n1;�d� dx2dx3 * 0; (5.117)

Z
S

[2�g33;�g11;�
1

�
!
�

13(U�)�H13]b1;�d� dx2dx3 * 0 in L2(0; l) (5.118)

according to (3.6), (5.3) and (5.8), andZ
S

[�g11;�gkk;�
1

�
!
�

kk
(U�) + 2�g11;�g11;�

1

�
!11;�(U�)�H11][g1;�]1d� dx2dx3

in L
2(0;l)
*
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Z
S

[�(�11 + �22 + �33) + 2��11 �H11]t1 dx2dx3

(5:7);(5:24)
=

Z
S

[E�11 + �(b�22 + b�33)�H11]t1 dx2dx3
(2:1);(5:10);(5:16);(5:83)

= C12: (5.119)

Hence and from (5.116), we conclude that C12 = 0 and we can prove analogously

as in the proof of Lemma 5.7 that the tensors 1
�
!
�(U�) converge strongly to � in

L
2(
)9.

It remains to prove (5.112). First, we detect the terms in the integral

j
1

�2q

Z
bx1+

�
q

2

bx1�
�
q

2

Z
bx2+

�
q

2

bx2�
�
q

2

(IU�

1 (���z2)� I
H11

1 (���z2) + I
U�

3 (1)� I
H13

3 (1))(z2) dz2dbx2j;
which need not converge to zero. Using (5.100), (5.102), (5.114){(5.115) and the

boundedness of the tensors 1
�
!
�(U�) in L

2(
)9, we can deduce, for instance, the

estimate

j
�
1�r

�2q

Z
bx1+

�
q

2

bx1�
�q

2

Z
bx2+

�
q

2

bx2�
�q

2

2�

Z
S

g
11;�
g
33;�1

�
!
�

13(U�)d� dx2dx3dz2dbx2j
� Cj sup

bx22[bx1�
�q

2
;bx1+

�q

2
]

�
1�r

�q

Z
bx2+

�
q

2

bx2�
�q

2

k
1

�
!
�

13(U�)(z2; �; �)kL2(S)9 dz2j

� C�
1�r�

q

2 ! 0 (5.120)

for � ! 0, because q 2 (0; 2
3
) and r 2 (0; 1

3
). We can estimate analogously the

other terms using (5.114){(5.115) and we �nd that the only terms, which need not

converge to zero, are contained in the integral

1

�2q

Z
bx1+

�
q

2

bx1�
�q

2

Z
bx2+

�
q

2

bx2�
�q

2

2�

Z
S

[g11;�g33;�
1

�
!
�

13(U�)�H13]d� dx2dx3dz2dbx2: (5.121)

Now, we show that this integral converges to zero as well. Multiplying the equation

(4.12) by �2, we obtain the equationZ



A
ijkl

�

1

�
!
�

kl
(U�)�!

�

ij
(V)d� dx = �

2

Z



(F;V)d� dx+

Z



Hij�!
�

ij
(V)d� dx

+�2
Z
(0;l)

Z
@S

(G;V)�d�
p
�io

ij;��j dSdx1: (5.122)

We put V =Wx3t�, where W 2 H1
bb
(0; l). From (2.2), (2.6), (4.8){(4.11), it follows

that

�!
�

11(V) = �(1� �x2�� � �x3��)x3W
0 + �

2
x
2
3���W � �

2
x2x3���W; (5.123)

�!
�

12(V) =
�

2
��x3W; �!

�

13(V) =
1

2
(1� �x2��)W; (5.124)

28



�!
�

22(V) = �!
�

23(V) = �!
�

33(V) = 0: (5.125)

After the substitution of (5.123){(5.125) to (5.122), we get thatZ



A
ijkl

�

1

�
!
�

kl
(U�)�!

�

ij
(V)d� dx =

Z
l

0

I5W
0 + I6W dx1; (5.126)

where

I5 =

Z
S

�(1� �x2�� � �x3��)x3(�g
11;�
g
kl;� + 2�g1k;�g1l;�)

1

�
!
�

kl
(U�)d� dx2dx3; (5.127)

I6 =

Z
S

(�2x23��� � �
2
x2x3���)(�g

11;�
g
kl;� + 2�g1k;�g1l;�)

1

�
!
�

kl
(U�)

+���x3(�g
12;�
g
kl;� + �(g1k;�g2l;� + g

2k;�
g
1l;�))

1

�
!
�

kl
(U�)

+(1� �x2��)(�g
13;�
g
kl;� + �(g1k;�g3l;� + g

3k;�
g
1l;�))

1

�
!
�

kl
(U�)d� dx2dx3: (5.128)

The right-hand side of the equation (5.122) can be rewritten as

�
2

Z



(F;V)d� dx+ �
2

Z
(0;l)

Z
@S

(G;V)�d�
p
�io

ij;��j dSdx1 +

Z



Hij�!
�

ij
(V)d� dx

=

Z
l

0

�
2
I
x3((F;t�)+(G;t�))
4 W + I

H

5 W
0 + I

H

6 W dx1; (5.129)

where

I
H

5 =

Z
S

H11�(1� �x2�� � x3��)x3d� dx2dx3; (5.130)

I
H

6 =

Z
S

H11(�
2
x
2
3���� �

2
x2x3���)+H12���x3+H13(1� �x2��)d� dx2dx3: (5.131)

After the substitution of (5.126) and (5.129) to (5.122), we �nd the equationZ
l

0

(I6 � I
H

6 )W dx1 = �
2

Z
l

0

I
x3((F;t�)+(G;t�))
4 W dx1 �

Z
l

0

(I5 � I
H

5 )W
0
dx1 (5.132)

and thus

I6 � I
H

6 = �
2
I
x3((F;t�)+(G;t�))
4 �

d

dx1
(I5 � I

H

5 ) on (0; l); (5.133)

where all terms belong obviously to L2(0; l). Applying the integrals 1
�2q

R
bx1+

�
q

2

bx1�
�q

2

R
bx2+

�
q

2

bx2�
�q

2

to (5.133), we obtain the estimate

j
1

�2q

Z
bx1+

�
q

2

bx1�
�q

2

Z
bx2+

�
q

2

bx2�
�q

2

[I6(bx2)� I
H

6 (bx2)] dbx2j � C(�2(kFkL2(
)3 + kGkL2(0;l;L2(@S)3))

+j
1

�2q

Z
bx1+

�
q

2

bx1�
�q

2

[I5(bx2 + �
q

2
)� I

H

5 (bx2 + �
q

2
)� I5(bx2 � �

q

2
) + I

H

5 (bx2 � �
q

2
)] dbx2): (5.134)
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Using (5.128) and (5.131), we can deduce analogously as in the estimate (5.120) that

the only terms, which need not converge to zero from the integral on the left-hand

side of the estimate (5.134), are contained in the integral

1

�2q

Z
bx1+

�
q

2

bx1�
�q

2

Z
bx2+

�
q

2

bx2�
�q

2

2�

Z
S

[g11;�g33;�
1

�
!
�

13(U�)�H13]d� dx2dx3dz2dbx2: (5.135)

Since the estimate

j
1

�2q

Z
bx1+

�
q

2

bx1�
�q

2

Z
S

�g
11;�
g
11;�
x3
1

�
!
�

11(U�(bx2 + �
q

2
; x2; x3))d� dx2dx3dbx2j

� C�
1�2q

Z
bx1+�

q

bx1

k
1

�
!
�

11(U�(z1; �; �))kL2(S)9 dz1j � C�
1�

3q

2 ! 0 (5.136)

holds because of q 2 (0; 2
3
) and the other terms from the last integral from (5.134)

satisfy analogous estimates, then from (5.134){(5.136), it follows that

j
1

�2q

Z
bx1+

�
q

2

bx1�
�q

2

Z
bx2+

�
q

2

bx2�
�q

2

2�

Z
S

[g11;�g33;�
1

�
!
�

13(U�)�H13]d� dx2dx3dz2dbx2j ! 0 (5.137)

for �! 0. 2

Corollary 5.16 From Lemma 5:14-1 and 5:15., it follows that the form of the func-

tion Q0 depends on the choice of approximating local frames if the components of

the tangent vector t are constant functions.

Remark 5.17 The situation is simpler if we construct such approximating local

frame that, for instance, t2;� = C13t1;� 6= 0, n2;� = C13n1;�, b2;� = C13b1;� on an

interval I� for all � 2 (0; 1), jI�j ! 0 for �! 0, where C13 6= C10 (see the condition 3.

from Theorem 1.2). Subtracting (5.109) with i = 2 from (5.109) with i = 1 leads to

the estimate

k[IU�

1 ([g1;�]1)� I
H11

1 ([g1;�]1) + I
U�

2 (n1;�)� I
H12

2 (n1;�) + I
U�

3 (b1;�)� I
H13

3 (b1;�)]

�C13[I
U�

1 ([g1;�]1)� I
H11

1 ([g1;�]1)+ I
U�

2 (n1;�)� I
H12

2 (n1;�)+ I
U�

3 (b1;�)� I
H13

3 (b1;�)]kL2(0;l)

� C�(kFkL2(
) + kGkL2(0;l;L2(@S)3))! 0 for �! 0

which together with (5.50), (5.117){(5.119) and the assumption C13 6= C10 imply

(5.96).

30



6 Approximation of the stress tensor

In this section, we prove Corollary 1.3. We know from the previous section that the

function U� generated by the couple hU; �i 2 V
t;n;b
b

(0; l) is the unique solution to

the equation (5.77). Now, we seek for a suitable approximation bU� of the function

U in the form bU� = U�

1 + �U�

2 + �
2U�

3; (6.1)

which satis�es
1

�
!
�(U�)�

1

�
!
�(bU�)! 0 in L2(
)9: (6.2)

Let the function U�

1 2 V
t�;n�;b�
b

(0; l) be the approximation of the function U from

Proposition 3.4 and Remark 3.7, which, in addition, satis�es

k(U�

1;�)
00
kL2(0;l)3 � O(

1

�2r
); k�00

�
kL2(0;l) � O(

1

�2r
); r 2 (0;

1

3
): (6.3)

The veri�cation of (6.3) is left to the reader, because it follows from Proposition 4.2

in [8] after a simple modi�cation of the proof. Let, further,

U�

2(x1; x2; x3) = �

�
((U�

1)
0(x1);n�(x1))x2 + ((U�

1)
0(x1);b�(x1))x3

�
t�(x1)

�x3��(x1)n�(x1) + x2��(x1)b�(x1) (6.4)

for (x1; x2; x3) 2 
. Analogously as in the proof of Lemma 8.4 in [8], we can derive

that

!
�(U�

1 + �U�

2) = ���(U�

1;�) +B�; (6.5)

where

��

11(U
�

1;�) = �((U�

1;�)
0
;n�)x3 + ((U�

1;�)
0
;b�)x2; (6.6)

��

12(U
�

1;�) = ��

21(U
�

1;�) =
x3

2
((U�

1;�)
0
; t�); (6.7)

��

13(U
�

1;�) = ��

31(U
�

1;�) = �
x2

2
((U�

1;�)
0
; t�); (6.8)

��

ij
(U�

1;�) = 0; i; j = 2; 3; (6.9)

and

kB�k2 = kB
11
�
k2 � C�

2(1�r)
; r 2 (0;

1

3
): (6.10)

At the end we de�ne the function U�

2 by

U�

2 = (U�

2; t�)t� + (U�

2;n�)n� + (U�

2;b�)b�; (6.11)

where

(U�

2; t�) = �((U�

1;�)
0
; t�)p+ pH ; (6.12)

(U�

2;n�) = bpH2 +
1

2

�

�+ �

"
((U�

1;�)
0
;b�)(

x
2
3 � x

2
2

2
) + ((U�

1;�)
0
;n�)x2x3
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�
x2

EjSj

 Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3

!#
; (6.13)

(U�

2;b�) = bpH3 +
1

2

�

�+ �

"
((U�

1;�)
0
;n�)(

x
2
3 � x

2
2

2
)� ((U�

1;�)
0
;b�)x2x3

�
x3

EjSj

 Z
S

�

�+ 2�
(H22 +H33)�H11 dx2dx3

!#
: (6.14)

After the substitution of bU� to
1
�
!
�(bU�) we can check (6.2) using Lemma 5.7, (5.71)-

(5.76), (6.1) and (6.3){(6.14). The same result is valid for the curved rods clamped

on both basis (see Lemma 5.12, 5.14, 5.15).
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