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Abstract

We suppose a convergent sequence of curved rods made from an isotropic
elastic material and clamped on the lower basis or on both bases, and the
linearized elasticity system posed on the sequence of the curved rods. We
study the asymptotic behaviour of the stress tensor and the solution to this
system, when the radius of the domains tends to zero. The curved rods with
a nonsmooth line of centroids are covered by the used asymptotic method as
well.

1 Introduction

The aim of this paper is to continue with the study of thin elastic curved rods
which started in Tiba, Vodédk [8]. We suppose the sequence of smooth curved rods,
converging to a unit speed curve which has generally absolutely continuous regular
parametrization, with the radius e. In the general case of a nonsmooth curve, we
introduce another small parameter € associated to the approximating sequence of
the smooth curved rods. We derive an asymptotic one dimensional model for the
curved rod from the three dimensional linearized elasticity system posed on the
sequence of the smooth curved rods, and we show that the used asymptotic method
requires for the proof of the strong convergence of the stress tensors and the solutions
to this three dimensional model in special cases the suitable choice of the body force
H = (llL-]-)?’j:1 or the approximating sequence of the curved rods, which can affect
the form of the limit stress tensor as well.

The related results concerning with the asymptotic methods for isotropic or
anisotropic straight rods can be found in Aganovi¢, Tutek [1] and Murat, Sili [6],
respectively. The case of the smooth curved rods was studied in Jurak, Tambaca
[4], [5]. The construction of the approximating sequence of the smooth rods and
the relaxation of the regularity assumptions was done in Tiba, Vodak [8], where the
above mentioned one dimensional model was derived for the curved rods clamped
on both bases and H = 0. We refer also the reader to [2] for the related theory for
shells.

The paper is organized as follows: In Section 2, we establish the basic notation used
throughout the paper. The Section 3 contains auxiliary lemmas. In Section 4, we
introduce the linearized elasticity systems for the curved rods clamped on the lower
basis and on both bases, and we transform the models on a cylinder, which does not
depend on the parameter €. Section 5 deals with the derivation of the asymptotic
one dimensional model and with the analysis of the asymptotic behaviour of the
displacements and the stress tensors. Section 6 contains a corrector result for the
stress tensor.

Our main results can be summarized in the following theorems and corollary:

Theorem 1.1 Assume that the function ® € W>°(0,1)® is the parametrization of
a unit speed curve generating the local frame t, n, b. Let the functions t., n., b,
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satisfying (3.2)—(3.5) form the smooth approzimation of this local frame. Let, further,
F € L*(Q)*, G € L*(0,[; L*(8S)*), H € L*(Q)?, K € L*(S)* and the functions
Fr.c and K be defined in Lemma 5.5. Then there exists a unique pair (U,9) €
V;’"’b(O, [), generating the unique solution U, to the boundary value problem (5.77),
such that

U, — U in H'(Q)?, (1.1)

1
2_((62Ue, be) - (63Uea be)) - ¢ Z’I’l LZ(Q), (12)
€
where the functions U, € V,() are the unique solutions to the equation (4.6). In
addition,
1
~w(U,) — ¢ in L*(Q)°, (1.3)
€

where the tensors w*(U) and ¢ are defined by the relations (4.8)—(4.11) and (5.71)—
(5.76).

Theorem 1.2 Let the assumptions of Theorem 1.1 be fulfilled and K = 0. Then the
convergences (1.1)-(1.3) remain valid for the functions U, € V() and (U, ¢) €
VEmP(0,1), U, € HL(0,1)® solving the equations (4.12) and (5.77) (for all (V,v) €
V,f,;"’b(O, 1)), respectively, if one of the following conditions holds:

1. there exist no constants Ciy, C11 € R such that tos = Cipt; and t3 = Chitq,
where t;, 1 = 1,2,3, are the components of the tangent vector t;

2. there ezist the functions te, n., b, satisfying (3.2)-(3.5) such that t1 (z1) =
nie(z1) =0, bye(z1) =1 for zy € [T1 — €2,7, + €?] C [0,1], where q € (0, %)

3. there exist constants Cyy, C11, C13 € R and the functions t., n., b, satisfying
(32)*(35) such that tg = Clotl; t3 = Cutl and t]',ﬁ = Cl3t1’6 75 0, Nje =
Cisnie, bj. = Cisbi e on an interval I, |I.| — 0 for ¢ — 0, for all e € (0,1)
and for j =2 or j = 3, where Ci3 # Cig or Ci3 # Ch1, respectively;

4. there exist constants Cyy, C11 € R such that to = Cipt; and t3 = Cq1t1, and
the identity

1
A
/0 1] /S m(Hzg + H3s) — Hyy dxodzsdz; = 0. (1.4)

holds;

5. the vectors t, n, b are constant vectors and the functions t., n., b, are
their smooth approzimations in C([0,1])® satisfying (3.2) and such that
||tE — t“C’([O,l]) S Cﬁp, p > 1.

In the cases 1.—4., the form of the tensor { is given by the relations (5.71)—(5.76).
In the last case, we get the form of the tensor ( adding the constant tTl fol r)‘Qu(Hm +
Hss3) — Hyy dzodzsdz to the relations (5.71), (5.74) and (5.75).

2



Corollary 1.3 Let the function U be given by Theorem 1.1 or 1.2 and let US be its
approzimation introduced in Proposition 3.4 (see also Remark 3.7). Then there ezist
functions US and U? bounded in L*(Q2)? such that

1 1 ~
“w(U,) — ~w(U,) — 0 in L*(Q)°, (1.5)
€ €

where U, = US + €U + €2US.

2 Preliminaries

Without risk of confusion, we denote by the symbol |- | the Lebesgue measure of

some measurable set, absolute value of a scalar function and the norm in the three
dimensional Euclidean space R®. This norm is generated by the usual scalar product
(-,-). We shall denote by (-,-) any ordered pair. The summation convention with
respect to repeated indices will be also used, if not otherwise explicitly stated.

We denote by S C R? a bounded simply connected domain of class C! satisfying
the symmetry condition

/.’132 d.’Egd.’E:; = / T3 d.’L‘Qd.’E:; = / Tol3 d.’Egd.’L‘3 = 0. (21)
S S S

The symbols © and 2. stand for the open cylinders (0,1) x S and (0,1) x €S, respec-
tively, where [ > 0 and € > 0 small, are given.

We use for constants the symbols C or C;, i € Ny = {0,1,2,...}. We adopt the
usual notation for the function spaces and their norms, i.e. C™(O), with m € Ny,
denotes the space of continuous functions, whose derivatives up to the order m are
continuous in the domain O, with the norm [|-||gmg), H'(O) and L*(0), p € [1, o0],
mean the standard Sobolev and Lebesgue spaces endowed with the norms || - || g1 (o)
and || - [|zr(0), respectively, and the symbols LP(0,[; X') and C([0,1]; X), where X is

a Banach space, stand for the Bochner spaces with the norms

! P
Iolrosy = [ ool dar ) and Ioleqanao = ma IoGen)x.
0 T

’

Further, we define the spaces:
Hy(0,1) = {v € H'(0,1); v(0) =0},

HL(0,1) = {u € H'(0,1); (0) = v(l) = 0},
’r‘dg(S) = {<'U2,’U3>; Vg = Cl.’L'3 + 02, V3 = —01.732 + 03, CZ € R, 1= 1, 2,3},

rdy (S) = {(vy,v3) € L*(S)?% /v,- drodrs =0, 7= 2,3,
S



/[—.’1?21)3 + -’L'3'UQ] d.’L'Qd.’E:; = 0}
S

Let C represent a unit speed curve in R® defined by its parametrization & : [0,[] —
R3. The local frame of this curve is formed by its tangent, normal and binormal
vectors denoted by t, n, b, respectively. We use the analogous notation, i.e. ®,,
te, n., b, for the smooth approximation of the curve C and its local frame t, n, b,
where the curves C, defined by its parametrization ®, remain unit speed curves for
arbitrary ¢ > 0. We refer the reader to Proposition 3.1 for other properties of the
functions t., n, and b,.

Using the assumed orthonormality of the local basis t., n., b, we can derive the
laws of motion of the local frame:

t. = a.be + Ben,,

= —B.t. — 7.be, (2.2)
bl = —a.t. + y.n..
The mappings R. and P., defined by

R.: Q — Q. Rz, 22, 73) = (21, €22, €3), (2.3)
]-_)e . Qe — R37 Pe(y) = ‘ﬁe(yl) + y2n6(y1) + y3be(y1)7 (24)
(y1,92,93) € (0,1) X €S, represent the parametrization of the curved rod Q. =

(P. o R,)(R2). From Corollary 3.2 and (2.10), it follows that
de(y) = det (VP(y)) = 1 — Be(y1)y2 — ae(y1)ys > 0 for all y € Q. (2.5)

and thus the mapping P, : Q. — Qisa C'- diffeomorphism, Ciarlet [2], Theorem 3.1-
1. We distinguish by the notation 8,V (§) = 2 V(~) 7= (U1, U2, U3) € Qe, OV (y) =
a%v( ) ¥ = (Y1,¥2,93) € Q, GV (z) = iV( z), ¢ = (21,72, 23) € (1, where a
function and its derivatives are defined. We suppose throughout this subsection
that all needed derivatives exist which follows from Proposition 3.1.

Using the relations g; .(y) = 6;P.(y), y € Q., and (g:.,8"¢) = 67,4, j = 1,2,3, we
can establish the covariant and contravariant basis by the vectors

81,(y) = (1 — y2Be(y1) — yse(y1))te(y1) + ysve(y1)ne(y1) — y2ve(y1)be(y1),

82,(¥) = ne(y1), 83,(y) =be(v1), (2.6)
and
() = S, ge(y) = I )
3. Y2Ye(y1)te(y1)
(y) = 0 + be(y1), (2.7)



respectively, and the covariant and contravariant metric tensors (gij.);,;—; and
(gij’ﬁ)?’jzl by the matrices with the components

Gije = (i 8j,c) and g7 = (g™, g™), (2.8)

respectively. After substitution y = R.(z), we adopt the notation
g7 (x) = g7 (Re(2)), gij,e(z) = Gij.e(Re(2)), 8ie(2) = &ie(Re()), (2.9)
g™“(z) = 8" (Re(2)), de(z) = de(Re(2)), (2.10)

where z € (). We can derive analogously the covariant and contravariant basis at
the point (P, o R)(z), z € €, and the covariant and contravariant metric tensors

)3 ij,6\3
(0ij,c); j=1 and (07°);;_;, where the last one has the form
L —T3%Ye I2Ye
&2 d2 &2
.. 2
17,6\3 _ —T37Ye m3'7’5 —T2T3Ye
(0 )i,j:l = a2 52 + N . (2.11)
T27e *$2$375 1 + T3Ye
&2 &2 2T e

We refer the reader to [8] for the more detailed derivation.

The definitions of the domains QE and €2 enable us to introduce the function spaces

‘/bb( ) {V € HI(Q ) : {}|135({0}><£S) = {} P({I}xeS) — O}a

Vis(2) = {V € H'(Q)’ : Vl(oxs) = Vl(pxs) = 0}
and further we introduce the space
Vi(0,1) = {(V,9) € Hy,(0,0)* x L*(0,1) : (V',£) =0
and V, = —¢t + (V',b)n — (V',n)b € H}(0,1)*}. (2.12)

From the above definitions, we can deduce easily the definitions of the spaces
Vi(Q), V5() and VF™P(0,1) (compare with the definition of the spaces H}(0,1)
and H},(0,1)).

3 Auxiliary propositions

Proposition 3.1 [8] Let ® € Wh*(0,1)* be the parametrization of the unit speed
curve C. Then there exist vectors t, n, b, which belong to L>(0,1)® and form the
local frame corresponding to the curve C, such that

lt|=|n|=|b| =1, tLlnlb a.e. in (0,]). (3.1)
In addition, there exist functions
{®}eco), {be}eeo1), {neteeoy), {beteeoy € C=([0,1])°
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such that

|t6| = |n£| = |b6| = 1, tEJ_neJ_bE on [0,[] (32)
for all e € (0,1),
te » t, n. —» n, b, — b in measure in (0,1) (3.3)
for e — 0,
ltellze o2, lIntllze©ne, [Pl e@ne ~ O(frl), (3.4)
[t€ | 202, (e[, [P ]|z=(1s ~ O(57)
and X
||04e||L°° 0,0)5 ||5e||L°° 0,0)s ||%||Loo 0,0) ™~ 0(7), (3.5)

[eellzo=0,0), ||ﬁ ||L°° 0,0); ||%||L°° (0,) ~ O(E;), re(0,3),
where the functions a., Be, 7. € C*([0,1]) are determined by (2.2).

Corollary 3.2 [8] There exist constants C;, j = 4,5,6, such that the function d.
defined by (2.5) and (2.10) satisfies 0 < Cy < de(z) < C5 for all x € Q, and the
function ed.\/v;01¢v; defined by (2.11), where v;, i = 1, 2 3, are the components of
the unit outward normal for (0,1) x S, satisfies 0 < d(z)e\/vi(z)o"<(z)v;(z) < Cs
for all x € (0,1) x S and € € (0,1). In addition,

d. — 1 in C(Q), (3.6)

ede(x)\/Vi(x)oij’ﬁ(x)uj(x) — 1in C((0,1) x 8S), (3.7)

for e — 0.

Remark 3.3 After a simple modification of the proof of Proposition 3.1 in [8] and
Theorem 3.1 in [3], we can construct the functions t., n., b, which satisfy the
condition 2. or 3. from Theorem 1.2.

Proposition 3.4 [8] Let t., n., b, be the functions from Proposition 3.1 and let
the space V;,j’nf’bs(o,l) be defined by (2.12) using the functions t., n., b, instead of
t, n, b. Let, further, (V,¢) € V;’b’n’b(O,l) be an arbitrary but fized couple. Then
there exist couples (V, ) € Vis™P(0,1) generating the functions V.. such that
{V }ee 0,1)» {V* e}ee 0,1) C Cbb (0 l) {¢e}ee(0,1) C CI;)I?(O: l):

V.=V, V..~ V,in Hy(0,0)°, ¥ — 9 in LF(0,1), (3.8)
for e » 0 and p € [1,00), and

IVEllzzps ~ O(= ) el o ~ O ) re (0%)- (3.9)



Proposition 3.5 [8] Let A > 0, u > 0 and
A?kl — )\gij,egkl,e + 'ul(gik,egjl,e + gil,egjk,e)‘ (310)
Then there exists a constant C > 0 independent of € such that the estimate

C o] 1
V30 < ;HWE(V)H%Z(Q)Q < C/QA?MEW&(V)—WF-(V) dr (3.11)

e Y

holds for all V € V() and € € (0,1).

Proposition 3.6 [8] Suppose that {e,}>>; C (0,1) and €, — 0. Let, in addition, a
sequence {U, }2°, C Vi (Q) be such that

U, — U in H'(Q)?, (3.12)

1
—w™(U,,) — ¢ in L*(Q)° (3.13)
€n

for e, — 0. Then the couple (U, ¢) € V5™P(0,1) (in the sense 8;U = 0, j = 2,3),
where the function ¢ is such that

ZL (®:U.,,b.,) - (05U, n,,)) = ¢

€n

in L?(Q) for ¢, — 0. In addition, the couple (U, ) generates the function U, €
H}(0,1)® which together with the function U satisfy the relations

(U',t) =0 a.e. on[0,1], (3.14)

(U;, t) = 63(12 — 62(13 mn LZ(O, l, Hﬁl(S)), (315)
(U.,n) = —83(11 a.e. on [0,1], (3.16)
(U.,b) = 82(11 a.e. on [0,1]. (3.17)

If the sequence {éwfn(UEn)};’f:l converges strongly in L?(Q)°, then the convergence
in (3.12) is strong as well.

Remark 3.7 Proposition 3.4, 3.5 and 3.6 can be analogously checked on the spaces
C2(0,1), Vi4(Q) and VE™P(0,1).

4 Transformation of variational equations for the
curved rods

Let Q. be a three-dimensional homogeneous isotropic elastic body with the Lamé
constants A > 0 and p > 0 defined by the mapping P, o R, (see (2.3)—(2.4)), for
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¢ € (0,1) arbitrary but fixed, and clamped on the basis P.({0} x €S). We consider
the variational equation posed on €2,

/~ gijklekl(ﬁe)eij({/) dg:/ (Fe;V dy+/ H’J fe”(v) dy

€ €

+ / (G, V) dS.dij; + / (K., V) dS,., YV € V3(), (4.1)
(PcoRc)((0,1)x05) (PeoR.)({1}xS)

where F, and (H,] e); j—1 are the body forces, G, and K, are the surface tractions

acting on the curved rod Q. such that F, € L2(Q.)%, G, € L2((P.oR.)((0,1) x8S))3,
K. € L*((P.oR)({l} x S))® and (lﬁfu,ﬁ)ij:1 e L*(Q,) for e € (0,1). Further,
Se = (PoR)((0,1) x8S), Sp.e = (PoR) ({1} x ) , A = N5 6H 4 pu(57% 57!+ 57 67%)
and (e;; (V))3 _, stands for the symmetric part of the gradient of the function V.

According to Theorem 1.2-1. (b) from [2]|, we can transform the last term in (4.1)

as
/ (Rea {}) dgl,e - / (Kea Ve)de V ni,egij’enj,e dgl,e
(PeoR.)({1}xS)

{l}xeS

= /S(Ke(l),\_fe(l)) dygyg = 62 A(Kg,ve(l)) dexSa

where n; ., 1 = 1,2, 3, are the components of the unit outer normal vector to {l/} x €S
(ie. me =1, me = 0 and 3 = 0), and K., = K.oP,, K, = (K¢ o R,)(1),
V.=VoDP, and V, = V.o R.. Now, we decompose the tensor (flij,e)?,jzl in the
covariant basis

Hi 0P, = H [8: ; (4.2)

ij,€

for arbitrary but fixed 7 = 1,2,3. We apply the same decomposition on H” 6[g].’e]j,
for arbitrary but fixed 7 = 1,2, 3, which yields

~

H; & )i = 0 & Jilg; ;- (4.3)
In [8] it was proved that
eij({}) © P - wkl(v )[gk E]Z[gl’e]j’ i’j = 1’ 2’ 3. (4'4)

Hence, together with the properties of the covariant and contravariant basis, we
deduce after the substitution R, that

[ f[ijyeeij({/') dﬂ: 62/ Hi]-,ewfj(VE)de dz (45)
Q. Q
for H;j. = H;j. o R.. We refer the reader to [8] for the detailed transformation

of the other terms in (4.1). Using the scaling F, = €’F, G, = €G, (Hj;.); ;- =
€(Hij): -1 = eH, K. = €K, we can rewrite the equation (4.1) as

1 1 1
/ A?kl—wzl(UE)—wfj(V)de dzr = / (F,V)d, dz + / Hij-w(V)d, dz
Q € € Q Q €
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—I—/ / (G, V)eden/viotev; dSdzy +/(K,V(l)) dzodrs (4.6)
(0,0) Jos s

for all V € V4(Q), where v;, i = 1,2,3, are the components of the unit outward
normal to (0,1) x 8S, and

A?kl _ )\gij’egkl’e +'ul(gik,egjl,e +gil’6gjk’6)- (47)

The symmetric tensor w®(V) ; obtained from (4.4) after the composition with R,

has the form )
w (V) =-0°(V) + k(V), (4.8)

€
where the individual nonzero components of the symmetric tensors 6° and k¢ are

defined by

1
012(V) = 5(82V, 81), 0(V) = (B V,ne), 055(V) = (V. bo),  (4.9)

0a(V) = L0V, 810, (V) = 2 (VD) +(0V,m)),  (4.10)

1 1
k11 (V) = 01V, 81e), 612(V) = 5(81V, o), w35(V) = 5(61V,b).  (4.11)
The other components of 6¢ and «° are equal to zero.

Analogously we can derive the equation

ol 1 1
/ ATM =t (U ) -wi;(V)d. dz = / (F,V)d, dz + / Hij—w(V)d, dz
Q € € Q Q €

—I—/ / (G, V)eder/viov<y; dSdxy, YV € Vi (Q), (4.12)
(0,) Jos

for the curved rods clamped on both bases.

5 Proofs of Theorem 1.1 and 1.2

The proofs of Theorem 1.1 and 1.2 will be decomposed in this section to several
propositions, lemmas and corollaries.

Using (3.11), (4.6) and Corollary 3.2, we can derive easily the estimate

1 € 2 02 ijkl, € € 02 1 €
6_2”“) (Ue)||L2(Q)9 < C.e? A; wkl(Uf)wij(Uf)df de = — Hij_wij(Uf)df dz
4€° Jo Q €

Cy

I
—I—/(F,Uﬁ)dE dIL'—l—/ / (G, U.)dcer/vjoey; dea:l—l—/(K,Ue(l)) dedx3>
Q o Jas s



0205
- Gy

+Gll 20,5220y || Uell 22 (0,1:2205y3) + |K || z2(s) ||Ue(l)||L2(S)3>

1
(||H||L2 9~ [w (Ullzz@pe + [1Fllz2@)2 | Uell (o2

1 €
< C([[Ucllar ey + —IIw (Uo)llzzp) < C—llw (Ue)llzae (5.1)

for all € € (0,1), because U, € V;(2) which implies that U, € C([0,1]; L?(S)?) and
U, € L*(0,1; L?(8S)?) in the sense of the trace. By the inequalities (3.11) and (5.1)
(passing to a subsequence), we have that

U, — Uin H'(Q)?, (5.2)
Lo (UL) = ¢ in I12(Q)° (5.3)

n

for ¢, — 0, where U € H}(0,1)® according to Proposition 3.6 and Remark 3.7. To
simplify the notation, we will use further € instead of ¢,.

Now, we will study the properties of the tensor (.

Proposition 5.1 Let the tensor  be the limit determined by (5.3). Then it satisfies
the equation

/ ATH 0% (V) dz = / Hy;035(V) de, YV € L*(0,; H'(S)®),  (5.4)
Q

where the tensor 0°(V) is defined by

0 (62V t) (63V,t)
OV = | @Y9 (5,v, n) @V eV | (5.5)
(63V7t) (

92V, b)+(83V,n
: )+ (3 ) (33V,b)

P roof: Analogously as in [8] we can prove that 0¢(V)+ex“(V) — 0°(V) in L*(Q)°
for € =+ 0 and that

APM — AT® in C(Q), where AF™ = X696 4 (6767 + 6767%),  (5.6)
for ¢,4,k,1 = 1,2,3. The rest of the proof follows from density of the space V;(f2) in
L?(0,1; H*(S)?) and from (5.5) and (5.6). O
Now, we introduce the notation:

1 1

C22 = (o2 + 5)\ y Ci1, C33 (33 + 5)\ y Ci1, C23 = (3. (5.7)

10



Corollary 5.2 Let the equation (5.4) hold. Then (we do not use the summation
convention here)

1
Cl — /Hl') /gl'x':_/Hl'x'; j:273)
/ ! 2p Js ! S 7 2p Js I

1
/Clzxs + (1372 = — / Hyozs + Hizxo, (5.8)

/C23 _/H23, /ngxg —/H23x2, /C23x3 —/H23x3, (5.9)

/ Co2 + C33 N+ 2 2 / Hjy + Hasa, /(C22 + C33)$2 Nt 2 /9(H22 + Hs3)zs,
/(C22 + C33) 3 /(ng + Hjz)zs. (5.10)
s s

:)\+2u

P r o o f: Using in the equation (5.4) the test functions Vo, Vz3, V2/2, V2/2
and Vzyz3, where V = vt, V = vn and V = vb for some function v € L?(0,1), we
deduce the relations (5.8)—(5.10) in the same way as in the proof of Corollary 8.2 in
[8] for Hij = 0, ’l,,j = 1, 2,3 |

Corollary 5.3 We have

J NG G+ 2@ + B+ 283 o

A
= /[H22C22 + H33(33 + 2H3(23 + ﬁ(Hn + Hs3)Cil dz. (5.11)
Q

A+2

P roof: If we take an arbitrary function V € L?(0,1; H'(S)3) such that (V,t) =0,
we get from (5.4) that

/Q[)\(Cu + Co2 + (33)((2V,n) + (05V, b)) + 21((22(02V,n) + (33(05V, b)

(82Va b) + (83Va Il)
2

203 )] do = /Q (Hya(85V, 1) + His(95V, b)

(82Va b) + (83Va Il)
2

Now, we define the function

1
Vu. = = ((U., n)n + (U, b.)b).

€

Since U, € V4(Q), n., b, € C*([0,1])® and n, b € L>(0,1)?, we can easily check
that Vg, € L(0,1; H*(S)?) for all € € (0,1). After the substitution of the function
V. to the equality (5.12), we obtain, using the notation from (4.8)—(4.11), that

G+ G+ ) G5 (U) + s (U) + 20( G 5a(U) + o s (U

11



1 1 1 1
+2C23Ew§3(UE))] dr = /[H222w§2(U6)+H332w§3(U6)+2H23;w§3(U6)] dz. (5.13)

Q

The functions (i1, (a2, (33 and (p3 belong to L?(Q2) and thus the convergence in (5.3)
enables us to pass from the equality (5.13) to the equality

/Q[)\(Cll + Coz + Ca3)(Coz + Cs3) + 2u(G3, + (o5 + 2C35)] da

= /[H22C22 + H33(33 + 2H33(03] dz. (5.14)
Q

The term on the left-hand side can be rewritten as

A(Ct + Coz + Ca3) (oo + Ga3) + 21(Gy + G + 2¢55)

(5.7) |, 2 ~ 7 ~ ~ ~ 1 A 9
=) A(Gor + Goa + + Gas — +2 — o
(Co2 + (a3 )\4_“(11)((22 (33 )\_i_uCn) p((Cz2 2)\—|—u<11)
G — 5y +28) = MG + G — Aua(Go + G
BT ot ot 23 22 1+ (33 11(G22 + G33
+20(C3, + G5 + 2G35)- (5.15)
From (3.16) and (3.17), it follows that
Cll = QU + (U;, b)ﬂ?z — (U;, 1’1)1173 (516)

for some function @y € L?(0,{). After the substitution (5.15) to (5.14) and using
(5.10) and (5.16), we get (5.11). O

Lemma 5.4 Let S be a simply connected domain and let S € C*. Then

1 !
(Ci2, Ci3) = —i(U*, t)(02p — x3, O3p + T2) + (OopH, O3pH), (5.17)

where the functions p € H'(S) and py € L*(0,1; H'(S)) are the unique solutions to
the Neumann problems

/[(82[) — :1:3)627" + (33p + $2)63?"] d.’l?gd.’l?g = 0, /p d.’l?gd.’l?g = 0, (518)
S S
for all T € H'(S), and
1
/[aszagr + 83[)}[63?"] d.’l?gdil?g = ﬂ /[leagr + H1363?"] d.’l?gdil?g, (519)
S S

for all r € H'(S),
/pH dzadzs =0, (5.20)
s

respectively, where (5.19)—(5.20) are fulfilled on the whole interval (0,1).

12



Proof: After putting V = ¢t, ¢ € L?*(0,1; H'(S)), as a test function in the
equation (5.4) and taking the equality (3.15), we get the system of equations

/S;(<C12aC13> VZSQO / ng,ng VZ3QD)2 dx, (521)

for all ¢ € L2(0,1; HY(S)),

/ ({C1a, C13), TObo3th)s dz = / (U, t)y dz, Vi € HL(Q), (5.22)
Q Q

where we have denoted Vasp = (9o, O3¢), rotesth = (—051, 091), and (-, -)2 means
the scalar product in the usual two dimensional Euclidean space R%. Substituting
(5.17) to (5.21)—(5.22), we can check that this couple is a solution to the system
(5.21)—(5.22). We refer the reader to [4] or [8] for the proof of uniqueness. O

Now, we derive the asymptotic one-dimensional model. First, we introduce the
notation

Iz = /ng dzodrs, I3 = /ng dzodzs, (5.23)
3A+2
= U ﬂ, K = /[(82[) — .’Eg)z + (83[) + .’EQ)Z] diI?zd.’Eg, (524)
A+ s

where p € H*(S) is the unique solution of the Neumann problem (5.18).

Lemma 5.5 Let the functions U, be the solutions of the problem (4.6) satisfying
(5.2) and (5.3). Then the limit couple (U,¢) € Vi™"(0,1) obtained in Proposi-
tion 3.6 (see Remark 3.7) generates the function U,, which satisfies the equation

l
0

A
— —)\ n 2’u /S;(ng + Hgg)(lEz(Vi,b) — :I)s(V;,n) + (W;),t)) dzx

n /Q Hyp(V!, 6)(—0op + 35) — Hys(V', 6)(Osp + 7)] dav

I

T / Hiu (V! b)za— (V' n)as + (Wi, t)) dot / (Fric, V) day+ (K, V(1) (5.25)
Q 0

for all functions Wp € H{(0,1)® and V, € H}(0,1)® generated by any arbitrary

couple (V, 1) € Vi™P(0,1) (see (2.12)), where Fp (1) = JsF dzodzs+ [, G dS,
z1 € (0,1), and K = [, K dr,dz;.

P roof Let (V,9) be an arbitrary couple from the space V;’"’b(O,l). Proposi-
tion 3.4 and Remark 3.7 enable us to approximate the couple (V) with couples

13



(Ve, %) G_V;f’"f’bf((),l) satisfying (3.8), (3.9). Further, we define the functions
W, € C=(Q)* by

W.(z1,22,3) = = ((Vi(@1), no(@1))as + (Vi(@1), belen)zs ) te(a1)

—23%(T1)0(T1) + T2 (T1)be (1) (5.26)
for (z1,T2,2z3) € Q. Let Wp be an arbitrary function from H}(0,1)3. Using the
functions V,, W, and Wp, we establish the function V. by

Vo=V + W, +Wp € C®(Q)° N V4(Q). (5.27)

Analogously as in [8] Lemma 8.4, we can derive that the tensor B, = (B¥)}._, is
such that B¥ = 0 except for i = j = 1 and

Bell = 62 ((ﬂexZ + aexS)(xZ(V:sa ne)l + $3(V,6, be)l - ﬂexS'lpe + aexﬂpe - (W;Da te))

.23 (W, ) + (Wh,n,)) — 7ez2(( W, b) + (Wh, be))>. (5.28)
Hence and from (4.8)—(4.11), it follows that
w (Vo) = €XY(V,., Wh) + B,, (5.29)
where
T (Vae, Wh) = (V9 n)as + (V. b)as + (Wh, t,), (5.30)
1
TH(Vees Wp) = 15 (Vs Wh) = (VL t) + 5 (W, ), (5.31)
1
Ti(Vee W) = T3 (Ve Wp) = =2 (VLo t) + 5(Whb)  (5:32)
and
Y5(Vie, W) =0, 4,5 =2,3. (5.33)

Since we know that t. — t, n. — n, b, — b in measure in (0,[), we can prove that
T5;(Vie Wp) = Ti(V,, Wh) in L*(Q), i,j =1,2,3. (5.34)

Moreover, using (3.4), (3.5), (3.9) and (5.28), we can easily check that

1
||B6||2 = ||B§1||2 S 062(1*7‘), r e (0, g) (535)

These convergences and estimates together with (3.6), (3.7), (5.2), (5.3), (5.6) enable
us to pass to the limit in the equation (since V. € C*(Q)% N V4(Q))

| A

1 ~
~wi;(Ve)de dz

1
€ €

wi(Vd, do = /

(F,Vﬁ)de d.’E‘i‘/Hm
Q Q

14



I
—I—/ (G, Vo)ed/vjov; dSdzq + /(K,Ve(l)) dzodrs
o Jas s

and to establish

/ ATH Y (V. Wh) dz = /

(F, V) da:+/ T(V., W) da
Q

+/l (G,V) de:z:1+/(K,V(l)) drydrs (5.36)

for all Wp € HL(0,1)® and (V, 1) € VF™P(0,1), where the last couples generate the
functions V., (see (2.12)).

By the form of the tensor (Aéjkl)?’j’k’lzl (see (5.6)), we have after the substitution
(5.30)—(5.33) for “e = 0” (see (5.34)) to (5.36) that

/ AT T (Vi, Wh) da = / (Gt + Goz + Gsa) + 26¢u] T1a (Vi W) dz
Q Q

+/[4M(C12T12(V*,W§3) + (13T 13(V,, W5))] dz.
Q

Hence, using (5.7), (5.24) and (5.30)—(5.32), we can rewrite (5.36) as

Il—l_ZQ:/FV diL‘—l—/ ”V*,W,)d

+/l (G, V) de:z:1+/(K,V(l)) dzydzs, (5.37)

where

I, = /Q[ECH + )\(222 + E?:S)][(V;a b)zz — (V,,n)zs + (Wp, t)] dz, (5.38)

I, = 2#/[C12(Via t)zs + Ci2(Wh,n) — Ci3(Vi, t) 22 + Ci3(Wh, b)] dz.  (5.39)
Q

After the substitution of (5.10) and (5.16) to (5.38), we can conclude using (2.1)
and (5.23)—(5.24) that

1
I, = / E[Qo|S|(Wh, t) + Lz (UL, b)(V., b) + L,;(UL,n)(V},n)] dz,

+3 J;\2u /Q[(ng + Hj3)(z2(V,,b) — z3(V),n) + (W, t))] dz. (5.40)

After the substitution of (5.17) to (5.39), we obtain

Iy =pu /Q[(—(aw — z3)z3 + (83p + x2)z2) (U, t)
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+282pH£L'3 - 283PH$2](V:H t) dr + 2/1'/ CIZ(W;D’ n) - C13(W;D’ b) d:L', (5'41)
Q

where the functions p and py are the unique solutions to the Neumann problems
(5.18) and (5.19)—(5.20), respectively. Analogously as in [8], we can verify that

,LL/ (—(82[) — .’E3)$3 + (33p + 1172).’172) (U;, t)(V;, t) diL‘l
Q
!
_ / WK (U £) (V' t) day. (5.42)
0
In addition, from (5.18)—(5.20), it follows that

2#/ 32PH€E3(VL,’G) - aspHﬂ?z(V;at) dr = 2#/[32PH(—32P+ xs)(Vi;t)
Q Q

—33PH(83P + x2)(Vi,t)] dr + 2#/ 32pH52P(V;a t) + 83PH33P(VL;JG) dr
Q

= /(H1282p+ Hi305p)(V,, t) dz, (5.43)
Q
and we deduce from (5.8) that
2 / Ca(Wh m) + Cis (W', b) dar = / His(Wh,n) + His(Wh,b) dz.  (5.44)
Q Q

The relations (5.29)—(5.34) enable us to express the second term from the right-hand
side of the equation (5.37) as a sum of the integrals

/ HHTH(V*,W;D) diL‘ = / —Hu(Vi,Il)iLg + Hu(V;,b).’EQ + Hu(ng,t) d.’E,
Q Q

(5.45)
2/ H12T12(V*,W;3) dr — / ng(V,,k,t)iL'3 + H12(W;3,Il) diL‘, (546)
Q Q
2/ H13T13(V*, W;g) dr — / —H13(V;, t).’EQ + H13(W;3, b) dr. (547)
Q Q
Substituting (5.38)—(5.47) to (5.37) we obtain (5.25). 0
Corollary 5.6 Let the assumptions of Lemma 5.5 hold. Then
A .
EQ0|S| + L b\ n 2/11 (ng + H33) — H11 d.’Egd.’Eg =01 (0, l) (548)

Proof: If weput V, =0 (i.,e. V=0 and ¢y =0) as a test function in (5.25), we
get that

l

A ,

/ [EQO|S| + (/ (H22 + H33) - H11 dx2dx3)](W ,t) d.’El =0 (549)
0 sA+2u
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for all W € H}(0,1)3. If we put W = (IW1,0,0), W = (0, W,,0) and W = (0, 0, W3),
where W; € H}(0,1), j = 1,2, 3, we conclude that

[EQ0|S|+(/ (H22+H33)—H11 d$2(}l.’173)]tZ = Ci+6 in (O,Z), 1= 1, 2,3. (550)

But we can take also the functions W; such that W;(l) = 1, j = 1,2, 3, because
W € H/}(0,1)3. Then the relations (5.49) and (5.50) give (5.48). 0

Lemma 5.7 The sequence {in"(UEn)}?ﬁ:l from (5.3) converges strongly to ¢ in
L*(Q)? for e, — 0.

P r oo f: In the proof, we will write € instead of ¢, to simplify the notation. Let us

define
1

(1
A= /QA?M <EwZZ(U6) - Ckl) (Ewiej(Uf) - Cij) d. dz. (5.51)

According to Proposition 3.5 and Remark 3.7, there exists a constant C' > 0 inde-

pendent of € such that

1 2

_we(Ue) - C

€

< CA,. (5.52)
LZ(Q)Q

Equation (4.6) implies that

l
AEZ/(F’Ue)de dfl?—i‘/ / (G, U,)deer/v;0%¢v; dSdxy
Q 0 oS
1
+ / (K, U, (1)) dadzs + / Hi 2w (U,)d, da
S Q €

v /Q A ((gk, - %w;l(uﬁ))@j - Ckl%wfj(UE)> d, da. (5.53)

As a result of (3.6), (3.7), (5.2), (5.3) and (5.6), we obtain the convergence of the
sequence A, i.e.

e—0

I
A =limA, = / (Fpiq,U) dr, + (K, U(l))+/ HiiCij dx—/ ATM G dz. (5.54)
0 Q Q
In the same way as in [8] we can derive the identity

/ AéijCleij dr =
Q

/Q[EC121 +4u(Ch + () + A(Em + 633)2 + 2#((222)2 + (@3)2 + 2(223)2)] dz. (5.55)

The expressions for (i1, (12 and (i3, i.e (5.16) and (5.17), imply after their substitu-
tion to (5.55) that

/ Af)jklgklgij dz = /[EC121 + 4#((122 + C123) + A(Zm + 6\33)2
Q Q
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+20((Gon)? + (Ga)? + 2(Gag)?)] dz &L / [E(Qo + (UL, b)zs — (U, n)as)?
Q

1

1 ~ ~
+4N( 9 (UL, t)(O2p—z3) +32PH)2 +4M(—§(U;; t)(0sp+z2) +33PH)2 + A(Ca2 +C33)2

+2/J((Z22)2 + (533)2 + 2(@3)2)] de (2.1),(5.18)

l
[ B (U b + Ly (UL ) + wK (U, 61 d
0

+ / [EQ} + 4pu(02pi)® + 4pu(O3pp)?] dx + / A(Caz + Gas)?
Q Q

5.19),(5.25) for wp=0

+20((G)? + (Gs)? + 2(G2s)?)] dl | /0 (Fric, U) dai + (K, U(1))

A
A+ 2u

+ [ 10, (-0 + 20) — (UL 1) 0sp + 22) d

/Q (Hap + His)(25(U", b) — 55(U", 1)) da

Q
l
[ Hi (U, b)ss — (U, m)as) da + / EQ|S| do:
Q 0

+2/ H150:py + H1303py dx + / )‘(2\22 + 6\33)2 + 2#((222)2 + (233)2 + 2(223)2) dz
Q Q

l
(5.11),(5.16),(5.17) / (Fric, U) dz; + (K1), U(1))

0

: A
—|—/ QU(EQ0|S| —I-/ (ng —|—H33) — H11 d$2d$3) d$1 —I-/ Hij(ij dzx. (556)
0 s A+2u Q

Using (5.48) we get, after the substitution of (5.56) to (5.54), that A = 0. O

It remains to express the components (o2, (33, (23 of the tensor {. To find their
forms, we use the decomposition of the space H'(S)? given by

HY(S)? = rdy(S) ® rdy(9S) (5.57)
([7]), where rdy(S) can be also defined by
rdy(S) = {v = (va,v3) € H'(S)%; e;j(v) =0; 4, j = 2,3}, (5.58)

where (e;;(v));j=2,3 means the symmetric part of the gradient of the function v. It
is easy to verify that rdy (S) is a nontrivial Hilbert space with the scalar product

(v, w)) = /S 55(v)ess (w) dzads (5.59)
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and that the Korn inequality

V]2 <C Z lei (V) llz2cs) (5.60)

1,]=2

holds for all v € rd; (S). Then the problem
)\/(82]/)\51 + 83}/)\:{[)(82’02 + 83’1)3) d$2d$'3 + 2/11/ e,-j(ﬁH)ei]-(v) diL‘gdiL‘3
s s

:/Hijeij(v) diI?zd.’Eg (561)
S

has a unique solution p € L*(0,[;rd; (S)) satisfying the estimate (see (5.60) and
(5.61))

||ﬁH||L2(O,l;H1 < C Z ||61] ||L2 OlL2 < C Z || ||L2 OlL2 S ) (562)

1,j=2 1,j=2

Analogously as we have derived the relations (5.9) and (5.10), we can check that

/ 82 + 63 . / / 82[)? + 83 . 1 / Honz
- 5 — 5 - 5 2342,
s 21 Js
0o 05
/ 2p3 —; 3P /H23$3, (563)

/32172 + 035 :m/Hzrl-Hss,
S

/(32175 + 033 )z /(H22 + Hjz)xs,
S S

:)\+2u

/(821/7\5 + 831/7\:?)533 /(H22 + H33)1E3. (5.64)
S S

Py 2u
Lemma 5.8 We have

D20y + D3Py

: (5.65)

Coo = OaPs’, (33 = OsD%, Coz =

P r oo f: If we use the function v = (v, v3), where vo = (V,n) and v3 = (V,b) for
V € L*(0,1; H'(S)?), as a test function in the equation (5.61), we get that the right-
hand side in the equation (5.61) is nothing but the right-hand side in the equation
(5.12). Subtracting (5.61), after the above substitution, from (5.12), we obtain that

/Q[)\(Cn + Co2 — 321351 + (33 — 03D3)((2V,n) + (05V, b)) 4+ 2u((Ca2 — 821751)(32‘/, n)
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. 0D + 03p (0, V,b) + (65V,n
+(Cs3 — 0555 ) (B5V, b)) +2(Cag — —— 9 = )( tV.b) 2 % )] dz = 0. (5.66)
Further, we define the function
U, ~ U, ~
VUs,ﬁH = [(6_2, ne) - (PH, n)]n + [(6_2, bﬁ) - (PH, b)]ba (567)
where
P? =p'n +pi'b. (5.68)

Using the estimate (5.62) and the fact that U, € V,(2), we can easily check that
Vy.pu € L*(0,1; H'(S)?) for all € € (0,1). After the substitution of the function
VUE7AH to the equality (5.66), we obtain analogously as in (5.13) and (5.14) that

/P\(CH + G - 321?5 + (33— 831/7\:‘?)@22 - 321751 + (33 — 3317:?)
Q
+20((C2 — 2Py )* + (Cas — BsP3')* + 2(Cas — H

Using the analogous computation as in (5.15), we conclude that

] de=0. (5.69)

/[)\(222 - (921351 + 233 - 33@?)2
Q

82]/7\? + 831/7\5{)2)]

+20((Coz — 8B )? + (o3 — O5Py)? + 2(Cas — 5 dzr
=) / C11(Con + Cag — DT — OyplT) d G1OHELDESY (5.70)
Q
O
Corollary 5.9 The tensor  has the following form:
G O (UL, b)as — (UL, m)as
1 A
IRl 22 33 11 aT20T3 |, .
ESI\ Js hr2m ———(Has + Hs3) — Hy1 dzod (5.71)
517) 1
C12 20 —i(UL, t)(02p — x3) + Oopm, (5.72)
517) 1
Ci3 (27 —E(U;; t)(0sp + z2) + Ospm, (5.73)
(5.7),(5.16),(5.48),(5.65) 1 A , ,
<22 = 82172 EU (U*’ b)$2 - (U*’ n)$3
2A+u
1 A
—W )\ n 2’[,1, (H22 + H33) H11 d$2d$'3 y (574)
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5.7),(5.16),(5.48),(5.65 1 A
(a3 D EI0L49.6.69 8sp5 — 23T 1 (U, b)zy — (U, n)zs
1 A
5.7),(5.65) OaD + Ospkl

where the functions p, py and p* are the unique solutions to the problems (5.18),
(5.19)—(5.20) and (5.61), respectively.

Remark 5.10 In Lemma 5.5 for Wp = 0, we have proved that the asymptotic
one-dimensional model for the curved rods has the form

/OI[E([zg(Ul,b)(Vi,b) + Iz (UL, ) (V) n)) + pK (U, t)(V,, t)] dz

A

T At 2 /sz[(Hm + Hs3)(22(V,, b) — z3(V,,n))] dx

+ /Q (Hyo(V'£)(—0op+ 73) — His(V',£)(8sp + 2] da

+ /Q [Hus (V! b)za — (V! n)as)] do + /0 (Fr.a, V) doi + (K, V(I)),  (5.77)

for all functions V, € H{}(0,1)® generated by any arbitrary couple (V,¢) €
Vi™P(0,1) (see (2.12)). We refer the reader to Proposition 8.7 in [8] for the proof of
the uniqueness. Thus it is not necessary to pass to weak convergent subsequences in
(5.2) and (5.3), which are actually strong convergent according to Proposition 3.6,
Remark 3.7 and Lemma 5.7.

Now, we will concentrate our attention on the curved rods clamped on both bases.

Remark 5.11 In the case of the curved rods clamped on both bases, we can derive
in the same way the assertions of Proposition 5.1, Corollary 5.2, 5.3 and Lemma 5.4,
5.5, 5.8, and thus the asymptotic one-dimensional model has the form (5.77) for
K =0, V, € H,(0,1)® and (V,¢) € Vi™P(0,1). In what follows, we want to
express the function @y from the relation (5.16) and thus to find the form of the
tensor (. We saw in the proof of Lemma 5.7 that this problem is connected via
the identity (5.48) with the problem about the strong convergence of the tensors
Lwe(U,).

Lemma 5.12 Let there exist no constants Cig, C11 € R such that toy = Ciot; and
t3 = C1ty, where t;, i = 1,2,3, are the components of the tangent vector t. Then

A .
EQO|S| + A )\ n 2[,(,<H22 + H33) - H11 d.’L‘Qd.’E3 = 0 in (O,Z) (578)
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and

1
~w(U,) — ¢ in L*(Q)° for e — 0.
€

Otherwise,
EQO|S|t1 + tl / b\ T 2,[,1,(H22 + H33) — H11 dlL‘zdiEg = Clg € [—IZ(H), [l(H)] (579)
S
on (0,1), where
1/ A
IZ(H) = 7/0' tl /9 b\ n 211/([‘[22 + H33) — H11 d.’EgdiL‘gdxl . (580)

P r o o f: We start with the proof of the first part of the lemma. Analogously as in
the proof of Corollary 5.6, we can check the relation (5.50). Assuming the contrary,
we suppose that the function EQy|S]| —I—fs ﬁ(ng + H33) — Hqp dzodzxs is not equal
to zero on (0,1) and without loss of generality we can suppose that ¢; # 0 on (0,1)
and thus the constant C7 from (5.50) is not equal to zero. Thus the relation (5.50)
enables us to express the components of the tangent vector t as

b — Cite
J EQ0|S|+ISﬁ(H22+H33) —H11 d.’EgdiEg

on (0,0), j=1,2,3, (5.81)

and thus

Ci6C C;
t] = A L0 = ]+6t1) J: 2)37 (582)
C7EQO|S| + fS m(H22 + H33) — Hy; d$2d$3) 07

which is a contradiction.

If there exist constants Cyg, C1 such that t5 = Cipty, t3 = Cy1t1, we have only one
identity, namely,

A
A+2u

EQO|S|t1 + tl / (Hzg + H33) — H11 dlL‘zd.’Eg = Clg on (0, l) (583)
S

We assume again the contrary, i.e. |C12| > I;(H). Then

1
A
A Qo(EQ0|S| —I—/S )\ i 2/1 (H22 + H33) - H11 diL‘gdiL‘3)d.’E1

1 : A 2
E|S|/0 < Qo| |+/s>\+2ﬂ( 20 + H33) 11 dxo x3> T

A

1 l
B ——(Hyy + Hs3) — Hyy drgdzs)(EQy|S
E|S|/0(/s)\+2u( 22 + Hys) — Huy daodzs)(EQo|S|

A
H Hss) — Hyy dzodzs) = (Z
+/S)\+2N( 29 + Hss) 11 dzodzs) = (Z)
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(new notation). Using the identity uv = (ut,vt), the dependence of the functions
to, t3 on ¢y, (5.83) and the assumption |Cyz| > I;(H), we deduce that

1
(Z) = W ((1 + 0120 + C'121)01221

l
A
—(]_ + 0120 + 0121)012/ tl/ 7(H22 + H33) — H11 d.’L‘Qd.’I?:;d.’El) Z 0 (584)
0 sA+2p

Now, we can repeat the proof of Lemma 5.7 and from (5.52), (5.54), (5.56) and
(5.84), it follows that

l
A
/ Qo(EQ0|S| —|—/ (ng + H33) — H11 d$2d$3)d$1 =0. (585)
0 sA+2p

On the other hand, we get from (5.83) that

1
A
A Qo(EQ0|S| +/S )\ T 2/1,(H22 + H33) — H11 d.’L‘gd.’L‘3)d.’El

l
= (1 + 0120 + 0121)012/ QOtl d$1, (586)
0

which together with (5.85) imply that either Cj = 0 or [} Qoty dz; = 0. Then the
identity (5.83) gives a contradiction. O

Remark 5.13 In the proof of Lemma 5.12, we could see that the straightforward
way, which was possible in the proof of Corollary 5.6 for the curved rods clamped on
the lower basis, does not provide in general an analogous expression for the function
Qo as (5.48). Thus we infer that the form of the constant Ci5 in (5.83) depends on

1. the properties of the function @y, which can be also defined by the weak
convergence

8 Uea € .
/ O Ue 819 4o dns — 18] in L2(0,1) (5.87)
S

€

(see (2.1), (5.3) and (5.16));
2. the properties of the functions Hy, ¢ = 1, 2, 3;

3. the properties of the approximating local frames given by the vector functions
tE, nE) bE'

Hereafter, we concentrate our attention on two last cases, because it has no sense

to suppose some properties of the functions Qg or [ (01Uc81e) dr,dzs in a general

case.

€
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Lemma 5.14 1. Let the componentst;, n;, b;, 1 = 1,2,3, of the vectorst, n, b be
constant vectors and let the functions t., n., b, be their smooth approrimations
in C([0,1])* satisfying (3.2) and such that |[t. — t||coy) < Ce?, p > 1. Then

1
A
/ QO(E|S|Q0 =+ / (H22 + H33) — H11 d.’Egd.’Eg)dl‘l = 0, (588)
0 sA+2p

1 [t [ A
%= gg) (Tl i )= i oo

A
/ )\ n 2'[,[,(H22 + H33) H11 dl‘gd.’]?g) on (0, l), (589)
2. Let there exist constants Cig, C11 € R such that to = Cioty and t3 = Cqqty,
and let
: A
/0 tl /S m(l{zg + H33) — H11 dxzdl'gd.’ﬂl =0. (590)
Then
EQ|S|+/ A (Hag + H3s) — Hyp dzod 0 (0,1) (5.91)
— rodrs = 0 on . .
0 <X+ 28 22 33 11 GT20T3 ,
In both cases .
“w(U,) — ¢ in L*(Q)° for e — 0. (5.92)
€

Proof:

1. The convergence in (5.87) together with (2.6) and the assumptions of this
lemma imply that

/ Qo|S| dz1 = / /Cn dz = lim M dz FE9

e—0
lim (81U d:c ~ hrn/ / GLA
e—0 Q e—0
(Uat)
~tin [ 5, / 0, (5.93)

because U, € Vj,(2) and thus fS(Ue,t) dzodzy € HY(0,1) for all € € (0,1).
The rest of the proof follows from (5.56) and (5.83).

2. Analogously as in (5.84) we can derive that

l
A
/ QO(EQO|S| +/ (H22 + H33) — H11 d.’Egd.’Eg)dl‘l 2 0, (594)
0 sA+2p
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which together with (5.56) imply the strong convergence of the functions
Lw*(U,) and provide the identity

!
A
/ Qo(EQy|S] ‘|‘/ (Hae + Hss) — Hyy dzedzs)dzy = 0. (5.95)
0 sA+2p

Hence we can conclude using (5.86) that either the constant Cjp in (5.83) is
equal to zero or fol Qot1 dzy = 0. The rest follows from (5.83).

O

Lemma 5.15 Let the functions t., n., b, satisfy (3.2)—=(3.5) and the condition 2.
from Theorem 1.2. Then

A
EQO|S| + A b\ T 2[,(,(H22 + H33) - H11 dl‘gd.’ﬂg =0 on (0, l) (596)
and the functions 1w (U,) converge strongly to ¢ in L?(Q)°.

Proof: Let us take the function V.= eW, W € H}(0,1), as a test function in
the equation (4.12). Since

€ €
Wi (W) = (W', g1,0), wip(eW) = (W', ne), wiz(eW) = o(W,be),  (5.97)

Wio (EW) = w35 (W) = wss(eW) =0 (5.98)
according to (4.8)—(4.11) (compare with (5.29)-(5.33)), we can rewrite the left-hand
side of the equation (4.12) as

. 1
/Q A?klzwzl(UE)gwfj(eW)de dx

l
- / (*(g1e) + 17 (ne) + I3 (be), W) day, (5.99)
0

where
1
17 (g1,e) = / (Mg g™ + 2ug™ 9" ) wi (UL )deg1,e dzadas, (5.100)
S €
1
IY(n) = / (Ag'>g* + p(g"™g? + ng’egll’E));wil(Ue)dene dzadzs, (5.101)
S

1
B(b) = [ g5 (g + ")) (i (Udob daadea. (5102)

We get analogously for the right-hand side of the equation (4.12) that
1 _
e/(F,W)dE da:—l—/l’-Ii]-—u)fj(EW)d6 d:c—i—e/ / (G, W)ed/vio<v; dSdx,
Q Q € (0,0) Jas
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1 1
— e [ W) o+ [ (1) + () + 1 (0), W) dar, - (5.10)
0 0

where
IJE = / Fd. drydzs + | Gedo/vioii<y; dS, (5.104)
S oS
IIHH (gl,e) = / I{Hgl,ﬁdE d.’L‘Qd.’E:;, IZHIZ (IIE) = / ngnedﬁ d.’L‘Qd.’L‘3, (5105)
S S
I3 (b,) = / Hisb.d, dz,dzs. (5.106)
S

Further, we will use the notation I]Uf(w), I]-H”(w) and I, 4,7 = 1,2, 3, if we have
a function w instead of the functions g; ., n. and b.. Using (5.99) and (5.103), we
can rewrite the equation (4.12) as

l
/ (17" (8re) = [ (81e) + I (ne) — L™ (ne) + I3 (be) — 157 (be), W) day
0

I
— e/ (If TG, W) dz. (5.107)
0
Hence we get that

d
= (17 () = ) + 137 () = I () + 137 () = 17(6s.)

= eI/""% in (0,1) (5.108)

for ¢ = 1,2,3, and both terms belong to L?(0,1). After integration of (5.108) over
an interval [z1, 23] C (0,1), we obtain the equality

(17 (lgres) = ™ ([grdli) + L7 (mie) — L™ (mie) + 157 (bie) — 157 (bie)) (21)
—(I7(gres) = T ([Breli) + I (nie) = ;™ (nie) + 15 (bie) — 15 (bie)) (22)

21

= e/ IF*Ci(zy) day, i =1,2,3. (5.109)
Z2

We can take zp € [Z1 — €', 21 + €] = Usep,— <2 5,40)[T2 — <,T2 4+ <] (see the

condition 2. from Theorem 1.2) and integrate the equality (5.109) over the intervals

[z; — %,ZE]' + %], j = 1,2. Then using the properties of the functions ¢; ¢, ny, b1 ¢

and (2.6) lead to the estimate

(I ([g1,eh) — L ([grelr) + I3 (na,e) — 1372 (na,e) + I3 (bre) — I3 2 (bre)) (21)]

1 F1+5 Fat A

< |—/A a | . (I}Jf(—e’yezQ) —ffhl(—efyﬁh) _i_[:}Je(]_) _[;113(1))(Z2) d2pd%|
’ %

1 (BT

sl 4

€? q

Tot s z1
/ i / [P0 (1) dpy dzd), (5.110)
& Jz

q
2—5 22

i

8

4
=5
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for all 2z; € (0,1), which implies that

||11UE([g1,e]1) — [ ([greh) + I () — I (ne) + 157 (bre) — I (bre) lp2o <

T 1 wz—l—— R
(|—/ Y o (IP(—eyez2) — i (—€yeze) + 1377 (1) — I3 (1)) (22) dzodZs]
177

€? =
2

+e(|IF( 222 + |Gl L20.1:22(85)3 ))) (5.111)

Let us suppose for a moment that the convergence

$1+ $2+* u.
62‘1/ / [(IT (—evezs) — I (—eve22)

+I§Jf(1) — I3Hl3(1))(z2)] dzydTy — 0 (5.112)
holds for € — 0. Then the estimate (5.111) yields
17 ([g1.el) = I (grehy) + 17 (ne) — I (ne)
+[3Us(b]_’6) - ISHIS (b1,£)||L2(0,l) — 0 (5113)
for € — 0. Further, we can derive from (2.7)—(2.8) and (3.4)—(3.5) that

Hg” ||L°° 0,1) ~ 1+ O( o )’ 1=1,2,3, ||gl27£||L°°(0J) ~ O(elir)’ (5'114)

lg"* |0y ~ O ™), 119 [|moa) ~ O 7). (5.115)

Using the boundedness of the tensors w®(U,) in L*(Q)?, (5.100)—(5.102), (5.104)—
(5.106), (5.111) and (5.113)—(5.115) lead to the convergence

€ 61 € € 61
I /P\gn’ g Ewkk(UE)[gl,f]l + 2u(g*t g™ Ewll,e(Ue)[gl,e]l
S

€ € 1 € E El €
+922’ 911’ EW12(U )N+ 933 911 w13(U£)b1,6)

_Hll[gl,e]l — ngnl,e — H13b1’6]d5 d.’L‘Qd.’E:;”LZ(O,l) — 0 for e — 0. (5116)
Furthermore, we know that
22, 11 61 €
/[2ug g wlz(UE) — Hys|ny (de dzodzs — 0, (5.117)
s
33,e 11 61 € : 2
/[2ug g w13(UE) — Hy3)by (de dzodzs — 0 in L(0,1) (5.118)
s

according to (3.6), (5.3) and (5.8), and
1 1 in r2(0,
/P\gu gtk ka(Ue) + 2ug'tegtte cwn (Ue) — Hipl[g1,e]1de dzodas 0D
s
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/P‘(Cll + C22 + <33) + 2,UIC11 — Hll]tl d.’132d.’L'3
S

(5.7),(5.24)

= /[ECn + )\(222 + 233) _ Hn]tl dzodis (2-1),(5-10)é5.16),(5_83)
S

Cra.  (5.119)

Hence and from (5.116), we conclude that Cjs = 0 and we can prove analogously
as in the proof of Lemma 5.7 that the tensors fw(U,) converge strongly to ¢ in

L2(Q)°.

It remains to prove (5.112). First, we detect the terms in the integral

Z1+ zz-l——
= / (I (evemn) — I (—eezn) + I77(1) = 157 (1) (22) dzadlBs,
1__

which need not converge to zero. Using (5.100), (5.102), (5.114)—(5.115) and the
boundedness of the tensors 1w (U,) in L*(Q)?, we can deduce, for instance, the

estimate

S
T+

To+5 1
y 2;;/911 €g3de_ wfs(Ue)d6 dzodz3dzedTs|
To—5

1-r

€ $2+*
<cl s [ et sy da
2773

N . N q
To€[F1— 5 B1+5 ] € 2—%

<Cet™3 50 (5.120)

for ¢ — 0, because q € (0, %) and r € (0, %) We can estimate analogously the

other terms using (5.114)—(5.115) and we find that the only terms, which need not
converge to zero, are contained in the integral

1 Ti+5 ot G 1
11,e 33, € P~
— / 2u/[g €g° —wis3(U,) — Hyglde dzadzsdzeds. (5.121)
~ eq ~  q €
T1—5 To— S S

€24

Now, we show that this integral converges to zero as well. Multiplying the equation
(4.12) by €2, we obtain the equation

7] 1 € € €
/Q Aﬁjklgwkl(Ue)ewij(V)de de = €2 /Q (F,V)d, dz + /Q Hijews;(V)d, d

€ / (G, V)ed/vio'v; dSdz; . (5.122)
(0,1) Jas

We put V = Wzst,, where W € H,(0,1). From (2.2), (2.6), (4.8)—(4.11), it follows
that

ewiy (V) = €(1 — exof — exzoe)zs W' + 62$§’Yeﬁe —€ .’L'2$3O£5’)/5W (5.123)
€ 1
cwip(V) = 5@3?3”/, cwis(V) = 5(1 — ez 5 )W, (5.124)
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ewsy (V) = ewss(V) = ewss(V) = 0. (5.125)
After the substitution of (5.123)—(5.125) to (5.122), we get that

1 !
/ AT —wy(Uew; (V)d, dz = / LW + IW dzy, (5.126)
Q 0
where

1
Is = / (1 — exyf. — exsor)zs(Ag g + 2ug ™ g™) “wE, (U, )d, dzodas, (5.127)
s €

1
[6 = /(62-’1?%%55 € x2x3a£’7£)()\gll € ghhe + 2Mglk Egll 6) wlf:l(Ue)
S

1
—I-EBE.’E;;( 12, egkl R4 + 'u(glk,eng R4 4 9219 egll 6))Ewlf;l(U£)
1
+(1 — ezaB) (Ag*™*g" ¢ + (g™ g® + g**¢g")) ~wg, (U, )d, drodzs.  (5.128)
€

The right-hand side of the equation (5.122) can be rewritten as

e /(F,V)clE dz + 62/ (G, V)eder/vio<y; dSdzy + / Hijewi;(V)d. dz
Q (0, Jas Q

l
- / e [ LGNy Lty o (B 4y (5.129)

0

where
[5H = / H116(1 — 6117256 — $3a£)$3d6 d$2d.’l73, (5130)
S
[GH = / H11(62$§’75,85 - 62.’17211,'30(6’}’6) + H126ﬁ6$3 + ng(l — 6$2,8£)d6 d$2d.’l73. (5131)
S

After the substitution of (5.126) and (5.129) to (5.122), we find the equation

l l 1
/ (I — IYW dzy = € / [ (EL)HCED g, / (I — IFYW' day  (5.132)
0 0 0

and thus

. d
Ig— 17 —e143((F’tf)+(G’tE))—d—([5 I7) on (0,1), (5.133)
I

where all terms belong obviously to L?(0,1). Applying the integrals & fiﬁj fth_
Bi1-%

Ta—5
o (5.133), we obtain the estimate

$1+ mz+*
i [ ) @) a5 < Ol + G lszios)

q

1 BT € Ho~ € € g~ €1
+| = R [[5(1'24‘5)—[5 ($2+5)—]5(.’132—5)+I5 (1’2—5)] d.’L'Q) (5134)
#1-2
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Using (5.128) and (5.131), we can deduce analogously as in the estimate (5.120) that
the only terms, which need not converge to zero from the integral on the left-hand
side of the estimate (5.134), are contained in the integral

+— :E2+— 1
62‘1 / 2/1/ 1, 6933 - 53(U£) — ng]dE degdegdedi/E\z. (5135)

Since the estimate

z1-1- q
~ € ~
o / / et gt wn(Ue(:L'g + 222 z3))d dzodrsdTs|
B1 <t

ri1+e?
< C’el_?q/ ||wa1(UE(zl, S Npesye da| < Cet=% =50 (5.136)

T

holds because of ¢ € (0,2) and the other terms from the last integral from (5.134)

satisfy analogous estimates, then from (5.134)—(5.136), it follows that

$1+ To+ - 1
- / / : 2 / thege Sty (U,) — Higld, daadesdzdds| 0 (5.137)
€
for ¢ — 0. O

Corollary 5.16 From Lemma 5.14-1 and 5.15., it follows that the form of the func-
tion Qo depends on the choice of approximating local frames if the components of
the tangent vector t are constant functions.

Remark 5.17 The situation is simpler if we construct such approximating local
frame that, for il’lSt&IlCE, tg’e = Cl3t1,5 §£ 0, N2,e = 0137’7/1’5, bg’e = Cl3b1’6 on an
interval I, for all € € (0,1), |I| — 0 for € — 0, where C}3 # C, (see the condition 3.
from Theorem 1.2). Subtracting (5.109) with ¢ = 2 from (5.109) with ¢ = 1 leads to

the estimate
I ([g1,eh) — L ([grer) + I3 (na,e) — 1,72 (nae) + Iy (bre) — I3 2 (by.e)]

—Cuis[I7([g1,e1) — I ([grel1) + I3 (ne) — Iy (o) + I3 < (bre) — I3 (bu,e)]| 220
S CE(“FHLZ(Q) + ||G||L2(0,I;L2(6S)3)) —0fore—0

which together with (5.50), (5.117)—(5.119) and the assumption Ci3 # Cjo imply
(5.96).
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6 Approximation of the stress tensor

In this section, we prove Corollary 1.3. We know from the previous section that the
function U, generated by the couple (U, ¢) € Vlf’n’b(O, [) is the unique solution to
the equation (5.77). Now, we seek for a suitable approximation U, of the function
U in the form

U, = US + €U; + €U5, (6.1)

which satisfies ) )
“w(U,) — ~w(U,) = 0 in L*(Q)°. (6.2)

€ €

Let the function U§ € V,ff’"f’bf(o,l) be the approximation of the function U from
Proposition 3.4 and Remark 3.7, which, in addition, satisfies

. 1 1
100L) 2002 ~ O(Z7), 19ellrz0p ~ O(F), 7 € (0

67‘

L (6.3)

'3
The verification of (6.3) is left to the reader, because it follows from Proposition 4.2
in [8] after a simple modification of the proof. Let, further,

Us(a1, 22, 23) = — (U (21), ne(1)22 + (U (1), be(e1)s ) telo)

—230(x1)n(21) + T2pe(x1)be(21) (6.4)

for (z1, 9, z3) € Q. Analogously as in the proof of Lemma 8.4 in [8], we can derive
that

w (U] + €Uj) = eY°(U1,) + B, (6.5)
where
T1:(U,) = —((UL,) ndzs + ((U7,)', be)zo, (6.6)
€ € € € x €
T12(U1’*) = T21(U1,*) = g((UL*)’,te), (6-7)
€ € € € x €
T13(U1,*) = T31(U1,*) = _32((U1,*),a te)’ (6-8)
T%(Ui*) =0, 1,7 =2,3, (6.9)
and .
IBella = | B]ls < CE477, 7 € (0, 3): (6.10)
At the end we define the function U} by
U5 = (U3, to)t. + (U5, n)n, + (U3, b,)b,, (6.11)
where
(U3, te) = —((U1.)' te)p + pa, (6.12)
. . 1 A . T2 — 13 .
(Us,n.) =3 + 23+ 4 (U5, bo) (= 5 2) + ((UL,), no)zazs
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) A
- —(H. Hs3) — Hyq dzod 6.13
ES] (/S PR QM( 92 + Hsg) 11 AT x3>]a ( )

€ ~H 1 A € \/ .’E% — x% e \/
(U3.b) = 5 + 537 | (U1 ) (B52) = (U1, boJeass
I3 A
_E|S| (/ m(ng + H33) - H11 d$2d$3>] . (614)
S

After the substitution of U, to %we(ﬁe) we can check (6.2) using Lemma 5.7, (5.71)-
(5.76), (6.1) and (6.3)—(6.14). The same result is valid for the curved rods clamped
on both basis (see Lemma 5.12, 5.14, 5.15).
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