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Abstract

We consider the problem of estimation of solution of convolution equation
on observations blurred a random noise. The noise is a product of Gaussian
stationary process and a weight function eh € Ly(R!) with constant € > 0.
The presence of weight function kA makes the power of noise finite on R'. This
allows to suppose that the power of solution is also finite. For this model we
find asymptotically minimax and Bayes estimators. The solution is supposed
infinitely differentiable. The model with solutions having finite number of
derivatives was studied in [5].

1 Introduction and main results

1.1 Introduction

Let the convolution equation

(a%2)(t) = /oo a(t — $)o(s)ds = f(2)

oo

be given with the known kernel a(t),t € R' and unknown function f. Instead of the
function f we observe a realization of random process y(t) = f(t)+en(t) where en(t)
is a random noise with constant ¢ > 0. The objective is to estimate the solution
x. Such a setting is usually called the deconvolution problem. The deconvolution
problem arises in many applications (see e.g. [19], [18], [12], [10] and references
therein).

The noise in this model is usually defined as Gaussian stationary process. Such
a setting was comprehensively studied from different viewpoints. The statistical
properties of Tikhonov regularizing algorithm | the procedure of Wiener filtration,
robust and minimax estimators were considered in numerous publications (see, for
example, [18], [19], [12], [4] and references therein) Last years interesting adaptive
procedures (see [7], [16]), wavelet based estimators (see [2], [11], [16]) were proposed.

If the noise is stationary process, the power of noise on all real line is infinite. The
reasonable estimator of solution z(t) exists only if the ratio of power of noise to
power of solution is finite. Thus we need to suppose that the power of solution is
infinite or tends to infinity (see [18], [4]). Another method to avoid the problem of
infinity is to reduce the setting to the deconvolution problem on a circle (see [3],



[11]). In practice the power of solution is usually finite. Thus it seems reasonable
to study modification of model admitting finite power of solution on all real line.
One such a modification is studied in the paper. Remind that the power of noise on
interval (a,b) equals € fab En?(t)dt.

In paper the noise has the more complicated structure

en(t) = eh(t)C(t) (1.1)

Here ((t) is Gaussian stationary process, E((t) = 0, E[((t)¢(0)] = r(t),t € R! and
h is a weight function h € L?(R'). The assumption h € Ly(R') implies that the
power €2 [ En*(t)dt = €*[|h]|*r(0) of noise en(t) is finite. This allows to suppose
that the power of solution is also finite and to consider the problem with such more
realistic assumptions.

For modification (1.1) of standard model we find asymptotically minimax and asymp-
totically Bayes estimators. We suppose that the solution is infinitely differentiable.
The case of solutions having finite smoothness in such a setting has been considered
in [5]. The problem of estimation with supersmooth solution was already considered
in publications (see [8], [9], [17]). This papers are devoted to the signal estimation.
The kernel a in the paper can be smooth or supersmooth. Thus in this paper to-
gether with [5] we study the both smooth and supersmooth spectrum of behaviour
of kernel and solution. It turns out that, if the kernel or the solution is supersmooth,
the asymptotically minimax and asymptotically Bayes estimators are the projection
estimators. Only if both the solution and the kernel have the finite smoothnes, we
are forced to define the estimators with the more complicated structure (see [5]). In
this case the Wiener filters are asymptotically Bayes estimators (see [12], [18]) and
standard minimax estimators are asymptotically minimax (see [3], [4], [16]). The
standard minimax estimators remain asymptotically minimax in the case of super-
smooth kernel or solution. However in these cases we can define essentially more
simple estimators with the same property.

For any function z € Ly(R') denote by

Z(w) = /exp{27riwt}z(t)dt

the Fourier transform of z and for any z € Ly(R!) denote by

12l| = (/z2<t>dt)2

the Ly-norm of z. Hereafter the limits of integration are omitted if integration is
taken over all real line.

The kernel a satisfies A0,A1-A3 in the case of finite smoothness and A0,A3,A4 in
the supersmooth case.

A0.There holds A(w) = A(—w) > 0 for all w € R;.
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A1. There holds

t

lim | A ?(w)R(w)dw = oo.

t—o0 0

A2. There exists v > 0 such that for all C > 0

A(C
lim (Cw)

=C.
w—>0C A((.c))

A3. There exists C > 0 such that for all w,w; € R
||A(w) — A(w)] < Clw — wy].
A4. There exists v > 0 such that for all C > 0

lim log A(Cw)

=C".
w—oo log A(w)

The correlation function r satisfies the following
R. There exists a > 0 such that for any C' > 0

lim R(Cw)/R(w) =C .

w—>0C

If A2,R hold with y =0, =0and A(w) = 1, R(w) = 1, we get the standard setting
estimation of signal in weighted Gaussian white noise

dy(t) = z(t)dt + eh(t)dw(t) (1.2)

with Gaussian white noise dw(t). Note that the results of Theorems 1.1 and 1.3 in
[5] are extended on the model (1.2) as well. The main difference of these theorems
from theorems 1 and 3 of the paper is the assumption of finite smoothness of solution
.

1.2 Main Results. Minimax estimation

The assumption about the solution is rather standard (see [3], [5], [17]). We suppose
that a priori information is given

zeQ= {x : /B?(w)|X(w)|2dw <lze LQ(Rl)}

with the function B satisfying the following

B1 The function B(w) is even, positive and there exists § > 0 such that for all

C>0
lim In B(Cw) _ 8
w—oo In B(w)
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Thus we have a priori information that the solution z belongs ellipsoid in Lg(R').
B1 implies that the solution z(t) is infinitely differentiable.

The risk of any estimator z*(¢) equals

pe(*) = sup / E(a*(t) — a(t))dt.
The goal is to find asymptotically minimax estimator z}*
pe = pelai®) = inf po(wx)(1 + 0(1)), € — 0.

Here the infimum is over all estimators z*.

We suppose that the function A is smoother then the realizations of random process
¢(t) (see H2 below). Thus all information on noise smoothness is contained in ((¢).

H1 The functhion H(w) is even, H(w) € Lo(R') N Li(R') and h(t) > 0 for all
te R\

H2 There exists § > 0 such that

lim R ' (w)H?*(w)w' = 0.

w—>0C

H3. [|th(t)|dt < oco.

Define the functions

V() = &||h|? / A7()(1 - pB(w))+ R(w)dw,

o
U (0) = e2||h||2/ A (w)R(w)dw.
-9
Hereafter (u), = max{u,0} for all u € R*. We put w;, = sup{w : ¥, (w) < B %(w)
and w, = wi (1 + 6.) where §, > 0 is such that B(wy.) = o(B(w.)), A (wi) =
A Y w)(1 4 0(1)) and 6. — 0 as € — 0. Denote u, = sup{u : B(w:) > u}

Define the kernels

K, (w) = A (w)(1 = peBWw))s,
Ko (w) = A7 (w)x(Jw| < we).
Hereafter x(U) denotes the indicator of events U.
Define also the kernels k,, of Tikhonov regularization algorithms

A(w)

Ka(w) = A%(w) + aM (w)

where the function M (w) satisfies the following
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M1. The function M(w) is even, nonnegative and increasing in R .
M2. The function M(w)/B™*(w)A ?(w)| is nondecreasing in R! .

M2 implies that the function M(w) has the exponential growth. The exponential
growth of function M (w) in Tikhonov regularizing algorithm is supposed usually in
the case of a priori information on supersmooth solution (see [18]).

Define the parameters of regularization a, = A%(w )M 1 (w,).

Theorem 1. Assume A0,A1,A2,A3,B1,H1-H3,R or A0,A3,A4,B1,H1-H3,R with
B > v. Then the estimators z = (k,, * y)(t) and z}(t,y) = (ku, * y)(t) are
asymptotically minimaz. The asymptotically minimax risks equal

pe(z)) = pe(z)(1+0(1)) = We(ue) (1 +0(1)) = We(we) (1 + o(1)). (1.3)

If M1,M2 hold also, the Tikhonov regularization algorithm x = ko, * y is asymp-
totically minimax.

Remark 1. Denote A the set of functions h satisfying H1,H3 and such that the
convergence in H2 is uniform w.r.t. all A € A. Suppose also that there exist
functions hg1,hg € A such that hgy > h(t) > ho(t) > 0,t € R' for all h € A.
Then the asymptotics of minimax risks pen (7)) = pen(z5:)(1 + o(1)) are uniform
with respect to h € A. Moreover all information on A in the estimators z}, ) is
contained in ||Ah||. Thus we can consider h as unknown in the model supposing only
h € A. Naturally, since ||h|| is unknown, the problems of the choice of regularization
parameters u. and w, arise. However, since other parameters of models are usually
unknown as well (for example R(w), B(w)), these problems arise almost always in
practice. Note that similar statements on uniform risks convergence hold for the

other theorems of this paper and theorems of [5] as well.

Remark 2. In practice another model of deconvolution (see [2], [7], [14], [16]) often
arises. Let a sample 7, ..., Z, of independent random observations be given. Let it
be known that Z; = X1+ Y1,..., 2, = X,,+Y, where X;,..., X, and Y;,...,Y, are
independent identically distributed random variables from R!. The density a(t) of
Y1,...,Y, is known. One needs to estimate the density z(s),s € R! of X;,..., X,.
To distinguish this model we call such a setting the problem of density deconvolution.

As almost all nonparametric statistical problem the model of density deconvolution
admits asymptotic version in terms of Gaussian white noise dw(t)

dy(t) = (a*z)(t)dt + %((a s ) (t)Y2dw(t). (1.4)

A wide class of linear estimators have the same asymptotic distributions in these
two models.

The relation of the model of density deconvolution with the weighted white noise
model almost has not been studied. However such a relation is wellknown in a
particular case of nonparametric estimation of density (see [15]). In this case the

5



observations Yi,...,Y,, are absent, A(w) = 1 and stochastic equation (1.4) is the
following

dy(t) = z(t)dt + %mlﬂ (t)dw(t).

In the model (1.4) the function h(t) = ((a * z)(¢))*/? is unknown. However the
estimators k,_ * y and k. * y depend only on ||h|| = ||((a * z)(¢))"/?|| = 1 and, by
Remark 1, the asymptotics of minimax risks are uniform w.r.t. unknown h € A.
Thus if h = (a * 2)1/2 € A these estimators have the same risk asymptotics in the
model (1.4) and in the paper model.

If the kernel a is smoother then the solution  and v > 3 in A3,B1, the projection
estimator z;* = k., * y and the Tikhonov regularizing algorithm z}’ = ko, * y
remain asymptotically minimax. However the asymptotic of minimax risks is defined
differently.

Let wy. satisfy the equation

B2(wy,) = ¢2| B2 /wk A~2() R(w)dw. (1.5)

—Wie

Define 6, such that §, = o(w;) and w;,” = 0(d,). Denote w, = (1 — d.)w; and
a, = A?(wo) M (w,).

Theorem 2. Assume A0,A4,B1,H1,H2 and R. Let v > (3. Then the family of
projection estimators x¢ (t,y) = (ku. *y)(t) is asymptotically minimaz. There holds

pe(zsr) = B *(we)(1 +0(1)). (1.6)

If M1 holds, the Tikhonov regularizing algorithm x7 = ko, * y is also asymptotically
minimax.

Example 1 Let

Aw) = Ay(w)lw|7, (1.7)
B(w) = Cexp{~Bi(w)|w|’}, (1.8)
R(w) = Ry(w)|w| *. (1.9)
Then
o= ) (1.10)
© B Ine[VR)1/8 ’ '
pe = g T A ) Ry (w) 1+ (1)
Example 2. Let
Alw) = Cexp{—A;(w)|w|"} (1.11)



and (1.8), (1.9) hold with v < (. Suppose that A;(w) = Ay, Bi(w) = B; are
constants if 2y > . Then the values of w, is defined (1.10) and

2 _ o~ ’YAI((-‘)F) _
.= —C2||h||?Ew! " *Ry (w,) ex {ZA We we"’(l——iaﬂﬁ 1+0(1)).
pe=ZC Al e w. 1(we) exp 4 245 (we) |l & B () (1+0(1))
Example 3. Let (1.7),(1.8),(1.11) hold with v > . Suppose that A4;(w) =
Ay, Bi(w) = By are constants if 26 > . Then

B [Ine|/
= A mermya e

we (1.12)

po=exp {28, wef (1 2B @t ) ba+o),

1.3 Main Results. Bayes Approach.

In Bayes setting we suppose that the solution z is a realization of random process

z(t) = ha(t)C(2)

where h;(t) € Ly(R') and ¢ is Gaussian stationary random process, E((t) =
0, BIC()C(0)] = u(t), £ € R,

As follows from assumption V1 given bellow the realizations of random process ((t)
are infinitely differentiable.
V1. There exists 8 > 0 such that for all C > 0 there holds

lim InV(Cw) _ o

wooo InV(w)
The function hy(t) satisfies the following assumptions.
H4 The function hy(t) is even,bounded and hy(t) > ch(t) > 0 with constant ¢ > 0
for all t € R'.

H5. There holds
. InHj(w)
lim =

wooe InV(w)
H5 implies that the main information on smoothness z is contained in the random
process ((t).
For any estimator z* define the Bayes risk
pe(z*) = E¢Eellz” — ha(|f?
We say that the estimator z7 is asymptotically Bayes if
pe = pe(a?) = inf p(a")(1 + o(1)), 0.
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Here the infimum is over all estimators.

In this setting we could not prove that the Wiener filters
Ko(w) = ||h]*A()V (@) ([|h]*A*(w)V (w) + €| [h]PR(w))

are asymptotically Bayes. At the same time we show that more simple projection
estimator z° are asymptotically Bayes. The value of w, is defined the equation
we = wie(1 + d) where

A (wie) [|ha] PV (wie) = €*][Al*R(wie), (1.13)

V(we) = o(V(w1e)), Hf (%&wk) = 0(62A72(wE)R(wE)) (1.14)
and §, > 0,6, — 0 as € — 0.

Theorem 3. Assume A0,A1,A2,H1,H2,H4,H5,R,V1. Then the family of esti-
mators z;° = (k.. * y)(t) is asymptotically Bayes. There holds

We

pe(z) —62h2/ A2(W)R(w)dw(1 + o(1)). (1.15)

We
—we

Example 4. Let
V(w) = exp{~Vi(w)|w|"}

and (1.7),(1.9) hold. Then

B \lne\l/ﬂ
BTG

We (14 0(1)),

oo AP oy
e s LA T COLACRI G O))

Remark 3. In practice an information on a kernel a can be often obtained only from
statistical experiment (see [2], [14]). The arising estimator a of kernel a is known
with a random error. Usually it is supposed that the error admits the Gaussian
approximation. If we study the quality of estimation of solution one needs to find
the influence of this random error on a risk function.

We consider the following model
a(t) = a(t)dt + k.h(t)dw(t)

with h € Ly(R!). Assume the following

/tW(t)dt < 00, (1.16)
lim H*(w)|w|*™ =0 (1.17)
w—>0C



with § > 0.

The Fourier transform of a can be written in the following form
Aw) = A(w) + keT(w)
where
Fw) = /H(w ~ wn)duw(wr)
is Gaussian stationary process.

If M, = sup{|7(w), |w| < we} = op(A(w.)/ke), the random error k.7(w) does not

influence on minimax and Bayes estimators z*, z**

We? e ”

If (1.16),(1.17) holds, by Theorem 12.3.5 in [13]

lim P (||h]] "1 (2In(2w.)) 2| M. — ||A]|(2In(2w.))"?| > u) = exp{~C exp{~u}}.

Hence, if k. = 0 (A(w.)| Inw|"/?), the influence of noise k.A(t)dw(t) on the asymp-
totics of risk functions of estimator z}" is negligible both in minimax and Bayes set-
tings. This is proved by straightforward calculations. A similar statement hold also
for minimax estimators of Theorems 1.1 and 1.2 in [6]. Note that € = o (A(w)(Inw,)'/?).
Thus we can estimate the kernel with essentially larger error then ¢. The same re-
mark can be made also about the systematic error of kernel estimator.

2 Proofs of Theorems

2.1 Proof of lower bound in Theorem 1.1

The proof of lower bounds in minimax setting is based traditionally on the fact
that the Bayes risk does not exceed the minimax one. We define such Bayes a
priori distributions that the powers of realizations f:”rAw X?(u)du on each interval
(w,w+Aw) C Qe = (—w1(1—0,), w1 (1—6,)) have the large order then corresponding
power of noise €||h||? f:+Aw A?(u)R(u)du. This allows to choose A~ 1(w)Y (w) as
asymptotically Bayes estimators X (w) on the intervals €2, and to get the required
lower bound (1.3) for minimax risks.

In what follows, we put v = 0 if A2 holds.

We put wy, = (1 — 0, )wr where §c > 0 is such that A(ws) = A(w,)(1 + o(1)) and
B (wi) = o(B™ (war)), €A (wae)(we PR (we) + wl) = 0o(B7 (wae)) (21)

and 6, — 0 as e — 0.

Define D, such that

D, = o(Bfl(wze)w(lfﬁ)/Z), 62A*2(w2€)(w€1+7+ﬁR71(w6) + wf) = o(Dz). (2.2)

€ €
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The Bayes a priori measures A, are defined as conditional probability measures of
Gaussian random processes (. under the condition (. € Q. The Fourier transform
((w) = Cea, (w) of random process (. = (.a, equals

CAe(w) =D, Z nix(w € I;)

i=—1

where | = I, = [wa /A, L = ((1 — 1/2)A,, (i + 1/2)A,) and 7, are independent
Gaussian random variables, En; = 0, En? = 1,1 < i < I. The value of parameter
A = A, is such that

A=A, =0(@D?R(w)w.” + w ¥?* "R(w,) + w!#). (2.3)

Hereafter [w./A] denotes the whole part of w./A.

Denote v, the probability measure of (..

Lemma 1. There holds
lin% P e@)=1 (2.4)
e—

Proof. By straightforward calculations, we get

E {/ BQ(w)ff(w)dw} = O(D?B*(wae)w. "),

Var [ / Bz(w)e(w)da)} = O(D! B! (w )l )

as ¢ = 0. Hence, by Chebyshov inequality, using (2.2), we get (2.4). This completes
the proof of Lemma 1.

For any estimator z} define the Bayes risks

pal(a?) = / A (2)E ||z — o],
Q

poo(a?) = / dv.(2)El|z: — o]
Q

Denote z¥ and z. the Bayes estimators corresponding to a priori measures A, and
v, respectively.

Lemma 2. There holds
PA(ZE) > pe(Z)(1 +0(1)), €—0.

The proof of Lemma 2 is akin to that of Lemma 2.3 in [6] and is omitted.

It follows from Lemmas 1 and 2 that the main term of asymptotic of minimax risks
p. does not exceed the corresponding term for the Bayes risks of random processes
.. Thus it suffices to find the asymptotic of Bayes risks g, (Z.)-
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Since the random process (. is Gaussian the Bayes estimator is linear

o= [ k(e (s)ds

with the kernel k., satisfying the equation

Va(w,wp)A(wp) = /Kﬁ(w,U)l)A(C()l)VA((.Ul,U)U)d&)lA(CU[])"‘

EZ/KE(UJ,U)Z)/H(UJQ —w)R(w1)H (w; — wy)dwidwy, w,wy € R". (2.5)
Hereafter Vo = Vi, (w1, wy) = E[¢(w1)C(wy)] = D? ZZLX(‘UI € I;,wy € I;) with
wo,wy € R,

In what follows, we shall make use of operator symbolic in the problem of risk mini-
mization. Denote A, R the multiplication operators with the kernels A(w), R(w). De-
note K., Va, H the integral operators Ly(R') — Ly(R!) with the kernels K (w, wy),
Va(w,wy), H(w — wp) with w,wy € R" respectively and denote I the unit operator.
In this notation the Bayes estimator minimizes the Bayes risk

p(K) =Sp [(K"A—I)VA(AK — I) + € K"HRHK]| (2.6)

among all estimators z¥ = k x y. Here Sp[U] denotes the trace of operator U.

Denote R (w) = R(w)x(|lw| < w,) and

R (w,wy) = /H(w — wy)Re(w1)H (w1 — wp)dwi x(w € (—we,we), wy € (—we, we)).

Since R, < R, we get
pe(K) =Sp[(KTA — )Vao(AK — I) + éKTR.K] <

Sp[(KTA = IVA(AK — 1)+ €K"HR.HK] < p.(K). (2.7)

Hence it suffices to consider the problem of minimization of p.(K). Define operator
K. such that p.(K.) = inf p.(K) where the infimum is over all operators K such
that p.(K) < oo.

If we write a version of equation (2.5) for the operator K., we get easily

K. =VAA(AVAA+ EHRH) . (2.8)

It follows from definition of p.(K) that in the problem of minimization of p.(K) it suf-
fices to consider the operators A, Va, R, as operators Ly((—w, w,)) = La((—we, we)).
Thus, in what follows, we suppose that such a contruction of operators takes place.

In this setting it holds
1K < [JATH AR < A7 (wae)- (2.9)

11



Substituting (2.8) in the left hand side of (2.7), we get
pe(K.) = €'Sp[(AVAA + €R.) "'RVaAR(AVAA + €R.) '+

®Sp[(AVAA + E€R,) "AVARVAA(AVAA + €R.) ). (2.10)

Now we define some discrete version p.a(K.) of p.(K.) and show that |p.a(K,) —
p.(K.)| is negligible. After that the lower bound of p.a(K.) will be found.

For each 1, |i| <[ we fix w; € I; and define the functions

Aa(w) =Y Alwi)x(w € L),

i=—1

Hp(w,w;) = Z H(w —w)x(wr € ).

i=—1
RA(WO, w1) = (HXREHA)(U)()a w1)-

Denote
ﬁeA(ke) = Sp [(K;TAA - I)VA(AAKE - ]) + GZKZRAKE] . (211)

We have ) ) ) )
pe(Ke) — pea(K.) = Sp[KT (A — Ap)Va(AK, — I)]+

Sp[k?AAVA(A — AA)RE} + CZSP[K;T(RE - RA)RE} = Jl + Jg + 62J3. (212)
Since ||[AK, — I]| <1 and ||K.A|| <1, by A4, (2.9), we get
1] < AN w2 [[AK|I|A — Aal| Sp[Va] [[AK, — T|| < CA™H(wze) ASp[Va]. (2.13)

Hereafter C stands for positive constants.

Arguing similarly, we get

[ Jo| < A Hwao)||AKC|[|Aal[SP[Va]l[A—Aal| A H(wae) [[AKL|| < CAA ?(wae)Sp[Val.
(2.14)
We have

Js = Sp|K . KT'(H — HA\)R.H) + Sp[K. KT HAR(H — Hp)] = J31 + Jao.  (2.15)

||H—HA||§</ dwg/ dw |H(wy — w)—

9\ 1/2

< CAuw,

Since, by H3,

Z H(w;i — w)x(wo € 1)

i=—1

||HAH§ / dwg/ dw

9\ 1/2

<w||H[|  (2.16)

Z H(w; — w)x(wy € 1)
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we get
T < ||KC|[*[[H — Hal|Sp[R]|| H| < CAweA*(wae)Sp[Rd], (2.17)

Iy < ||KJP||HalISPIRAIH — Hall < CA¥?A(wn)SpIR.).  (2.18)
By (2.12)-(2.15), (2.17),(2.18), we get
P(K) — pea(KD)| < CAA(w)Sp[Va] + CEAWY? A 2(w,)Sp| R <

CAA2(wy) B} wae)we + CE AW 2 A2 (wy,). (2.19)
By (2.3),(2.19), we get

Pe(K.) — pea(Ke) = o(¥(w,)). (2.20)
It remains to study the problem of minimization of p.a (K). In discretized setting,Va =

D?]. This simplifies essentially estimates.

The next two estimates are auxilliary. By (2.16), we get
|Rall < [[Hal IR | < Cw, (2.21)

[AA'RAALY| < CA 2 (we)we. (2.22)
Now we utilize (2.21),(2.22), to estimate

ﬁeA — 64Sp[(AAVAAA + EZRA)ilRAVARA(AAVAAA + 62RA)71]+

EZSp[(AAVAAA + €2RA)71AAVARAVAAA(AAVAAA + EZRA)il} = U1 + UQ. (223)

We have
Up < €'D* A (wae)Sp[(I + €D, A" Ra AR 7

RAVARA(I + EZDzlAglRAAgl)il] S
< O D, *A *(w)||Ra|PSp[Va] < Ce' D, A *(w,)|| Ral[Pw. <

Ce*D,; 2 A woe)w? = 0(e*Sp[A 2 R)]) (2.24)
where the last equality follows from (2.1),(2.2).
We have
Uy = Uy — Uzy — Usg (2.25)
where

Usi = €Sp|AL' Ra ALY,
Usy = €*Sp[(AaVaAp + ERA) "RAAN RAALN AAVAAA(AAVAAA + ERA) Y,
Usys = €'Sp[A " RAA "RA(AAVAAA + €2RA) Y.
The estimates Usy, Usg are akin to (2.13)

Ugy < €D 2A % (wae)||Ra||SPIAN RAAN || AAVAAA(AAVAAA + €RA) 7| <
Ce* D2 A % (e )w SP[A2R(1 + 0(1)) = o(€?Sp[A,%R]), (2.26)
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Ugs < €'||Ra(AaVaAa + € Ra) Y| Sp[Ax°Ra] <
Ce'||Ral| A7 (wae) D *Sp[Ax*Ra <
Ce'w. A ?(woe) D, *Sp[A,* Ra] = 0o(€’Sp[A *RA]) (2.27)
where the last equalities in (2.26),(2.27) follows from (2.1),(2.2).
Now (2.23)-(2.26) together imply the lower bound in (1.3).

2.2 Proof of Theorem 2

We begin with the proof of lower bound. The arguments are akin to the proof
of Theorem 1.2 in [6] and are based on the method proposed in [4]. Define the
parametric family of functions

1 - _ -
Gy(w) = E(L’”ZGX(% < |wl, (14 0c)we) = OH,

where §, < w! P % 0 < Kk <y — .
Consider the problem of estimation of parameter 6 if # has the Binomial distribution

1
PO =46,) = oL 0. = B ' (w,).

Since the noise is Gaussian it is not difficult to find the sufficient statistics in this
problem. As a result the problem is reduced to estimation of # on observation

ye =0+ ef{El/f{E(w)Al(w) /H(w — w1 RY? (wy)dw(w;)
that can be written in a more simple form

ye:9+deC

where ¢ is Gaussian random variable, F¢ = 0, E¢?> = 1 and

~ ~ 2 ~
d? = 62H€||2/R(w1) (/ H(w; — w)Al(w)He(w)dw> > C||H||*6.R(we) A % (we).
Since 6, = o(d.), the Bayes risks equals

02(1 4+ 0(1)) = B *(w.)(1 + o(1))

and this is the lower bound for minimax risks.

The proof of upper bounds is also akin to that of Theorem 1.2 in [6] and is omitted.
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2.3 Proof of Theorem 3. Lower Bound.

We consider the auxillary problem of Bayes estimation with spectral density V,(w) <
V(w),w € R' such that, for the spectral densities V,, the reasoning the proof of
Theorem 1.3 in [6] can be applied. As a result we get the required lower bound in
Theorem 3.

We put V. (w) = 0 if |w| > (1 — 6 )wic = @ and V,(w) = V(@,) if |w| < @, where @,
is such that
e A~2(w)R(w.) = o(V(@.)) (2.28)

and 6, — 0 as € — 0.

Since
pe(K) =Sp[(KTA - I)HVH(AK — I) + ¢KTHRHK] >
Sp[(K"A — I'HV.H(AK;) + € KTHRHK] = p.(K)
it suffices to find lower bound for the asymptotic of p.(K). Such a lower bound can

be found if we repeat all estimates in the proof of lower bound for the asymptotic
of Bayes risks in Theorem 1.3 in [6]. This lower bound equals

2 2 2 R(W)V( )
APl /||h12A2(w)12(w)+e2||h||23( j

dw(1 + o(1)) =

62h2/w6 A~2(w) R(w)dw(1 + o(1))

—We

where the last relation follows from (2.28). This completes the proof of lower bound
in Theorem 3.

2.4 Proof of Theorem 1. Upper Bound.
We have

= sup/X2 X(|lw| > we)dw + € / A% (w) /H2(w — wy)R(wy)dwidw =

EGQ —We

o(B *(we)) + We(we) (1 +0(1)) = e(we)(1 +o(1)).
This implies the upper bound for the estimator z*
By definition of p, it is easy to see that W (u.) = ¥ (w.)(1 + o(1)).

The minimax risk of Tikhonov regularizing procedure equals

pe(zh) = o max M?(w)B ?(w)(A*(w) + acM(w)) 2+

w

62/A2(w)(A2( )+ aM(w /H2 w—w)R(w)dwidw =T + . (2.29)
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By H2,R, we get

I, = 2¢%||h|)? / " A2(0) R(w) (A2 () + 0 M(w))2dw + O (20w, A~ (6, ) R(8w.)).

dwe
(2.30)
Define 6. such that A*(w.) = A%(w.(1—6.))(1+0(1)) and M (w.(1—46.)) = o(M (w,)).
Then
[2 = [21 + [22 + 123 + 0(625WEA72(5(4)E)R(6U)E)) (231)

where

(1—d¢)we
Loy = 22| ? /{s A2()R(w)(A2(w) + a M () 2dw =

We

(16w
262||h||2/ A (@) R(w)dw(1 + (1)) = . (w.)(1 + o(1)), (2.32)

dwe

(1466 )we
Iy = 2€2||h||2/ A?(w)R(w)(A*(w) + acM (w)) dw,
(

1-6.)we
L3 = 26%||h||? /oc A?(W)R(w)(A*(w) + o.M (w)) ?dw.
(1+0e)we
By M2 and definitions of 4, w,, we get
Iye = 0(I31), Is3 = 0(I21)- (2.33)
By (2.29)-(2.33), we get
Iy = I (1 +0(1)) = ¥ (w)(1 + o(1)). (2.34)
By M2 and definition of a,, we get
I < CB ?*(w,.) = o(¥, (w,)). (2.35)

Now (2.29),(2.34),(2.35) together imply the asymptotic minimaxity of Tikhonov
regularizing procedure.

2.4 Proof of Theorem 3. Upper bound

The Bayes risk equals

2/ /Hf(wwl)V(wl)dwdw1+62/ F AQ(w)/H2(ww1)R(w1)dw1 =2L+1,
- - (2.36)

By straightforward calculations, we get

L= 62||H2/% A7 (W) R(w)dw(1 + o(1)). (2.37)

—We

Denote wy, = %wle + %we.
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We have

I = Iy + Lo (2.38)

where

By (2.13),(1.14), we get

L < ||H1||2/ V(w1)dwy = o(Iy), (2.39)

2e

L5 < /00 Hf(w)dw/V(w)dw = o(IH). (2.40)

2e —We

Now the upper bound follows from (2.36)-(2.40).
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