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AbstractWe consider the problem of estimation of solution of convolution equationon observations blurred a random noise. The noise is a product of Gaussianstationary process and a weight function �h 2 L2(R1) with constant � > 0.The presence of weight function h makes the power of noise �nite on R1. Thisallows to suppose that the power of solution is also �nite. For this model we�nd asymptotically minimax and Bayes estimators. The solution is supposedin�nitely di�erentiable. The model with solutions having �nite number ofderivatives was studied in [5].1 Introduction and main results1.1 IntroductionLet the convolution equation(a � x)(t) = Z 1�1 a(t� s)x(s)ds = f(t)be given with the known kernel a(t); t 2 R1 and unknown function f . Instead of thefunction f we observe a realization of random process y(t) = f(t)+��(t) where ��(t)is a random noise with constant � > 0. The objective is to estimate the solutionx. Such a setting is usually called the deconvolution problem. The deconvolutionproblem arises in many applications (see e.g. [19], [18], [12], [10] and referencestherein).The noise in this model is usually de�ned as Gaussian stationary process. Sucha setting was comprehensively studied from di�erent viewpoints. The statisticalproperties of Tikhonov regularizing algorithm , the procedure of Wiener �ltration,robust and minimax estimators were considered in numerous publications (see, forexample, [18], [19], [12], [4] and references therein) Last years interesting adaptiveprocedures (see [7], [16]), wavelet based estimators (see [2], [11], [16]) were proposed.If the noise is stationary process, the power of noise on all real line is in�nite. Thereasonable estimator of solution x(t) exists only if the ratio of power of noise topower of solution is �nite. Thus we need to suppose that the power of solution isin�nite or tends to in�nity (see [18], [4]). Another method to avoid the problem ofin�nity is to reduce the setting to the deconvolution problem on a circle (see [3],1



[11]). In practice the power of solution is usually �nite. Thus it seems reasonableto study modi�cation of model admitting �nite power of solution on all real line.One such a modi�cation is studied in the paper. Remind that the power of noise oninterval (a; b) equals �2 R ba E�2(t)dt.In paper the noise has the more complicated structure��(t) = �h(t)�(t) (1:1)Here �(t) is Gaussian stationary process, E�(t) = 0; E[�(t)�(0)] = r(t); t 2 R1 andh is a weight function h 2 L2(R1). The assumption h 2 L2(R1) implies that thepower �2 R1�1E�2(t)dt = �2jjhjj2r(0) of noise ��(t) is �nite. This allows to supposethat the power of solution is also �nite and to consider the problem with such morerealistic assumptions.For modi�cation (1.1) of standard model we �nd asymptotically minimax and asymp-totically Bayes estimators. We suppose that the solution is in�nitely di�erentiable.The case of solutions having �nite smoothness in such a setting has been consideredin [5]. The problem of estimation with supersmooth solution was already consideredin publications (see [8], [9], [17]). This papers are devoted to the signal estimation.The kernel a in the paper can be smooth or supersmooth. Thus in this paper to-gether with [5] we study the both smooth and supersmooth spectrum of behaviourof kernel and solution. It turns out that, if the kernel or the solution is supersmooth,the asymptotically minimax and asymptotically Bayes estimators are the projectionestimators. Only if both the solution and the kernel have the �nite smoothnes, weare forced to de�ne the estimators with the more complicated structure (see [5]). Inthis case the Wiener �lters are asymptotically Bayes estimators (see [12], [18]) andstandard minimax estimators are asymptotically minimax (see [3], [4], [16]). Thestandard minimax estimators remain asymptotically minimax in the case of super-smooth kernel or solution. However in these cases we can de�ne essentially moresimple estimators with the same property.For any function z 2 L2(R1) denote byZ(!) = Z expf2�i!tgz(t)dtthe Fourier transform of z and for any z 2 L2(R1) denote byjjzjj = �Z z2(t)dt�2the L2-norm of z. Hereafter the limits of integration are omitted if integration istaken over all real line.The kernel a satis�es A0,A1-A3 in the case of �nite smoothness and A0,A3,A4 inthe supersmooth case.A0.There holds A(!) = A(�!) > 0 for all ! 2 R1.2



A1. There holds limt!1Z t0 A�2(!)R(!)d! =1:A2. There exists  � 0 such that for all C > 0lim!!1 A(C!)A(!) = C� :A3. There exists C > 0 such that for all !; !1 2 R1jjA(!)� A(!1)j < Cj! � !1j:A4. There exists  > 0 such that for all C > 0lim!!1 logA(C!)logA(!) = C:The correlation function r satis�es the followingR. There exists � > 0 such that for any C > 0lim!!1R(C!)=R(!) = C��:If A2,R hold with  = 0; � = 0 and A(!) � 1; R(!) � 1, we get the standard settingestimation of signal in weighted Gaussian white noisedy(t) = x(t)dt+ �h(t)dw(t) (1:2)with Gaussian white noise dw(t). Note that the results of Theorems 1.1 and 1.3 in[5] are extended on the model (1.2) as well. The main di�erence of these theoremsfrom theorems 1 and 3 of the paper is the assumption of �nite smoothness of solutionx.1.2 Main Results. Minimax estimationThe assumption about the solution is rather standard (see [3], [5], [17]). We supposethat a priori information is givenx 2 Q = �x : Z B2(!)jX(!)j2d! < 1; x 2 L2(R1)�with the function B satisfying the followingB1 The function B(!) is even, positive and there exists � > 0 such that for allC > 0 lim!!1 lnB(C!)lnB(!) = C�:3



Thus we have a priori information that the solution x belongs ellipsoid in L2(R1).B1 implies that the solution x(t) is in�nitely di�erentiable.The risk of any estimator x�(t) equals��(x�) = sup Z E(x�(t)� x(t))2dt:The goal is to �nd asymptotically minimax estimator x����� = ��(x��� ) = inf ��(x�)(1 + o(1)); �! 0:Here the in�mum is over all estimators x�.We suppose that the function h is smoother then the realizations of random process�(t) (see H2 below). Thus all information on noise smoothness is contained in �(t).H1 The functhion H(!) is even, H(!) 2 L2(R1) \ L1(R1) and h(t) > 0 for allt 2 R1.H2 There exists Æ > 0 such thatlim!!1R�1(!)H2(!)!1+Æ = 0:H3. R jth(t)jdt <1.De�ne the functions	�(�) = �2jjhjj2 Z A�2(!)(1� �B(!))+R(!)d!;�	(�) = �2jjhjj2 Z ��� A�2(!)R(!)d!:Hereafter (u)+ = maxfu; 0g for all u 2 R1. We put !1� = supf! : �	�(!) � B�2(!)gand !� = !1�(1 + Æ�) where Æ� > 0 is such that B(!1�) = o(B(!�)); A�1(!1�) =A�1(!�)(1 + o(1)) and Æ� ! 0 as �! 0. Denote �� = supf� : B(!�) > �g.De�ne the kernels K��(!) = A�1(!)(1� ��B(!))+;K!�(!) = A�1(!)�(j!j < !�):Hereafter �(U) denotes the indicator of events U .De�ne also the kernels k�� of Tikhonov regularization algorithmsK�(!) = A(!)A2(!) + �M(!)where the function M(!) satis�es the following4



M1. The function M(!) is even, nonnegative and increasing in R1+.M2. The function M(!)jB�1(!)A�2(!)j is nondecreasing in R1+.M2 implies that the function M(!) has the exponential growth. The exponentialgrowth of function M(!) in Tikhonov regularizing algorithm is supposed usually inthe case of a priori information on supersmooth solution (see [18]).De�ne the parameters of regularization �� = A2(!�)M�1(!�).Theorem 1. Assume A0,A1,A2,A3,B1,H1-H3,R or A0,A3,A4,B1,H1-H3,R with� > . Then the estimators x���� = (k�� � y)(t) and x��!�(t; y) = (k!� � y)(t) areasymptotically minimax. The asymptotically minimax risks equal��(x����) = ��(x��!�)(1 + o(1)) = 	�(��)(1 + o(1)) = �	�(!�)(1 + o(1)): (1:3)If M1,M2 hold also, the Tikhonov regularization algorithm x���� = k�� � y is asymp-totically minimax.Remark 1. Denote � the set of functions h satisfying H1,H3 and such that theconvergence in H2 is uniform w.r.t. all h 2 �. Suppose also that there existfunctions h01; h0 2 � such that h01 � h(t) � h0(t) > 0; t 2 R1 for all h 2 �.Then the asymptotics of minimax risks ��h(x����) = ��h(x��!�)(1 + o(1)) are uniformwith respect to h 2 �. Moreover all information on h in the estimators x��!� ; x���� iscontained in jjhjj. Thus we can consider h as unknown in the model supposing onlyh 2 �. Naturally, since jjhjj is unknown, the problems of the choice of regularizationparameters �� and !� arise. However, since other parameters of models are usuallyunknown as well (for example R(!); B(!)), these problems arise almost always inpractice. Note that similar statements on uniform risks convergence hold for theother theorems of this paper and theorems of [5] as well.Remark 2. In practice another model of deconvolution (see [2], [7], [14], [16]) oftenarises. Let a sample Z1; : : : ; Zn of independent random observations be given. Let itbe known that Z1 = X1+Y1; : : : ; Zn = Xn+Yn where X1; : : : ; Xn and Y1; : : : ; Yn areindependent identically distributed random variables from R1. The density a(t) ofY1; : : : ; Yn is known. One needs to estimate the density x(s); s 2 R1 of X1; : : : ; Xn.To distinguish this model we call such a setting the problem of density deconvolution.As almost all nonparametric statistical problem the model of density deconvolutionadmits asymptotic version in terms of Gaussian white noise dw(t)dy(t) = (a � x)(t)dt+ 1pn((a � x)(t))1=2dw(t): (1:4)A wide class of linear estimators have the same asymptotic distributions in thesetwo models.The relation of the model of density deconvolution with the weighted white noisemodel almost has not been studied. However such a relation is wellknown in aparticular case of nonparametric estimation of density (see [15]). In this case the5



observations Y1; : : : ; Yn are absent, A(!) � 1 and stochastic equation (1.4) is thefollowing dy(t) = x(t)dt+ 1pnx1=2(t)dw(t):In the model (1.4) the function h(t) = ((a � x)(t))1=2 is unknown. However theestimators k�� � y and k!� � y depend only on jjhjj = jj((a � x)(t))1=2jj = 1 and, byRemark 1, the asymptotics of minimax risks are uniform w.r.t. unknown h 2 �.Thus if h = (a � x)1=2 2 � these estimators have the same risk asymptotics in themodel (1.4) and in the paper model.If the kernel a is smoother then the solution x and  > � in A3,B1, the projectionestimator x��!� = k!� � y and the Tikhonov regularizing algorithm x���� = k�� � yremain asymptotically minimax. However the asymptotic of minimax risks is de�neddi�erently.Let !1� satisfy the equationB�2(!1�) = �2jjhjj2 Z !1��!1� A�2(!)R(!)d!: (1:5)De�ne Æ� such that Æ� = o(!��1� ) and !�1� = o(Æ�). Denote !� = (1 � Æ�)!1� and�� = A2(!�)M�1(!�).Theorem 2. Assume A0,A4,B1,H1,H2 and R. Let  > �: Then the family ofprojection estimators x��!�(t; y) = (k!� � y)(t) is asymptotically minimax. There holds��(x��!�) = B�2(!�)(1 + o(1)): (1:6)If M1 holds, the Tikhonov regularizing algorithm x���� = k�� � y is also asymptoticallyminimax.Example 1 Let A(!) = A1(!)j!j�; (1:7)B(!) = C expf�B1(!)j!j�g; (1:8)R(!) = R1(!)j!j��: (1:9)Then !� = j ln �j1=�jB1(j ln �j1=�)j1=� (1 + o(1)); (1:10)�� = 2jjhjj22 � � + 1�2!2��+1� A�21 (!�)R1(!�)(1 + o(1)):Example 2. Let A(!) = C expf�A1(!)j!jg (1:11)
6



and (1.8), (1.9) hold with  < �. Suppose that A1(!) = A1; B1(!) = B1 areconstants if 2 > �. Then the values of !� is de�ned (1.10) and�� = 2C�2jjhjj2�2!1���� R1(!�) exp�2A1(!�)j!�j �1� � A1(!�)B1(!�)!��� �� (1+o(1)):Example 3. Let (1.7),(1.8),(1.11) hold with  > �. Suppose that A1(!) =A1; B1(!) = B1 are constants if 2� > . Then!� = j ln �j1=jA1(j ln �j1=)j1= (1 + o(1)); (1:12)�� = exp��2B1(!�)!�� �1� �B1(!�)A�11 (!�)!��� �� (1 + o(1)):1.3 Main Results. Bayes Approach.In Bayes setting we suppose that the solution x is a realization of random processx(t) = h1(t)�(t)where h1(t) 2 L2(R1) and � is Gaussian stationary random process, E�(t) =0; E[�(t)�(0)] = v(t); t 2 R1:As follows from assumption V1 given bellow the realizations of random process �(t)are in�nitely di�erentiable.V1. There exists � > 0 such that for all C > 0 there holdslim!!1 lnV (C!)lnV (!) = C�:The function h1(t) satis�es the following assumptions.H4 The function h1(t) is even,bounded and h1(t) > ch(t) > 0 with constant c > 0for all t 2 R1.H5. There holds lim!!1 lnH1(!)lnV (!) =1:H5 implies that the main information on smoothness x is contained in the randomprocess �(t).For any estimator x� de�ne the Bayes risk�̂�(x�) = E�E�jjx� � h1�jj2We say that the estimator �x�� is asymptotically Bayes if�̂� = �̂�(�x��) = inf �̂�(x�)(1 + o(1)); �! 0:7



Here the in�mum is over all estimators.In this setting we could not prove that the Wiener �ltersK�(!) = jjh1jj2A(!)V (!)(jjh1jj2A2(!)V (!) + �2jjhjj2R(!))�1are asymptotically Bayes. At the same time we show that more simple projectionestimator x��!� are asymptotically Bayes. The value of !� is de�ned the equation!� = !1�(1 + Æ�) where A2(!1�)jjh1jj2V (!1�) = �2jjhjj2R(!1�); (1:13)V (!�) = o(V (!1�)); H21 �12Æ�!1�� = o(�2A�2(!�)R(!�)) (1:14)and Æ� > 0; Æ� ! 0 as �! 0.Theorem 3. Assume A0,A1,A2,H1,H2,H4,H5,R,V1. Then the family of esti-mators x��!� = (k!� � y)(t) is asymptotically Bayes. There holds�̂�(x��!�) = �2jjhjj2 Z !��!� A�2(!)R(!)d!(1 + o(1)): (1:15)Example 4. Let V (!) = expf�V1(!)j!j�gand (1.7),(1.9) hold. Then!� = j ln �j1=�jV1(j ln �j1=�)j1=� (1 + o(1));�̂� = 2jjhjj22 � � + 1�2!2��+1� A�21 (!�)R1(!�)(1 + o(1)):Remark 3. In practice an information on a kernel a can be often obtained only fromstatistical experiment (see [2], [14]). The arising estimator â of kernel a is knownwith a random error. Usually it is supposed that the error admits the Gaussianapproximation. If we study the quality of estimation of solution one needs to �ndthe inuence of this random error on a risk function.We consider the following modelâ(t) = a(t)dt+ ���h(t)dw(t)with �h 2 L2(R1). Assume the followingZ t2�h2(t)dt <1; (1:16)lim!!1 �H2(!)j!j1+Æ = 0 (1:17)8



with Æ > 0.The Fourier transform of â can be written in the following formÂ(!) = A(!) + ���̂(!)where �̂(!) = Z �H(! � !1)dw(!1)is Gaussian stationary process.If M� = supfj�̂(!); j!j � !�g = oP (A(!�)=��), the random error ���̂ (!) does notinuence on minimax and Bayes estimators x��!� ; x���� .If (1.16),(1.17) holds, by Theorem 12.3.5 in [13]lim�!0P �jjhjj�1(2 ln(2!�))�1=2jM� � jjhjj(2 ln(2!�))1=2j > u� = expf�C expf�ugg:Hence, if �� = o �A(!�)j ln!�j1=2�, the inuence of noise ���h(t)dw(t) on the asymp-totics of risk functions of estimator x��!� is negligible both in minimax and Bayes set-tings. This is proved by straightforward calculations. A similar statement hold alsofor minimax estimators of Theorems 1.1 and 1.2 in [6]. Note that � = o �A(!�)(ln!�)1=2�.Thus we can estimate the kernel with essentially larger error then �. The same re-mark can be made also about the systematic error of kernel estimator.2 Proofs of Theorems2.1 Proof of lower bound in Theorem 1.1The proof of lower bounds in minimax setting is based traditionally on the factthat the Bayes risk does not exceed the minimax one. We de�ne such Bayes apriori distributions that the powers of realizations R !+�!! X2(u)du on each interval(!; !+�!) � 
� = (�!1�(1�Æ�); !1�(1�Æ�)) have the large order then correspondingpower of noise �2jjhjj2 R !+�!! A�2(u)R(u)du. This allows to choose A�1(!)Y (!) asasymptotically Bayes estimators X(!) on the intervals 
� and to get the requiredlower bound (1.3) for minimax risks.In what follows, we put  = 0 if A2 holds.We put !2� = (1� Æ�)!1� where Æ� > 0 is such that A(!2�) = A(!�)(1 + o(1)) andB�1(!1�) = o(B�1(!2�)); �2A�2(!2�)(!1++�� R�1(!�) + !3� ) = o(B�2(!2�)) (2:1)and Æ� ! 0 as �! 0.De�ne D� such thatD� = o(B�1(!2�)!(1��)=2� ); �2A�2(!2�)(!1++�� R�1(!�) + !3� ) = o(D2� ): (2:2)9



The Bayes a priori measures �� are de�ned as conditional probability measures ofGaussian random processes �� under the condition �� 2 Q. The Fourier transform�̂�(!) = �̂���(!) of random process �� = ���� equals�̂�(!) = D� lXi=�l �i�(! 2 Ii)where l = l� = [!2�=��] ; Ii = ((i � 1=2)��; (i + 1=2)��) and �i are independentGaussian random variables, E�i = 0; E�2i = 1;�l � i � l. The value of parameter� = �� is such that� = �� = o(�2D�2� R(!�)!�� + !�3=2�� R(!�) + !1��� ): (2:3)Hereafter [!�=�] denotes the whole part of !�=�:Denote �� the probability measure of ��.Lemma 1. There holds lim�!0P (�� 2 Q) = 1 (2:4)Proof. By straightforward calculations, we getE �Z B2(!)�̂2� (!)d!� = O(D2�B2(!2�)!1��� );Var �Z B2(!)�̂2� (!)d!� = O(D4�B4(!2�)!1��� )as �! 0. Hence, by Chebyshov inequality, using (2.2), we get (2.4). This completesthe proof of Lemma 1.For any estimator x�� de�ne the Bayes risks�̂��(x��) = ZQ d��(x)Ejjx�� � xjj2;�̂��(x��) = ZQ d��(x)Ejjx�� � xjj2:Denote �x�� and �x� the Bayes estimators corresponding to a priori measures �� and�� respectively.Lemma 2. There holdŝ���(�x��) � �̂��(�x�)(1 + o(1)); �! 0:The proof of Lemma 2 is akin to that of Lemma 2.3 in [6] and is omitted.It follows from Lemmas 1 and 2 that the main term of asymptotic of minimax risks�� does not exceed the corresponding term for the Bayes risks of random processes��. Thus it suÆces to �nd the asymptotic of Bayes risks �̂��(�x�).10



Since the random process �� is Gaussian the Bayes estimator is linear�x� = Z k�(t; s)y(s)dswith the kernel k� satisfying the equationV�(!; !0)A(!0) = Z K�(!; !1)A(!1)V�(!1; !0)d!1A(!0)+�2 Z K�(!; !2) Z H(!2 � !1)R(!1)H(!1 � !0)d!1d!2; !; !0 2 R1: (2:5)Hereafter V� = V��(!1; !0) = E[��(!1)��(!0)] = D2� Pi=li=�l �(!1 2 Ii; !0 2 Ii) with!0; !1 2 R1.In what follows, we shall make use of operator symbolic in the problem of risk mini-mization. Denote A;R the multiplication operators with the kernels A(!); R(!). De-note K�; V�; H the integral operators L2(R1)! L2(R1) with the kernels K�(!; !0),V�(!; !0); H(! � !0) with !; !0 2 R1 respectively and denote I the unit operator.In this notation the Bayes estimator minimizes the Bayes risk��(K) = Sp �(KTA� I)V�(AK � I) + �2KTHRHK� (2:6)among all estimators x�� = k � y. Here Sp[U ] denotes the trace of operator U .Denote R�(!) = R(!)�(j!j < !�) and�R�(!; !0) = Z H(! � !1)R�(!1)H(!1 � !0)d!1�(! 2 (�!�; !�); !0 2 (�!�; !�)):Since R� � R, we get���(K) = Sp[(KTA� I)V�(AK � I) + �2KT �R�K] �Sp[(KTA� I)V�(AK � I) + �2KTHR�HK] � ��(K): (2:7)Hence it suÆces to consider the problem of minimization of ���(K): De�ne operator�K� such that ���( �K�) = inf ���(K) where the in�mum is over all operators K suchthat ���(K) <1.If we write a version of equation (2.5) for the operator �K�, we get easily�K� = V�A(AV�A+ �2HR�H)�1: (2:8)It follows from de�nition of ���(K) that in the problem of minimization of ���(K) it suf-�ces to consider the operators A; V�; �R� as operators L2((�!�; !�))! L2((�!�; !�)).Thus, in what follows, we suppose that such a contruction of operators takes place.In this setting it holds jj �K�jj � jjA�1jj jjAK�jj � A�1(!2�): (2:9)11



Substituting (2.8) in the left hand side of (2.7), we get���( �K�) = �4Sp[(AV�A+ �2 �R�)�1 �R�V� �R�(AV�A+ �2 �R�)�1]+�2Sp[(AV�A+ �2 �R�)�1AV� �R�V�A(AV�A+ �2 �R�)�1]: (2:10)Now we de�ne some discrete version ����( �K�) of ���( �K�) and show that j����( �K�) ����(K�)j is negligible. After that the lower bound of ����( �K�) will be found.For each i; jij � l we �x !i 2 Ii and de�ne the functionsA�(!) = lXi=�lA(!i)�(! 2 Ii);H�(!; !1) = lXi=�lH(! � !1)�(!1 2 Ii):R�(!0; !1) = (HT�R�H�)(!0; !1):Denote ����( �K�) = Sp �( �KT� A� � I)V�(A� �K� � I) + �2 �KT� R� �K�� : (2:11)We have ���( �K�)� ����( �K�) = Sp[ �KT� (A� A�)V�(A �K� � I)]+Sp[ �KT� A�V�(A� A�) �K�] + �2Sp[ �KT� ( �R� �R�) �K�] := J1 + J2 + �2J3: (2:12)Since jjA �K� � Ijj � 1 and jj �K�Ajj � 1, by A4, (2.9), we getjJ1j � A�1(!2�)jjA �K�jjjjA� A�jj Sp[V�] jjA �K� � Ijj � CA�1(!2�)�Sp[V�]: (2:13)Hereafter C stands for positive constants.Arguing similarly, we getjJ2j � A�1(!2�)jjA �K�jj jjA�jjSp[V�]jjA�A�jjA�1(!2�) jjA �K�jj � C�A�2(!2�)Sp[V�]:(2:14)We haveJ3 = Sp[ �K� �KT� (H �H�)R�H] + Sp[ �K� �KT� H�R�(H �H�)] := J31 + J32: (2:15)Since, by H3, jjH �H�jj � �Z !��!� d!0 Z !��!� d! jH(!0 � !)�lXi=�lH(!i � !)�(!0 2 Ii)�����21A1=2 � C�!�;jjH�jj � 0@Z !��!� d!0 Z !��!� d! ����� lXi=�lH(!i � !)�(!0 2 Ii)�����21A1=2 � !1=2� jjHjj (2:16)12



we get J31 � jjK�jj2jjH �H�jjSp[R�]jjHjj � C�!�A�2(!2�)Sp[R�]; (2:17)I32 � jjK�jj2jjH�jjSp[R�]jjH �H�jj � C�!3=2� A�2(!2�)Sp[R�]: (2:18)By (2.12)-(2.15), (2.17),(2.18), we getj���( �K�)� ����( �K�)j � C�A�2(!�)Sp[V�] + C�2�!3=2� A�2(!�)Sp[R�] �C�A�2(!2�)B�2(!2�)!� + C�2�!5=2� A�2(!2�): (2:19)By (2.3),(2.19), we get ���( �K�)� ���( �K�) = o( �	(!�)): (2:20)It remains to study the problem of minimization of ���(K). In discretized setting,V� =D2� I. This simpli�es essentially estimates.The next two estimates are auxilliary. By (2.16), we getjjR�jj � jjH�jj2jjR�jj � C!�; (2:21)jjA�1� R�A�1� jj � CA�2(!�)!�: (2:22)Now we utilize (2.21),(2.22), to estimate�̂�� = �4Sp[(A�V�A� + �2R�)�1R�V�R�(A�V�A� + �2R�)�1]+�2Sp[(A�V�A� + �2R�)�1A�V�R�V�A�(A�V�A� + �2R�)�1] := U1 + U2: (2:23)We have U1 � �4D�4� A�4(!2�)Sp[(I + �2D�1� A�1� R�A�1� )�1�R�V�R�(I + �2D�1� A�1� R�A�1� )�1] �� C�4D�4� A�4(!2�)jjR�jj2Sp[V�] � C�4D�2� A�4(!�)jjR�jj2!� �C�4D�2� A�4(!2�)!3� = o(�2Sp[A�2R]) (2:24)where the last equality follows from (2.1),(2.2).We have U2 = U21 � U22 � U23 (2:25)where U21 = �2Sp[A�1� R�A�1� ];U22 = �4Sp[(A�V�A� + �2R�)�1R�A�1� R�A�1� A�V�A�(A�V�A� + �2R�)�1];U23 = �4Sp[A�1R�A�1R�(A�V�A� + �2R�)�1]:The estimates U22; U23 are akin to (2.13)U22 � �4D�2� A�2(!2�)jjR�jjSp[A�1� R�A�1� ]jjA�V�A�(A�V�A� + �2R�)�1jj �C�4D�2� A�2(!2�)!�Sp[A�2� R�](1 + o(1)) = o(�2Sp[A�2� R�]); (2:26)13



U23 � �4jjR�(A�V�A� + �2R�)�1jj Sp[A�2� R�] �C�4jjR�jjA�2(!2�)D�2� Sp[A�2� R�] �C�4!�A�2(!2�)D�2� Sp[A�2� R�] = o(�2Sp[A�2� R�]) (2:27)where the last equalities in (2.26),(2.27) follows from (2.1),(2.2).Now (2.23)-(2.26) together imply the lower bound in (1.3).2.2 Proof of Theorem 2We begin with the proof of lower bound. The arguments are akin to the proofof Theorem 1.2 in [6] and are based on the method proposed in [4]. De�ne theparametric family of functionsG�(!) = 1p2~Æ�1=2� ��(!� < j!j; (1 + ~Æ�)!�) = � ~H�where ~Æ� � !1����� ; 0 < � <  � �.Consider the problem of estimation of parameter � if � has the Binomial distributionP (� = ���) = 12 ; �� = B�1(!�):Since the noise is Gaussian it is not diÆcult to �nd the suÆcient statistics in thisproblem. As a result the problem is reduced to estimation of � on observationy� = � + �jj ~H�jj�1 Z ~H�(!)A�1(!) Z H(! � !1)R1=2(!1)dw(!1)that can be written in a more simple formy� = � + d��where � is Gaussian random variable, E� = 0; E�2 = 1 andd2� = �2jj ~H�jj�2 Z R(!1)�Z H(!1 � !)A�1(!) ~H�(!)d!�2 � CjjHjj2~Æ�R(!�)A�2(!�):Since �� = o(d�), the Bayes risks equals�2� (1 + o(1)) = B�2(!�)(1 + o(1))and this is the lower bound for minimax risks.The proof of upper bounds is also akin to that of Theorem 1.2 in [6] and is omitted.
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2.3 Proof of Theorem 3. Lower Bound.We consider the auxillary problem of Bayes estimation with spectral density �V�(!) �V (!); ! 2 R1 such that, for the spectral densities �V�, the reasoning the proof ofTheorem 1.3 in [6] can be applied. As a result we get the required lower bound inTheorem 3.We put �V�(!) = 0 if j!j > (1� �Æ�)!1� = �!� and �V�(!) = V (�!�) if j!j < �!� where �!�is such that �2A�2(!�)R(!�) = o(V (�!�)) (2:28)and Æ� ! 0 as �! 0.Since ��(K) = Sp[(KTA� I)HVH(AK � I) + �2KTHRHK] �Sp[(KTA� I)H �V�H(AKI) + �2KTHRHK] := �̂�(K)it suÆces to �nd lower bound for the asymptotic of �̂�(K). Such a lower bound canbe found if we repeat all estimates in the proof of lower bound for the asymptoticof Bayes risks in Theorem 1.3 in [6]. This lower bound equals�2jjhjj2jjh1jj2 Z R(!) �V�(!)jjh1jj2A2(!) �V�(!) + �2jjhjj2R(!)d!(1 + o(1)) =�2jjhjj2 Z !��!� A�2(!)R(!)d!(1 + o(1))where the last relation follows from (2.28). This completes the proof of lower boundin Theorem 3.2.4 Proof of Theorem 1. Upper Bound.We have��(x��!�) = supx2Q Z X2(!)�(j!j > !�)d! + �2 Z !��!� A�2(!) Z H2(! � !1)R(!1)d!1d! =o(B�2(!�)) + �	�(!�)(1 + o(1)) = �	�(!�)(1 + o(1)):This implies the upper bound for the estimator x��!�.By de�nition of �� it is easy to see that 	�(��) = �	�(!�)(1 + o(1)).The minimax risk of Tikhonov regularizing procedure equals��(x����) = �2� max! M2(!)B�2(!)(A2(!) + ��M(!))�2+�2 Z A2(!)(A2(!) + ��M(!))�2 Z H2(! � !1)R(!1)d!1d! := I1 + I2: (2:29)
15



By H2,R, we getI2 = 2�2jjhjj2 Z 1Æ!� A2(!)R(!)(A2(!) + ��M(!))�2d! +O(�2Æ!�A�2(Æ!�)R(Æ!�)):(2:30)De�ne Æ� such that A2(!�) = A2(!�(1�Æ�))(1+o(1)) andM(!�(1�Æ�)) = o(M(!�)).Then I2 = I21 + I22 + I23 +O(�2Æ!�A�2(Æ!�)R(Æ!�)) (2:31)where I21 = 2�2jjhjj2 Z (1�Æ�)!�Æ!� A2(!)R(!)(A2(!) + ��M(!))�2d! =2�2jjhjj2 Z (1�Æ�)!�Æ!� A�2(!)R(!)d!(1 + o(1)) = �	�(!�)(1 + o(1)); (2:32)I22 = 2�2jjhjj2 Z (1+Æ�)!�(1�Æ�)!� A2(!)R(!)(A2(!) + ��M(!))�2d!;I23 = 2�2jjhjj2 Z 1(1+Æ�)!� A2(!)R(!)(A2(!) + ��M(!))�2d!:By M2 and de�nitions of Æ�; !�, we getI22 = o(I21); I23 = o(I21): (2:33)By (2.29)-(2.33), we getI2 = I21(1 + o(1)) = �	�(!�)(1 + o(1)): (2:34)By M2 and de�nition of ��, we getI1 < CB�2(!�) = o( �	�(!�)): (2:35)Now (2.29),(2.34),(2.35) together imply the asymptotic minimaxity of Tikhonovregularizing procedure.2.4 Proof of Theorem 3. Upper boundThe Bayes risk equals2 Z 1!� Z H21 (!�!1)V (!1)d!d!1+ �2 Z !��!� A�2(!) Z H2(!�!1)R(!1)d!1 := 2I1+ I2(2:36)By straightforward calculations, we getI2 = �2jjHjj2 Z !��!� A�2(!)R(!)d!(1 + o(1)): (2:37)Denote !2� = 12!1� + 12!�. 16



We have I1 = I11 + I12 (2:38)where I11 = Z 1!� Z 1!2� H21 (! � !1)V (!1)d!d!1;I12 = Z 1!� Z !2��1 H21 (! � !1)V (!1)d!d!1:By (2.13),(1.14), we getI11 � jjH1jj2 Z 1!2� V (!1)d!1 = o(I2); (2:39)I12 � Z 1!2��!� H21 (!)d! Z V (!)d! = o(I1): (2:40)Now the upper bound follows from (2.36)-(2.40).References[1] Carrol R J and Hall P 1988 Optimal rates of convergence for deconvolving adensity J. Amer. Statist.Assoc. 83 1184-6[2] Donoho D L 1992 Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition Appl.Comput. Harmon. Anal 2 101-26[3] Efroimovich S 1999 Nonparametric Curve Estimation: Methods, Theory andApplications (New York: Springer)[4] Ermakov M S 1992 Minimax estimation in a deconvolution problem J.Phys.A:Math.Gen. 25 1273-82[5] Ermakov M S 2003 Asymptotically minimax and Bayes estimation in a decon-volution problem Inverse Problems 19 1339-59[6] Fan J 1991 Asymptotric normality for deconvolution kernel estimators SankhiaSer. A 53 97-110[7] Goldenshluger A 1999 On pointwise adaptive nonparametric deconvolutionBernoulli 5 907-25.[8] Golubev Yu.K., Levit B Y and Tsybakov A B Asymptotically eÆcient estima-tion of Analitic functions in Gaussian noise[9] Ibragimov I A and Hasminski R Z 1982 Estimation of distribution densitybelonging to a class of entire functions. Theory Probab Appl 27 551-56217
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