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Abstract

Equilibrium distributions of multicomponent systems minimize the free energy functional

under the constraint of mass conservation of the components. However, since the free

energy is not convex in general, usually one tries to characterize and to construct equi-

librium distributions as steady states of an adequate evolution equation, for example,

the nonlocal Cahn–Hilliard equation for binary alloys. In this work a direct descent

method for nonconvex functionals is established and applied to phase separation problems

in multicomponent systems and image segmentation.

1. Introduction

To describe the phase separation model underlying this work we consider a closed multi-

component system with interacting particles of type i ∈ {0, 1, . . . , m} occupying a spatial

domain Ω ⊂ R
n. We assume that the particles jump around on a given microscopically

scaled lattice following a stochastic exchange process (see [8]). On each lattice site sits

exactly one particle (exclusion principle). Two particles of type i and ` change their

sites x and y with a certain probability pi`(x, y) due to diffusion and interaction. The

hydrodynamical limit leads to a system of conservation laws for i ∈ {0, 1, . . . , m},

(1) u′i +∇· ji = 0 in (0,+∞) × Ω, ν · ji = 0 on (0,+∞) × ∂Ω, ui(0) = u0i in Ω,

for (scaled) mass densities u0, u1, . . . , um, their initial values u00, u01, . . . , u0m, and current

densities j0, j1, . . . , jm. In general we can assume
∑m

i=0 ui = 1 due to the exclusion prin-

ciple, that means, only m of the m + 1 equations in (1) are independent of each other.

Hence, we can drop out one equation, say that one for the zero component, and describe

the state of the system by m-component vectors u = (u1, . . . , um) and u0 = 1 −
∑m

i=1 ui.

Equilibrium distributions u∗ = (u∗1, . . . , u
∗
m) : Ω −→ R

m of the multicomponent system

and, more generally, steady states of (1) can be supposed to be (local) minimizers of the

free energy functional F under the constraint of mass conservation:

F (u∗) = min
{

F (u) :
∫

Ω
(ui − u0i) dx = 0 for all i ∈ {1, . . . , m}

}

,

or solutions (u∗, µ∗) of the corresponding Euler–Lagrange equations including La-

grange multipliers µ∗ ∈ R
m:

(2)

m
∑

i=1

µ∗
i gi = DF (u∗), 〈gi, u〉 =

∫

Ω

ui dx, 〈gi, u
∗ − u0〉 = 0, i ∈ {1, . . . , m}.

In many applications one is originally interested in u∗. However, F is in general not con-

vex, so it seems to be difficult to solve (2) directly. By this reason one tries to construct u∗

as steady state of the evolution equation (1). That approach rests on the following con-

sideration: Having in mind that the Lagrange multipliers µ∗
i should be constant, one

assumes their antigradients to be driving forces towards equilibrium. This leads to the



2 Herbert Gajewski and Jens A. Griepentrog

evolution system (1) with current densities ji = −
∑m

`=1 ai`(u)∇µ` and positively semidef-

inite mobility matrix (ai`) (see [9, 10, 13]). Evidently, F is a Lyapunov function of (1).

It can be expected and is proved in some cases (see [9]) that solutions of (1) satisfy

lim
t→∞

F (u(t)) = F (u∗), lim
t→∞

u(t) = u∗,

where u∗ is a solution to the Euler–Lagrange equations (2). However, from the

practical point of view that approach becomes questionable if meta-stable states occur.

In this work we establish a direct method to solve (2). For a relevant class of nonconvex

free energies F we define iteration sequences (uk, µk) as solutions of auxiliary Euler–

Lagrange equations such that (F (uk)) decreases and µki are constants. Moreover, we

prove convergence results

lim
k→∞

F (uk) = F (u∗), lim
k→∞

uk = u∗, lim
k→∞

µk = µ∗,

where the strong limit (u∗, µ∗) of the sequence (uk, µk) satisfies (2).

In Section 2 we formulate assumptions and the constrained minimum problem in a

more general functional analytic setting. The assumptions will be verified in the sections

concerned with applications. In Section 3 we establish the direct method. Local phase

separation problems in binary alloys are considered in Section 4. Section 5 is devoted to

nonlocal phase separation problems in multicomponent systems. In Section 6 we describe

an image segmentation algorithm. Finally, in Section 7 we conclude with simulation

results for ternary systems.

2. The Constrained Minimum Problem

Let (H, ‖ ‖H) be a separable Hilbert space, (H∗, ‖ ‖H∗) its dual, and 〈 , 〉 the dual

pairing between H and H∗. In addition to that, we denote by J ∈ L(H ;H∗) the duality

map between H and H∗ and by R ∈ L(H∗;H) its inverse. We consider functionals

Φ : H −→ R ∪ {+∞} and Ψ : H −→ R satisfying

Assumption 1. Let Φ : H −→ R ∪ {+∞} be a proper, lower semicontinuous, and

strongly convex functional with closed effective domain dom(Φ) ⊂ H . That means, there

exists some α > 0 such that for all u, v ∈ dom(Φ) and τ ∈ [0, 1] we have

(3) τΦ(u) + (1 − τ)Φ(v) ≥ Φ(τu + (1 − τ)v) + α
2
τ(1 − τ)‖u− v‖2

H .

Let Ψ : H −→ R be bounded from below on dom(Φ) ⊂ H and Fréchet differentiable

on H with Lipschitz continuous and compact Fréchet derivative DΨ : H −→ H∗,

that means, there exists some constant β > 0 such that for all u, v ∈ H ,

(4) ‖DΨ(u) −DΨ(v)‖H∗ ≤ β ‖u− v‖H .

Remark 1. As a consequence, the subdifferential ∂Φ ⊂ H × H∗ is both strongly

monotone and maximal monotone. Furthermore, under the above general assumptions
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the sum F = Φ+Ψ : H −→ R∪{+∞} is a well-defined functional with nonempty, closed

and convex effective domain dom(F ) = dom(Φ).

As a proper, lower semicontinuous, and convex functional Φ : H −→ R ∪ {+∞} is

weakly lower semicontinuous. Moreover, the complete continuity of the potential operator

DΨ : H −→ H∗ implies the strong continuity of its potential Ψ : H −→ R. Hence, the

sum F = Φ + Ψ is weakly lower semicontinuous, too.

In our work we are interested in (local) minimizers u∗ ∈ K of F : H −→ R ∪ {+∞},

where K ⊂ dom(F ) represents a nonempty, closed, and convex set of given constraints.

Lemma 1 (Existence of minimizers). Assumption 1 implies that F : H −→ R∪{+∞} is

bounded from below. There exists a solution u∗ ∈ K of the constrained minimum problem

(5) F (u∗) = min{F (u) : u ∈ K}.

Proof. Because of the boundedness of Ψ : H −→ R from below on dom(F ) we can find a

constant c ∈ R such that Ψ(u) ≥ c for all u ∈ dom(F ). We fix v ∈ K and d ∈ R with

F (v) < d+ c. The strong convexity of Φ : H −→ R∪{+∞} implies the existence of some

r > 0 such that Φ(u) ≥ d for all u ∈ H , ‖u‖H ≥ r. This yields

F (v) < d+ c ≤ Φ(u) + Ψ(u) = F (u) for all u ∈ dom(F ), ‖u‖H ≥ r.

Hence, we have found v ∈ K and r > 0 such that F (v) < F (u) for all u ∈ H , ‖u‖H ≥ r.

That means, it suffices to look for a minimum of F on the nonempty, bounded, closed,

and convex subset K ∩ {u ∈ H : ‖u‖H ≤ r}. Using the weak lower semicontinuity of F

(see Remark 1) the generalized Weierstrass theorem yields both the existence of a

solution u∗ ∈ K to the minimum problem (5) and the boundedness of F from below. �

3. The Descent Method

Knowing about the solvability of the constrained minimum problem (5) we want to estab-

lish a direct and constructive solution algorithm to find (local) minimizers of F . Our

plan is to approximate (local) minimizers of the original problem (5) by a sequence

of solutions of constrained minimum problems (7) for partially linearized functionals

Fu : H −→ R ∪ {+∞} defined as

(6) Fu(v) = Φ(v) + 〈DΨ(u), v〉, u, v ∈ H.

Lemma 2. Assumption 1 implies that Fu : H −→ R∪{+∞} is bounded from below for

every u ∈ H. There exists a unique solution v∗ ∈ K of the constrained minimum problem

(7) Fu(v
∗) = min{Fu(v) : v ∈ K}.

Proof. Obviously, for all u ∈ H the functional Fu is proper, lower semicontinuous, and

strongly convex. Hence, it is both weakly lower semicontinuous and weakly coercive. The

desired result is a consequence of the generalized Weierstrass theorem. �
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Lemma 3 (Descent property). Let Assumption 1 be satisfied and v∗ ∈ K be the solution

of problem (7) for fixed u ∈ K. Then for τ ∈ (0, 1] and uτ = τv∗ + (1− τ)u ∈ K we have

F (u) − F (uτ) ≥
(

α
2τ

− β
2

)

‖u− uτ‖
2
H .

Proof. 1. For all u, v ∈ H we can use Lagrange’s formula and (4) to get

Ψ(v) − Ψ(u) − 〈DΨ(u), v − u〉 =

∫ 1

0

〈DΨ(u+ s(v − u)) −DΨ(u), v − u〉 ds

≤

∫ 1

0

βs‖v − u‖2
H ds = β

2
‖v − u‖2

H .

2. Let u ∈ K be fixed and v∗ ∈ K the solution of problem (7). Then for τ ∈ (0, 1] and

uτ = τv∗ + (1 − τ)u ∈ K the estimate

Φ(v∗) + 〈DΨ(u), v∗〉 ≤ Φ(uτ ) + 〈DΨ(u), uτ〉

holds true. Together with the strong convexity of Φ (see (3)) this yields

(1 − τ)
(

Φ(u) − Φ(uτ )
)

≥ τ
(

Φ(uτ ) − Φ(v∗)
)

+ α
2
τ(1 − τ)‖v∗ − u‖2

H

≥ τ〈DΨ(u), v∗ − uτ 〉 + α
2
τ(1 − τ)‖v∗ − u‖2

H

= (1 − τ)〈DΨ(u), uτ − u〉 + α
2τ

(1 − τ)‖uτ − u‖2
H.

Let τ ∈ (0, 1). Dividing both sides by 1 − τ and adding Ψ(u) − Ψ(uτ ) this implies

F (u) − F (uτ ) ≥ Ψ(u) − Ψ(uτ) + 〈DΨ(u), uτ − u〉 + α
2τ
‖uτ − u‖2

H

≥
(

α
2τ

− β
2

)

‖uτ − u‖2
H ,

where we have used the estimate presented in Step 1 of the proof. The desired estimate

remains true for τ = 1 since the lower semicontinuity of F : H −→ R ∪ {+∞} allows us

to take the limit τ ↑ 1. �

Lemma 4 (Descent method). Let Assumption 1 and α > βτ be satisfied for the param-

eter τ ∈ (0, 1]. Moreover, let u0 ∈ K and define the sequences (vk), (uk) ⊂ K by

(8) uk+1 = τvk +(1− τ)uk , Φ(vk)+ 〈DΨ(uk), vk〉 = min{Φ(v)+ 〈DΨ(uk), v〉 : v ∈ K}.

Then (F (uk)) is decreasing and convergent. In fact, we have the estimate

(9) ‖uk − uk+1‖
2
H ≤ 2τ

α−βτ

(

F (uk) − F (uk+1)
)

for all k ∈ N.

Proof. In view of Lemma 2 the sequences (vk), (uk) ⊂ K are correctly defined. Using

Lemma 3 with uτ = uk+1, u = uk, v
∗ = vk we see that (F (uk)) is decreasing and

F (uk) − F (uk+1) ≥
(

α
2τ

− β
2

)

‖uk − uk+1‖
2
H for all k ∈ N.

If F (uk+1) = F (uk) for some k ∈ N then the estimate yields uk+1 = uk, and the sequence

arrives at a stationary point. In the other case we have F (uk) > F (uk+1). By Lemma 1

the sequence (F (uk)) is bounded from below which implies its convergence. �
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Assumption 2. Let (V, ‖ ‖V ) and (W, ‖ ‖W ) be Banach spaces densely and contin-

uously embedded into the Hilbert space (H, ‖ ‖) and its dual (H∗, ‖ ‖∗), respectively.

We assume that the restriction J |V of the duality map J ∈ L(H ;H∗) to V is an iso-

morphism from V onto W = J [V ]. Moreover, let H = H0 + H1 be a Hilbert sum

representation of H where H1 ⊂ V is a finite dimensional subspace and H0 ⊂ H is its

orthogonal complement in H . Let P1 ∈ L(H ;H1) be the orthogonal projector onto H1

and consider the annihilator of H0:

H0
0 = {f ∈ H∗ : 〈f, v〉 = 0 for all v ∈ H0} = J [H1].

Assumption 3. Here, we specify the set K of constraints under consideration: Let

K ⊂ dom(F ) be a nonempty, closed, and convex set in H such that u, v ∈ K implies

u − v ∈ H0. Moreover, we impose the following condition: For all u ∈ K the Euler–

Lagrange equation

(10) f ∈ ∂Φ(v∗) +DΨ(u),

corresponding to (7), has a solution (v∗, f) ∈ C × M where C ⊂ K ∩ dom(∂Φ) and

M ⊂ H0
0 are some bounded, closed, and convex sets in H and H∗, respectively.

Remark 2. Let Assumptions 1, 2, and 3 be satisfied and (v∗, f) ∈
(

K∩dom(∂Φ)
)

×H0
0

be a solution of (10). By definition of ∂Φ(v∗) ⊂ H∗ for all v ∈ K we have

Φ(v) − Φ(v∗) ≥ 〈f, v − v∗〉 − 〈DΨ(u), v − v∗〉 = 〈DΨ(u), v∗ − v〉.

That means, v∗ ∈ K is the solution of the constrained minimum problem (7) which is

unique by Lemma 2. Hence, we can reformulate our descent method as follows:

Definition 1 (Descent method). Let the Assumptions 1, 2, and 3 and α > βτ be

satisfied for some τ ∈ (0, 1] and u0 ∈ K be some given start element. Then we define the

sequences (uk) ⊂ K and (vk, fk) ⊂ C ×M by

(11) uk+1 = τvk + (1 − τ)uk, fk ∈ ∂Φ(vk) +DΨ(uk).

Theorem 5 (Convergence of a subsequence). Under the Assumptions 1, 2, and 3 the

sequence (uk, fk) ⊂ K ×M constructed in Definition 1 contains a subsequence (uk`
, fk`

)

which converges to some solution (u∗, f ∗) ∈ C ×M of the Euler–Lagrange equation

(12) f ∗ ∈ ∂Φ(u∗) +DΨ(u∗),

in the sense of

(13) lim
k→∞

F (uk) = F (u∗), lim
`→∞

‖uk`
− u∗‖H = 0, lim

`→∞
‖fk`

− f ∗‖H∗ = 0.
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Proof. 1. Because of Remark 2 the solutions of the Euler–Lagrange equation (11)

are solutions of the constrained minimum problem (8). Therefore, Lemma 4 yields that

(F (uk)) is a decreasing and convergent sequence and limk→∞ ‖uk+1 − uk‖H = 0.

Since uk+1 − uk = τ(vk − uk) for all k ∈ N both sequences (vk) ⊂ C and (uk) ⊂ K

are bounded in H . Together with the boundedness of (fk) ⊂M in the finite dimensional

subspace H0
0 = J [H1] this implies the precompactness of the sequences (DΨ(uk)) and

(fk) in H∗. Hence, there exist a subsequence (uk`
, fk`

) ⊂ (uk, fk) and accumulation points

u∗ ∈ C, f ∗ ∈ M , and h∗ ∈ H∗ such that both (vk`
) ⊂ C and (uk`

) ⊂ K converge weakly

to u∗ in H , and (fk`
) ⊂ M and (DΨ(uk`

)) ⊂ H∗ converge strongly to f ∗ and h∗ in H∗,

respectively. In view of the Euler–Lagrange equations

(14) fk`
−DΨ(uk`

) ∈ ∂Φ(vk`
) for all ` ∈ N,

the maximal monotonicity of ∂Φ ⊂ H × H∗ allows us to take the limit ` → ∞ to get

f ∗ − h∗ ∈ ∂Φ(u∗).

2. The Euler–Lagrange equations (14) and the definition of ∂Φ(uk`
) ∈ H∗ yield

Φ(vk`
) − Φ(u∗) ≤

〈

fk`
, vk`

− u∗
〉

−
〈

DΨ(uk`
), vk`

− u∗
〉

=
〈

DΨ(uk`
), u∗ − vk`

〉

.

In the limit process `→ ∞ we can use the lower semicontinuity of Φ and the convergence

results of Step 1 to get lim`→∞ Φ(vk`
) = Φ(u∗) because of

0 ≤ lim inf
`→∞

Φ(vk`
) − Φ(u∗) ≤ lim sup

`→∞
Φ(vk`

) − Φ(u∗) ≤ lim
`→∞

〈

DΨ(uk`
), u∗ − vk`

〉

= 0.

On the other hand, the convexity of Φ and the identity uk`+1 = τvk`
+ (1 − τ)uk`

imply

Φ(uk`+1) ≤ τ Φ(vk`
) + (1 − τ) Φ(uk`

) for all ` ∈ N.

Because of Step 1 both sequences (uk`
) and (uk`+1) converge weakly to u∗ in H . Conse-

quently, using the complete continuity of DΨ : H −→ H∗ both sequences (Ψ(uk`
)) and

(Ψ(uk`+1)) tend to Ψ(u∗). Due to the convergence of (F (uk)) the sequences (Φ(uk`
)) and

(Φ(uk`+1)) converge to the same limit. In view of lim`→∞ Φ(vk`
) = Φ(u∗) the limit process

`→ ∞ in the last estimate yields

lim
`→∞

Φ(uk`
) = lim

`→∞
Φ(uk`+1) ≤ τ Φ(u∗) + (1 − τ) lim

`→∞
Φ(uk`

),

that means, lim`→∞ Φ(uk`
) ≤ Φ(u∗). In fact, this implies lim`→∞ Φ(uk`

) = Φ(u∗) because

of the lower semicontinuity of Φ. Together with the convergence of (Ψ(uk`
)) to Ψ(u∗) we

get limk→∞ F (uk) = lim`→∞ F (uk`
) = F (u∗).

3. Let ` ∈ N be fixed and us = su∗ +(1−s)uk`
∈ K for s ∈ (0, 1). Due to the definition

of ∂Φ(u∗) ∈ H∗ and the results of Step 1 we have

Φ(us) − Φ(u∗) ≥ 〈f ∗, us − u∗〉 − 〈h∗, us − u∗〉 = 〈h∗, u∗ − us〉.
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In view of the strong convexity of Φ (see (3)) we get

(1 − s)
(

Φ(uk`
) − Φ(us)

)

≥ s
(

Φ(us) − Φ(u∗)
)

+ α
2
s(1 − s)‖u∗ − uk`

‖2
H

≥ s〈h∗, u∗ − us〉 + α
2
s(1 − s)‖u∗ − uk`

‖2
H

= (1 − s)〈h∗, us − uk`
〉 + α

2s
(1 − s)‖us − uk`

‖2
H .

Dividing both sides by 1 − s this implies

α
2s
‖uk`

− us‖
2
H ≤ Φ(uk`

) − Φ(us) + 〈h∗, uk`
− us〉.

Using the lower semicontinuity of Φ the limit process s ↑ 1 yields

α
2
‖uk`

− u∗‖2
H ≤

(

Φ(uk`
) − Φ(u∗)

)

+ 〈h∗, uk`
− u∗〉 for all ` ∈ N.

In the limit process `→ ∞ both terms of the right hand side tend to zero: The first term

due to the results of Step 2 and the last term because of the weak convergence of (uk`
) to

u∗ in H . Hence, we have shown lim`→∞ ‖uk`
− u∗‖H = 0. Finally, the continuity of DΨ :

H −→ H∗ implies h∗ = DΨ(u∗) and the desired Euler–Lagrange equation (12). �

In the case of strong convexity of the functional F the whole sequence converges to

the uniquely determined limit point (u∗, f ∗) ∈ C × M . However, in general F is not

convex, and we cannot apply this standard argument. Instead of this we follow the ideas

of [6, 7, 15] using an appropriate  Lojasiewicz–Simon type inequality. To ensure the

validity of such an inequality for F = Φ + Ψ we impose sufficient conditions on the

functionals Φ and Ψ suitable for our applications:

Assumption 4. Let T ∈ L(H ;H∗) be a self-adjoint and completely continuous oper-

ator such that its restriction T |V to V is a completely continuous operator in L(V ;W ).

For fixed l ∈W and d ∈ R we consider the quadratic functional Ψ : H −→ R given by

(15) Ψ(u) = 1
2
〈Tu, u〉+ 〈l, u〉 + d, u ∈ H.

Assumption 5. Let U be an open subset in V and Φ : U −→ R be a Fréchet

differentiable functional. Additionally, we assume that the Fréchet derivative DΦ :

U −→W is a real analytic operator (see [17] and Remark 4) which satisfies

(16) 〈DΦ(u) −DΦ(v), u− v〉 ≥ α ‖u− v‖2
H , ‖DΦ(u) −DΦ(v)‖H∗ ≤ γ ‖u− v‖H ,

for all u, v ∈ U and some constants α, γ > 0. Moreover, the second Fréchet derivative

D2Φ(u) ∈ L(V ;W ) is assumed to be an isomorphism for all u ∈ U .

Remark 3. If Assumptions 2 and 5 are satisfied then DΦ : U −→ W is injective.

Therefore, the inverse mapping theorem for real analytic operators (see [17]) implies that

for every u ∈ U we can find an open neighbourhood U0 ⊂ U of u in V such that the inverse

DΦ−1 : DΦ[U ] −→ U is real analytic in the open neighbourhood DΦ[U0] of DΦ(u) in W

and, hence, in DΦ[U ].
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Remark 4. Let Assumptions 2 and 5 be satisfied and u ∈ U be fixed such that u+v ∈ U

for all v ∈ V , ‖v‖V < 2δ and some δ > 0. Because of the real analyticity we can use the

Taylor expansion of the operator DΦ : U −→ W near u ∈ U . That means, there exist

symmetric bounded k-linear forms Bk(u) ∈ Lk(V ;W ) such that both the power series

(17) DΦ(u+ v) −DΦ(u) =

∞
∑

k=1

1

k!
Bk(u)[v, . . . , v],

∞
∑

k=1

1

k!
‖Bk(u)‖Lk(V ;W )‖v‖

k
V

converge uniformly for v ∈ V , ‖v‖V ≤ δ. For all k ∈ N we can define symmetric bounded

(k + 1)-linear forms Ak+1(u) ∈ Lk+1(V ; R) by

Ak+1(u)[v1, . . . , vk, v] =
〈

Bk(u)[v1, . . . , vk], v
〉

, v1, . . . , vk, v ∈ V,

because the continuous embeddings of V in H and W in H∗ imply an estimate

‖Ak+1(u)‖Lk+1(V ;R) ≤ c ‖Bk(u)‖Lk(V ;W ) for all k ∈ N,

and some constant c > 0. Together with (17) this yields that for all v ∈ V , ‖v‖V < δ the

Taylor expansion of Φ : U −→ R near u ∈ U has the form

Φ(u+ v) − Φ(u) − 〈DΦ(u), v〉 =

∫ 1

0

〈DΦ(u+ sv) −DΦ(u), v〉 ds

=

∫ 1

0

∞
∑

k=1

1

k!

〈

Bk(u)[v, . . . , v], v
〉

sk ds

=

∞
∑

k=1

1

(k + 1)!
Ak+1(u)[v, . . . , v],

where we have used the uniform convergence of the power series
∞

∑

k=1

1

(k + 1)!
‖Ak+1(u)‖Lk+1(V ;R)‖v‖

k+1
V ≤

∞
∑

k=1

c

(k + 1)!
‖Bk(u)‖Lk(V ;W )‖v‖

k+1
V

for v ∈ V , ‖v‖V ≤ δ. Hence, we have shown that Φ : U −→ R is real analytic, too.

Theorem 6 ( Lojasiewicz–Simon inequality). Let Assumptions 2, 4, and 5 be sat-

isfied and (u∗, f ∗) ∈ U×H0
0 a solution of the Euler–Lagrange equation DF (u∗) = f ∗.

Then we can find constants δ, λ > 0, and θ ∈
(

0, 1
2

]

such that for all u ∈ U which satisfy

u− u∗ ∈ H0 and ‖u− u∗‖H ≤ δ we have the following inequality:

(18) |F (u) − F (u∗)|1−θ ≤ λ inf
{

‖DF (u) − f‖H∗ : f ∈ H0
0

}

.

Proof. 1. Our proof closely follows the ideas of [7], but for our purpose we need a slightly

more general  Lojasiewicz–Simon inequality (18) suitable for the case when affine

constraints have to be taken into account.

We introduce the spaces H = H ×H0
0 , K = H∗ ×H1, V = V ×H0

0 , and W = W ×H1

equipped with the Euclidean norms of the corresponding product spaces. By virtue of



A Descent Method for the Free Energy 9

Assumption 2 the spaces V and W are densely and continuously embedded in H and

K, respectively. Moreover, we set U = U × H0
0 and define an augmented functional

Λ : U −→ R by

Λ(u, f) = F (u) − 〈f, u− u∗〉, (u, f) ∈ U.

Because of Assumptions 2, 4, 5, and Remark 4 the functional Λ is real analytic in U. Its

Fréchet derivative A = DΛ : U −→ W, given by the formula

〈A(u, f), (v, g)〉 = 〈DF (u) − f, v〉 − 〈g, u− u∗〉, (u, f) ∈ U, (v, g) ∈ V,

is a real analytic operator, and there exists a constant c1 > 0 such that

(19) ‖A(u, f)− A(v, g)‖K ≤ c1‖(u, f) − (v, g)‖H for all (u, f), (v, g) ∈ U.

Obviously, (u∗, f ∗) ∈ U is a critical point of Λ, that means, we have A(u∗, f ∗) = 0.

2. Let E ⊂ R be the set of eigenvalues of the symmetric and completely continuous

operator RT ∈ L(H ;H). By virtue of the Riesz spectral theory there cannot exist

nonzero accumulation points of the at most countable set E ⊂ R. Hence, if we consider

the decomposition of E into the subsets

E1 =
{

ω ∈ E : ω ≥ −α
2

}

, E2 =
{

ω ∈ E : ω < −α
2

}

,

then E2 is a finite subset of E. Consequently, the Hilbert sum H2 ⊂ H of orthogonal

eigenspaces to the eigenvalues ω ∈ E2 of RT is a finite dimensional subspace of H . Let

P2 ∈ L(H ;H2) be the orthogonal projector onto H2. Then we get a splitting of T into a

sum T = T1 + T2 of the finite rank operator T2 = TP2 ∈ L(H ; J [H2]) and the completely

continuous operator T1 = T − T2 ∈ L(H ;H∗).

Following Assumption 4 the restriction T |V of T to V is a completely continuous op-

erator in L(V ;W ). Together with the dense and continuous embedding of V in H the

Riesz spectral theory yields that both operators RT ∈ L(H ;H) and RT |V ∈ L(V ;V )

have the same nonzero eigenvalues and corresponding eigenspaces (see [5]). That means,

we have H2 ⊂ V and J [H2] ⊂W .

3. In view of Step 1 and 2 it turns out to be convenient to write A as a difference

A = A1 −A2 of the real analytic operator A1 : U −→ W given by

〈A1(u, f), (v, g)〉 = 〈DΦ(u) + T1u+ l, v〉 + 〈g, Rf − Rf ∗〉, (u, f) ∈ U, (v, g) ∈ V,

and the linear finite rank operator A2 ∈ L(V; W) defined as

〈A2(u, f), (v, g)〉 = 〈f − T2u, v〉 + 〈g, P1u− P1u
∗ +Rf −Rf ∗〉, (u, f), (v, g) ∈ V.

By virtue of Assumption 4 and 5 and the construction of T1 we observe that A1 : U −→ W

is injective because it satisfies

min
{

1, α
2

}

‖(u, f) − (v, g)‖2
H
≤ 〈A1(u, f) − A1(v, g), (u, f)− (v, g)〉

≤ ‖A1(u, f) − A1(v, g)‖K‖(u, f) − (v, g)‖H
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for all (u, f), (v, g) ∈ U. Hence, the inverse operator A−1
1 : A1[U] −→ U exists, and we

can find a constant c2 > 0 such that

(20) ‖A−1
1 (f, u) − A−1

1 (g, v)‖H ≤ c2‖(f, u) − (g, v)‖K for all (f, u), (g, v) ∈ A1[U].

The Fréchet derivative DA1(u, f) ∈ L(V; W) is symmetric and has the form

〈DA1(u, f)(w, h), (v, g)〉 =
(

〈D2Φ(u)w, v〉 + 〈g, Rh〉
)

+ 〈T1w, v〉,

for all (u, f) ∈ U, (w, h), (v, g) ∈ V. It can be interpreted as a sum of an isomorphism

and a completely continuous operator. Furthermore, DA1(u, f) is injective because As-

sumptions 4, 5, and Step 2 imply

〈DA1(u, f)(v, g), (v, g)〉 ≥ min
{

1, α
2

}

‖(v, g)‖2
H

for all (u, f) ∈ U, (v, g) ∈ V.

Hence, DA1(u, f) ∈ L(V; W) itself is an isomorphism. The inverse mapping theorem for

real analytic operators (see [17]) yields that for every (u, f) ∈ U there exists an open

neighbourhood U0 ⊂ U of (u, f) in V such that the inverse A−1
1 : A1[U] −→ U is real

analytic in the open neighbourhood A1[U0] of A1(u, f) in W and, consequently, in A1[U].

4. Next, we define the real analytic functional G : A1[U] ∩A2[V] −→ R by

G(g, v) = Λ
(

A−1
1 (g, v)

)

, (g, v) ∈ A1[U] ∩ A2[V].

Because of DA−1
1 (g, v) ∈ L(W; V) the chain rule yields DG(g, v) ∈ V and

(21)
〈

(f, u), DG(g, v)
〉

=
〈

AA−1
1 (g, v), DA−1

1 (g, v)(f, u)
〉

for all (g, v) ∈ A1[U]∩A2[V], (f, u) ∈ W. Hence, A1(u
∗, f ∗) = A2(u

∗, f ∗) = (f ∗ − T2u
∗, 0)

is a critical point of G. Since A2[V] is a finite dimensional subspace of W there exist

constants λ1 > 0, θ ∈
(

0, 1
2

]

and some open neighbourhood V0 ⊂ U of (u∗, f ∗) in V such

that G satisfies the classical  Lojasiewicz inequality (see [4, 14]):

|G(g, v)−G(A2(u
∗, f ∗))|1−θ ≤ λ1‖DG(g, v)‖H for all (g, v) ∈ A1[V0] ∩A2[V].

In view of T2 ∈ L(H ; J [H2]) and P1 ∈ L(H ;H1) we can find some constants δ, δ∗ > 0

such that the image A2[U(δ, δ∗)] of

U(δ, δ∗) =
{

(u, f) ∈ U : ‖u− u∗‖H < δ, ‖f − f ∗‖H∗ < δ∗
}

is contained in the open neighbourhood A1[V0] of A2(u
∗, f ∗) in W. Hence, we arrive at

(22) |G(A2(u, f)) −G(A2(u
∗, f ∗))|1−θ ≤ λ1‖DG(A2(u, f))‖H for all (u, f) ∈ U(δ, δ∗).

5. To estimate the right hand side of the last inequality let (u, f) ∈ U(δ, δ∗). The

symmetry of DA−1
1 (A2(u, f)) ∈ L(W; V) and the dense and continuous embeddings of V

and W in H and K, respectively, yields that the norm of the extension of DA−1
1 (A2(u, f))

in L(K; H) is not greater than the norm of DA−1
1 (A2(u, f)) in L(W; V) (see [5]). Together

with (21) this implies the following estimate:

‖DG(A2(u, f))‖H ≤ ‖DA−1
1 (A2(u, f))‖L(W;V) ‖AA

−1
1 A2(u, f)‖K.
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By virtue of the real analyticity of A−1
1 : A1[U] −→ U the first factor is uniformly bounded

on U(δ, δ∗) by a constant c3 > 0, that means, we have

(23) ‖DG(A2(u, f))‖H ≤ c3‖AA
−1
1 A2(u, f)‖K for all (u, f) ∈ U(δ, δ∗).

Applying the estimates (20) and (19) we get

(24) ‖A−1
1 A2(u, f) − (u, f)‖H = ‖A−1

1 A2(u, f) − A−1
1 A1(u, f)‖H ≤ c2‖A(u, f)‖K,

and, consequently,

‖AA−1
1 A2(u, f) −A(u, f)‖K ≤ c1‖A

−1
1 A2(u, f) −A−1

1 A1(u, f)‖H ≤ c1c2‖A(u, f)‖K,

which implies for all (u, f) ∈ U(δ, δ∗) the relation

‖AA−1
1 A2(u, f)‖K ≤ ‖A(u, f)‖K + ‖AA−1

1 A2(u, f) − A(u, f)‖K

≤ (1 + c1c2)‖A(u, f)‖K.

Together with (22) and (23) this yields the existence of some constant c4 > 0 such that

(25) |Λ(A−1
1 A2(u, f)) − Λ(u∗, f ∗)|1−θ ≤ c1−θ

4 ‖A(u, f)‖K for all (u, f) ∈ U(δ, δ∗).

6. Using (19) and Lagrange’s formula we get

|Λ(v, g)− Λ(u, f)| =

∣

∣

∣

∣

∫ 1

0

〈A(s(v, g) + (1 − s)(u, f)), (v, g)− (u, f)〉 ds

∣

∣

∣

∣

≤ c1‖(v, g) − (u, f)‖2
H

+ ‖A(u, f)‖K‖(v, g) − (u, f)‖H

for all (u, f), (v, g) ∈ U and, hence, by virtue of (24)

|Λ(A−1
1 A2(u, f)) − Λ(u, f)| ≤ c1c

2
2‖A(u, f)‖2

K
+ c2‖A(u, f)‖2

K
for all (u, f) ∈ U(δ, δ∗).

Together with (25) this yields

|Λ(u, f) − Λ(u∗, f ∗)| ≤ |Λ(A−1
1 A2(u, f)) − Λ(u, f)| + |Λ(A−1

1 A2(u, f)) − Λ(u∗, f ∗)|

≤ (c1c
2
2 + c2)‖A(u, f)‖2

K
+ c4‖A(u, f)‖

1/(1−θ)
K

.

Due to (19) we can choose δ, δ∗ > 0 small enough such that for all (u, f) ∈ U(δ, δ∗) we

have ‖A(u, f)‖K ≤ c1‖(u, f) − (u∗, f ∗)‖H ≤ 1 which implies

|Λ(u, f) − Λ(u∗, f ∗)|1−θ ≤ (c1c
2
2 + c2 + c4)

1−θ‖A(u, f)‖K.

In view of the estimate

‖A(u, f)‖K ≤ ‖DF (u) − f‖H∗ + sup
{

|〈g, u− u∗〉| : g ∈ H0
0 , ‖g‖H∗ ≤ 1

}

,

(see Step 1) and the identity

sup
{

|〈g, w〉| : g ∈ H0
0 , ‖g‖H∗ ≤ 1

}

= inf
{

‖w − v‖H : v ∈ H0

}

for all w ∈ H,

we can find some constant λ > 0 such that for all u ∈ U , ‖u − u∗‖H ≤ δ, and f ∈ H0
0 ,

‖f − f ∗‖H∗ ≤ δ∗, v ∈ H0 we have

|F (u) − F (u∗) − 〈f, u− u∗〉|1−θ ≤ λ
(

‖DF (u) − f‖H∗ + ‖u− u∗ − v‖H

)

.
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For all u ∈ U , u− u∗ ∈ H0, ‖u− u∗‖H ≤ δ, and f ∈ H0
0 , ‖f − f ∗‖H∗ ≤ δ∗ it follows

(26) |F (u) − F (u∗)|1−θ ≤ λ ‖DF (u) − f‖H∗ .

We can choose β ≥ ‖T‖L(H;H∗) and δ > 0 small enough such that (γ + β)δ ≤ δ∗. Let

u ∈ U be such that u− u∗ ∈ H0 and ‖u− u∗‖H ≤ δ, and let f ∈ H0
0 satisfy

‖DF (u) − f‖H∗ = inf
{

‖DF (u)− g‖H∗ : g ∈ H0
0}.

Then the Lipschitz continuity of DΨ and DΦ on U (see (15) and (16)) yields

‖f − f ∗‖2
H∗ + ‖DF (u)− f‖2

H∗ = ‖DF (u) −DF (u∗)‖2
H∗ ≤ (γ + β)2‖u− u∗‖2

H ≤ δ2
∗ .

Having in mind (26) this implies the desired result. �

Theorem 7 (Convergence of the whole sequence). Let Assumptions 1, 2, 3, 4, 5 be

satisfied. If we assume that U is bounded in V , K ⊂ V , and

τC + (1 − τ)K ⊂ U ⊂ dom(∂Φ),

then the sequence (uk, fk) ⊂ K×M constructed in Definition 1 converges to some solution

(u∗, f ∗) ∈ C ×M of the Euler–Lagrange equation

(27) DF (u∗) = f ∗,

in the sense of

(28) lim
k→∞

F (uk) = F (u∗), lim
k→∞

‖uk − u∗‖V = 0, lim
k→∞

‖fk − f ∗‖W = 0.

Proof. 1. Theorem 5 ensures the convergence of a subsequence (uk`
, fk`

) ⊂ (uk, fk) to some

solution (u∗, f ∗) ∈ C×M of problem (12) in the sense of (13). By virtue of Theorem 6 we

can choose constants δ, λ > 0, and θ ∈
(

0, 1
2

]

such that for all u ∈ K ∩U , ‖u− u∗‖H ≤ δ,

the  Lojasiewicz–Simon inequality (18) holds true. Following the ideas of [15], for

every ε ∈
(

0, δ
2

)

we define numbers k(ε), m(ε) ∈ N, and n(ε) ∈ N ∪ {+∞} by

k(ε) = min
{

k ∈ N : ‖u` − u`+1‖H ≤ ε
2

for all ` ≥ k
}

,(29)

m(ε) = min
{

m ≥ k(ε) : ‖um − u∗‖H ≤ ε
2
, [F (um) − F (u∗)]θ ≤ (α−βτ)θε

4λγ

}

,(30)

n(ε) = sup
{

m ≥ m(ε) : ‖u` − u∗‖H ≤ δ for all m(ε) ≤ ` ≤ m
}

,(31)

and, furthermore, the subset N(ε) = {` ∈ N : m(ε) ≤ ` ≤ n(ε)} of N.

If we have F (u`+1) = F (u`) for some ` ∈ N, then the descent property (9) yields

u`+1 = u`, and the sequence (u`, f`) arrives at a stationary point. Hence, it is sufficient to

consider the case where

F (u`) > F (u`+1) > F (u∗), ‖u` − u`+1‖H > 0 for all ` ∈ N.

Due to the above construction it is easy to see that each number defined in (29), (30)

and (31) goes to infinity if ε ∈
(

0, δ
2

)

tends to zero, and that m(ε) + 1 ≤ n(ε) holds true.
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2. In view of Step 1 of the proof the  Lojasiewicz–Simon inequality (18) yields

[F (u`) − F (u∗)]1−θ ≤ λ inf
{

‖DF (u`) − f‖H∗ : f ∈ H0
0

}

for all ` ∈ N(ε).

To estimate the right hand side we make use of the identity

inf
{

‖g − f‖H∗ : f ∈ H0
0

}

= sup
{

|〈g, v〉| : v ∈ H0, ‖v‖H ≤ 1
}

for all g ∈ H∗.

Because of DΦ(v`) +DΨ(u`) = f` ∈ H0
0 for all ` ∈ N and v ∈ H0 we have

〈DF (u`), v〉 = 〈DΦ(u`) −DΦ(v`), v〉 + 〈DΦ(v`) +DΨ(u`), v〉

= 〈DΦ(u`) −DΦ(v`), v〉.

The Lipschitz continuity of DΦ on U (see (16)) and u`+1 − u` = τ(v` − u`) imply

[F (u`) − F (u∗)]1−θ ≤ λγ ‖u` − v`‖H = λγ
τ
‖u`+1 − u`‖H for all ` ∈ N(ε).

Hence, using the descent property (9) for all ` ∈ N(ε) we get

‖u`+1 − u`‖H ≤ λγ
τ

[F (u`) − F (u∗)]θ−1 ‖u`+1 − u`‖
2
H ,

≤ 2λγ
α−βτ

[F (u`) − F (u∗)]θ−1
(

[F (u`) − F (u∗)] − [F (u`+1) − F (u∗)]
)

.

Applying the elementary inequality θaθ−1(a− b) ≤ aθ − bθ for 0 < b ≤ a it follows

‖u`+1 − u`‖H ≤ 2λγ
(α−βτ)θ

(

[F (u`) − F (u∗)]θ − [F (u`+1) − F (u∗)]θ
)

for all ` ∈ N(ε).

Summing up and using the definition of m(ε) (see (30)) for all k ∈ N(ε) we obtain

‖uk − um(ε)‖H ≤ 2λγ
(α−βτ)θ

(

[F (um(ε)) − F (u∗)]θ − [F (uk) − F (u∗)]θ
)

≤ ε
2
,

and, hence,

(32) ‖uk − u∗‖H ≤ ‖uk − um(ε)‖H + ‖um(ε) − u∗‖H ≤ ε
2

+ ε
2
≤ ε for all k ∈ N(ε).

As a consequence, there cannot exist sequences (ε`) ⊂
(

0, δ
2

)

and (k`) ⊂ N such that

lim
`→∞

ε` = 0, k` ∈ N(ε`), ‖uk`
− u∗‖H > δ

2
for all ` ∈ N.

That means, we can find some ε∗ ∈
(

0, δ
2

)

such that for every ε ∈ (0, ε∗) we have

‖uk − u∗‖H ≤ δ
2

for all k ∈ N(ε).

In addition to that, due to (29) we also get

‖uk+1 − u∗‖H ≤ ‖uk+1 − uk‖H + ‖uk − u∗‖H ≤ ε
2

+ δ
2
≤ δ for all k ∈ N(ε).

Because of (31) this implies n(ε) = +∞. In view of (32) for every ε ∈ (0, ε∗) and

k ≥ m(ε) the estimate ‖uk − u∗‖H ≤ ε holds true, which means limk→∞ ‖uk − u∗‖H = 0

and limk→∞ ‖vk − u∗‖H = 0. The Lipschitz continuity of DΦ and DΨ on U yields

‖fk − f ∗‖H∗ ≤ ‖DΦ(vk) −DΦ(u∗)‖H∗ + ‖DΨ(uk) −DΨ(u∗)‖H∗

≤ γ ‖vk − u∗‖H + β ‖uk − u∗‖H ,

and, therefore, limk→∞ ‖fk − f ∗‖H∗ = 0.
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3. According to Assumption 4 the restriction T |V is a completely continuous operator

in L(V ;W ). The boundedness of (uk) ⊂ τC + (1 − τ)K ⊂ U in V yields that (DΨ(uk))

is precompact in W . In addition to that, the sequence (fk) ⊂ H0
0 converges to f ∗ ∈ H0

0

in H∗ (see Step 2) and, hence, in W because H0
0 is a finite dimensional subspace of W .

Therefore, (fk −DΨ(uk)) is precompact in W , too.

Due to Assumption 5 and Remark 3 the inverse (DΦ)−1 : DΦ[U ] −→ U is real analytic

in DΦ[U ]. By virtue of (vk) ⊂ C ⊂ U we have fk − DΨ(uk) = DΦ(vk) ∈ DΦ[U ] for all

k ∈ N. Therefore, the image of (fk−DΨ(uk)) under (DΦ)−1 : DΦ[U ] −→ U is precompact

in V . Hence, (vk) ⊂ C converges to u∗ ∈ C not only in H (see Step 2) but also in V .

4. It remains to show that (uk) ⊂ K converges to u∗ ∈ C in V . In view of the definition

uk+1 = τvk + (1 − τ)uk and the elementary identity
∑k

`=1 τ(1 − τ)k−` = 1 − (1 − τ)k we

get the representation

uk − u∗ =
k

∑

`=1

τ(1 − τ)k−`(v` − u∗) + (1 − τ)k(u0 − u∗) for all k ∈ N.

Let c > 0 be some constant such that ‖u0‖V ≤ c, ‖u∗‖V ≤ c, and ‖v`‖V ≤ c for all ` ∈ N,

and let ε > 0 be fixed. Due to Step 3 we can find some k0 ∈ N such that 2c(1 − τ)k0 ≤ ε

and ‖v` − u∗‖V ≤ ε for all ` ∈ N, ` ≥ k0. Hence, for all k ∈ N, k ≥ 2k0 we arrive at

‖uk − u∗‖V ≤
k

∑

`=1

τ(1 − τ)k−`‖v` − u∗‖V + (1 − τ)k‖u0 − u∗‖V

≤

k0
∑

`=1

2cτ(1 − τ)k−` +

k
∑

`=k0+1

ετ(1 − τ)k−` + 2c(1 − τ)k,

that means, ‖uk − u∗‖V ≤ 2c(1− τ)k−k0 + ε+ 2c(1− τ)k ≤ 3ε which yields the result. �

4. Phase Separation in Binary Alloys

We consider a closed binary system of particles interacting in a bounded domain Ω ⊂ R
n

with Lipschitz boundary (see [11, 12]). We describe the state of the system by the

density u : Ω −→ [0, 1] of one component. Naturally, 1 − u is the density of the other

component.

Our plan is to apply the descent method to the free energy functional of the classical

Cahn–Hilliard phase field theory (see [2]). Usually, it is defined as a sum of a double-

well potential and an interface energy term. Here, we split F : H −→ R ∪ {+∞} into a

sum of a convex functional Φ : H −→ R ∪ {+∞} and a concave functional Ψ : H −→ R.
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Assumption 6. To satisfy Assumption 2 we introduce the Hilbert space H = H1(Ω)

and the Banach spaces V = H1(Ω) ∩ L∞(Ω), W = J [V ] equipped with the norms

‖u‖2
H =

∫

Ω

(

|∇u|2 + |u|2
)

dx, u ∈ H,

‖u‖2
V =

∫

Ω

(

|∇u|2 + |u|2
)

dx+ ess sup
x∈Ω

|u(x)|2, u ∈ V, ‖f‖W = ‖Rf‖V , f ∈W.

We consider the Hilbert sum decomposition H = H0 +H1 into the closed subspace

H0 =
{

u ∈ H :
∫

Ω
u dx = 0

}

,

and the one-dimensional subspace H1 ⊂ V of constant functions. Then the annihilator

H0
0 = J [H1] is the one-dimensional space {µg ∈ W : µ ∈ R} where g ∈ W is given by

〈g, u〉 =
∫

Ω
u dx, u ∈ H .

Assumption 7. Let κ > 0 be a constant. We consider the proper, lower semicontinu-

ous, and strongly convex functional ϕ : R −→ R ∪ {+∞} defined by

ϕ(s) =

{

s log(s) + (1 − s) log(1 − s) if s ∈ [0, 1],

+∞ otherwise.

The lower semicontinuous and strongly convex functional Φ : H −→ R ∪ {+∞} given by

(33) Φ(u) =

{
∫

Ω

(

κ
2
|∇u|2 + ϕ(u)

)

dx if u ∈ H , 0 ≤ u ≤ 1,

+∞ otherwise,

has the closed effective domain dom(Φ) = {u ∈ H : 0 ≤ u ≤ 1}. Finally, for some

constant κ > 0 we define the concave functional Ψ : H −→ R by setting

(34) Ψ(u) =

∫

Ω

κu(1 − u) dx, u ∈ H.

Remark 5. Note, that ϕ′(s) = log(s) − log(1 − s) and ϕ′′(s) = 1/s(1 − s) ≥ 4 for all

s ∈ (0, 1). Hence, Φ : H −→ R ∪ {+∞} satisfies (3) with the constant α = min{κ, 4}.

In addition to that, Ψ : H −→ R is bounded on dom(Φ) ⊂ H , and its Fréchet

derivative DΨ : H −→ H∗ satisfies the Lipschitz condition (4) for β = 2κ. According

to Assumption 4 we set d = 0 and define T ∈ L(H ;H∗) and l ∈W by

〈Tu, v〉 = −

∫

Ω

2κuv dx, 〈l, v〉 =

∫

Ω

κv dx, u, v ∈ H,

and the operator S ∈ L(L2(Ω);H∗) by 〈Sw, v〉 =
∫

Ω
wv dx, v ∈ H . Then S|H ∈ L(H ;H∗)

and, hence, T ∈ L(H ;H∗) are completely continuous because of the compact embedding

of H in L2(Ω). Due to results of elliptic regularity theory (see [12]) there exists a Hölder

exponent ν ∈ (0, 1) such that RS|L∞(Ω) ∈ L(L∞(Ω);H1(Ω)∩Cν(Ω)). Using the compact

embedding of Cν(Ω) in L∞(Ω), the restrictions S|V and, consequently, T |V are completely
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continuous operators in L(V ;W ). Hence, Assumptions 1 and 4 are satisfied, and the sum

F = Φ + Ψ : H −→ R ∪ {+∞} is a well-defined functional with nonempty, closed, and

convex effective domain dom(F ) = dom(Φ) ⊂ H .

Lemma 8 (Uniform boundedness). Assumptions 6 and 7 imply the following statements:

(i) For all ū ∈ (0, 1) and w ∈ L∞(Ω) there exists a uniquely determined solution (u, µ) ∈

dom(∂Φ) × R of the constrained problem

(35) 〈∂Φ(u), v〉 =

∫

Ω

(µ− w)v dx for all v ∈ H,

∫

Ω

(u− ū) dx = 0.

(ii) Let w̌ ≤ w ≤ ŵ for some w̌, ŵ ∈ R. There exist constants ǔ, û ∈ (0, 1), µ̌, µ̂ ∈ R,

and c > 0 depending only on w̌, ŵ, and ū such that the solution (u, µ) satisfies

ǔ ≤ u ≤ û, ‖u− ǔ‖H ≤ c, µ̌ ≤ µ ≤ µ̂.

Proof. 1. Let ū ∈ (0, 1) and w ∈ L∞(Ω) be given such that w̌ ≤ w ≤ ŵ for some bounds

w̌, ŵ ∈ R. By virtue of the strong monotonicity and surjectivity of ϕ′ : (0, 1) −→ R we

can find numbers ǔ ∈ (0, ū] and û ∈ [ū, 1) such that

ϕ′(ǔ) = w̌ − ŵ + ϕ′(ū), ϕ′(û) = ŵ − w̌ + ϕ′(ū).

Now, we take a regularization φ : R −→ R of ϕ such that φ′ : R −→ R is Lipschitz

continuous and strongly monotone, and φ′ coincides with ϕ′ on the interval [ǔ, û]. Hence,

the regularization A : H −→ H∗ of ∂Φ ⊂ H ×H∗ defined by

〈Au, ψ〉 =

∫

Ω

(

κ∇u · ∇ψ + φ′(u)ψ
)

dx, u, ψ ∈ H,

is a Lipschitz continuous and strongly monotone operator, too.

2. We continue the proof with the following comparison principle: If u, v ∈ H satisfy

〈Au− Av, ψ〉 ≤ 0 for all ψ ∈ H, ψ ≥ 0,

then u ≤ v holds true. Indeed, taking the test function ψ = (u − v)⊕ ∈ H we get u ≤ v

due to the estimate

0 ≥

∫

Ω

(

κ∇(u− v) · ∇(u− v)⊕ +
(

φ′(u) − φ′(v)
)

(u− v)⊕
)

dx

= κ

∫

Ω

|∇(u− v)⊕|2 dx+

∫

{x∈Ω: u(x)≥v(x)}

(

φ′(u) − φ′(v)
)

(u− v) dx

≥ κ

∫

Ω

|∇(u− v)⊕|2 dx+ α̃

∫

Ω

|(u− v)⊕|2 dx,

where α̃ > 0 is a monotonicity constant of φ′ : R −→ R.
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3. Because of the Lipschitz continuity and the strong monotonicity of the operator

A : H −→ H∗ the inverse A−1 : H∗ −→ H has the same properties, too. To find a solution

(u, µ) ∈ H × R of the constrained problem

(36) Au = µg − h, 〈g, u〉 = r,

for given h ∈ H∗ and r ∈ R, we use the properties of A−1 to define the Lipschitz

continuous and strongly monotone function a : R −→ R by

a(µ) =
〈

g, A−1(µg − h)
〉

, µ ∈ R.

Hence, the equation a(µ) = r has a solution µ ∈ R. Setting u = A−1(µg − h) ∈ H we

have found a solution (u, µ) ∈ H × R of problem (36) which is in fact unique because of

the strong monotonicity of A.

4. Specifying the data of problem (36), we see that there exists a uniquely determined

solution (u, µ) ∈ H × R of the constrained problem

(37) 〈Au, ψ〉 =

∫

Ω

(µ− w)ψ dx for all ψ ∈ H,

∫

Ω

(u− ū) dx = 0.

To prove estimates for the solution (u, µ) ∈ H × R of (37) assume that µ − w̌ < φ′(ū).

Then there exists an ε > 0 such that v = ū− ε still satisfies µ− w̌ < φ′(v) which yields

〈Au, ψ〉 =

∫

Ω

(µ− w)ψ dx ≤

∫

Ω

φ′(v)ψ dx = 〈Av, ψ〉 for all ψ ∈ H , ψ ≥ 0.

Now, the comparison principle (see Step 2 of the proof) implies u ≤ v = ū − ε which

contradicts to the fact
∫

Ω
(u − ū) dx = 0. Hence, we have shown µ − w̌ ≥ φ′(ū), and

µ− ŵ ≤ φ′(ū) follows by an analogous argument. Using the fact, that ū ∈ (0, 1) belongs

to the interval [ǔ, û] of coincidence between φ′ and ϕ′, we set

µ̌ = w̌ + ϕ′(ū), µ̂ = ŵ + ϕ′(ū),

to get µ̌ ≤ µ ≤ µ̂ and w̌ − ŵ + ϕ′(ū) ≤ µ − w ≤ ŵ − w̌ + ϕ′(ū). Having in mind the

definition of ǔ ∈ (0, ū] and û ∈ [ū, 1) in Step 1 for all ψ ∈ H , ψ ≥ 0 we arrive at

〈Aǔ, ψ〉 =

∫

Ω

ϕ′(ǔ)ψ dx ≤

∫

Ω

(µ− w)ψ dx = 〈Au, ψ〉,

〈Aû, ψ〉 =

∫

Ω

ϕ′(û)ψ dx ≥

∫

Ω

(µ− w)ψ dx = 〈Au, ψ〉.

The comparison principle implies ǔ ≤ u ≤ û. Hence, (u, µ) ∈ dom(∂Φ) × R is not only

a solution of the regularized problem (37) but also of the original problem (35) which is

uniquely solvable because of the strong monotonicity of ∂Φ ⊂ H ×H∗. Finally,

α̃ ‖u− ǔ‖2
H ≤ 〈Au−Aǔ, u− ǔ〉 ≤

∫

Ω

(

ϕ′(û) − ϕ′(ǔ)
)

(u− ǔ) dx ≤ 2 ‖ŵ − w̌‖H‖u− ǔ‖H ,

that means, we get an estimate of the form ‖u− ǔ‖H ≤ 2
α̃
‖ŵ − w̌‖H . �
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Lemma 9 (Analyticity). Let Assumptions 6, 7 and r ∈
(

0, 1
2

)

be satisfied. Then Φ is

real analytic in every subset U which is open in V and contained in

U(r) = {u ∈ V : r ≤ u ≤ 1 − r}.

Moreover, the Fréchet derivative DΦ : U −→W is a real analytic operator, D2Φ(u) ∈

L(V ;W ) is an isomorphism for all u ∈ U , and there exists a constant γ > 0 depending

on r such that (16) holds true.

Proof. 1. Let r ∈
(

0, 1
2

)

and φ : (0, 1) −→ R be a real analytic function. Because [r, 1− r]

is a compact subset of (0, 1) this implies Cauchy’s inequalities (see [5]):
∣

∣φ(k)(s)
∣

∣ ≤ c1k! δ
−k for all k ∈ N, s ∈ [r, 1 − r],

for some constants c1 > 0, δ ∈
(

0, r
2

)

depending on r.

2. Let U ⊂ U(r) be open in V . If we define φ : [0, 1] −→ R by φ(s) = ϕ(s) − κ
2
|s|2,

s ∈ (0, 1), then we can rewrite Φ as follows:

(38) Φ(u) = κ
2
〈Ju, u〉+ Λ(u), Λ(u) =

∫

Ω
φ(u) dx for all u ∈ dom(Φ).

Obviously, the functional defined by u 7−→ κ
2
〈Ju, u〉 and its Fréchet derivative κJ ∈

L(V ;W ) are real analytic in V . Remark 5 and Step 1 of the proof yield that also the

second summand Λ is Fréchet differentiable on U , and that the derivatives DΦ(u) ∈W

and D2Φ(u) ∈ L(V ;W ) have the form

〈

DΦ(u), v1

〉

=

∫

Ω

(

κ∇u · ∇v1 + ϕ′(u)v1

)

dx,

〈

D2Φ(u)v1, v2

〉

=

∫

Ω

(

κ∇v1 · ∇v2 + ϕ′′(u)v1v2

)

dx,

for all u ∈ U and v1, v2 ∈ V . In view of Remark 5 this implies that D2Φ(u) ∈ L(V ;W )

is an isomorphism for all u ∈ U , and that there exists a constant γ > 0 depending on r

such that (16) is satisfied.

3. It remains to show that DΛ : U −→ W is a real analytic operator. For all u ∈ U

and k ∈ N we can define symmetric bounded k-linear forms Bk(u) ∈ Lk(V ;W ) by

〈

Bk(u)[v1, . . . , vk], v
〉

=

∫

Ω

φ(k+1)(u)v1 · · · vkv dx, v1, . . . , vk, v ∈ V,

because Remark 5 and Step 1 yield the existence of a constant c2 > 0 depending on r

such that ‖Bk(u)‖Lk(V ;W ) ≤ c2(k + 1)! δ−k−1 for all u ∈ U , k ∈ N. Consequently, for all

u ∈ U and % ∈ (0, δ) both the power series
∞

∑

k=1

1

k!
‖Bk(u)‖Lk(V ;W )‖v‖

k
V , DΛ(u+ v) −DΛ(u) =

∞
∑

k=1

1

k!
Bk(u)[v, . . . , v],

converge uniformly for v ∈ V , ‖v‖V ≤ %. Hence, DΛ : U −→ W is a real analytic

operator, which implies the real analyticity of Λ on U (see Remark 4). �
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Theorem 10 (Convergence). Let Assumptions 6, 7, and α > βτ be satisfied for some

τ ∈ (0, 1]. If ū ∈ (0, 1) is given and if we set

K =
{

u ∈ dom(Φ) :
∫

Ω
(u− ū) dx = 0

}

,

then there exist constants ǔ, û ∈ (0, 1), µ̌, µ̂ ∈ R, and c > 0 depending only on ū and the

data of the problem such that for all initial values u0 ∈ K the sequence (uk, fk) ⊂ K ×M

defined by (11) converges to a solution (u∗, µ∗) ∈ C × M of the Euler–Lagrange

equation (27) in the sense of (28), where

C =
{

u ∈ K : ǔ ≤ u ≤ û, ‖u− ǔ‖H ≤ c
}

, M =
{

µg ∈ H0
0 : µ̌ ≤ µ ≤ µ̂

}

.

Proof. We have shown in Remark 5 that Assumptions 1 and 4 are satisfied. In view of

the definition of Ψ : H −→ R in Assumption 7 its Fréchet derivative DΨ : H −→ H∗

has the form

〈DΨ(v), ψ〉 =

∫

Ω

κ(1 − 2v)ψ dx for all v, ψ ∈ H.

Clearly, we have −κ ≤ κ(1 − 2v) ≤ κ for all v ∈ dom(Φ). Now, by Assumption 6,

Lemma 8, and its proof for all v ∈ K the solution (u, µg) of the Euler–Lagrange

equation µg −DΨ(v) ∈ ∂Φ(u) belongs to C ×M , if we set

ϕ′(ǔ) = ϕ′(ū) − 2κ, ϕ′(û) = ϕ′(ū) + 2κ, µ̌ = ϕ′(ū) − κ, µ̂ = ϕ′(ū) + κ, c = 4
α̃
‖κ‖H ,

which gives Assumption 3. Following Lemma 9 we can choose r ∈
(

0, 1
2

)

and a subset

U ⊂ U(r) depending on ǔ, û ∈ (0, 1) such that τC + (1 − τ)K ⊂ U and Assumption 5 is

satisfied. Now, the application of Theorem 7 yields the desired convergence result. �

5. Phase Separation in Multicomponent Systems

As mentioned in the introduction, we consider a closed multicomponent system with

interacting particles of type i ∈ {0, 1, . . . , m} occupying a bounded domain Ω ⊂ R
n with

Lipschitz boundary (see [11, 12]). Due to the exclusion principle we assume
∑m

i=0 ui = 1

for the densities u0, u1, . . . , um : Ω −→ [0, 1]. Hence, in the following we describe the states

of the system by m-component vectors u = (u1, . . . , um) and u0 = 1 −
∑m

i=0 ui.

In contrast to the classical Cahn–Hilliard theory (see [2]) we consider diffuse in-

terface models and free energy functionals with nonlocal expressions (see [1, 3]). As a

straight-forward generalization of the nonlocal phase separation model for binary systems

(see [9]) we split the free energy functional F : H −→ R ∪ {+∞} into the sum of an

entropy part Φ : H −→ R∪{+∞} and a nonlocal interaction part Ψ : H −→ R (see [13]).

Assumption 8. To satisfy Assumption 2 we set H = L2(Ω; Rm), V = L∞(Ω; Rm) and

W = J [V ]; their norms are defined as usual by

‖u‖2
H =

∫

Ω

|u|2 dx, u ∈ H, ‖u‖V = ess sup
x∈Ω

|u(x)|, u ∈ V, ‖f‖W = ‖Rf‖V , f ∈W.
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Let us consider the Hilbert sum decomposition H = H0 +H1 into the closed subspace

H0 =
{

u ∈ H :
∫

Ω
u dx = 0

}

,

and the m-dimensional subspace H1 ⊂ V of constant functions. Then the annihilator

H0
0 = J [H1] ⊂W is the m-dimensional subspace of elements f =

∑m
i=1 µigi where µ ∈ R

m

and the functionals g1, . . . , gm ∈W are given by 〈gi, u〉 =
∫

Ω
ui dx, u ∈ H , i ∈ {1, . . . , m}.

Assumption 9. We consider the simplex Σ = {z ∈ R
m : 0 ≤ z0, z1, . . . , zm ≤ 1} and a

proper, lower semicontinuous, and strongly convex functional ϕ : R
m −→ R∪{+∞} with

effective domain dom(ϕ) = Σ, that means, for all y, z ∈ Σ, t ∈ [0, 1] and some α > 0 we

have

tϕ(y) + (1 − t)ϕ(z) ≥ ϕ(ty + (1 − t)z) + α
2
t(1 − t)|y − z|2.

Moreover, we assume that ϕ is real analytic in int Σ and dom(∂ϕ) = int Σ holds true

for its subdifferential. Now, we introduce a lower semicontinuous and strongly convex

functional Φ : H −→ R ∪ {+∞} by

(39) Φ(u) =

{
∫

Ω
ϕ(u) dx if u ∈ H , 0 ≤ u0, u1, . . . , um ≤ 1,

+∞ otherwise,

with closed effective domain dom(Φ) = {u ∈ H : 0 ≤ u0, u1, . . . , um ≤ 1}.

Remark 6. As a consequence, the convex conjugate ϕ∗ : R
m −→ R of ϕ is Fréchet

differentiable with the derivative Dϕ∗ : R
m −→ int Σ. Moreover, the Young–Fenchel

inequality yields ϕ∗(ξ) + ϕ(z) ≥ ξ · z for all ξ ∈ R
m, z ∈ Σ. Hence, considering the

extremal points z of the simplex Σ this implies

(40) ϕ∗(ξ) + sup
z∈Σ

ϕ(z) ≥ sup
1≤i≤m

ξ⊕i for all ξ ∈ R
m.

The conjugate functional Φ∗ : H∗ −→ R has the form Φ∗(h) =
∫

Ω
ϕ∗(Rh) dx for all h ∈ H∗.

The Fenchel–Moreau theorem implies that (u, h) ∈ ∂Φ if and only if (h, u) ∈ ∂Φ∗.

Lemma 11 (Uniform boundedness). Assumptions 8, 9 imply the following statements:

(i) For all ū ∈ int Σ and w ∈ V there exists a uniquely determined solution (u, µ) ∈

dom(∂Φ) × R
m of the constrained problem

(41) 〈∂Φ(u), v〉 =

∫

Ω

(µ− w) · v dx for all v ∈ H,

∫

Ω

(u− ū) dx = 0.

(ii) Let w̌i ≤ wi ≤ ŵi for all i ∈ {1, . . . , m} and some w̌, ŵ ∈ R
m. Then there exist ǔ,

û ∈ int Σ and µ̌, µ̂ ∈ R
m depending only on w̌, ŵ, ū such that the solution (u, µ) satisfies

ǔi ≤ ui ≤ ûi for all i ∈ {0, 1, . . . , m}, µ̌i ≤ µi ≤ µ̂i for all i ∈ {1, . . . , m}.
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Proof. 1. Let c = supz∈Σ ϕ(z) ∈ R. Following Remark 6 for fixed ū ∈ int Σ and w ∈ V we

can define a Fréchet differentiable convex function Λ : R
m −→ R by

(42) Λ(λ) =

∫

Ω

(

ϕ∗(λ− w) + c− ū · (λ− w)
)

dx, λ ∈ R
m.

In view of (40) for all λ ∈ R
m we can find the following estimate:

Λ(λ) =

∫

Ω

(

ϕ∗(λ− w) + c− ū · (λ− w)
)

dx

≥

∫

Ω

(

sup
1≤i≤m

(λi − wi)
⊕ −

m
∑

i=1

ūi(λi − wi)
⊕

)

dx+

∫

Ω

m
∑

i=1

ūi(λi − wi)
	 dx

≥

∫

Ω

(

1 −
m

∑

i=1

ūi

)

sup
1≤i≤m

(λi − wi)
⊕ dx+

∫

Ω

m
∑

i=1

ūi(λi − wi)
	 dx.

Because of ū ∈ int Σ this yields lim|λ|→+∞ Λ(λ) = +∞, that means, Λ : R
m −→ R is

weakly coercive. Therefore, Λ attains its minimum which implies the existence of some

µ ∈ R
m such that DΛ(µ) = 0. Therefore, using (42) and setting

f =

m
∑

i=1

µigi ∈ H0
0 , u = ∂Φ∗(f − Jw) ∈ dom(∂Φ),

we get
∫

Ω
(u − ū) dx = 0. Hence, (u, µ) ∈ dom(∂Φ) × R

m is a solution of (41) which is

uniquely determined because of the strong monotonicity of ∂Φ ⊂ H ×H∗.

2. Due to the definition of (u, µ) ∈ dom(∂Φ) × R
m in Step 1 of the proof we can apply

the Fenchel–Moreau theorem to get the relations
∫

Ω

(

ϕ∗(µ− w) + ϕ(u)
)

dx =

∫

Ω

u · (µ− w) dx,

∫

Ω

(

ϕ∗(−w) + ϕ(u)
)

dx ≥ −

∫

Ω

u · w dx.

Together with (41) and (42) this yields

Λ(µ) =

∫

Ω

(

c + (u− ū) · (µ− w) − ϕ(u)
)

dx ≤

∫

Ω

(

c+ ϕ∗(−w) + ū · w
)

dx.

If w̌i ≤ wi ≤ ŵi holds true for all i ∈ {1, . . . , m} and some w̌, ŵ ∈ R
m, then the last

estimate and the weak coercivity lim|λ|→+∞ Λ(λ) = +∞ implies the existence of µ̌, µ̂ ∈ R
m

depending only on w̌, ŵ, ū such that µ̌i ≤ µi ≤ µ̂i for all i ∈ {1, . . . , m}.

Furthermore, the image of
{

λ ∈ R
m : µ̌i − ŵi ≤ λi ≤ µ̂i − w̌i, i ∈ {1, . . . , m}

}

under

Dϕ∗ : R
m −→ int Σ is a compact subset of int Σ. Hence, we can find some ǔ, û ∈ int Σ

depending only on w̌, ŵ, ū such that ǔi ≤ ui ≤ ûi for all i ∈ {0, 1, . . . , m}. �
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Lemma 12 (Analyticity). If Assumptions 8 and 9 are satisfied, then Φ is real analytic

in every subset U which is open in V and contained in

U(r) = {u ∈ V : r ≤ u0, u1, . . . , um ≤ 1 − r}

for some r ∈
(

0, 1
m

)

. Moreover, the Fréchet derivative DΦ : U −→W is a real analytic

operator, the second derivative D2Φ(u) ∈ L(V ;W ) is an isomorphism for all u ∈ U , and

(16) holds true for some constant γ > 0 depending on r.

Proof. 1. Let r ∈
(

0, 1
m

)

be arbitrarily fixed and consider the compact subset

Σ(r) = {z ∈ R
m : r ≤ z0, z1, . . . , zm ≤ 1 − r}

of int Σ. By the real analyticity of ϕ in int Σ we can find constants c1 > 0, δ ∈
(

0, r
2

)

depending on r such that Cauchy’s inequalities (see [5]) hold true:
∣

∣Dkϕ(z)ζ1 · · · ζk
∣

∣ ≤ c1k! δ
−k |ζ1| · · · |ζk| for all k ∈ N, z ∈ Σ(r), ζ1, . . . , ζk ∈ R

m.

2. Let U ⊂ U(r) be open in V . Due to Step 1 of the proof Φ is Fréchet differentiable

on U , and the derivatives DΦ(u) ∈W and D2Φ(u) ∈ L(V ;W ) have the form

〈DΦ(u), v1〉 =

∫

Ω

Dϕ(u) · v1 dx,

〈D2Φ(u)v1, v2〉 =

∫

Ω

D2ϕ(u)v1 · v2 dx,

for all u ∈ U and v1, v2 ∈ V . Together with Assumption 9 this yields that D2Φ(u) ∈

L(V ;W ) is an isomorphism for all u ∈ U , and that there exists a constant γ > 0 depending

on r such that (16) is satisfied.

3. Moreover, for all u ∈ U and k ∈ N we can define symmetric bounded k-linear forms

Bk(u) ∈ Lk(V ;W ) by

〈

Bk(u)[v1, . . . , vk], v
〉

=

∫

Ω

Dk+1ϕ(u)v1 · · · vk · v dx, v1, . . . , vk, v ∈ V,

because Step 1 yields the estimate ‖Bk(u)‖Lk(V ;W ) ≤ c2(k+ 1)! δ−k−1 for all u ∈ U , k ∈ N

and some c2 > 0. Hence, for all u ∈ U and % ∈ (0, δ) both the power series

∞
∑

k=1

1

k!
‖Bk(u)‖Lk(V ;W )‖v‖

k
V , DΦ(u+ v) −DΦ(u) =

∞
∑

k=1

1

k!
Bk(u)[v, . . . , v],

converge uniformly for v ∈ V , ‖v‖V ≤ %. Consequently, DΦ : U −→ W is a real analytic

operator which implies the real analyticity of Φ on U (see Remark 4). �

Theorem 13 (Convergence). Let Assumptions 4, 8, 9, and α > βτ be satisfied for

some τ ∈ (0, 1]. If we take ū ∈ int Σ and

K =
{

u ∈ dom(Φ) :
∫

Ω
(u− ū) dx = 0

}

,
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then there exist constants ǔ, û ∈ int Σ, µ̌, µ̂ ∈ R
m depending only on ū and the data of

the problem such that for all initial values u0 ∈ K the sequence (uk, fk) ⊂ K ×M defined

by (11) converges to a solution (u∗, f ∗) ∈ C×M of the Euler–Lagrange equation (27)

in the sense of (28), where

C =
{

u ∈ K : ǔi ≤ ui ≤ ûi, i ∈ {0, 1, . . . , m}
}

,

M =
{

∑m
i=1 µigi ∈ H0

0 : µ̌i ≤ µi ≤ µ̂i, i ∈ {1, . . . , m}
}

.

Proof. 1. In view of Assumptions 4, 8, and 9 also Assumption 1 is satisfied and F =

Φ + Ψ : H −→ R ∪ {+∞} is a well-defined functional with nonempty, closed, and convex

effective domain dom(F ) = dom(Φ) ⊂ V .

2. By virtue of Assumption 4 we have DΨ(v) = Tv + l for all v ∈ H , and we can find

constants w̌, ŵ ∈ R
m such that

w̌i ≤ (RTv)i + (R l)i ≤ ŵi for all i ∈ {1, . . . , m}, v ∈ dom(Φ).

Now, Assumption 8 and Lemma 11 yield that the solution
(

u,
∑m

i=1 µigi

)

of the Euler–

Lagrange equation
∑m

i=1 µigi − DΨ(v) ∈ ∂Φ(u) belongs to C ×M for all v ∈ K, if

we take the constants ǔ, û ∈ int Σ, µ̌, µ̂ ∈ R
m as in the proof of Lemma 11. This is the

contents of Assumption 3. Because of Lemma 12 we can choose r ∈
(

0, 1
m

)

and a subset

U ⊂ U(r) depending on ǔ, û ∈ int Σ such that τC + (1 − τ)K ⊂ U and Assumption 5 is

satisfied. Summing up we can apply Theorem 7 to get the desired convergence result. �

6. The Image Segmentation Algorithm

Various approaches to local image segmentation have been introduced in the literature

(see [16]). In contrast to these methods we want to establish a nonlocal image segmen-

tation algorithm based on the descent method. To do so, let all the assumptions of the

previous section be satisfied. We consider functions c ∈ L∞(Ω), 0 ≤ c ≤ 1 representing

(normalized) gray scaled images. To segment c with respect to given gray levels

a0, a1, . . . , am ∈ [0, 1], 0 = a0 < a1 < · · · < am = 1,

we introduce the following algorithm:

Step 1 (Decomposition into phases). Our plan is to transform c into an m-component

distribution u0 = (u01, . . . , u0m) ∈ K such that the i-th component corresponds to the

level ai ∈ [0, 1]:

0 ≤ u00, u01, . . . , u0m ≤ 1, u00 = 1 −

m
∑

i=1

u0i.
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To that end, we consider a continuous partition of unity (η0, . . . , ηm) ⊂ C([0, 1]) with

weights b0, b1, . . . , bm ∈ R such that

0 ≤ ηi ≤ 1, ai ∈ supp(ηi),
m

∑

i=0

ηi = 1, i ∈ {0, 1, . . . , m},(43)

0 < bi < 1,

m
∑

i=0

bi = 1,

∫ 1

0

ηi(s) ds = bi, i ∈ {0, 1, . . . , m}.(44)

Now, we are ready to define the transformation

c 7−→ u0 = (u01, . . . , u0m) = (η1(c), . . . , ηm(c)) ∈ K.

Step 2 (Nonlocal phase separation). Given u0 ∈ K, we solve the nonlocal phase

separation problem (27) for the m-component system to find the corresponding critical

point u∗ ∈ C of the energy functional F : H −→ R ∪ {+∞}.

Step 3 (Composition of segmented phases). Finally, we calculate the segmented version

c∗ ∈ L∞(Ω), 0 ≤ c∗ ≤ 1 of c ∈ L∞(Ω) as a convex combination of the levels a0, a1, . . . , am ∈

[0, 1] with respect to the weight functions u∗0, u
∗
1, . . . , u

∗
m, that means,

u∗ 7−→ c∗ =

m
∑

i=0

u∗iai.

Before we present our simulation results we choose a partition of unity and a special

class of segmentation entropy and nonlocal interaction energy functionals.

Example 1 (Partition of unity). To construct a partition of unity we choose numbers

b0, b1, . . . , bm ∈ (0, 1) such that

m
∑

j=0

bj = 1, b∗i =
i−1
∑

j=0

bj ∈ (ai−1, ai), i ∈ {1, . . . , m}.

For i ∈ {1, . . . , m} we define exponents ωi > 0 and functions hi ∈ C([ai−1, ai]) by

ωi =
ai − b∗i
b∗i − ai−1

, hi(s) =

(

ai − s

ai − ai−1

)ωi

, s ∈ [ai−1, ai].

Now, we get a continuous partition of unity (η0, . . . , ηm) ⊂ C([0, 1]) with the properties

(43) and (44) by setting

η0(s) =

{

h1(s) if s ∈ [a0, a1],

0 otherwise,
ηm(s) =

{

1 − hm(s) if s ∈ [am−1, am],

0 otherwise,
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for the boundary cases i = 0 and i = m and

ηi(s) =















1 − hi(s) if s ∈ [ai−1, ai],

hi+1(s) if s ∈ [ai, ai+1],

0 otherwise,

for i ∈ {1, . . . , m− 1}, respectively.

Example 2 (Segmentation entropy). According to (39) we specify the lower continuous

and strongly convex function ϕ : R
m −→ R ∪ {+∞} as logarithmic potential

ϕ(z) =

{

∑m
i=0 zi log(zi) if z ∈ Σ,

+∞ otherwise.

Obviously, dom(ϕ) = Σ and ϕ is real analytic in dom(∂ϕ) = int Σ with partial derivatives

Diϕ(z) = log(zi)− log(z0) for all z ∈ int Σ and i ∈ {1, . . . , m}. We can interpret the value

Φ(u) =
∫

Ω
ϕ(u) dx as the segmentation entropy of the state u ∈ dom(Φ).

Example 3 (Nonlocal interaction energy). In the following we describe the nonlocal

interaction by means of inverse operators corresponding to second order elliptic operators

with appropriate regularity properties. To do so, for r > 0 we consider the family of elliptic

operators Er ∈ L
(

H1(Ω);H1(Ω)∗
)

(including Neumann boundary conditions) given by

〈Erv, h〉 =

∫

Ω

(

r2∇v · ∇h+ vh
)

dx, v, h ∈ H1(Ω).

We want to emphasize that the inverse operators E−1
r ∈ L

(

H1(Ω)∗;H1(Ω)
)

are completely

continuous from L2(Ω) into L2(Ω) as well as from L∞(Ω) into L∞(Ω) (see Remark 5).

To control the qualitative behaviour of nonlocal interaction we prescribe effective ranges

%, r > 0 and intensities σi`, si` ∈ R of interaction forces between particles of type i and

` ∈ {0, 1, . . . , m}, respectively. Clearly, both matrices are assumed to be symmetric. The

cases σi` > 0 and σi` < 0 represent repulsive and attractive interaction, respectively.

According to Assumption 4 we define the quadratic functional Ψ : H −→ R for u ∈ H by

(45) Ψ(u) =
1

2

m
∑

i=0

m
∑

`=0

∫

Ω

uiσi`E
−1
% u` dx+

1

2

m
∑

i=0

m
∑

`=0

∫

Ω

(ui − ũi)si`E
−1
r (u` − ũ`) dx.

Note, that by choosing the matrix (si`) appropriately, it is possible to get final states

u∗ ∈ C close to some prescribed state ũ ∈ K.
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7. Simulation Results for Ternary Systems

We apply our image segmentation algorithm to different situations in image processing.

For simplicity, in all of our following examples we consider ternary systems of three colored

components (m = 2) and (3 × 3)-matrices of the form

(46) (σi`) =





−σ +σ +σ

+σ −σ +σ

+σ +σ −σ



 , (si`) =





+s −s −s

−s +s −s

−s −s +s



 .

From the structure of (σi`) it follows, that particles of the same type attract and particles

of different type repel each other with the same range % > 0 and intensity σ > 0 of

interaction.

In a first example we consider the case of pure phase separation (s = 0) without

stabilization of the initial value. The other examples deal with the segmentation of a

perfect image and the reconstruction of a noisy image, respectively. Here, the nontrivial

choice of (si`), s > 0 and ũ = u0 enables us to get final states close to the corresponding

initial values u0 ∈ K (see (45)).

Remark 7. Naturally, planar images are represented by bounded rectangular domains

Ω ⊂ R
2. The ranges of interaction are given in the natural length unit of the problem,

that means, the edge length of one (square) pixel. Of course, our method can be applied

also to voxel images defined in a domain Ω ⊂ R
n of arbitrary space dimension n ∈ N.

Example 4 (Phase separation). We separate two gray scaled images with respect to

three equally weighted gray levels,

a0 = 0, a1 =
1

2
, a2 = 1, b0 = b1 = b2 =

1

3
,

and interaction parameters (according to (46))

% = 5, σ = 4, r = 5, s = 0.

Figures 1 and 2 show simulation results for two very similar 256 by 256 pixel images. Both

initial configurations contain equal numbers of black, white, and medium gray particles,

respectively. Obviously, the final states do not depend only on these integral quantities.

Example 5 (Image segmentation). We segment the well-known Lena image with re-

spect to three equally weighted gray levels,

a0 = 0, a1 =
1

2
, a2 = 1, b0 = b1 = b2 =

1

3
,

and interaction parameters (see (46))

% = 1, σ = 4, r = 1, s =
24

5
.
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1 2 5 10
−1.8

−1.6

−1.4

−1.2

Figure 1. Phase separation: (a) initial value (constant in vertical direc-

tion); (b) final state (stripe pattern); (c) decay to the corresponding local

minimum of the free energy functional F after 10 iteration steps.

1 2 5 10 20 50 100

−1.8

−1.6

−1.4

−1.2

Figure 2. Phase separation: (a) mirror-symmetric initial value; (b) final

state (phases separated by two arcs and a straight line); (c) decay to the

global minimum of the free energy functional F after 100 iteration steps.

In Figure 3 we present simulation results for the 256 by 256 pixel Lena image. Here,

we compare the above mentioned three-component case with a two-component black and

white segmentation (with similar parameters).

Example 6 (Image reconstruction). Finally, we reconstruct a noisy image with respect

to three weighted gray levels

a0 = 0, a1 =
49

100
, a2 = 1, b0 =

39

100
, b1 =

22

100
, b2 =

39

100
,

and interaction parameters (according to (46))

% = 2, σ = 10, r = 2, s = 12.

Figure 4 shows numerical results for a noisy 200 by 200 pixel image. The advantage of the

three-component case compared with the two-component black and white reconstruction

(with similar parameters) is obvious.
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Figure 3. Image segmentation applied to the Lena image: (a) initial

value (original image); (b) final state of the two-component black and white

segmentation; (c) final state of the three-component segmentation.

Figure 4. Image reconstruction: (a) initial value (noisy image); (b) final

state of the two-component black and white reconstruction (gray region still

noisy); (c) final state of the three-component reconstruction.
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