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1. INTRODUCTION

The problem of finding as good as possible estimations of Weyl sums S, =

i e?™f() where f(z)-a polynomial of degree n, (i.e. estimations of the absolute
=1

value of such sums) is one of the most important, interesting and hard questions
in analysis and number theory. In the present time non-trivial estimations are
mainly based on applications of methods of Weyl and Winogradov ([1], [2], [3],
[4]), which give diminishing factors A = P~ and A = P'Zﬁ;, respectively.
The later means that |Sp| < cPA, where ¢ and « are constants depending only
on n. The disadvantage of these estimations is that they differ less and less from
the trivial one as n tends to infinity, because the exponent in A tends to zero.
Therefore, it is of great importance to find such non-trivial estimations of |Sp| in
which the exponent p in A = P™® (p > 0) won’t depend on the degree of the
polynomial. In [5] and [6] such estimations are found for all p < 1 and all n greater
some number no(p) and applied to number—-theoretic problems like the estimation
of the residual term in the law of the distribution of the fractal parts of the values
of a polynomial or their joint distributions.

In theorem 5 (§4, chapter 1) in [5] it is proved that assuming the leading coeffi-
cient of the polynomial f(z) = a1z + - - + a,z™, a™ to be irrational and the vector
({@a1},...,{an-1}) — consisting of the fractal parts of the other coefficients - can be
good approximated by some set of full Lebesgue measure in the (n—1)-dimensional
torus T™~! then |Sp| < cP** for 2 < P < q, where ¢ and ¢ depend only on the
degree of the approximation and not on P. In particular, if a = ({a1},...,{an-1})
belongs to this set of full measure then the estimation |Sp| < ¢P'~* is valid for all
natural P > 2.

The present paper directly attaches to [5]. The aim of it is to investigate some
of the topological and measure-theoretic properties of the approximation set and
related ones. The main results are summarized in theorem 1 and 2.

In the first theorem we show that |[Sp| < P if p < 7 and n > no(p)
for arbitrary large intervals of values of P as long as a, is irrational and a =
({a1},...,{an-1}) belongs to an open and dense subset of 7! which has full
Lebesque measure.

The second theorem shows that it is impossible to find an exponent in the
diminishing factor which is valid for all polynomials rather than for a subset of full
measure. Namely, there is a — in the topological sense - large set of coefficients such
that the corresponding Weyl sums have absolute value abitrary close to P as P
tends to infinity. This emphasizes the importance of investigations of the nature of
the approximation set and the related approximation process.

2. DEFINITIONS AND NOTATIONS

(1) n denotes a natural number greater 3.
(2) T™! is the (n — 1)-dimensional torus considered as

" = {(a1,...,0n )0 < 0 <1 i=1,...,n—1}
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which is the direct product of (n — 1) circles of length 1.

(3) mes — Lebesque measure on 7™! .
(4) For natural k and ¢ the symbol (’:) denotes the corresponding binomical

coefficient. )
(5) If a, € R (R - the real numbers) we define the transformation A,-; =

An_l(an) of T by:

Apy:a =(ar,...,an 1) = o' =(d,...,a. ;)
&t S +v v n n—a
o = ; ( ) )(—1) Qgrv + (n B 3)(—1) a, mod 1

1<s<n-1

(6) f(z) denotes the polynomial f(z) = a1z + - -+ + anz™ over the reals with
vanishing constant term and irrational leading coefficient a,. The vector

a = (ai,...,a,_1) belongs to T™1,
(7) For a natural number P we write Sp for the Weyl sum

P
SP — Z eZm’f(:c)

=1
1

(8) p is a positive real I;umber less than 3.

(9) No = nﬂ(p) =2+ 1-2p°
3. MAIN THEOREMS

Theorem 1. Suppose that n > no(p) and C is an arbitrary positive number. Then

there exist an open subset Q = Q(C) of the torus T™ ' with properties:
(1) The complement T™ *\Q is nowhere dense and has zero Lebesgue measure

an T™ L.
(2) For all a = (ai,...,an_1) € § there exzist a constant Py = Py(a) such that

for Po < P < Py + C the inequality
|Sp| < P°

holds.

Proof. Let p; be the constant defined by

1 1
= 2 Mg — 1
The definition of no in (9) implies
1
pP<pm<g (3.1)



In the following we use the results of theorem 5, §4, chapter 1 in [1]. For n >
ng = 1+ 1__22” this theorem states the existence of a Lebesgue measurable set

I'ne1 = Tno1(p1) € T™ ! having the following properties:
(I) mes (T™1\ 8 AX(T',_1)) = 0 where A* is the k-th iteration of the trans-
k=0

formation A and A° is the identity.
(II) If for some B € Ty, integers k > 0 and ¢ >0 a = (a1,...,a,-1) can be

written as
a= flkﬁ +z
where z = (21,...,2,-1) is a vector with coordinates fulfilling the inequali-
ties
T 1 1
L ——— =1,...,n—
|zal — 27r(n_1) S ) y
then for all integer P from the interval 2 < P < ¢ the inequality
|Sp| < (k+1+ ((n— 1)1)TmD)pl-s (3.2)
holds.
For £k = 0,1,... we define two sequences P, and gq; of natural numbers and a
sequence {1 of subsets of 7™~! in the following manner.
We set
Po=(k+1+((n—1))T0)as (3.3)
and let g be an arbitrary number fitting the inequality
P.+C< Qk (3.4)
and ) is the union of all open parallelepipedes
II = {a,--. an_lla'—£<al <a'+-——q—’:fl—— s=1,...,n—1}
T * 2r(n-1) 0 2r(n—1) T
where a), (s = 1,...,n — 1) are the coordinates of the vector a’ = (a},...,a.,_;) =
Akﬂ and B is an arbitrary element of the set T',,_;.
Now we set ‘
Q= %
k=0

We will show that for this set (2 theorem 1 is true. Obviously ) is open and 2
contains | flk(I‘n_l). Therefore, using (I), we have
k=0
mes (T"'\Q) = 0.

Moreover this yields that 7"\ is nowhere dense in 7™~ Let us assume that for
some k a = (a,...,an_1) € Q. For such an a we set P, = P;. The definition of
Q, then tells us that a can be written as a = a’ + z, with

o =AF8, BeT.,
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and z = (21,..., 2,—1) respects the inequalities

—8—p

9k
2r(n —1)’
Now (II) implies inequality (3.2) for the polynomial f(z) = a1z + - - - + a,z™ with
a=(a1,...,0n-1) € Q and for 2 < P < gi. From (3.3) and (3.1) we can derive

lz4] < s=1,...,n—1.

1Sp| < (k+1+ ((n — 1))TeD)pl-p < pl-r (3.5)

forqp > P> Py, = Py.
Now (3.4) implies the theorem . [

Next we want to show that the estimates of [5] and [6] of theorem 1 can’t be
improved. Namely, there is no diminishing factor A = P~?, p > 0, estimating Weyl
sums for all polynomials with irrational main coefficient.

Definition 3.1. A set is called residual if it contains a countable intersection of
open and dense sets.

Remark. Residual subsets of T™ are always dense and the intersection of a count-
able number of residual sets is residual (see f.i. [7]).

Theorem 2. Let n > 2. then there ezists a residual subset W in T™ such that for
a=(ay,...,a,) €W, f(z) = a1z + -+ + anz™ and arbitrary p > 0 the inequality

ISPI < pi-r
1s violated infinitely often.

The proof is based on some well-known facts about Weyl-sums (Lemma 1-3)
which one can find f.i. in [4].

Lemma 1. Assume that f(z) = fi(z)+: - -+ f:(z) and the fractal parts of fi(z),1 =

1,...,s are pertodic with mutually relatively prime periods 71,...,7,. Then
TLoeeuTs ) 8 T,
Z eme(z) — H Z e21ri_f,,(:z.,) .
z=1 v=1z,=1

Lemma 2. Assume that 2a; and q are relatively prime then:

=4

9 2mi ay o+ ay 22
DILNE

z=1



Lemma 3. Assume that a and p are mutually prime end n > 3 then:

n
o~ _2miash n—1
D e =ph
=1

Let us fix n > 2 and consider the sets
W = {a € T"|3P > m such that |Sp| > P'"=}
n .
where Sp = Sp(a) = Y e?m(mzt-+ans™) 1 c N. Because finite Weyl sums

z=1
depend continuously on a € T™, all the sets W,,,,m € N are open.

Lemma 4. W,,,,m € N, is dense in T™.

Proof. We fix £ > 0 and a = (au,...,0s). Subject to lemma 2 we select integers
a1, a2 and g, with |a1| < g3, |az| < 2,92 — an odd prime number,

|——a| <e and

For 2 < s < n we choose an integer a, and a — prime to a, — prime number
Gsy G5 > Gs—1 with

Hence the polynomial f(z) = g+ 2z% + Qg ... + 22" is e—close in the
3 n

topology induced from T™ to f(z) = yz + - - - + a,z™ and according to lemma 1-3

n 9,
4 .
27 gV
=[] X2 ™%

a2 i a1 @+ ap cz
D e

lma o n |=¢-¢... " - Jz=6>0.
v=3 z,=1 =1
It is easy to see that for k € N
ISk ‘9293 qzq, =k-é
Setting gz - ¢3 - ... q* = q and P; = kq we can derive

11—~

|Sp,| = |Skel = k- 6 > (kg)*~= = Pk

Bl

ifk>9:— Moreover, if P = kq+r,0<’r<qandk> +—‘1then

1

|SPI = ISkq+r| >k-§—7r> (kq.}.:,-)l“; — Pl-;‘
This means & = (2, 22,9 ., =) belongs to W, for all m € N, and consequently

q2? 92 o g
all W,, are dense, because of the arbitrary choice of . [ -



Proof of the theorem: We define

W= Wn.

m=0
If a point @ € T™ belongs to W then it has the property: there are two sequences
{Pi} and {m;} of natural numbers, such that

(1-4)

|S0] > P
But this gives the statement of theorem 2. d

Corollary 3.1. The set of vectors a = (a1,...,a,) € T" with all a; (1 =1,...,n)
irrational and violating

|Spl < P17°
for infinitely many P and arbitrary p > 0 s residual.

Proof. The set _
W=wn{sE"\Q)x - x (")}

fits the theorem. the set {(S*\Q) x --- x (§'\Q)} is residual and hence by the
remark following definition 3.1. W is residual itself. O

4. CONCLUDING REMARKS

In [4] it is shown, that we can get uniform estimates (not depending on the
degree of the polynomial) of the Weyl sum |Sp| for all large enough P for a set
of coefficients = in T™! having full Lebesque measure. Moreover, these estimates
are depending on the approximability of the vector (ai,...,an—1) by a certain
approximation process (see point II). On the other hand the corollary to theorem
2 shows that the complement of = in T™! is residual. These facts suggest that a
more precise description of that approximation process together with a measure—
theoretical and topological analysis of sets related to that process could help to get
a much better understanding of Weyl sums and related problems.

5. ACKNOWLEDGEMENTS

This work was prepared during a visit of L.D. Pustyl’nikov to the IAAS. L.D.
Pustyl’nikov thanks the IAAS for supporting his stay in Berlin.



N =

REFERENCES

. H. Weyl: Uber die Gleichverteilung der Zahlen mod 1., Math. Ann. 77 (1916), 313-352.

. K. Chandrasekharan: Arithmetical Functions, Springer, 1970.

I.M. Vinogradov: The Method of Ezponential Sums in the Theory of Numbers, Nauka,

Moscow, 1971.

N.M. Korobov: Ezponential Sums and their applications, Nauka, Moscow, 1989.

. L.D. Pustyl’nikov: The distribution of the fractional parts of a polynomial’s values, Weyl sums
and ergodic theory, Uspekhi Mat. Nauk 4 (1993), 131-166.

. L.D. Pustyl’nikov: New estimates of Weyl sums and the remainder term in the law of dis-
tribution of the fractional part of ¢ polynomial, Ergodic Theory and Dynamical Systems, 11
(1991), 515-534.

. J.C. Oxtoby: Measure and Category, Springer 1980






Recent publications of the
Institut fiir Angewandte Analysis und Stochastik

Preprints 1993

69.

70.

71.

72.
73.

74.
75.

76.

77.
78.

John W. Barrett, Peter Knabner: Finite element approximation of transport
of reactive solutes in porous media. Part 2: Error estimates for equilibrium
adsorption processes.

Herbert Gajewski, Willi Jiger, Alexander Koshelev: About loss of regularity
and ”"blow up” of solutions for quasilinear parabolic systems.

Friedrich Grund: Numerical solution of hierarchically structured systems of
algebraic—differential equations.

Henri Schurz: Mean square stability for discrete linear stochastic systems.

Roger Tribe: A travelling wave solution to the Kolmogorov equation with
noise.

Roger Tribe: The long term behavior of a Stochastic PDE.
Annegret Glitzky, Konrad Groger, Rolf Hiinlich: Rothe’s method for equa-

tions modelling transport of dopants in semiconductors.

Woligang Dahmen, Bernd Kleemann, Siegfried Profdorf, Reinhold Schnei-
der: A multiscale method for the double layer potential equation on a poly-
hedron.

Hans-Giinter Bothe: Attractors of non invertible maps.

Gregori Milstein, Michael Nussbaum: Autoregression approximation of a
nonparametric diffusion model.

Preprints 1994

79.

80.

81.

Anton Bovier, Véronique Gayrard, Pierre Picco: Gibbs states of the Hopfield
model in the regime of perfect memory.

Roland Duduchava, Siegfried Préfdorf: On the approximation of singular
integral equations by equations with smooth kernels.

Klaus Fleischmann, Jean-Frangois Le Gall: A new approach to the single
point catalytic super-Brownian motion.



82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

Anton Bovier, Jean-Michel Ghez: Remarks on the spectral properties of
tight binding and Kronig-Penney models with substitution sequences.

Klaus Matthes, Rainer Siegmund-Schultze, Anton Wakolbinger: Recurrence
of ancestral lines and offspring trees in time stationary branching popula-
tions.

Karmeshu, Henri Schurz: Moment evolution of the outflow-rate from non-
linear conceptual reservoirs.

Wolfdietrich Miiller, Klaus R. Schneider: Feedback stabilization of nonlinear
discrete-time systems.

Gennadii A. Leonov: A method of constructing of dynamical systems with
bounded nonperiodic trajectories.

Gennadii A. Leonov: Pendulum with positive and negative dry friction. Con-
tinuum of homoclinic orbits.

Reiner Lauterbach, Jan A. Sanders: Bifurcation analysis for spherically sym-
metric systems using invariant theory.

Milan Kucera: Stability of bifurcating periodic solutions of differential in-
equalities in R3.

Peter Knabner, Cornelius J. van Duijn, Sabine Hengst: An analysis of crystal
dissolution fronts in flows through porous media Part I: Homogeneous charge
distribution.

Werner Horn, Philippe Laurengot, Jiirgen Sprekels: Global solutions to a
Penrose-Fife phase-field model under flux boundary conditions for the in-
verse temperature.

Oleg V. Lepskii, Vladimir G. Spokoiny: Local adaptivity to inhomogeneous
smoothness. 1. Resolution level.

Wolfgang Wagner: A functional law of large numbers for Boltzmann type
stochastic particle systems.

Hermann Haaf: Existence of periodic travelling waves to reaction—diffusion
equations with excitable-oscillatory kinetics.

Anton Bovier, Véronique Gayrard, Pierre Picco: Large deviation principles
for the Hopfield model and the Kac-Hopfield model.

Wolfgang Wagner: Approximation of the Boltzmann equation by discrete
velocity models.

Anton Bovier, Véronique Gayrard, Pierre Picco: Gibbs states of the Hopfield
model with extensively many patterns.



