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1. INTRODUCTION 

The problem of finding as good as possible estimations of Weyl sums Sp = 
f e27rif(x), where f ( x )-a polynomial of degree n, (i.e. estimations of the absolute 
x=l 
value of such sums) is one of the most important, interesting and hard questions 
in analysis and number theory. In the present time non-trivial estimations are 
mainly based on applications of methods of Weyl and Winogradov ( [1], [2], [3], 
[4]), which give diminishing factors f::l. = p-ik and f::l. = p-~, respectively. 
The later means that ISPI ::; cP!::l., where c and 'Y are constants depending only 
on n. The disadvantage of these estimations is that they differ less and less from 
the trivial one as n tends to infinity, because the exponent in f::l. tends to zero. 
Therefore, it is of great importance to find such non-trivial estimations of IS p I in 
which the exponent p in f::l. = p-p (p > 0) won't depend on the degree of the 
polynomial. In [5] and [6] such estimations are found for all p < ~ and all n greater 
some number n 0(p) and applied to number-theoretic problems like the estimation 
of the residual term in the law of the distribution of the fractal parts of the values 
of a polynomial or their joint distributions. 

In theorem 5 (§4, chapter 1) in [5] it is proved that assuming the leading coeffi-
cient of the polynomial f( x) = a1x + · · · + anxn, an to be irrational and the vector 
( { a1}, ... , { an_1}) - consisting of the fractal parts of the other coefficients - can be 
good approximated by some set of full Lebesgue measure in the (n-1)-dimensional 
torus Tn-l then ISPI ::; cP1-P for 2 ::; P ::; q, where c and q depend only on the 
degree of the approximation and not on P. In particular, if a= ( {a1}, ... , {an-1}) 
belongs to this set of full measure then the estimation ISPI ::; cP1-P is valid for all 
natural P ~ 2. 

The present paper directly attaches to [5]. The aim of it is to investigate some 
of the topological and measure-theoretic properties of the approximation set and 
related ones. The main results are summarized in theorem 1 and 2. 

In the first theorem we show that ISPI < pl-p if p < ~ and n > n 0 (p) 
for arbitrary large intervals of values of P as long as an is irrational and a = 
( {al}, ... , { an-l}) belongs to an open and dense subset of Tn-l which has full 
Lebesque measure. 

The second theorem shows that it is impossible to find an exponent in the 
diminishing factor which is valid for all polynomials rather than for a subset of full 
measure. Namely, there is a - in the topological sense - large set of coefficients such 
that the corresponding Weyl sums have absolute value abitrary close to P as P 
tends to infinity. This emphasizes the importance of investigations of the nature of 
the approximation set and the related approximation process. 

2. DEFINITIONS AND NOTATIONS 

(1) n denotes a natural number greater 3. 
(2) Tn-l is the ( n - 1 )-dimensional torus considered as 

Tn-l = {(a1, ... ,an-1)10::; ai < 1 i = 1, ... ,n -1} 
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which is the direct product of ( n - 1) circles of length 1. 
(3) mes - Lebesque measure on Tn-t . 
( 4) For natural k and t the symbol (!) denotes the corresponding binomical 

coefficient. 
(5) If an E JR (JR - the real numbers) we define the transformation An-t 

An-t(an) of Tn-t by: 

a: = "~t (s: v) (-lta.+v + (n: s) (-1)"-•a,. mod 1 

l::;s::;n-1 

(6) f(x) denotes the polynomial f(x) = atx + · · · + anxn over the reals with 
vanishing constant term and irrational leading coefficient an. The vector 
a= (at, ... , an-t) belongs to Tn-t. 

(7) For a natural number P we write Sp for the Weyl sum 
p 

Sp = L e2?rif(x) 

x=t 

(8) p is a positive real number less than ~· 
(9) no = no(P) = 2 + t~2P. 

3. MAIN THEOREMS 

Theorem 1. Suppose that n > n0 (p) and C is an arbitrary positive number. Then 
there exist an open subset n = n( C) of the torus Tn-t with properties: 

(1) The complement Tn-t\n is nowhere dense and has zero Lebesgue measure 
in Tn-t. 

(2) For all a= (at, ... , an-t) E f2 there exist a constant Po = P0 (a) such that 
for Po ::; P ::; Po + C the inequality 

ISPI::; pt-p 

holds. 

Proof. Let Pt be the constant defined by 
1 1 

Pt= -2 - 1 · no-
The definition of n 0 in (9) implies 

1 
P <Pt< 2 
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In the following we use the results of theorem 5, §4, chapter 1 in [1]. For n > 
no = 1 + 1_;P

1 
this theorem states the existence of a Lebesgue measur~ble set 

r n-l = r n-l (p1 ) C Tn-l having the following properties: 
00 " " (I) mes (Tn- 1 \ U Ak(r n-1 )) = 0 where Ak is the k-th iteration of the trans-

k=O 
formation A and A0 is the identity. 

(II) If for some (3 E r n-1 , integers k ~ 0 and q ~ 0 a = ( a1 , ••• , an-1 ) can be 
written as 

a=Akf3+z 

where z = (z1 , ..• , Zn-1 ) is a vector with coordinates fulfilling the inequali-
ties 

lz,I ~ 2:(:~·l) ,s = 1, ... ,n -1 

then for all integer P from the interval 2 ::; P ::; q the inequality 

(3.2) 

holds. 
For k = 0, 1, ... we define two sequences Pk and qk of natural numbers and a 
sequence Uk of subsets of Tn- 1 in the following manner. 

We set 
1 1 

Pk= (k + 1 + ((n - l)!)2(n-1) )P1-P 

and let qk be an arbitrary number fitting the inequality 

Pk+ G < qk 

and nk is the union of all open parallelepipedes 

(3.3) 

(3.4) 

where a~ (s = 1, ... ,n -1) are the coordinates of the vector a'= (a~, ... , a~_1 ) = 
Akf3 and f3 is an arbitrary element of the set r n-1· 

Now we set 
00 

n = U nk. 
k=O 

We will show that for this set n theorem 1 is true. Obviously n is open and n 
00 " 

contains U Ak(r n-1 ). Therefore, using (I), we have 
k=O 

mes (Tn-1 \n) = 0. 

Moreover this yields that Tn-l \n is nowhere dense in Tn- 1 . Let us assume that for 
some k a= (ai, ... , an-1 ) E nk. For such an a we set P0 =Pk. The definition of 
nk then tells us that a can be written as a = a' + z, with 

a'= Ak(3, (3 E r n-1 
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and z = (z1 , ... , Zn-1 ) respects the inequalities 
-11-p1 

lz.I < 2:(n- l)' s = 1, .. .,n-1. 
Now (II) implies inequality (3.2) for the polynomial f(x) = a1x + · · · + anxn with 
a= (a1 , ... , an-1 ) E nk and for 2::; P::; qk. From (3.3) and (3.1) we can derive 

1 ISPI ::; (k + 1 + ((n - l)!) 2Cn-l) )Pl-pi :=; pl-p (3.5) 

for qk ~ P ~ Po = Pk. 
Now (3.4) implies the theorem. D 

Next we want to show that the estimates of [5] and [6] of theorem 1 can't be 
improved. Namely, there is no diminishing factor /J,. = p-p, p > 0, estimating Weyl 
sums for all polynomials with irrational main coefficient. 

Definition 3.1. A set is called residual if it contains a countable intersection of 
open and dense sets. 

Remark. Residual subsets of Tn are always dense and the intersection of a count-
able number of residual sets is residual (see f.i. [7]). 

Theorem 2. Let n ~ 2. then there exists a residual subset W in Tn such that for 
a= (a1, ... , an) E W, f(x) = alx + · · · + anxn and arbitrary p > 0 the inequality 

ISPI ::; pl-p 

is violated infinitely often. 

The proof is based on some well-known facts about Weyl-sums (Lemma 1-3) 
which one can find f.i. in [4]. 

Lemma 1. Assume that J( x) = f 1 ( x )+ · · ·+ f 11 ( x) and the fractal parts of fi( x ), i = 
1, ... , s are periodic with mutually relatively prime periods r1 , •.. , r11 • Then 

Lemma 2. Assume that 2a2 and q are relatively prime then: 
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Lemma 3. Assume that a and p are mutually prime and n 2:: 3 then: 

Let us fix n 2:: 2 and consider the sets 

Wm= {a E Tnl3P 2:: m such that ISPI > P1-~} 

where Sp = Sp(a) = E e21ri(a1:z:+··+an:r:n), m E N. Because finite Weyl sums 
:r:=l 

depend continuously on a E Tn, all the sets Wm, m E N are open. 

Lemma 4. Wm,m EN, is dense in Tn. 

Proof. We fix e > 0 and a = (a1, ... , an)· Subject to lemma 2 we select integers 
ai, a2 and q2 with la1l < q2, la2l < q2, q2 - an odd prime number, 

I ai - a 1 I < e and 
q2 

la2 - a2l < e. 
q2 

For 2 < s :::; n we choose an integer as and a - prime to as - prime number 
qs, qs > qs-1 with 

Hence the polynomial f ( x) ~x + !!2.x2 + ~x3 + · · · + ~xn is e-close in the q2 q2 qg q~ 

topology induced from Tn to f(x) = a 1x + · · · + anxn and according to lemma 1-3 

It is easy to see that for k E N 

1sk·q2q:· ... ·q~ I = k 1sq2q:-. .. ·q~ I = k . s. 
Setting q2 • q~ · ... · q;: = q and Pk= kq we can derive 

ISP1cl = ISkql = k. s > (kq)1-~ = p:-~ 
if k > 2;,:1

• Moreover, if P = kq + r, 0:::; r < q and k > 2;,:1 + T then 

ISPI = ISkq+rl > k · S - r > (kq + r)1-~ = p1-~. 

This means a = ( ~, !!a, ~, ..• , ~) belongs to Wm for all m E N, and consequently q2 q2 q3 qn 
all Wm are dense, because of the arbitrary choice of e. D 
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Proof of the theorem: We define 
00 

m=O 

If a point a E Tn belongs to W then it has the property: there are two sequences 
{Pi} and {mz} of natural numbers, such that 

ISPz I > Pz(l- ~z) 

But this gives the statement of theorem 2. D 

Corollary 3.1. The set of vectors a= (a1, ... , an) E Tn with all ai (i = 1, ... ,n) 
irrational and violating 

ISpl < pl-p 

for infinitely many P and arbitrary p > 0 is residual. 

Proof. The set 
W = W n {(S1\Q) x · · · x (S1\Q)} 

n-times 

fits the theorem. the set {(S1 \Q) x · · · x (S1\Q)} is residual and hence by the 
remark following definition 3.1. W is residual itself. D 

4. CONCLUDING REMARKS 

In [4] it is shown, that we can get uniform estimates (not depending on the 
degree of the polynomial) of the Weyl sum ISPI for all large enough P for a set 
of coefficients 3 in Tn-l having full Lebesque measure. Moreover, these estimates 
are depending on the approximability of the vector ( a1 , •.• , an-l) by a certain 
approximation process (see point II). On the other hand the corollary to theorem 
2 shows that the complement of 3 in Tn-l is residual. These facts suggest that a 
more precise description of that approximation process together with a measure-
theoretical and topological analysis of sets related to that process could help to get 
a much better understanding of Weyl sums and related problems. 
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