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Abstract

We rigorously investigate the time monotonicity of Lyapunov functions
for general positive linear evolution problems, including degenerate problems.
This can be done by considering the problem in the convex set of probabil-
ity measures and finding a general inequality for such Radon measures and
Markov operators. For linear evolution problems (with discrete or continuous
time), the existence of time monotone Lyapunov functions is not a conse-
quence of any physical properties, but of the positivity and norm conserva-
tion of the equation. In some special cases the structure of such equations is
given. Moreover, we describe completely the case of time constant Lyapunov
functions – a property of deterministic dynamical systems.

1 Introduction

The time asymptotic of the solution to an evolution equation – the decay towards
their equilibrium solution – is of fundamental interest in applied mathematics and
statistical physics. As usual, a mathematical model is called thermodynamically
consistent if it has a time monotone Lyapunov function, which is interpreted as a
negative entropy. This Lyapunov function (often generated by some convex function)
measures the distance of two solutions. If W1(t) and W2(t) are two solutions of the
problem (with differring initial data), then the Lyapunov functionH(t) = H [W1,W2]
is desired to be bounded and monotone

0 ≤ H(t2) ≤ H(t1), 0 ≤ t1 ≤ t2 . (1)

If we take as one solution the equilibrium solution, then H(t)−→ 0 for t→∞ means
the second law of thermodynamics.

On the other hand, if the solution of the problem can be understood as a probability
(probability density, probability measure, concentration), the equation is physically
sensible if the solution remains positive and normalized for all times. In the present
paper we thoroughly investigate the connection between these two important prop-
erties for general linear evolution problems.

It turns out that the second law of thermodynamics (the time decay of a Lyapunov
function) is not a property of the physical background of the problem, but a con-
sequence of the positivity and norm conservation of the equation. In some sense,
these two properties are equivalent. Moreover, a Lyapunov function can be gener-
ated for any linear equation by a wide class of convex functions – independent of
the equation.
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In the right mathematical setting, the proof of the monotonicity of H(t) is very
simple and transparent, and therefore allows us to describe completely the case
when the Lyapunov function is constant in time: Decreasing and time constant
Lyapunov functions distinguish between random and deterministic problems and
not – as widely believed - between time reversible and irreversible problems.

As an example let us consider the classical Fokker-Planck equation

∂

∂t
W (z, t) = −

n
∑

i=1

∂

∂zi

(

ai(z)W (z, t)
)

+
n

∑

i,j=1

∂2

∂zi∂zj

(

bij(z)W (z, t)
)

(2)

with a positive definite matrix (bij), an initial condition W0(z) = W (z, t) and suit-
able boundary conditions. The Fokker-Planck equation describes the evolution of
the probability density W (z, t) of a Markov process z(t) in phase space Z ⊂ Rn.
The solution has the natural properties W (z, t) ≥ 0 (positivity conservation) and
∫

Z
W (z, t)dz = 1 (norm conservation) for t ≥ 0 if W0 is positive and normalized.

The famous Boltzmann entropy

H(t) = H [W1,W2] =

∫

Z

W2(z, t) log
W2(z, t)

W1(z, t)
dz (3)

is a Lyapunov function for (2), i.e. (1) holds. Indeed, for strong elliptic problems
much more is true:

d

dt
H(t) = −

n
∑

i,j=1

∫

Z

(

W2

W1

∂

∂zi

W2

W1

) (

W2

W1

∂

∂zj

W2

W1

)

bij(z)W1(z, t)dz ≤ −cH(t)

with some constant c > 0. So, the Lyapunov function decreases even exponentially.
Lyapunov functions of the type

H(t) = H [W1,W2] =

∫

Z

W2(z, t)ψ

(

W1(z, t)

W2(z, t)

)

dz (4)

with convex functions ψ(x) for classical Fokker-Planck equations are considered, for
instance, in [2] and [13], assuming that this expression is well defined.

In general, exponential decay of H(t) can not be expected and it is difficult how
to understand (3) or (4) if the solution is zero somewhere. This can happen if the
coefficients ai(z) and/or bij(z) can degenerate and moreover, there can be more than
one equilibrium solution, the solution of (2) can become singular even in finite time,
the solution has finite support or the solution is a probability measure without a
density w.r.t. the Lebesgue measure (or any other). For examples see, e.g., [11].
Therefore, we will look for Lyapunov functions for solutions to most general linear
equations with positive and normalized solutions in the weakest monotonicity sense
(1).

The mathematical framework (chapter 2) will be the space of continuous functions
and its dual, containing probability measures.

2



The outline of the method is the following: Let p and q be two probability mea-
sures, M∗ an operator transforming probability measures to itself – i.e. conserving
positivity and norm – and H [p, q] a suitable functional. We will show an inequality
0 ≤ H [M∗p,M∗q] ≤ H [p, q] (chapter 4) based on a version of Jensen’s inequality
(chapter 3). Then, if p and q are solutions of an equation like (2) at time t1 and
M∗ is a solution operator transforming a solution at time t1 into a solution at time
t2, we will get inequality (1). This result is true for general linear positive evolution
problems with discrete (Markov chains) or continuous time (semigroups) and can
be proved assuming only positivity and norm conservation (chapter 5). In chapter 6
we will describe in some typical situations the class of equations with this property.
The classical Fokker-Planck equation (2) is a very special case of such equations.

2 Notations

In this chapter we give the used notations. All considered objects have a physical
meaning. The typical physical notations are given in italics.

Let Z be a compact (if necessary, suitably compactified) topological Hausdorff space
(space of states), C(Z) the space of continuous real-valued functions on Z (space of
observables) and C∗(Z) (the dual of C(Z)) the space of regular Radon measures on
Borel sets B(Z). 〈g, p〉 with g ∈ C(Z) and p ∈ C∗(Z) is the dual pairing. 1 ∈ C(Z) is
the function 1(z) ≡ 1. C1(Z) is the corresponding one-dimensional subspace. C(Z)
is an algebra by the pointwise multiplication.

C(Z) and C∗(Z) are Banach lattices with the order relations C(Z) 3 g ≥ 0⇐⇒ g(z) ≥
0, ∀ z ∈ Z and C

∗(Z) 3 p ≥ 0 ⇐⇒ p(B) ≥ 0, ∀ B ∈ B(Z). The order relation in
C∗(Z) coincides with the order relation in dual spaces p ≥ 0 ⇐⇒ 〈g, p〉 ≥ 0, ∀ 0 ≤
g ∈ C(Z). Sometimes we write ≥R, ≥C or ≥C∗ to explain in which sense an inequal-
ity is to be understood. Elements g ≥C 0 and p ≥C∗ 0 are called positive. A linear
operator on a Banach lattice is called positive if it conserves positivity. This is in
contrast to the notation of positivity of bilinear forms in Hilbert spaces. The subset
S∗(Z) =

{

p ∈ C∗(Z)
∣

∣ p ≥ 0, ‖p‖ = 1
}

is the set of probability measures (space
of statistical states). L(C) and L(C∗) are the spaces of linear bounded operators. I
and I∗ are the identities, O and O∗ are the zero operators.

Let us recall some properties of the mentioned spaces (see, e.g., [1], [10] and [7]):

S∗(Z) is a convex, weak* compact subset of C∗(Z). Its extremal elements ∂eS
∗(Z)

are the point (or Dirac) measures δz for z ∈ Z: ∂eS
∗(Z) =

{

p ∈ C∗(Z) | ∃z ∈
Z : 〈g, p〉 = g(z), ∀g ∈ C(Z)

}

. We can consider C(Z) as continuous (nonlinear)
functionals on Z. In this sense the embedding Z ←→ ∂eS

∗(Z)−→ S∗(Z) is the
canonical embedding of Z in its bidual. The point functionals are weak* dense in
C∗(Z) and S∗(Z) = conv ∂eS

∗(Z)
∗
. Throughout, we will consider linear operators

(and equations) acting admittedly sometimes on nonlinear sets like S∗(Z).

A deterministic physical problem can be considered in the space of states Z, whereas
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a random problem has to be considered in the space of statistical states S
∗(Z).

Via the bijection Z ←→ ∂eS
∗(Z) the extremal elements (point measures) of all

probability measures can be interpreted as pure states, the others are mixed states.

A solution operator of an evolution problem has to transform probability measures
into probability measures, i.e. these operators have to map S∗(Z) into S∗(Z). This
is the case iff the operator is the adjoint of a Markov operator. A linear, bounded
operator M on C(Z) with M1 = 1 and M ≥ 0 is called Markov operator. The set
of Markov operators M =

{

M ∈ L(C)
∣

∣ M ≥ 0, M1 = 1}

is convex. Its extremal
elements ∂eM can be characterized by one of the following equivalent properties:

M ∈ ∂eM ⇐⇒ M(f · g) = Mf ·Mg (algebra homomorphism)

⇐⇒ M|g| = |Mg| (lattice homomorphism)

⇐⇒ ∃ γ ∈ C(Z,Z) : Mg = g ◦ γ, i.e.
(

Mg
)

(z) = g
(

γ(z)
)

, z ∈ Z

⇐⇒ M∗∂eS
∗ ⊂ ∂eS

∗, i.e. ∀z1 ∈ Z ∃z2 ∈ Z : M∗δz1 = δz2 .

Because of the last property (M∗ maps pure states on pure states) we will call the
extremal elements of Markov operators deterministic Markov operators. Because of
the third property there is a one-to-one correspondence between continuous functions
γ on Z (nonlinear objects) and deterministic Markov operators (linear objects). To
point this out, sometimes we will denote deterministic Markov operators by Mγ

underlying the corresponding continuous function γ. Mγ is invertible iff γ is so (i.e.
γ is a topological automorphism).

Adjoints of Markov operators have the properties M∗ ≥ 0 and ‖M∗‖ = 1. The set
of adjoints of Markov operators M∗ =

{

M∗ ∈ L(C∗)
∣

∣ M ∈M
}

is convex, too.

The connection between the spaces Z and S∗(Z) is illustrated in the following picture.
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From M1 = 1 it follows trivially (because 1 is an eigenvalue) that there is a fixed
point measure µ ∈ C∗(Z) with M∗µ = µ. But even more is true: Since S∗(Z) is a
convex weak* compact set, the Frobenius–Perron–Krein–Rutman theorem tells us
that there is a q0 ∈ S∗(Z) with M∗q0 = q0. If for some γ ∈ C(Z,Z) there exists
z0 ∈ Z with γ(z0) = z0, then of course M∗

γδz0 = δz0 . A general γ ∈ C(Z,Z) does not
necessarily have to have a fixed point, whereas M∗

γ always have. If (Mα)α∈A is a
commuting family of Markov operators, then there exists q0 ∈ S∗(Z) not depending
on α with M∗

αq0 = q0, α ∈ A. This is the Markov–Kakutani theorem (see [4]).

An important role for evolution problems play representations of additive semigroups
on C. A Markov chain (qn)n≥0 is the image of the adjoint P∗n of a representation
Pn of the additive semigroup N in M on a measure q ∈ S

∗(Z): qn = P∗nq. Pn

has the properties P0 = I, Pn+m = PnPm, n,m ∈ N. A Markov semigroup is
a representation T(t) of the additive semigroup R+ in M. It has the properties
T(0) = I, T(t1 + t2) = T(t2)T(t1), t ≥ 0. A Markovian process (q(t))t≥0 is the
image of the adjoint T∗(t) of a Markov semigroup T(t) on a measure q ∈ S∗(Z):
q(t) = T∗(t)q.

Because Z is fixed, we will often omit Z, writing C, S∗ and so on instead of C(Z),
S∗(Z), ...

3 Some variants of Jensen’s inequality

We will consider convex functionals on C(Z) and S∗(Z). For this purpose we use some
variants of Jensen’s inequality. Throughout, F (x) is a real-valued convex function,
defined everywhere on R with values in R̄ = R∪{+∞}. If F (x) is naturally defined
on x ∈ [a, b], we set F (x) = +∞ otherwise. In this sense, an inequality +∞ ≥ c is
allowed. Let us recall the classical Jensen inequality for sequences: Let i = 1, ..., n,
αi ≥ 0 with α1 + ...+ αn = 1. Then, for xi ∈ R, the inequality

∑n

i=1
F (xi)αi ≥ F

(

∑n

i=1
xiαi

)

(5)

holds. Equality holds if F is linear, xi = xj or α1 = 1. The interesting case for us
is the third.

Lemma 1 Let g ∈ C(Z) and p ∈ S∗(Z). Then inequality

〈

F (g), q
〉

≥ F
(

〈g, q〉
)

(6)

holds. Equality holds for q ∈ ∂eS
∗(Z).

Proof: (6) is equivalent to the usual notation
∫

Z
F (g(z))dq(z) ≥ F

( ∫

Z
g(z)dq(z)

)

and a simple consequence of Jensen’s inequality for sequences (5) by the weak*
density of point measures in S∗(Z). The case of equality is obvious.
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Lemma 2 Let g ∈ C(Z), M ∈ M and F (x) be continuously differentiable. Then
inequality

MF (g) ≥ F (Mg) (7)

holds.

Proof: Since F is convex, for x1, x2 ∈ R, we have

F (x2)− F (x1) ≥ F ′(x1)x2 − F
′(x1)x1 .

Setting x2 = g(z2), x1 = (Mg)(z1), z1, z2 ∈ Z, we get the following inequalities in R

and C

F
(

g(z2)
)

−F
(

(Mg)(z1)
)

≥R F ′
(

(Mg)(z1)
)

g(z2)− F
′
(

(Mg)(z1)
)

(Mg)(z1), z1, z2 ∈ Z

F
(

g
)

− F
(

(Mg)(z1)
)1 ≥C F

′
(

(Mg)(z1)
)

g − F ′
(

(Mg)(z1)
)

(Mg)(z1)1, z1 ∈ Z .

Applying M, we get, with M1 = 1,

MF
(

g
)

− F
(

(Mg)(z1)
)1 ≥C F

′
(

(Mg)(z1)
)

Mg − F ′
(

(Mg)(z1)
)

(Mg)(z1)1, z1 ∈ Z ,

and finally for z1 ∈ Z

MF (g)− F (Mg) ≥C F ′(Mg)Mg − F ′(Mg)Mg = 0 .

Corollary 1 Inequality

〈

MF (g), q
〉

≥
〈

F (Mg), q
〉

≥ F
(

〈Mg, q〉
)

, g ∈ C , q ∈ S
∗ , M ∈M (8)

holds.

The Proof of the first inequality follows from (7) and the positivity of q ∈ S∗. The
second inequality follows from (6).

Equality in (7) holds for linear functions F (x) or g = 1. The important third case
of equality we put in a separate

Lemma 3 Let F (x) be strictly convex and M ∈M. Then MF (g) = F (Mg) for all
g ∈ C(Z) iff M ∈ ∂eM.

Proof:

⇐= If M ∈ ∂eM, there is a continuous function γ : Z−→ Z with Mg = g ◦ γ. It
follows

MF (g) = M(F ◦ g) = F ◦ g ◦ γ = F (g ◦ γ) = F (Mg) .

6



=⇒ Let z ∈ Γ and η = M∗δz. Of course, η ∈ S
∗(Γ). We get from MF (g) = F (Mg)

F
(

〈g, η〉
)

= F
(

〈g,M∗δz〉
)

= F
(

〈Mg, δz〉
)

= F (Mg)(z) = (MF (g))(z) =

=
〈

MF (g), δz
〉

=
〈

F (g),M∗δz
〉

=
〈

F (g), η
〉

. (9)

We will show that η ∈ ∂eS
∗(Γ). This means M∗ maps point measures into point

measures and therefore M ∈ ∂eM. Assuming the opposite, η 6∈ ∂eS
∗(Γ). Then η can

be represented as a convex combination, i.e. there are η1, η2 ∈ S∗(Γ) with η1 6= η2

and η = 1
2
η1 + 1

2
η2. We have from inequality (6) that

〈

F (g), η1

〉

≥ F
(

〈g, η1〉
)

,
〈

F (g), η2

〉

≥ F
(

〈g, η2〉
)

. (10)

Using (9) and (10), we get

F

(

1

2
〈g, η1〉+

1

2
〈g, η2〉

)

= F
(

〈g,
1

2
η1 +

1

2
η2〉

)

= F
(

〈g, η〉
)

=
〈

F (g), η
〉

=

=
1

2

〈

F (g), η1

〉

+
1

2

〈

F (g), η2

〉

≥
1

2
F

(

〈g, η1〉
)

+
1

2
F

(

〈g, η2〉
)

,

i.e., with x = 〈g, η1〉 and y = 〈g, η2〉, we get

F

(

1

2
(x+ y)

)

≥
1

2
F (x) +

1

2
F (y) .

But F is strictly convex. Therefore, x = y. It follows that 〈g, η1〉 = 〈g, η2〉, g ∈ C(Z),
hence η1 = η2, a contradiction.

This lemma shows that the equality MF (g) = F (Mg) is a further equivalent char-
acterization of deterministic Markov operators.

Remark:
The results can be extended to arbitrary convex functions by suitable limit processes
using, e.g., the Yoshida approximation Fλ(x) = infy∈R

(

1
2λ

(x− y)2 + F (x)
)

(see [3]).

4 A convex functional on probability measures

We are looking for convex functionals on S∗ × S∗. Formula (3) suggests a convex
function of a quotient of two measures, what, of course, is difficult to understand in
general. A natural convex functional generated by a convex function F : R−→ R and
defined on C × S∗ is

〈

F (g), q
〉

, for g ∈ C and p ∈ S∗. To get from this a functional
on S∗× S∗, we use the Legendre transform. Let p, q ∈ S∗. We define a functional on
the convex set S∗ × S∗ by

H [p, q] = sup
g∈C

(

〈g, p〉 −
〈

F (g), q
〉

)

. (11)

If F (x) = +∞ for x 6∈ [a, b] we take the supremum over the set C[a,b] = {g ∈
C | a1 ≤C g ≤C b1}.
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This functional is well defined, but the supremum is taken over a large set, so it
is not clear whether the functional is +∞ everywhere. We will show that on the
diagonal H [q, q] = F ∗(1), where F ∗(y) = supx∈R

(

xy−F (x)
)

is the convex conjugate
of F (x). To exclude the uninteresting case H ≡ +∞, we will normalize H , setting
F ∗(1) = 0. The following theorem holds:

Theorem 1 Let M ∈M. The functional H [p, q] defined on S∗× S∗ by (11) has the
following properties:

i) (convexity) H is convex on S∗ × S∗ .

ii) (boundedness) H [p, q] ≥ H [q, q] = 0.

iii) (monotonicity) 0 ≤ H [M∗p,M∗q] ≤ H [p, q].

Proof: At first, let us note, that the proof does not change if we take in the following
the supremum over C[a,b] instead of C, because F ∗(y) = supx∈R

(

xy − F (x)
)

=
supx∈[a,b]

(

xy − F (x)
)

, and from a1 ≤C g ≤C b1 we conclude a1 ≤C Mg ≤C b1, thus
MC[a,b] ⊂ C[a,b].

Convexity of H: Let
(

p1

q1

)

∈ S∗ × S∗,
(

p2

q2

)

∈ S∗ × S∗, α1, α2 ≥ 0, α1 + α2 = 1 and
(

p
q

)

= α1

(

p1

q1

)

+ α2

(

p2

q2

)

. From the definition (11) we get

α1H [p1, q1] ≥ α1〈g, p1〉 − α1

〈

F (g), q1
〉

= 〈g, α1p1〉 −
〈

F (g), α1q1
〉

, g ∈ C ,

α2H [p2, q2] ≥ α2〈g, p2〉 − α2

〈

F (g), q2
〉

= 〈g, α2p2〉 −
〈

F (g), α2q2
〉

, g ∈ C

hence, adding this inequalities,

α1H [p1, q1] + α2H [p2, q2] ≥
(

〈g, p〉 −
〈

F (g), q
〉

)

, g ∈ C .

It follows

α1H [p1, q1] + α2H [p2, q2] ≥ sup
g∈C

(

〈g, p〉 −
〈

F (g), q
〉

)

= H [p, q] .

Equality and Boundedness: We have

H [p, q] = sup
g∈C

(

〈q, p〉 −
〈

F (g), q
〉

)

≥ sup
g∈C1

(

〈g, p〉 − 〈F (g), q〉
)

=

= sup
g0∈R

(

g0〈1, p〉 − F (g0)〈1, q〉) = sup
g0∈R

(

g0 − F (g0)
)

= F ∗(1) = 0 .

In particular, H [q, q] ≥ F ∗(1) = 0. On the other hand, we have

F ∗(1) = sup
x∈R

(

x− F (x)
)

≥R x− F (x) , x ∈ R .

Setting x = g(z), g ∈ C, z ∈ Z we get

F ∗(1) ≥R g(z)− F (g(z)) , g ∈ C , z ∈ Z ,

F ∗(1)1 ≥C g − F (g) , g ∈ C ,

F ∗(1) ≥R 〈g, q〉 − 〈F (g), q〉 , g ∈ C , q ∈ S
∗ ,

F ∗(1) ≥R sup
g∈C

(

〈g, q〉 − 〈F (g), q〉
)

= H [q, q] , q ∈ S
∗ .
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Together we can conclude H [p, q] ≥ H [q, q] = F ∗(1) = 0.

Monotonicity: Denoting by R(M) the range of M and using Lemma 2, we get

H [M∗p,M∗q] = sup
g∈C

(

〈g,M∗p〉 −
〈

F (g),M∗q
〉

)

= sup
g∈C

(

〈Mg, p〉 −
〈

MF (g), q
〉

)

≤

≤ sup
g∈C

(

〈Mg, p〉 −
〈

F (Mg), q
〉

)

= sup
h∈R(M)

(

〈h, p〉 −
〈

F (h), q
〉

)

≤

≤ sup
h∈C

(

〈h, p〉 −
〈

F (h), q
〉

)

= H [p, q] .

Together with the boundedness we get

0 ≤ H [M∗p,M∗q] ≤ H [p, q] , p, q ∈ S
∗ , M∗ ∈M

∗ . (12)

Let us point out that equality H [M∗p,M∗q] = H [p, q] holds if

(1) MF (g) = F (Mg), and

(2) R(M) = C(Z),

i.e. by Lemma 3 if M is a deterministic Markov operator with weakly dense range.

To illustrate functional (11), we consider

4.1 Some examples.

Theorem 1 shows that H [q, q] = 0, so H [p, q] is not identical +∞. It is interesting
to describe the subset of S∗ × S∗, where H [p, q] <∞.

1) Let us assume that there exists the Radon-Nikodym derivative of p by q: hp/q =
p

q
RN ∈ L1(dq) . Then we have

H [p, q] = sup
g∈C

(

〈g, p〉 −
〈

F (g), q
〉

)

=

= sup
g∈C

(
∫

Z

g(z)dp(z)−

∫

Z

F
(

g(z)
)

dq(z)

)

=

= sup
g∈C

(∫

Z

hp/q(z)g(z)dq(z)−

∫

Z

F
(

g(z)
)

dq(z)

)

=

= sup
g∈C

∫

Z

(

hp/q(z)g(z)− F
(

g(z)
)

)

dq(z) =

∫

Z

F ∗
(

hp/q(z)
)

dq(z)

because the supremum can be taken pointwise under the integral. If, moreover, q is
differentiable w.r.t. the Lebesgue measure, then so is p. Let Wp(z)dz = dp(z) and
Wq(z)dz = dq(z). Then hp/q(z) = Wp(z)/Wq(z), and functional (11) reads

H [p, q] =

∫

Z

F ∗

(

Wp(z)

Wq(z)

)

Wq(z)dz . (13)
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This is the entropy functional used in [2] and [13]. For F (x) = −1− log(−x), x < 0,
and F (x) = ∞, otherwise, we get F ∗(x) = − log x, x > 0 — Boltzmann’s entropy
(3).

The following example is in some sense opposite:

2) Let A,B ∈ B(Z) be two closed disjunct Borel subsets, p(A) = 1, q(B) = 1 and
F (1) < +∞. Then – because of Z being Hausdorff – for every real c there exists
gc ∈ C with gc(A) = c and gc(B) = 1,

H [p, q] = sup
g∈C

(

〈g, p〉 −
〈

F (g), q
〉

)

≥

≥ sup
gc∈C

(

〈g, p〉 −
〈

F (g), q
〉

)

= sup
c∈R

(c− F (1)) =∞ .

The following example shows that for some F , H is bounded everywhere on S
∗×S

∗.

3) Let −∞ < a < b < ∞ and F (x) = +∞ for x 6∈ [a, b]. Then, F (x) is bounded
from below, F ∗(y) is defined everywhere and infx∈[a,b] F (x) = F ∗(0). From (6) and
g ≤ b for g ∈ C[a,b] follows

H [p, q] = sup
g∈C[a,b]

(

〈g, p〉 −
〈

F (g), q
〉

)

≤ sup
g∈C[a,b]

(

〈g, p〉 − F
(

〈g, q〉
)

)

≤ b− F ∗(0) .

5 Lyapunov functions for evolution problems

If p and q are two solutions of some evolution problem at time t1 and M∗p resp. M∗q
are two solutions of the same problem at time t2 > t1, then inequality (12) gives us
a monotonicity condition of a Lyapunov function of this problem. For discrete times
we get Lyapunov functions for Markov chains, for continuous time we get Lyapunov
functions for Markovian processes, i.e. for positive semigroups on S∗(Z).

5.1 Lyapunov functions for Markov chains

Corollary 2 Let P ∈ M be the generator of a Markov chain. p0, p1, p2, ... and
q0, q1, q2, ... are the corresponding Markov chains with the initial measures p0 and q0,
resp. Then the inequality

0 ≤ H [pn+1, qn+1] ≤ H [pn, qn]

holds.

Proof: Since P is the generator, we have pn+1 = P∗pn and qn+1 = P∗qn. Take in
(12) p = pn, q = qn and M = P, the claim follows.

10



Remark: A Markov chain pn = p(tn) can be considered as a time approximation
of a time continuous problem having Lyapunov functions. If the approximation
p(tn+1) = P∗p(tn) conserves positivity and norm, then by the corollary the time
discrete problem has Lyapunov functions, too. See the example in 6.1 for further
remarks.

5.2 Lyapunov functions for positive semigroups

For continuous time, it is natural to take for M∗ a semigroup T∗(t). If p0 is the
initial value, of some evolution equation and p = p(t1) = T∗(t1)p0 is the solution
at time t1, taking M∗ = T∗(t2 − t1) we get by the semigroup property M∗p =
T∗(t2− t1)T

∗(t1)p0 = T∗(t2)p0 = p(t2) – the solution at time t2, and inequality (12)
reads

0 ≤ H [p(t2), q(t2)] ≤ H [p(t1), q(t1)] . (14)

Now we have to answer the question whether an evolution equation has a semi-
group solution in S∗(Z) and, of course, it is more interesting to characterize these
semigroups by properties of their generators A. For strongly continuous semigroups
T(t) it is well known that g(t) = T(t)g0 is the solution of the equation ġ(t) = Ag(t)
(here and in the following ġ(t) denotes the time derivative). Dealing in C∗(Z), the
problem is that there are no strong or weak continuous semigroups (except those
with bounded generator). Therefore, we can analyze evolution equations in C∗(Z)
only in a weak* sense, starting with continuous semigroups in C(Z) (for continuous
semigroups in Banach spaces and their adjoints, see, e.g., [9]).

Looking for positive semigroups in C∗(Z), we have to look for positive continuous
semigroups in C(Z) at first. There is a necessary and sufficient condition for a
generator of a continuous semigroup to be a generator of a positive one in the space
of continuous functions on compact topological spaces. Following [1], we will say
that an operator A with dense domain D(A) ⊂ C(Z) satisfies the positive minimum
principle, if

(Ag)(z+) ≤ 0, g ∈ D(A) , (15)

where z+ is the point where g contains its maximum: g(z+) = supz∈Z
g(z). A

generator of a continuous semigroup in C(Z) is a generator of a positive continuous
semigroup iff it satisfies (15) (for the proof, see [1]). If additionally A1 = 0, then
the solution g(t) = T(t)g0 of the equation

ġ(t) = Ag(t) (16)

is g(t) = T(t)g0, where T(t) is a semigroup of Markov operators. In probability
theory, equation (16) is called Kolmogorov backwards equation. From a physical
point of view, equation (16) describes the evolution of an observable and therefore
is called Heisenberg representation or Heisenberg picture.
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The adjoint semigroup T∗(t) acts in S
∗(Z). Pairing (16) with some p0 ∈ S

∗(Z), we
get

d

dt

〈

T(t)g0, p0

〉

=
〈

AT(t)g0, p0

〉

, g0 ∈ D(A) .

Since A and T(t) commute, setting p(t) = T∗(t)p0, we get

d

dt

〈

g0, p(t)
〉

=
〈

Ag0, p(t)
〉

, g0 ∈ D(A) . (17)

A∗ exists since D(A) is dense in C(Z), so we can write

d

dt

〈

g0, p(t)
〉

=
〈

g0,A
∗p(t)

〉

, g0 ∈ D(A) ,

i.e. p(t) is the solution with p(0) = p0 of some equation in weak* sense. We will
write this in the following way

ṗ(t)
∗
= A∗p(t), p(0) = p0 . (18)

This is the Kolmogorov forward equation.

In general, it is very difficult to write down A∗ explicitly or even to describe the
domain D(A∗). Therefore, from a practical point of view, it is better to solve
equation (16) and calculate the adjoint T∗(t) than to solve (18).

Now we can state the following

Theorem 2 Let A be a generator of a continuous semigroup satisfying A1 = 0
and the positive minimum principle (15). Then for two initial probability measures
p0, q0 ∈ S∗(Z), for t ≥ 0, the weak* solutions p(t) ⊂ S∗(Z) and q(t) ⊂ S∗(Z) of
equation (18) satisfy for any functional H defined by (11) the inequality

0 ≤ H
[

p(t2), q(t2)
]

≤ H
[

p(t1), q(t1)
]

, t2 ≥ t1 ≥ 0 . (19)

Proof: Since A is a generator of a continuous semigroup satisfying the positive
minimum principle, the unique solution of equation ġ(t) = Ag(t), g(0) = g0 is
given by a positive continuous semigroup T(t): g(t) = T(t)g0. From A1 = 0 and
T(t)g0− g0 =

∫ t

0
Ag0dt, we conclude T(t)1 = 1. Therefore, T(t) ⊂M and the dual

semigroup T∗(t) maps S
∗(Z) into S

∗(Z). From the strong equation ġ(t) = Ag(t), we
get for any p0 ∈ S∗(Z) the weak* equation (18). Now, as mentioned above, taking
two initial data p0, q0 ∈ S∗(Z), we get (19) for the corresponding solutions p(t) and
q(t).

The theorem shows that any linear evolution equation of type (18) conserving pos-
itivity and norm has a large family of Lyapunov functions (11) parameterized by
more or less arbitrary convex functions F . Moreover, the operator A∗ and the
function F do not depend on each other.
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5.3 Time constant Lyapunov functions

We have shown that H(t) is a function monotone in time. Considering semigroups
T∗(t), it is interesting to investigate the case when the functional H [p, q] does not
depend on time. In this case we have

H [p(t), q(t)] = H [p0, q0], t ≥ 0 . (20)

If the problem is time-reversible, i.e. if T−1(t) exists, then T∗(t) is a group and, of
course, (20) holds: If M−1 exists, then M∗−1 is a Markov operator, too, and setting
p := M∗−1p and q := M∗−1q, from H [M∗p,M∗q] ≤ H [p, q] and H [M∗−1p,M∗−1q] ≤
H [p, q], we get H [p, q] ≤ H [M∗p,M∗q] ≤ H [p, q]. But this is not the only case.

A linear operator A in C(Z) is called a derivation (see [1]), if D(A) is a sub-algebra
in C(Z) and A(f · g) = g ·Af + f ·Ag.

Theorem 3 Let A be a generator of a continuous semigroup and a derivation.
Then, for any two solutions p(t) ⊂ S∗(Z) and q(t) ⊂ S∗(Z) of equation ṗ(t) = A∗p(t)
with p(0) = p0 and q(0) = q0, the following identity holds

H
[

p(t), q(t)
]

= H [p0, q0], t ≥ 0 . (21)

Proof:
Since A is a generator of a continuous semigroup T(t), the range of T(t) is dense
in C(Z). Moreover, because A is a derivation, for every t ≥ 0, the operator T(t) is
a deterministic Markov operator (see [1]). Now, by Lemma 3, (21) follows.

5.4 Stationary solutions and solvability in Lp

Since the family T∗(t) commutes, by the Markov–Kakutani theorem, there exists
a q∞ ∈ S∗(Z) with T∗(t)q∞ = q∞. From this we can conclude q∞ ∈ D(A∗) and
A∗q∞ = 0. Now in Theorem 2 we can take q∞ as one solution and get

0 ≤ H [p(t2), q∞] ≤ H [p(t1), q∞] (22)

and

0 ≤ H [q∞, p(t2)] ≤ H [q∞, p(t1)] . (23)

But we can not conclude from this that a solution p(t) tends to q∞. Of course, there

exist a q ∈ S∗(Z) and a subsequence {tk} with ptk
∗
⇀ q, but in general A∗q 6= 0.

Moreover, in general q∞ is not unique. A general result is the following (see [11]):

If p0 ∈ D(A∗) and pt
∗
⇀ q∞, then A∗q∞ = 0 and p∞ = p0 +

∫ ∞

0
T∗(t)A∗p0 dt.

Of interest is whether an equation of type ṗ(t) = A∗p(t) can be solved in a more
customary function space, say Lp.
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Let q∞ ∈ S
∗(Z) be a stationary solution (A∗q∞ = 0) and q0 be such that the Radon-

Nikodym derivative u0 = q0

q∞
RN exists. Taking F (x) = |x|

p

p−1 with some 1 < p <∞,
we get

H [q0, q∞] =

∫

Z

up
0(z)dq∞(z) = ‖u0‖

p
Lp(dq∞) .

Now, from (22) we conclude

0 ≤ H [q(t), q∞] = ‖u(t)‖pLp(dq∞) ≤ H [q(0), q∞] = ‖u0‖
p
Lp(dq∞) .

So, for u0 ∈ Lp(dq∞), the equation u̇(t) = A∗u(t) is solvable in Lp(dq∞). Starting
with an arbitrary q0 ∈ S∗, at some time the solution belongs to Lp(dq∞), i.e. there

is a time t0 with 0 ≤ t0 ≤ ∞ with q(t)
q∞

RN existing for t ≥ t0.

6 Examples

In the following, we will consider special cases of state spaces Z. We have to inves-
tigate the shape of Markov operators, generators of Markov semigroups and their
adjoints.

6.1 The finite dimensional case

The simplest but nevertheless important case is a state space consisting of a finite
number of states: Z = {z1, ..., zn}. Taking the discrete topology, then Z is compact
and Hausdorff and the space of continuous functions on Z is C(Z) = Rn, the n-
dimensional vector space with the max-norm. The dual is C(Z) = R

∗
n, the n-

dimensional vector space with the l1-norm. In this spaces we fixed the canonical
base ei = e∗i , consisting of vectors with 1 at the i-th component and 0 otherwise. 1
is the vector with 1 at every component. S∗(Z) is the (n− 1)-dimensional simplex,
the convex hull of the base. All linear operators are bounded and generators of
strong continuous semigroups. Thus, corresponding evolution equations are valid in
a strong sense.

In the canonical base a Markov operator is a matrix M = (mij) with mij ≥ 0 and
∑n

j=1mij = 1. The adjoint can be written as

M∗=











1−m21 − . . .−mn1 m12 · · · m1n

m21 1−m12 − . . .−mn2 · · · m2n
...

...
. . .

...
mn1 mn2 · · · 1−m1n − . . .−mn−1,n











, mij ≥ 0.

The set of extremal elements ∂eM of M consists of nn matrices with one 1 in each
row. The set of invertible extremal elements consist of n! matrices with one 1 in
each row and each column – the representation of the permutation group on Z.
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A semigroup of adjoints of Markov operators in C
∗(Z) is an operator family T∗(t) =

(ωij(t)) with ωij(t) ≥ 0 and can be written as

T∗(t) =







1− ω21(t)− . . .− ωn1(t) · · · ω1n(t)
...

. . .
...

ωn1(t) · · · 1− ω1n(t)− . . .− ωn−1,n(t)






, ωij(t) ≥ 0.

The ωij(t) are continuously differentiable functions for t ≥ 0. From T∗(0) = I∗

follows ωij(0) = 0 and therefore ω′
ij(0) ≥ 0. Setting aij = ω′

ij(0), we get for the
generator A∗ = T∗′(0)

A∗ =











−a21 − . . .− an1 a12 · · · a1n

a21 −a12 − . . .− an2 · · · a2n
...

...
. . .

...
an1 an2 · · · −a1n − . . .− an−1,n











, aij ≥ 0.(24)

The corresponding evolution equations are

ġi(t) =
(

Ag(t)
)

i
=

n
∑

i6=j=1

aji

(

gi(t)− gj(t)
)

, (25)

ṗj(t) =
(

A∗p(t)
)

j
=

n
∑

j 6=i=1

(

ajipi(t)− aijpj(t)
)

. (26)

If A is a generator of a Markov semigroup, then it must have the form (24). The
reverse is true, too: For some g ∈ C(Z), let j+ be the index of the maximal element:
gj+ = maxi=1,...,n gi, then gi ≤ gj+, for i = 1, ..., n, hence

(

Ag
)

j+
=

n
∑

j+ 6=i=1

aij+(gi − gj+) ≤ 0 .

Thus, A satisfies the positive minimum principle. Moreover, A1 = 0. Hence, A is
the generator of a semigroup of Markov operators.

We can conclude: Every functional (13) is a Lyapunov function for equation (26).

If qi > 0, i = 1, ..., n, the Radon-Nikodym derivative of p by q exists and therefore
for any convex F ∗ : R+−→ R with F ∗(1) = 0, we have the Lyapunov function

H(t) = H [p(t), q(t)] =
n

∑

i=1

qi(t)F
∗

(

pi(t)

qi(t)

)

≥ 0 .

In the finite dimensional case, T∗(t) is strongly continuous, so H(t) is differentiable
and a simple calculation shows (assuming F ∗ continuously differentiable)

d

dt
H(t) = −

n
∑

i,j=1

ajiqj(t)

[

F ∗

(

pj

qj

)

− F ∗

(

pi

qi

)

−

(

pj

qj
−
pi

qi

)

F ∗′

(

pi

qi

)]

≤ 0 .
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The finite dimensional case can be considered as the approximation of a continu-
ous problem. If the approximated problem conserves positivity and norm like the
continuous one, then it has a Lyapunov function like that one.

Now let us consider the case when H(t) is constant in time. This is the case if
T(t) ∈ ∂eM, i.e. T(t) is a continuous representation of the semigroup R+ in ∂eM.
But this is a discrete set. So the only continuous representation is the trivial one
T(t) = I and the only derivation is A = O. This is important for approximation
theory. If we want to approximate the equation ṗ(t) = A∗p(t) with A a derivation
in a finite dimensional space, it is not possible to conserve both positivity and
constant Lyapunov function. Of course, if we discretize the time too, it is possible
to conserve a constant Lyapunov function, because continuous representations of
the discrete semigroup N into the discrete set ∂eM are possible. Note that only the
n! invertible elements have dense range (in finite dimensional space, dense range
means full range).

We can conclude: If Z is finite, a constant Lyapunov function of type (11) is equiv-
alent to reversibility in discrete time.

6.2 A manifold in Rn

Let Z be a compact (if necessary suitably compactified) manifold in Rn. This is the
typical situation for evolution equations like (2). A fully rigorous description of a
generator, satisfying the positive minimum principle, seems to be unknown so far,
but the structure of such operators on inner points is known. It can be shown (see,
e.g., [5, 12]) that a generator of a positive semigroup has the following structure
(g ∈ D(A) is twice continuously differentiable and z is an inner point of Z):

(

Ag
)

(z) =

n
∑

i=1

ai(z)
∂

∂zi
g +

n
∑

i,j=1

bij(z)
∂2

∂zi∂zj
g +

∫

Z

(

g(z′)− g(z)
)

Q(z, dz′) .

Here, ai(z), bij(z) and Q(z, A) ≥ 0 are suitable coefficient functions on Z and Z ×
B(Z), resp., with a nonnegative matrix (bij(z)) (in the sense of bilinear forms in
Hilbert spaces). The integral is to be understood as a principle value integral

∫

Z

(

g(z′)− g(z)
)

Q(z, dz′) = lim
ε→0

∫

Z\Bε(z)

(

g(z′)− g(z)
)

Q(z, dz′)

if Q(z, A) is singular for z ∈ A, where Bε(z) is a ball with radius ε and center at
z. Sometimes, such operators are called Waldenfels operators and can be written
as regularised integral operators, pseudo differential operators or operators with
fractional derivatives (cf. [12, 6, 8]).

So far, necessary and sufficient conditions for the regularity of the coefficients a, b
and Q and a general description of the value of A at the boundary are unknown.
Special cases can be found in [12].
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On the other hand, operators of this kind satisfy the positive minimum principle: If
z+ – the point of the sup of some g(z) ∈ D(A) – is an inner point of Z, then the first
term of (Ag)(z+) is =0 because of ∂

∂zi
g = 0, the second term is ≤ 0, because it is

the trace of the product of a nonnegative matrix (bij(z)) and a non positive definite

symmetric matrix ∂2

∂zi∂zj
g, and the third term is ≤ 0, because of g(z′) ≤ g(z+) and

Q(z+, A) ≥ 0.

Formally, assuming Q(z, dz′) = Q(z, z′)dz′, the adjoint operator A∗ acting on the
derivative of measures w.r.t. the Lebesgue measure W (z, t) = dp(t)/dz can be cal-
culated (in general it is very difficult to describe A∗ rigorously). The corresponding
evolution equation reads as

∂

∂t
W (z, t) = −

n
∑

i=1

∂

∂zi

(

ai(z)W (z, t)
)

+

n
∑

i,j=1

∂2

∂zi∂zj

(

bij(z)W (z, t)
)

+ (27)

+

∫

Z

(

Q(z′, z)W (z′, t)−Q(z, z′)W (z, t)
)

dz′ . (28)

Defining a Lyapunov function H(t) with a twice differentiable convex function, F ∗ :
R+−→ R, F ∗(1) = 0 by

H(t) = H [W1,W2] =

∫

Z

W2(z, t)F
∗

(

W1(z, t)

W2(z, t)

)

dz ≥ 0 ,

we can formally calculate

d

dt
H(t) =−

∫

Z

n
∑

i,j=1

F ∗′′

(

W1(z, t)

W2(z, t)

) (

W2

W1

∂

∂zi

W1

W2

) (

W2

W1

∂

∂zj

W1

W2

)

bij(z)W2(z, t)dz −

−

∫

Z

∫

Z

(

F ∗(θ)− F ∗(θ′)− F ∗′(θ′)(θ − θ′)
)

W2(z)Q(z, z′)dz dz′ ≤ 0 , (29)

with θ = W1(z)
W2(z)

, θ′ = W1(z′)
W2(z′)

.

The classical Fokker-Planck equation (2) is the special case Q ≡ 0 of (28). In
which sense this is a special case can be understood if we write A formally as a
pseudo-differential operator (see, e.g., [11]):

(

Ag
)

(z) =
1

2π

∫

Z

∫

Rn

ei〈λ,z−z′〉α(z, λ)g(z′)dλdz′

with the symbol

α(z, λ) = iλa(z) − |λ|2b(z) +

∫

Z

Q(z, z′)
(

ei〈λ,z−z′〉 − 1
)

dz′

(here 〈·, ·〉 and | · | are the usual Euclidean scalar product and norm in Rn). Real
and imaginary part of the symbol α(z, λ) = α+(z, λ) + iα−(z, λ) are odd and even
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functions of λ, α+(z,−λ) = α+(z, λ), α−(z,−λ) = −α−(z, λ). They have the growth
properties |α−(z, λ)| . |λ| and |α+(z, λ)| . |λ|2 for λ−→∞. So the integral operator

can be understood as a sum of fractional differential operators ∂α

∂zα and ∂β

∂|z|β
with

0 ≤ α < 1 and 0 ≤ β < 2. Such operators for evolution problems investigated in
the last years [6, 8]. The classical Fokker-Planck equation is the limiting case α−→ 1
and β−→ 2 of the integral operator.

Now let us consider the case when H(t) is constant in time. This is the case if T(t) ∈
∂eM, i.e. for every t ≥ 0 , there is a continuous function ϕt with T(t)g = g ◦ ϕt.
From the semigroup property T(t1 +t2) = T(t1)T(t2), we conclude ϕt1+t2 = ϕt2 ◦ϕt1

i.e. ϕt is a continuous semi-flow. This semi-flow is the solution z(t) = ϕt(z(0)) of
some dynamical system

ż1 = Φ1(z1, ..., zn)
· · · · · · ·
żn = Φn(z1, ..., zn)

in Z with a suitable function Φ : Z−→ Z. The corresponding Liouville equation reads

∂

∂t
W (z, t) = −

n
∑

i=1

∂

∂zi

(

Φi(z)W (z, t)
)

.

So, the generator of T(t)

(

Ag
)

(z) =

n
∑

i=1

Φi(z)
∂

∂zi
g(z)

consists only of first derivatives and is a derivation, as expected. H(t) =const can
be formally derived from (29), setting bij ≡ 0 and Q ≡ 0.

From the one-to-one correspondence between deterministic Markov semigroups and
semi-flows we can conclude: For any dynamical system, the Lyapunov function
H(t) = H [p(t), q(t)] is constant in time, where p(t) and q(t) are two solutions of
the corresponding Liouville equation. Of course, a dynamical system has only a
finite number of time-invariant integrals, whereas for the Liouville equation any
function H(t) generated by any convex F (x) is a time-invariant integral. An ar-
bitrary dynamical system does not necessarily have to be time reversible, whereas
the Lyapunov functions of type (11) are always constant in time. Decreasing and
time constant Lyapunov functions distinguish between random and deterministic
problems and not between time-irreversible and time-reversible problems, as may
be expected.
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