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Abstract

This paper is devoted to the analysis of an abstract evolution inclusion with a

non-invertible operator, motivated by problems arising in nonlocal phase separation

modeling. Existence, uniqueness, and long-time behaviour of the solution to the

related Cauchy problem are discussed in detail.

1 Introduction

In this paper we study the evolution inclusion

du

dt
(t) +A[@�(u(t)) +Bu(t)] 3 g(t) in V 0; (1.1)

for t varying in a time interval (0; T ) , where V 0 is the dual of a re
exive Banach space

V , and � is a proper, convex, and lower semicontinuous functional on a Hilbert space H

(in which V is compactly and densely embedded) with values in R [ f+1g ; hence its
subdi�erential @� is maximal monotone on H . The symbol B stands for a continuous

possibly nonlinear operator from H to V . Finally, A is a linear continuous symmetric

operator from V to V 0 with a non-trivial null-space, and g : (0; T ) ! V 0 is a given

function. We will see in Section 3 that the structure of equation (1.1) guarantees that

@�(u)\V is non-empty and so A[@�(u)+B(u)] is well-de�ned. For other types of doubly

nonlinear evolution equations the reader may refer to [9, 10] and the references therein.

The abstract problem (1.1) was inspired by a model of Cahn-Hilliard type for phase

separation in a two-phase system involving nonlocal interactions presented by Gajewski

and Zacharias in [14]. The Cahn-Hilliard model itself goes back to [7] and a fairly complete

review on the recent related literature can be found e. g. in [20].

The authors of [14] consider the system

@u

@t
� div(�rv) = 0; � = �(x;rv; u) = a(x;rv)

f 00(u)
; (1.2)

v = f 0(u) + w; w(x; t) =

Z



K(jx� yj)(1� 2u(y; t)) dy (1.3)

in 
 � (0; T ) , where 
 � Rn is a Lipschitzian domain. The equations are coupled with

the boundary condition

�
@v

@�
= 0 on @
� (0; T ):

Here, the variable u represents the local relative concentration of one of the two phases,

that is, u(x; t) 2 [0; 1] for all admissible x 2 
 and t 2 (0; T ) , v is the chemical potential,
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and f 0; f 00 are the �rst and the second derivatives, respectively, of a given convex function

f (in fact, only the case f(u) = u log u+ (1 � u) log(1� u) is considered). The function

a in the formula for the mobility � and the kernel K are assumed to satisfy appropriate

natural technical hypotheses.

The model is compatible with the general scheme of [6, 8, 15] that consists in

choosing the free energy of the form

F (u) =

Z



n
f(u)(x) + k1(x)u(x)(1� u(x)) +

1

2

Z



K(x; y)ju(x)� u(y)j2 dy
o
dx; (1.4)

with a more general symmetric kernel K of two variables and k1(x) =
R


K(x; y) dy .

Under the hypothesis that the mass 
ux is proportional to the negative gradient of the

external thermodynamic force, we write the mass balance in the form

@u

@t
= �div

n
� �r

�ÆF
Æu

�
[u]
o
+ g: (1.5)

Here, ÆF=Æu stands for the variational derivative of F with respect to u , and g represents

an external source. The results of [14] include the existence and uniqueness of solutions

and a proof that stationary solutions exist in the ! -limit sets of global solutions.

The aim of the present paper is to establish a general Hilbert-space framework for

such situations, where the mobility coeÆcient � can be assumed to be constant (and, in

particular, independent of f 00(u)). This choice has however some justi�cation and it was

followed in a number of contributions for the standard Cahn-Hilliard equation (let us refer

again to [20]), and in particular, it has been recently considered by the authors of the

paper [4] in which a nonlocal Cahn-Hilliard equation is investigatedfor a rather general

class of kernels K . Note that (1.1) �ts with the above model, provided we interpret �A
as the Laplacian with Neumann boundary data, B as the nonlocal integral term in (1.3)

or, more precisely, the integral operator

u 7!
Z



�2K(�; y)u(y) dy;

and � stands for the convex potential

u 7! f(u) + k1(x)u:

In our abstract setting, the null-space of A is allowed to have an arbitrary �nite dimension,

while in [4, 14] or, e. g., [19], it is one-dimensional. We state suÆcient conditions on A ,

B and � which ensure the existence and/or uniqueness of solutions to (1.1) for a suitable

class of data. We also study the long-time behaviour of solutions to (1.1) under more

restrictive assumptions on B and @�. Note that our analysis covers the vectorial case

in which u is replaced by ~u : Q ! R
N , with N � 1, cf. Subsection 2.2. We only point

out that in this case the term
R


[�
R


K(x; y)u(y) dy]u(x) dx in the nonlocal free energy

potential (1.4) can be generalized asZ



�
�Z




K(x; y)~u(y) dy
�
� ~u(x) dx;
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where K is a N � N symmetric and positive de�nite matrix and � denotes the scalar

product in RN .

Also other applications of our theory seem to be relevant. A recent investigation

[12] has been devoted to the Czochralski crystal growth process in a simpli�ed framework,

namely with a constant radius of the crystal and a known 
uid velocity in the liquid. The

model consists of heat equations in the domains of liquid, solid and gas phases, a Stefan

condition at the liquid-solid interface and transmission conditions at the liquid-gas and

solid-gas interfaces. By an enthalpy formulation the problem can be reformulated as a

degenerate parabolic di�erential equation, which in a very simpli�ed version (reminiscent

of the problem studied in [21]) reads

ut ���(u) + v � ru = f

for the enthalpy u in the �xed domain 
 with a monotone function �(u) and the given


uid velocity v , supplemented by boundary conditions
@�(u)

@�
+ n0�(u) = p and v � � = 0

on @
, and initial conditions for u . A weak formulation of the model is presented in [12].

Of course, this model �ts into our framework with obvious de�nition for A (which is now

invertible) and �, while Bu is de�ned as the solution of hA(Bu); zi =
R


uv � rz for all

z 2 V (= H1(
) in this example).

Let us brie
y outline a detailed plan of the paper. Section 2 summarizes the neces-

sary background related to the operators A and @�. We mainly focus on the technique of

estimating the component of the solution in the null-space of A using special properties of

�. In Section 3 we give a precise formulation of the initial value problem for equation (1.1)

and present two existence results which require either the strong monotonicity of @� or

the linearity of B . Uniqueness and continuous dependence on the data are obtained un-

der a general condition which is satis�ed if e. g. B is Lipschitz continuous and @� is

strongly monotone. Section 4 is devoted to the proofs of the above statements. Finally,

in the last Section 5, we present some results on the long-time behaviour of solutions to

this problem provided B is the Fr�echet derivative of a potential 	 satisfying a suitable

growth condition.

2 Preliminaries

In what follows, the symbol H denotes a real Hilbert space endowed with a scalar product

h�; �iH . Let V be a re
exive Banach space densely and compactly embedded into H .

Assuming that H is identi�ed with its dual, we obtain for the dual space V 0 of V that

V � H � V 0 with dense and compact injections. By h�; �i we denote the duality pairing

between V 0 and V , and k � kE stands for the norm in a generic Banach space E . In

particular, we set kuk
H
=
p
hu; uiH for u 2 H , and �x a constant � such that

kvk
H
� � kvk

V
8v 2 V: (2.1)

Note that the injection H � V 0 can be de�ned in such a way that

hu; vi = hu; viH 8u 2 H; 8v 2 V: (2.2)
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2.1 A linear operator with non-trivial kernel

We start with basic hypotheses on the operator A .

Hypothesis 2.1. The map A : V ! V 0 is linear and has the following properties.

(i) There exists a0 > 0 such that kAvkV 0 � a0 kvkV 8v 2 V ;

(ii) hAv;wi = hAw; vi 8v; w 2 V ;

(iii) V0 := N (A) = fv 2 V : Av = 0g is closed in H .

For the sake of completeness, we now state and prove a series of easy auxiliary re-

sults.

Lemma 2.2. Under Hypothesis 2.1, we have that dimV0 < +1 .

Proof. By continuity of A , V0 is a closed in V . Thanks to Hypothesis 2.1 (iii), both

W0 =
�
V0; k�kV

�
and fW0 =

�
V0; k�kH

�
are Banach spaces, and the identity mapping

I : W0 ! fW0 , Iu = u for u 2 V0 is a bounded linear operator of W0 onto fW0 with

trivial null-space. Whence, by the inverse mapping theorem (cf. [22, Thm. 4.1, p. 63]),

I�1 : fW0 ! W0 is continuous, hence the two norms k � kV ; k � kH are equivalent on V0 .

Since V is compactly embedded into H , we conclude that the unit ball in fW0 is compact,

hence dim V0 < +1 .

We de�ne in a standard way the orthogonal projection P0 of H onto V0 for u 2 H
by the formula

w0 = P0u () w0 2 V0; ku�w0kH = minfku� wk
H
; w 2 V0g (2.3)

() hu� w0; wiH = 0 8w 2 V0:

Set now H1 := V ?
0 = fu 2 H : hu;w0iH = 0 8w0 2 V0g = (I�P0)H . Then V1 = V \H1

is closed in V and every element v 2 V (as element of H ) can be decomposed in a unique

way into the sum v = v0 + v1 with v0 2 V0 and v1 2 V1 . In view of Hypothesis 2.1 (ii),

for all v;w 2 V with v = v0 + v1 , w = w0 + w1 , we have

hAv;wi = hAv1; w1i;

hence A maps V into the space

V 0
� := fy 2 V 0 : hy;w0i = 0 8w0 2 V0g: (2.4)

Moreover, we have the following

Lemma 2.3. The space V 0
� de�ned by (2.4) is isomorphic to the dual space V 0

1 of V1 .

Proof. For y 2 V 0
1 and v 2 V , we de�ne y� 2 V 0

� by the formula hy�; vi = y(v1) referring

to the decomposition v = v0+v1 with v0 2 V0 and v1 2 V1 . The correspondence between
y and y� is one-to-one and, by de�nition of the dual norm k � kV 0

1
, we have the inequality

kykV 0
1
� ky�kV 0 :
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To prove a reverse inequality, we notice that for all v 2 V we have kvk2
H
= kv0k2H+kv1k2H ,

hence kv0kH � kvkH . But, due to Lemma 2.2, all the norms in V0 are equivalent, hence

there exists a positive constant � such that

kv0kV � �kv0kH 8v0 2 V0; (2.5)

consequently (cf. also (2.1))

kv1kV � kvkV + kv0kV � (1 + ��)kvkV 8v 2 V:

Then, for y� 2 V 0
� and v1 2 V1 , we de�ne y 2 V 0

1 by the formula y(v1) = hy�; v1i which
yields

ky�kV 0 = sup
kvkV�1

jhy�; v1ij � sup
kv1kV �1+��

jy(v1)j = (1 + ��)kykV 0
1
;

hence V 0
� and V 0

1 are isomorphic.

The next lemma explores the structure of V 0 .

Lemma 2.4. The space V 0 is isomorphic to the direct sum V 0
� � V0 .

Proof. For v 2 V , y� 2 V 0
� , and w0 2 V0 , we de�ne y 2 V 0 by the formula

hy; vi = hy�; vi + hw0; viH ;

which yields

kykV 0 � ky�kV 0 + �kw0kH :
Conversely, for y 2 V 0 we use the Riesz representation theorem to �nd w0 2 V0 such that

hy; v0i = hw0; v0iH 8v0 2 V0:

Then kw0k2H = hy;w0i � kykV 0kw0kV , and (2.5) implies that kw0kH � �kykV 0 . Putting,
for v 2 V ,

hy�; vi = hy; vi � hw0; viH ;
we obtain y� 2 V 0

� and ky�kV 0 � (1 + ��)kykV 0 . Thus, the proof is complete.

Let us observe that the restriction of the operator A to V1 is continuous from V1
to V 0

1 and its null-space is trivial. We now make an additional coercivity hypothesis on

the operator A , namely

Hypothesis 2.5. There exists 
A > 0 such that hAv1; v1i � 
Akv1k2V for all v1 2 V1 .

Under Hypothesis 2.5, we can de�ne the scalar product

hv;wi
A
:= hAv1; w1i + hv0; w0iH (2.6)

referring to the decomposition v = v0+v1 , w = w0+w1 with v0; w0 2 V0 and v1; w1 2 V1 .
Note that (2.6) generates in V a norm equivalent to k�kV ; which will be used from now on.

Moreover, (2.6) transforms V into a Hilbert space with V1 as the orthogonal complement

of V0 .

The following lemma immediately follows from the Riesz representation theorem

and the inverse mapping theorem.
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Lemma 2.6. For every y1 2 V 0
1 there exists a unique v1 2 V1 such that y1 = Av1 and

the mapping A�1 : V 0
1 ! V1 is continuous.

Similarly as in (2.6), the scalar product

hv0; w0i
A�1

:=


v01; A

�1w01
�
+ hv0; w0iH (2.7)

referring to the decomposition v0 = v0+v
0
1 , w

0 = w0+w
0
1 with v0; w0 2 V0 and v1; w1 2 V 0

1

generates in V 0 a norm equivalent to k � kV 0 which will be used in the sequel. With this

choice of the norms in V and V 0 , we have(
kAvk2

V 0
= hAv; (I � P0)vi = k(I � P0)vk2V 8v 2 V;

kA�1w0k2
V

= hA�1w0; w0i = kw0k2
V 0

8w0 2 V 0
1 :

(2.8)

2.2 The functional �

The symbol @� in (1.1) represents the subdi�erential of a proper convex lower semicon-

tinuous mapping � : H ! R[f+1g. By Dom(�), Dom(@�) we denote the domains of

� and @�, respectively. If dimH <1 , then Dom(�) = Dom(@�), otherwise Dom(@�)

is in general only a dense subset of Dom(�), see [2, Ch. 4, Thm. 3.11, p. 192] (actually,

to check that the two domains do not necessarily coincide, it suÆces to consider H = `2

and �(x) =
P1

k=1 kx
2
k
). For every u 2 Dom(@�), the set @�(u) is convex and closed,

and we denote by m(@�(u)) its element with minimal norm.

Before stating precise hypotheses on �, we brie
y recall the notion of the Yosida

approximation, see [2, 3, 5] for proofs.

Proposition 2.7. For " > 0 and u 2 H de�ne

�"(u) = min
z2H

n 1

2"
ku� zk2

H
+ �(z)

o
: (2.9)

Then �" is convex, Fr�echet-di�erentiable in H , and its subdi�erential @�"(u) contains

a unique element D�"(u) for every u 2 H , where D denotes the Fr�echet derivative.

Moreover, the so-called resolvent J" of @� , de�ned as

J" = (I + " @�)�1; (2.10)

where I : H ! H is the identity, is non-expansive in H; the mapping D�" : H ! H is

monotone and Lipschitz continuous, and has for every u 2 H the properties

D�"(u) =
1

"
(u� J"u) 2 @�(J"u) 8" > 0; (2.11)

u 2 Dom(@�) )
� kD�"(u)�m(@�(u))k

H
! 0

kD�"(u)kH % km(@�(u))k
H

as "& 0; (2.12)

�"(u) =
"

2
kD�"uk2H + �(J"u) 8" > 0; (2.13)

�"(u)% �(u) as "& 0: (2.14)

6



In the sequel we require the following hypothesis, which in particular implies that

0 2 Dom(@�).

Hypothesis 2.8. There exist two constants C� > 0 , C 0
� � 0 and two Banach spaces

X;Y such that

(i) the inequality

�(u) � C�kuk2H �C 0
� holds for all u 2 H; (2.15)

(ii) X � H � Y � V0 with continuous injections; moreover, for some constants

a; b; c; r > 0 we have

w 2 Y; kwk
Y
� a )

8><>:
w 2 Dom(@�);

k�k
Y
� b 8� 2 @�(w);

kD�"(w)kY � b 8" > 0;

(2.16)

as well as

rk� � �kX � h� � �;w � uiH + c (2.17)

for every w 2 Y such that kwk
Y
� a and every u 2 Dom(@�) , for all selections

� 2 @�(w) and � 2 @�(u) .

Hypothesis 2.8 looks rather technical and we illustrate now its meaning by con-

sidering a special case which occurs frequently in PDE's, namely H = L2(
;RN) , X =

L1(
;RN) , V0 � Y = L1(
;RN) , where 
 � Rn is an open bounded domain, and n;N

are integers. Let ' : RN ! R[f+1g be a proper convex lower semicontinuous mapping,

and for u 2 H set

�(u) =

8<:
Z



'(u(x)) dx if '(u) 2 L1(
);

+1 otherwise.

(2.18)

We will systematically use the easy relation stated below (see, e.g., [5, Ex. 2.3.3,

p. 25] and [3, Ex. 3, p. 61]). Let us report the proof for the reader's convenience.

Lemma 2.9. For u 2 Dom(@�) and � 2 @�(u) we have �(x) 2 @'(x) for a.e. x 2 
 .

Conversely, let u 2 H be such that u(x) 2 Dom(') = Dom(@') for a.e. x 2 
 , and for

each admissible x 2 
 put �(x) = m(@'(u(x))) . Then � is measurable, and if � 2 H ,

then u 2 Dom(@�) and � = m(@�(u)) .

Proof. Every � 2 @�(u) satis�es the inequality

h�; v � uiH � �(v)� �(u) 8v 2 H: (2.19)

Choosing any v0 2 Dom(') and any measurable set 
0 � 
, we may put v(x) = v0 for

x 2 
0 , v(x) = u(x) for x 2 
 n 
0 . Then, it is not diÆcult to obtain from (2.19) that

�(x) � (v0 � u(x)) � '(v0)� '(u(x)) for a.e. x 2 
; 8v0 2 RN; (2.20)
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where \ �" denotes the scalar product in RN , and the �rst assertion follows. Conversely,

if u 2 H , x 2 
, and �(x) = m(@'(u(x))) , then �(x) is the pointwise limit of the

Yosida approximations D'"(u(x)) as " & 0. By Proposition 2.7, the functions D'"
are Lipschitz continuous, hence D'"(u(�)) 2 H for all " > 0, and we conclude that �

is measurable. If moreover � 2 H , then (2.20) and the fact that ' is bounded from

below by an aÆne function entail that u 2 Dom(@�). Finally, every � 2 @�(u) satis�es
j�(x)j � j�(x)j for a.e. x 2 
, hence � = m(@�(u)) and the proof is complete.

Proposition 2.10. Assume that there exist positive constants c'; c
0
'
; a0; b0; c0; d0; r0 such

that

'(z) � c'jzj2 � c0
'

8z 2 RN; (2.21)

jzj � a0 + d0 =) z 2 Dom('); j�j � b0 8� 2 @'(z); (2.22)

jyj � a0; jy � zj � d0; z 2 Dom(') =)
r0j� � �j � (� � �) � (y � z) + c0 8� 2 @'(y); 8� 2 @'(z): (2.23)

Then the functional � de�ned by (2.18) satis�es Hypothesis 2.8.

Proof. Inequality (2.15) follows immediately from (2.21). To prove (2.16), set a = a0

and consider w 2 Y such that jw(x)j � a for a.e. x 2 
. By Lemma 2.9 we have

@�(w) 6= ; , and each � 2 @�(w) satis�es �(x) 2 @'(w(x)) , hence j�(x)j � b0 for

a.e. x 2 
. For " > 0 set �" = D�"(w) , w" = J"(w) . Then �"(x) 2 @'(w"(x)) and

w"(x) + "�"(x) = w(x) for a.e. x 2 
, hence

� "�"(x) � (�"(x)� �(x)) = (�"(x)� �(x)) � (w"(x)� w(x)) � 0

and we easily conclude that j�"(x)j � j�(x)j � b0 for a.e. x 2 
. We thus checked

(2.16) for b = b0 .

It remains to prove (2.17). Keeping a = a0 , b = b0 , consider w 2 Y , kwk
Y
� a

and u 2 Dom(@�), and let � 2 @�(w) , � 2 @�(u) be arbitrary. We have, as before,

�(x) 2 @'(w(x)) , �(x) 2 @'(u(x)) for a.e. x 2 
. Set


+ = fx 2 
 ; ju(x)� w(x)j � d0g; 
� = 
 n 
+: (2.24)

By (2.23) we infer

r0j�(x) � �(x)j � (�(x)� �(x)) � (w(x)� u(x)) + c0 for a.e. x 2 
+ . (2.25)

Using the fact that (�(x)� �(x)) � (w(x)� u(x)) � 0 for a.e. x 2 
, we obtain that

r0
Z

+

j�(x)� �(x)j dx � h� � �;w � uiH + c0j
+j:

On the other hand, for x 2 
� we have jw(x)j � a0 , ju(x)j � a0 + d0 , hence j�(x)j � b0 ,

j�(x)j � b0 by virtue of (2.22). This yields thatZ

�

j�(x)� �(x)j dx � 2b0j
�j: (2.26)
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Combining the above inequalities, we obtain

r0 k� � �k
X
� h� � �; u�wiH + c0j
+j+ 2r0b0j
�j;

which is precisely (2.17) with r = r0 and c = j
jmax
�
c0; 2r0b0

	
.

We now give a hint how to check conditions (2.22){(2.23) in concrete situations.

If M stands for a symmetric positive de�nite matrix, then the function 'M (z) = Mz �
z; z 2 RN , as well as its small and smooth perturbations, provide the most canonical

example. Furthermore, if '1 , '2 ful�l the above conditions, then so does any combination

k1'1+k2'2 with k1; k2 � 0. The case N = 1 is particularly easy: then every convex lower

semicontinuous function ' : R! R[ f+1g with [�a0 � d0; a0 + d0] � Dom(') satis�es

(2.22){(2.23). Another example which typically arises in applications is the subject of the

following statement.

Proposition 2.11. Let Z � RN be a convex closed set containing in its interior the ball

fz 2 RN ; jzj � a0+ d0g , and let IZ be the indicator function of Z , that is, IZ(z) = 0 for

z 2 Z , IZ(z) = +1 if z =2 Z . Then ' = IZ satis�es conditions (2.22){(2.23).

Proof. Condition (2.22) is automatically ful�lled with b0 = 0. Consider now y; z 2 Z ,

jyj � a0 , jy � zj � d0 . Then @'(y) = f0g and � � (z � v) � 0 for each � 2 @'(z) and

v 2 Z . There is nothing to prove if � = 0; otherwise we put

v = y +
d0

j�j� 2 Z;

and obtain d0j�j � � � (z � y) . This corresponds to (2.23) with r0 = d0 and c0 = 0.

Remark 2.12. Conditions (2.22){(2.23) formalize and generalize the special case N = 1

and Z = [�1; 1] considered by Kenmochi, Niezg�odka, and Pawlow in [19]. There, the

authors devise an argument leading to an a priori estimate for the V0 -component of the

solution u(t) to the Cahn-Hilliard equation with constraint (see [19, Lemma 5.2]). In The-

orem 2.14 below we show a counterpart of this technique adapted to our situation. Before,

we prove that conditions (2.15){(2.17) are stable with respect to Yosida approximations.

Proposition 2.13. Let � satisfy Hypothesis 2.8. Then there exists �" > 0 such that the

Yosida approximations �" of � for " 2 (0; �") have the following properties.

(i) There exist two constants Ĉ� > 0 and Ĉ 0
� � 0 such that

�"(u) � Ĉ�kuk2H � Ĉ 0
� 8u 2 H and " 2 (0; �"); (2.27)

(ii) There exists a constant â > 0 such that

w 2 Y; kwk
Y
� â ) kD�"(w)kY � b 8" 2 (0; �"); (2.28)

and for every w 2 Y such that kwk
Y
� â and every u 2 H we have

rkD�"(w)�D�"(u)kX � hD�"(w)�D�"(u); w � uiH + c: (2.29)
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Proof. By (2.13) and (2.15) we have

�"(z) �
1

2"
kz � J"(z)k2H + C� kJ"(z)k2H �C 0

� � C�

1 + 2"C�

kzk2
H
�C 0

�;

hence (2.27) is veri�ed for Ĉ� = C�=(1 + 2�"C�) and Ĉ 0
� = C 0

� . Indeed, (2.28) is a

particular case of (2.16) with any â � a . To prove (2.29), set â = a=2, �" = a=(2b) ,

and consider arbitrary elements u 2 H and w 2 Y , with kwk
Y
� â. For " 2 (0; �") put

w" = J"(w) , u" = J"(u) . Then, by (2.11) we have D�"(w) 2 @�(w") , D�"(u) 2 @�(u") ,
w" + "D�"(w) = w , hence kw"kY � kwk

Y
+ " kD�"(w)kY � a . Using (2.17) for w" and

u" , we immediately obtain (2.29).

We are now ready to state and prove the main result of this section.

Theorem 2.14. Let � satisfy Hypothesis 2.8, and let �" be as in Proposition 2.13. Then

there exist positive constants a�; b�; r�;m� such that for every u 2 H such that kP0ukH �
a� we have

r� kP0�kH � (k(I � P0)�kH + b�) (k(I � P0)ukH +m�) + c; (2.30)

r� kP0D�"(u)kH � (k(I � P0)D�"(u)kH + b�) (k(I � P0)ukH +m�) + c (2.31)

for all � 2 @�(u) and " 2 (0; �") .

Proof. We �x positive constants 
i , i = 1; : : : ; 4, such that


1 kvkX � kvk
H

8v 2 H; kvk
H
� 
2 kvkY 8v 2 Y;


3 kwkX � kwkH � 
4 kwkY 8w 2 V0:
Consider â as in Proposition 2.13, and set a� = 
4â. Let u 2 H satisfy kP0ukH � a� .

We have P0u 2 V0 , hence kP0ukY � â � a . Since the proof is essentially the same for

both inequalities (2.30) and (2.31), we restrict ourselves to show the latter. From (2.29)

it results that

r kD�"(u)�D�"(P0u)kX � hD�"(u)�D�"(P0u); (I � P0)uiH + c; (2.32)

where (cf. (2.28))

jhD�"(u)�D�"(P0u); (I � P0)uiH j

= jh(I � P0)(D�"(u)�D�"(P0u)); (I � P0)uiH j

� (k(I � P0)D�"(u)kH + kD�"(P0u)kH) k(I � P0)ukH
� (k(I � P0)D�"(u)kH + 
2b) k(I � P0)ukH 8" 2 (0; �"):

In addition, observe that

1


3
kP0D�"(u)kH � kP0D�"(u)kX
� k(I � P0)D�"(u)kX + kD�"(u)�D�"(P0u)kX + kD�"(P0u)kX
� kD�"(u)�D�"(P0u)kX +

1


1
(k(I � P0)D�"(u)kH + 
2b) (2.33)

for all " 2 (0; �") . Combining (2.33) with (2.32), we thus obtain (2.31) for r� = r=
3 ,

b� = 
2b , and m� = r=
1 .

10



3 Main results

In this section, the main results of the paper are stated under the following hypotheses

on the data.

Hypothesis 3.1. Let Hypotheses 2.1, 2.5, 2.8 hold and assume that

(i) the operator B maps continuously H into V and there exists a constant b0 > 0

such that

kBzkV � b0
�
1 + kzkH

�
8z 2 H; (3.1)

(ii) elements g 2 L2(0; T ;V 0
�) and u0 2 Dom(�) are given such that kP0u0kH � a� ,

where a� is as in Theorem 2.14.

We now state our initial value problem.

Problem (P). For every �xed T > 0, �nd u 2 H1(0; T ;V 0) \ L1(0; T ;H) such that

�(u) 2 W 1;1(0; T ) and there exist v; � 2 L2(0; T ;V ) satisfying

u0(t) +Av(t) = g(t) in V 0; for a.e. t 2 (0; T ); (3.2)

v(t) = �(t) +Bu(t) in V; for a.e. t 2 (0; T ); (3.3)

u(t) 2 Dom(@�); �(t) 2 @�(u(t)) for a.e. t 2 (0; T ); (3.4)

u(0) = u0 in H: (3.5)

In (3.2) we use the symbol (�)0 to denote the time derivative d(�)=dt .
Remark 3.2. As u 2 H1(0; T ;V 0) \ L1(0; T ;H) , it turns out that u is weakly contin-

uous from [0; T ] to H , hence the initial condition (3.5) makes sense. Furthermore, the

argument below (see Proposition 4.2) shows that our notion of solution automatically

yields the additional smoothness property �(u) 2 W 1;1(0; T ) .

The existence results read as follows.

Theorem 3.3. Under Hypothesis 3.1, let moreover @� be strongly monotone, i.e., there

is a positive constant C 00
� such that

hw1 � w2; z1 � z2iH � C 00
�kz1 � z2k2H 8zi 2 Dom(@�); wi 2 @�(zi); i = 1; 2: (3.6)

Then there exists at least one solution u of Problem (P).

Theorem 3.4. Let Hypothesis 3.1 hold and assume that the operator B de�ned by (3.1)

satis�es the further condition

B is linear. (3.7)

Then there exists at least one solution u of Problem (P).

Remark 3.5. Note that u0(t) 2 V 0
1
�= V 0

� for a.e. t 2 (0; T ) (cf. Lemma 2.3). In fact, as

a consequence of Hypotheses 2.1 and 3.1 (ii), if we take w0 2 V0 , we have
hu0(t); w0i = � hAv(t); w0i+ hg(t); w0i = �hAw0; v(t)i = 0

for a.e. t 2 (0; T ) . In particular, it follows that every solution of (3.2){(3.5) satis�es

P0u(t) = P0u0 for all t 2 [0; T ] .

11



With an additional assumption on the sum of B and @�, we prove a continuous

dependence result in following form.

Theorem 3.6. Let Hypothesis 3.1 hold and assume that there is a positive constant 


such that

hz1 � z2; w1 � w2iH + hz1 � z2; Bz1 �Bz2i � � 
kz1 � z2k2V 0 (3.8)

for all zi 2 Dom(@�) and wi 2 @�(zi) , i = 1; 2 . Take two sets of data fu0i; gig , i = 1; 2 ,

satisfying Hypothesis 3.1 (ii) and suppose that u1 and u2 are two respective solutions to

Problem (P). Then, there exists a positive constant Ccd , depending in particular on 
 ,

T , kgikL2(0;T ;V 0) , �(u0i) , and ku0ikV 0 for i = 1; 2 , such that

ku1� u2kC0([0;T ];V 0) � Ccd

�
ku01� u02kV 0 + kg1� g2kL1(0;T ;V 0)+ kP0(u01�u02)k1=2H

�
: (3.9)

In particular, Problem (P) has at most one solution for each admissible set of data.

Remark 3.7. Note that in the case where (3.6) holds and the operator B : H ! V is

Lipschitz continuous for some positive constant L , that is,

kBu1 �Bu2kV � L ku1 � u2kH 8u1; u2 2 H; (3.10)

then the solution of Problem (P) ensured by Theorem 3.3 is unique. Indeed, (3.10)

implies

� hz1 � z2; Bz1�Bz2i �
C 00
�

2
kz1 � z2k2H +

L2

2C 00
�

kz1 � z2k2V 0 8z1; z2 2 H;

so that (3.8) follows from (3.6). Besides, let us point out that (3.8) holds true also

when the mapping @� is only monotone (and not strongly monotone as in (3.6)), and

B is the restriction to H of a Lipschitz continuous operator from V 0 to V (think, for

instance, to some linear mapping B which regularizes its argument). Hence (cf. (3.7)),

the last framework could be partly combined with Theorem 3.4 to investigate existence

and uniqueness of the solution in some situations.

Remark 3.8. In view of Hypothesis 3.1 (i), note that (3.7) entails (3.10). Anyhow,

we point out that linear integral operators mentioned in the Introduction are natural

prototypes of operators B satisfying the various conditions.

The proofs of the above results are contained in Section 4. We conclude this

section by showing a simple example of non-existence for Problem (P), in the case

where Hypothesis 3.1 (ii) is violated.

Example 3.9. Non-existence of solutions.

We show here that the existence result for Problem (P) does not hold if Hypothe-

sis 3.1 (ii) on the initial size of P0u0 is removed. Consider the problem in R2�
_u1(t)

_u2(t)

�
+A

�
v1(t)

v2(t)

�
=

�
_f (t)

0

�
; (3.11)

�
v1(t)

v2(t)

�
2 @�

�
u1(t)

u2(t)

�
; (3.12)
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where � is the indicator function of the bounded closed convex set K � R
2 de�ned

below, f 2 W 1;2(0; T ) is a given function, and the data are�
u1(0)

u2(0)

�
=

�
u01
u02

�
2 K; (3.13)

A =

�
1 0

0 0

�
; K = conv

�
B1

�
�1
0

�
[ B1

�
1

0

��
; (3.14)

where Br(x) denotes the ball centered at x 2 R2 with radius r > 0 and conv (S) denotes

the convex hull of the set S , see Figure 1.

�x1

x2

�a a
�1 1

0

1

�1

u02 �

f (t)

�

f (t)

n

n

v2(t)

u01

K

Figure 1: An illustration to Example 3.9.

System (3.11){(3.12) can be written in the form

_u1(t) + v1(t) = _f(t); (3.15)

u2(t) = u02; (3.16)�
u1(t)

u02

�
2 K; (3.17)��

v1(t)

v2(t)

�
;

�
u1(t)

u02

�
�
�
x1
x2

��
� 0 8

�
x1
x2

�
2 K : (3.18)

Set

K1 =

�
z 2 R ;

�
z

u02

�
2 K

�
:

We may choose x2 = u02 in (3.18) and obtain

u1(t) 2 K1; (3.19)�
_f (t)� _u1(t)

�
(u1(t)� x1) � 0 8x1 2 K1 : (3.20)
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Relation (3.19){(3.20) is nothing but the de�nition of the stop operator with input f ,

output u1 , and characteristic K1 . Let us consider now the special case

u02 = 1; _f(t) = 1 for t 2 [0; T ]; T � 2 : (3.21)

Then, it results that K1 = [�1; 1] and u1(t) = minfu01+ t; 1g for t 2 [0; T ] . In particular,

for t > 1 � u01 we have u1(t) = 1, _u1(t) = 0 and consequently v1(t) = 1. According

to (3.18), we have to �nd v2(t) in such a way that

�
1

v2(t)

�
belongs to the outward

normal cone NK

�
1

1

�
to K at the point

�
1

1

�
. However, this is not possible, since

NK

�
1

1

�
contains only non-negative multiples of the vector

�
0

1

�
. Hence, we see that

Problem (3.11){(3.12) with data (3.21) does not even have a local solution if u01 = 1. On

the other hand, such a function v2(t) can always be found if ju02j < 1 in agreement with

Theorem 3.4, see Figure 1.

4 Proofs

This section is devoted to the proofs of the existence and uniqueness results stated in

Section 3. We use a standard technique based on approximations, a priori estimates, and

passage to the limit.

In the sequel, we will denote by C any positive constant which depends on the data

of the problem and may vary from line to line; the dependence on T will be accounted

for by writing C(T ) .

4.1 Approximation

Keeping the notation from Proposition 2.13 and Theorem 2.14, we state for " 2 (0; �") the

following problem.

Problem (P)". For �xed T > 0 and " 2 (0; �") , �nd a function u" 2 H1(��"; T ;H) such

that for t 2 (0; T ) we have

u0
"
(t) +A("u0

"
(t) + v"(t)) = g(t); (4.1)

v"(t) = �"(t) +Bu"(t� "); (4.2)

�"(t) = D�"(u"(t)); (4.3)

and for t 2 [��"; 0] the function u" satis�es the (initial) condition

u"(t) = u0: (4.4)

Lemma 4.1. Under Hypothesis 3.1, for each " 2 (0; �") Problem (P)" has a unique

solution u" with the prescribed regularity and such that

P0u"(t) = P0u0 8t 2 [��"; T ]: (4.5)
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Proof. Arguing as in Remark 3.5, we see that every solution u" of Problem (P)"
satis�es hu0

"
(t); w0i = 0 for all w0 2 V0 , hence P0u

0
"
(t) = 0 for a.e. t 2 (0; T ) , and

consequently (4.5) holds. Equation (4.1) is therefore equivalent to

u0
"
(t) = (A�1 + "I)�1

�
A�1g(t)� (I � P0)v"(t)

�
for a.e. t 2 (0; T ): (4.6)

Note that the mapping G" = �(A�1+"I)�1(I�P0)D�" : H ! H is Lipschitz continuous.

Indeed, D�" is Lipschitz continuous by Proposition 2.7; moreover, by virtue of (2.2) and

(2.8) we have

kuk2
V 0
+ " kuk2

H
= h(A�1 + "I)u; uiH 8u 2 H1: (4.7)

As the left hand side of (4.7) is the square of an equivalent norm in H1 , it turns out

that (A�1 + "I)�1 is a linear continuous operator on H1 . Let us consider equation (4.6)

coupled with (4.2){(4.4) consecutively on intervals [(k � 1)"; k"] for k = 1; 2; : : : until

k" � T . For each �xed k , it can be written as a �xed point problem of the form

u"(t) = u"((k � 1)") +

Z
t

(k�1)"

�
G"(u"(s)) + hk

"
(s)
�
ds for t 2 [(k � 1)"; k"] (4.8)

with a given hk
"
2 L2((k � 1)"; k" ; H) , namely

hk
"
(t) := (A�1 + "I)�1

�
A�1g(t)� (I � P0)Bu"(t� ")

�
; t 2 [0; T ]:

Then, the integral equation (4.8) admits a unique solution in C0([(k � 1)"; k"];H) by

virtue of, e.g., the Contraction Mapping Principle. After a �nite number of steps we

construct a unique solution on [��"; T ] .

4.2 A priori estimates

We test (4.1) by A�1(u0
"
(�)) and integrate over (0; t) for some t 2 (0; T ) . Using (3.1) and

(2.8) we obtainZ
t

0

ku0
"
(s)k2

V 0
ds + "

Z
t

0

ku0
"
(s)k2

H
ds + �"(u"(t))� �"(u0)

= �
Z

t

0

hu0
"
(s); Bu"(s� ")ids +

Z
t

0

hg(s); A�1u0
"
(s)i ds

� b20

Z
t�"

�"

�
1 + ku"(s)kH

�2
ds +

1

2

Z
t

0

ku0
"
(s)k2

V 0
ds +

Z
t

0

kg(s)k2
V 0
ds: (4.9)

Inequality (2.14) yields

�"(u0) � �(u0); (4.10)

and from (4.9) combined with (2.27) it follows that

1

2

Z
t

0

ku0
"
(s)k2

V 0
ds+ "

Z
t

0

ku0
"
(s)k2

H
ds + Ĉ� ku"(t)k2H

� C(T )

�
1 +

Z
t

0

ku"(s)k2H ds

�
: (4.11)
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Applying the Gronwall lemma to (4.11) leads to the estimate

ku0
"
kL2(0;T ;V 0) + ku"kL1(0;T ;H)+

p
" ku0

"
kL2(0;T ;H) � C(T ): (4.12)

Hence, from (4.9) and (2.27) we further deduce that

j�"(u"(t))j � C(T ) 8t 2 [0; T ]: (4.13)

Finally, thanks to (2.8), by a comparison in (4.1) we infer that

k(I � P0)("u
0
"
+ v")k2L2(0;T ;V ) � 2

�
ku0

"
k2
L2(0;T ;V 0) + kgk2L2(0;T ;V 0

�
)

�
� C(T ): (4.14)

We now use Theorem 2.14 to estimate the quantity kP0("u
0
"
+ v")kL2(0;T ;V ) . Set p"(t) :=

"u0
"
(t) +Bu"(t� ") and observe that (3.1) and (4.12) enable us to check that

kp"kL2(0;T ;H) � "ku0
"
kL2(0;T ;H)+ T 1=2C(1 + ku"kL1(0;T ;H)) � C(T ): (4.15)

From (4.2) and (4.14){(4.15) it follows in particular that

k(I � P0)�"kL2(0;T ;H) � C(T ): (4.16)

Hypothesis 3.1 (ii) and equation (4.5) entail kP0u"(t)kH � a� for all t 2 [0; T ] , hence we

may use (2.31) and (4.12) to derive the bounds

r� kP0�"(t)kH � (k(I � P0)�"(t)kH + b�) (k(I � P0)u"(t)kH +m�) + c

� C(T ) (1 + k(I � P0)�"(t)kH) (4.17)

for all t 2 [0; T ] . In addition, we have

kP0("u
0
"
+ v")kL2(0;T ;V ) � � kP0(�" + p")kL2(0;T ;H) � C(T ) (4.18)

as a direct consequence of (2.5) and (4.15){(4.17). Thus, in view of (4.14){(4.18), we

obtain the estimate

k"u0
"
+ v"kL2(0;T ;V ) + k�"kL2(0;T ;H) � C(T ): (4.19)

We �nally exploit (4.13) which, in combination with (2.13) and (2.15), yields

kJ"u"kL1(0;T ;H)+
p
"k�"kL1(0;T ;H) � C(T ): (4.20)

4.3 Passage to the limit

Our aim now is to obtain a solution to Problem (P) by passing to the limit in Problem

(P)" as "& 0. We start with convergences which are independent of the special assump-

tions (3.6) and (3.7), and then distinguish the two cases corresponding to Theorems 3.3

and 3.4.
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From (4.12) and (4.19){(4.20) it follows that, up to the extraction of some subse-

quence of " as "& 0, there exist four functions u; v; �; w : (0; T )! H such that, putting

u(t) = u0 for t 2 [��"; 0), we have

u" ! u weakly star in H1(��"; T ;V 0) \ L1(��"; T ;H)

and strongly in C0([��"; T ];V 0); (4.21)

"u" ! 0 strongly in H1(0; T ;H); (4.22)

"�" ! 0 strongly in C0([0; T ];H); (4.23)

�" ! � weakly in L2(0; T ;H); (4.24)

J"u" ! u weakly star in L1(0; T ;H)

and strongly in C0([0; T ];V 0); (4.25)

"u0
"
+ v" ! v weakly in L2(0; T ;V ); (4.26)

Bu"(� � ")! w weakly star in L1(0; T ;V ); (4.27)

u"(� � ")! u strongly in C0([0; T ];V 0)

and weakly star in L1(0; T ;H) (4.28)

as "& 0. Note that the strong convergence in (4.21) is a consequence of the generalized

Ascoli theorem (see, e.g., [23, Cor. 8, p. 90]). We also point out that (4.23) follows from

(4.20) and the fact that �" 2 C0([0; T ];H) , while (4.25) results from (4.21), (4.23), and

the formula (cf. (2.11)) u" = J"u" + "�" , for " 2 (0; �") , We obtain (4.27) directly from

(3.1) and (4.12). Since u(� � ")! u strongly in C0([0; T ];V 0) , (4.28) follows from (4.21).

Passing to the weak limit in L2(0; T ;V 0) in (4.1) and in L2(0; T ;H) in (4.2), we

obtain from the above convergences that (3.2) holds and v = � + w . As a consequence

of (4.26){(4.27) we deduce � 2 L2(0; T ;V ) . Furthermore, thanks to (4.3) and (2.11), for

every measurable subset E � (0; T ) , every z 2 Dom(@�) and every � 2 @�(z) we have

that Z
T

0

h�"(t)� �; J"u"(t)� ziH �E(t) dt � 0; (4.29)

where �E is the characteristic function of E . Using (2.2), the identity

h�"(t); J"u"(t))iH
= hJ"u"(t); "u0"(t) + v"(t)i � hJ"u"(t); "u0"(t)iH � hJ"u"(t); Bu"(t� ")i ; (4.30)

and the convergences (4.22), (4.25){(4.27), we can pass to the limit in (4.29) and conclude

that there exists a set M � (0; T ) of zero measure such that

h�(t) � �; u(t)� ziH � 0 8t 2 (0; T ) nM; 8z 2 Dom(@�); 8� 2 @�(z): (4.31)

As the multivalued mapping z 7! @�(z) is maximal monotone (cf. [2, Ch. 6, Sec. 7]), it

turns out that (3.4) holds.

The absolute continuity of �(u) is a consequence of the following chain rule formula.

Proposition 4.2. Let � : H ! R [ f+1g be a proper convex lower semicontinuous

mapping, and let u 2 L2(0; T ;H) be such that u0 2 L2(0; T ;V 0) , � 2 L2(0; T ;V ) ,

and �(t) 2 @�(u(t)) for a.e. t 2 (0; T ) . Then the function  = �(u(�)) is absolutely

continuous in [0; T ] and  0(t) = hu0(t); �(t)i for a.e. t 2 (0; T ) .
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Proof. For each v 2 H we have

hv � u(t); �(t)i � �(v)� �(u(t)); for a.e. t 2 (0; T ):

Since � is bounded from below by an aÆne function, we conclude that  2 L1(0; T ) .

Let now w 2 W 1;1(0; T ) be a non-negative function with compact support in (0; T ) . We

choose h > 0 such that supp(w) � [h; T � h]. For a.e. t 2 [h; T ] there holds

hu(t)� u(t� h); �(t � h)i �  (t)�  (t� h) � hu(t)� u(t� h); �(t)i :

Observe that we can extend w outside of (0; T ) with the 0 value. Hence, multiplying by

w(t) , integrating with respect to t , and letting h& 0, we obtain

1

h

Z
T

h

hu(t)� u(t� h); �(t� h)iw(t)dt = 1

h

Z
T�h

0

hu(t+ h)� u(t); �(t)iw(t+ h)dt

!
Z

T

0

hu0(t); �(t)iw(t)dt;

1

h

Z
T

h

( (t)�  (t� h))w(t)dt =
1

h

Z
T

0

 (t)(w(t)� w(t+ h))dt

! �
Z

T

0

 (t)w0(t)dt;

1

h

Z
T

h

hu(t)� u(t� h); �(t)iw(t)dt!
Z

T

0

hu0(t); �(t)iw(t)dt:

Therefore, we conclude that

�
Z

T

0

 (t)w0(t)dt =

Z
T

0

h�(t); u0(t)iw(t)dt

for all non-negative Lipschitz continuous test functions w with compact support. Since

both the positive and the negative part of a Lipschitz continuous function are Lipschitz

continuous, we obtain the assertion.

In order to establish the existence of solutions to Problem (P), it remains to

prove that w = Bu . The argument is di�erent in each of the two cases corresponding to

Theorems 3.3 and 3.4.

Proof of Theorem 3.3. Let (3.6) hold. We test the di�erence of the equations (4.1)

written for two di�erent indices "; "0 by A�1(u" � u"0)(t) 2 V1 and integrate over (0; T ) .

With the help of (2.2) and (2.8), we �nd

1

2
k(u" � u"0)(T )k2V 0 +

Z
T

0

h�"(s)� �"0(s); u"(s)� u"0(s)iH ds

� �
Z

T

0

h"u0
"
(s)� "0u0

"0
(s); u"(s)� u"0(s)iH ds

�
Z

T

0

h(u" � u"0)(s); Bu"(s� ")�Bu"0(s� "0)i ds: (4.32)
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Note that the right hand side of (4.32) tends to 0 as "; "0 ! 0 because of the weak star

(or strong) against strong convergence in (4.21){(4.22) and (4.27). The term which has

to be estimated from below is (we omit the arguments (s) for simplicity)Z
T

0

h�" � �"0 ; u" � u"0iH ds

=

Z
T

0

h�" � �"0; J"u" � J"0u"0iH ds+
Z

T

0

h�" � �"0 ; "�" � "0�"0iH ds

� C 00
� kJ"u" � J"0u"0k2L2(0;T ;H)+

Z
T

0

h�" � �"0 ; "�" � "0�"0iH ds:

Here, we have used (4.3), (2.11) and hypothesis (3.6). Note that the last integral tends

to 0 again due to weak against strong convergences in (4.23){(4.24). Then, in view of

(4.25), we conclude that

J"u" ! u strongly in L2(0; T ;H); (4.33)

from which we also deduce

u" ! u strongly in L2(0; T ;H): (4.34)

It is known that (see, e.g., [11, Thm. III.3.6]) convergence (4.34) is equivalent to the

convergence in measure of u" to u plus the 2-uniform integrability of u" . Then, it is

not diÆcult to check that continuity of B and (3.1) imply the same properties for the

sequence Bu" , referring now to the space L2(0; T ;V ) . Hence, we have that

Bu" ! Bu strongly in L2(0; T ;V ); (4.35)

from which, by the continuity of the translation operator in L2(0; T ;V ) , it follows

Bu"(� � ")! Bu = w strongly in L2(0; T ;V ): (4.36)

This concludes the proof of Theorem 3.3.

Proof of Theorem 3.4. Suppose now the validity of (3.7). As B : H ! V is linear

and bounded, it is clear that B generates a linear bounded operator from L1(0; T ;H)

to L1(0; T ;V ) , so that

Bu"(� � ")! Bu weakly star in L1(0; T ;V ); (4.37)

and the proof is complete.

4.4 Continuous dependence

This subsection is devoted to the proof of Theorem 3.6. We start with an auxiliary

boundedness result for the solutions of Problem (P).
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Lemma 4.3. There exists a function S : R3 ! (0;+1) , non-decreasing with respect to

each of the variables, such that every solution to Problem (P) satis�es the estimateZ
t

0

�
ku0(s)k2

V 0
+ k�(s)k2

V

�
ds+ �(u(t))

� S
�
T; kgkL2(0;T ;V 0);�(u0)

�
8t 2 [0; T ] : (4.38)

Proof. We argue as in Subsection 4.2. The estimate for ku0kV 0 and �(u) is obtained

directly by testing equation (3.2) by A�1u0 and using Proposition 4.2. The estimate for

k(I � P0)�kV follows from (3.3), and inequality (2.30) yields the assertion.

Proof of Theorem 3.6. Let u1; u2 be two solutions to Problem (P) corresponding

to the sets of data fu0i; gig , with �i 2 @�(ui) , i = 1; 2. Set �u = u1 � u2 , �� = �1 � �2 ,

�g = g1 � g2 , �u0 = u01 � u02 . We then have

�u0(t) +A(��(t) +Bu1(t)�Bu2(t)) = �g(t) : (4.39)

We test equation (4.39) by A�1(�u(t) � P0(�u0)) . After integration over (0; t) we obtain

the estimate

1

2
k�u(t)� P0(�u0)k2V 0 � �

Z
t

0

�
h�u; ��iH + h�u;Bu1 �Bu2i

�
ds

+ kP0(�u0)kH
Z

t

0

(k�1kH + k�2kH + kBu1kH + kBu2kH) ds

+
1

2
k(I � P0)�u0k2V 0 +

Z
t

0

k�gkV 0k�ukV 0 ds :

As k�u(t)k2
V 0
� 2kP0(�u0)k2V 0 � 2k�u(t) � P0(�u0)k2V 0 , it turns out that inequality (3.9) fol-

lows from (3.8), (3.1), (2.15), Lemma 4.3, if one applies a generalized Gronwall lemma

(combine, for instance, the two versions reported in [5, pp. 156{157]).

5 Long-time behaviour

If g 2 L2(0; T ;V 0
�) for all T > 0, then the above existence theorems allow us to construct

a solution u : [0;+1) ! H , i.e., to build up trajectories of solutions on the hal
ine

[0;+1) . Indeed, having a solution on [0; T ] for some T > 0, we can use Proposition 4.2

and Remark 3.5 to conclude that u(T ) 2 Dom(�) and kP0u(T )kH = kP0u0kH � a� . This

enables us to start again with the new initial datum u(T ) to solve the problem in the

interval [T; 2T ] , and so on. It thus makes sense to investigate the long-time behaviour of

the solutions u to Problem (P) given by Theorems 3.3{3.4.

In this framework, we have to make an additional assumption about the operator

B in (3.1): we ask B to be the Fr�echet derivative of a potential 	 with growth controlled

by �.
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Hypothesis 5.1. Let Hypothesis 3.1 hold and assume that there exists a functional 	 :

H ! R and two constants # 2 [0; 1) and C	 � 0 such that

Bz = D	(z) ; (5.1)

	(z) � �#�(z)�C	 (5.2)

for all z 2 H , where D	 denotes again the Fr�echet derivative of 	 .

First, we derive uniform bounds with respect to time for solutions toProblem (P).

Theorem 5.2. Assume that Hypothesis 5.1 and either (3.6) or (3.7) hold. Moreover, let

the datum g in Hypothesis 3.1 (ii) be de�ned on (0;+1) and ful�l

g 2 L1(0;+1;V 0
�); g0 2 L1(0;+1;V 0

�): (5.3)

Then, there exist a solution u : (0;+1)! H to Problem (P) and a positive constant

Cs such that

E(t) :=
Z

t

0

ku0(s)k2
V 0
ds+ ku(t)k2

H
+ �(u(t)) + C 0

� � Cs 8t > 0; (5.4)

with Cs depending only on C�; C
0
� , # , C	 , ku0kH , �(u0) , 	(u0) , kA�1gkL1(0;+1;H) ,

and kA�1g0kL1(0;+1;H) . Moreover, for every T > 0 there holds

kvkL2(t;t+T ;V ) � C(T ) for all t � 0; (5.5)

for some constant C(T ) which depends in particular on Cs , kgkL1(0;+1;V 0
�
) , and T .

Remark 5.3. The constant C 0
� has been included into the left-hand side of (5.4) in order

that E be non-negative by virtue of (2.15). Equivalently, in view of (5.1){(5.2) we could

have considered the natural non-negative Lyapunov functional

E0(t) :=
Z

t

0

ku0(s)k2
V 0
ds + �(u(t)) + 	(u(t)) + (1� #)C 0

� + C	

associated with the autonomous case (g � 0) of Problem (P).

Proof of Theorem 5.2. As noticed at the beginning of this section, Theorems 3.3 { 3.4

ensure that a global solution exists on the hal
ine [0;+1) . We test (3.2) by A�1u0(t) ,

exploit (3.3){(3.4) and Proposition 4.2, integrate with respect to t , and �nd out thatZ
t

0

ku0(s)k2
V 0
ds+ �(u(t))� �(u0) +

Z
t

0

hu0(s); Bu(s)i ds

=

Z
t

0

hg(s); A�1u0(s)i ds: (5.6)

Now, let us make use of the chain rule formulaZ
t

0

hu0(s); Bu(s)i ds = 	(u(t))�	(u0) (5.7)
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which is obvious if u0 2 L2(0; T ;H) and t < T (see, e.g., [1, pp. 9{12] for de�nitions

and basic properties of Fr�echet derivatives). Since in the general case we just know that

u0 2 L2(0; T ;V 0) for all T > 0, we can proceed as follows. Let JA : V ! V 0 be the Riesz

operator de�ned by the scalar product in (2.6), i.e., hJAv;wi := hv;wiA for all v;w 2 V ,

and for " 2 (0; 1) consider the singular perturbations u" of u de�ned as the solutions to

the equation

u"(t) + "JAu"(t) = u(t) : t 2 (0; T ):

Formula (5.7) is valid for u" instead of u . Moreover, one can check that ku"(t)kH �
ku(t)kH for all " 2 (0; 1) and u"(t) ! u(t) in H as " & 0, for every t 2 [0; T ] (cf.

Remark 3.2). On the other hand, we also have ku0
"
(t)kV 0 � ku0(t)kV 0 for a.e. t 2 (0; T )

and u0
"
! u0 strongly in L2(0; T ;V 0) . Hence, passing to the limit and using the continuity

of B : H ! V and 	 : H ! R , we obtain (5.7).

In the subsequent calculation we use the assumptions (2.15) on � and (5.1){

(5.2) on 	 to obtain

�(u(t))� �(u0) + 	(u(t))�	(u0) � (1 � #)�(u(t))� C	 � �(u0)�	(u0)

� 1� #

2
C�ku(t)k2H +

1� #

2
�(u(t))� C 0

� � C	 � �(u0)�	(u0): (5.8)

Next, we estimate the integral on the right hand side of (5.6). By C1; C2 : : : we denote

suitable positive constants depending only on C� , C
0
� , # , C	 , �(u0) , 	(u0) , ku0kH ,

and kA�1gkL1(0;+1;H) , at most. Using the symmetry properties of A�1 and integrating

by parts in time, we deduceZ
t

0

hg(s); A�1u0(s)ids = �
Z

t

0

hu(s); A�1g0(s)iHds+ hu(t); A�1g(t)iH � hu0; A�1g(0)iH

�
Z

t

0

ku(s)kHkA�1g0(s)kH ds+ ku(t)kHkA�1g(t)kH + ku0kHkA�1g(0)kH

�
Z

t

0

ku(s)kHkA�1g0(s)kH ds+
1 � #

4
C�ku(t)k2H + C1 : (5.9)

Then, combining (5.6) and (5.8){(5.9), we get the inequalityZ
t

0

ku0(s)k2
V 0
ds+

1 � #

4
C�ku(t)k2H +

1 � #

2
�(u(t))

� C2 +

Z
t

0

k(A�1g)0(s)kHku(s)kH ds : (5.10)

Now, recalling the de�nition of E in (5.4), we can rewrite (5.10) as

E(t) � C3 + C4

Z
t

0

k(A�1g)0(s)kH
p
E(s) ds

Finally, by applying a variation of the Gronwall lemma (cf., e.g., [5, Lemme A5, p. 157]),

we obtain p
E(t) �

p
C3 +

C4

2

Z
t

0

k(A�1g)0(s)kH ds � C5 ; (5.11)
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whence the estimate in (5.4) follows immediately. At this point, it remains to prove (5.5).

From (2.8), (3.2), (5.3), Remark 3.5, and (5.11) it follows thatZ
t+T

t

k(I � P0)v(s)k2V ds =

Z
t+T

t

kAv(s)k2
V 0
ds

� 2

Z
t+T

0

ku0(s)k2
V 0
ds+

Z
t+T

t

2 kg(s)k2
V 0
ds � 2

�
Cs + Tkgk2

L1(0;1;V 0
�
)

�
: (5.12)

Similarly as in Subsection 4.2, we use (2.30) and (5.3){(5.4) to obtain

kP0�(s)kH � C (1 + k(I � P0)�(s)kH) for s 2 [t; t+ T ] : (5.13)

Hence, owing to (2.5), (3.3), and (5.4), for s 2 [t; t+ T ] we deduce that

kP0v(s)kV � C (kP0�(s)kH + kBu(s)kH)
� C (1 + k(I � P0)�(s)kH + kBu(s)kV )
� C (1 + k(I � P0)v(s)kH + kBu(s)kV ) � C (1 + k(I � P0)v(s)kV ) ; (5.14)

and consequently (5.5) follows from (5.12). This concludes the proof of Theorem 5.2.

With the intention of investigating the long-time behaviour of solutions to Prob-

lem (P), we de�ne the ! -limit set !(u) of the single trajectory u in V 0 by

!(u) =

(
u1 2 V 0 : there exists a sequence of times tn % +1

such that u(tn) converges to u1 strongly in V 0

)
: (5.15)

Remark 5.4. Note that in the case where Problem (P) has a unique solution (cf. The-

orem 3.6 and Remark 3.7), the trajectory u : (0;+1) ! H is uniquely determined by

the initial datum u0 so that, in this case, !(u) can be replaced by !(u0) .

The main result of this section can be stated as follows.

Theorem 5.5. Under the same assumptions as in Theorem 5.2, let u : (0;+1)! H be

a solution to Problem (P). Then, the ! -limit set !(u) is a nonempty, compact, and

connected subset of V 0 . Moreover, if u1 2 !(u) , then

u1 2 H; P0u1 = P0u0; (5.16)

and there exists a selection �1 2 @�(u1) \ V such that

A(�1 +Bu1) = g1 in V 0; (5.17)

where g1 denotes the limit, as t% +1 , of g(t) in V 0
� , existing by virtue of (5.3).

Proof. We �rst note that, thanks to the estimate (5.4) (cf. also Remark 3.2) the set

fu(t); t � 0g is bounded in H and relatively compact in V 0 . Therefore, the set !(u) is a

nonempty compact subset of V 0 . Actually, !(u) is also connected, due to the continuity of

u from [0;+1) to V 0 and to a standard argument from the theory of dynamical systems
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(see, e.g., [17, p. 12]). Then, let u1 2 !(u) and take a strictly increasing sequence

ftngn2N of positive real numbers such that tn % +1 as n% +1 and

u(tn)! u1 weakly in H and strongly in V 0: (5.18)

In addition, for every integer n � 1, we de�ne the functions un(t) := u(tn + t) , vn(t) :=

v(tn + t) , �n(t) := �(tn + t) , and gn(t) := g(tn + t) , t � 0. We are interested in studying

the limiting behaviour of the above sequences as n % +1 in some �nite time interval

[0; T ] . Hence, for a �xed T > 0 let us rewrite here Problem (P) at the time (t+ tn) in

terms of the new unknowns un; vn; �n and data gn , i.e.,

u0
n
(t) +Avn(t) = gn(t) in V 0; for a.e. t 2 (0; T ); (5.19)

vn(t) = �n(t) +Bun(t) in V; for a.e. t 2 (0; T ); (5.20)

un(t) 2 Dom(@�); �n(t) 2 @�(un(t)) for a.e. t 2 (0; T ); (5.21)

un(0) = u(tn) in H : (5.22)

In view of (5.3), let us point out that

gn ! g1 = g(0) +

Z +1

0

g(t)dt strongly in L1(0; T ;V 0) as n% +1 (5.23)

because of

kgn � g1kL1(0;T ;V 0) �
Z

T

0

Z +1

tn+t

kg0(s)kV 0 ds dt � Tkg0kL1(tn;+1;V 0) & 0: (5.24)

As a consequence of Theorem 5.2, we derive some estimates for un , vn , and �n , uniform

with respect to n � 1. Since u0 2 L2(0;+1;V 0) by (5.4), we infer that

ku0
n
kL2(0;T ;V 0) � ku0kL2(tn;+1;V 0) & 0 as n% +1: (5.25)

Moreover, by virtue of (5.4) and (3.1) we have

kunkL1(0;T ;H)+ kBunkL1(0;T ;V ) � C (5.26)

and consequently, thanks to (5.5) and by comparison in (5.20), we get

kvnkL2(0;T ;V ) + k�nkL2(0;T ;V ) � C(T ) (5.27)

for every n 2 N . Hence, by standard compactness arguments we deduce the existence

of functions �u; �w; �v; �� : (0; T ) ! H such that, possibly taking a subsequence of n as

n% +1 , the convergences

un ! �u strongly in H1(0; T ;V 0) and weakly star in L1(0; T ;H) (5.28)

Bun ! �w weakly star in L1(0; T ;V ) (5.29)

vn ! �v and �n ! �� weakly in L2(0; T ;V ) (5.30)

hold as n % +1 . Concerning (5.28), we point out that the boundedness proper-

ties in (5.25) and (5.26) allow us to see (as for (4.21)) that un ! �u weakly star in
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H1(0; T ;V 0) \ L1(0; T ;H) and strongly in C0([0; T ];V 0) , but the fact that u0
n
! 0

strongly in L2(0; T ;V 0) (cf. again (5.25)) yield (5.28) and, in addition, �u0 = 0. Then,

the function �u does not depend on t; besides, (5.22) and (5.18) imply that �u = u1 .

Moreover, as P0u(t) = P0u0 for all t � 0 (cf. Remark 3.5), (5.16) follows easily.

As a next step, we check that

��(t) 2 @�(u1) for a.e. t 2 (0; T ) : (5.31)

Indeed, as un ! u1 strongly in L2(0; T ;V 0) and �n ! �� weakly in L2(0; T ;V ) (cf. (5.28)

and (5.30)), we may repeat the argument from Subsection 4.3 and infer, as a counterpart

to (4.31), that

h��(t)� �; u1 � ziH � 0 a.e. in (0; T ) ; 8z 2 Dom(@�); 8� 2 @�(z): (5.32)

Since @� is maximal monotone, we obtain the assertion.

It remains to check that �w = Bu1 . To this aim, we have to distinguish between

the two cases in which either (3.6) or (3.7) holds.

Case @� strongly monotone. Take two di�erent integers n and n0 and test the

di�erence of equations (5.19) written for n; n0 by A�1(un�un0) . Note that this is possible
since (un�un0)(t) = u(tn+t)�u(tn0+t) 2 V 0

� for all t � 0. Then, integrating the resulting

equation over (0; T ) , with the help of (5.20), (3.6), and (5.22) we obtain

1

2
k(un � un0)(T )k2V 0 + C 00

�kun � un0k2L2(0;T ;H) �
1

2
k(u(tn)� u(tn0)k2V 0

+

Z
T

0

hun � un0;�(Bun �Bun0) +A�1(gn � gn0)idt : (5.33)

Owing to (5.18), (5.28){(5.29), and (5.23), the right hand side of (5.33) tends to 0 as

n% +1 : in particular, note the strong convergence of fun � un0g to 0 in L1(0; T ;V 0)

against the boundedness of f�(Bun �Bun0) +A�1(gn � gn0)g in L1(0; T ;V ) . Hence, we

infer that

un ! u1 strongly in L2(0; T ;H) (5.34)

as n% +1 . Moreover, arguing as in (4.34){(4.35), we also derive

Bun ! Bu1 strongly in L2(0; T ;V ); (5.35)

whence (cf. (5.29)) Bu1 = �w .

Case B linear. If (3.7) holds, then the equality Bu1 = �w is a straightforward conse-

quence of the weak star convergence un ! u1 in L1(0; T ;H) in (5.28) and the linearity

of B .

Therefore, thanks to the established convergences, passing to the limit as n % 1 in

(5.19){(5.20), we �nd out that

A�v(t) = g1 and �v(t) = ��(t) +Bu1 for a.e. t 2 (0; T ): (5.36)

It suÆces now to select any t 2 (0; T ) such that ��(t) 2 @�(u1) in H by virtue of (5.31),

and set �1 := ��(t) . Then, (5.17) results from (5.36) and Theorem 5.5 is completely

proved.
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Remark 5.6. Let us note that for the proof of Theorem 5.5 we did not use the bound

for j�(u(t))j contained in (5.4), but it is always interesting to have it, because for some

potential � such bound may give further information on the long-time behaviour of the

solution u . For instance, if the domain of � is as in Proposition 2.11 and the set Z used

there is bounded in RN , then weak star convergence in L1 can be inferred for fu(tn)g
and fung in the respective space and space-time domains.
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