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Abstract

We consider the nonlinear initial-boundary value problem governing the dynamical

displacements of a one dimensional solid body with speci�c stress-strain law. This con-

stitutive law results from the modelization of the mechanisms that rules the electrically

activated mechanical behaviour of cardiac muscle �bers at the microscopic level. We

prove global existence and uniqueness of solutions and we study their asymptotic be-

haviour in time. In particular we show that under vanishing external forcing solutions

asymptotically converge to an equilibrium.

Introduction

In this paper we study the wellposedness for a system of partial di�erential equations governing

the dynamical displacements of a �ber, a one-dimensional solid body that mimics the muscle

�bers contained in the heart. The mathematical analysis of this system is intended to be a

�rst step towards the analysis of some of the models used recently to represent the mechanical

behavior of the heart (see e.g. [12, 3]). Following A.V. Hill's rheological scheme for striated

muscles [9, 8] (see also [6]), the constitutive law of the �ber is chosen as follow: an active

contractile element, in series with a linear elastic passive element,modelizes the transformation

of biochemical energy into mechanical work during activation and a passive, nonlinear elastic

element is added in parallel to represent the relaxed muscle.

The contractile element model considered here has been proposed in [2]. As most other models

of the cardiac muscle contraction, it is based on the \sliding �lament hypothesis" introduced

by A.F. Huxley in [13] and extended in [10, 11]. In these models, the tension between actin

and myosin �laments in the sarcomeres of striated muscles is the sum of the tensions in the

cross-bridges, the chemical links between actin and myosin. It is a function of the cross-bridge

deformation distribution that depends on the rates at which cross-bridges fasten and unfas-

ten. Huxley-like models are �rst-order hyperbolic equations describing the evolution of this

distribution. They di�er by their rate functions, chosen to recover experimental sarcomere

force-length relations. These rates are usually chosen as functions of the cross-bridge defor-

mations (see e.g. [15]).

More recently, observed history-dependent force-length relations have led to consider attach-

ment and detachment rates as functions of the cross-bridge deformations and deformation

velocities [20]. The model in [2] has a similar structure coming from considering attachment

and detachment rates allowing to recover the Hill force-velocity relation during isotonic con-

traction [7] and the force-length relation during passive relaxation [18]. They are furthermore

functions of an input representing the action of the electrical potential on the �ber scale and

of the intracellular calcium potential on the cell scale. Positive values of the input correspond
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to increasing cross-bridge density (activation) and negative values to a decreasing density (ac-

tive relaxation). This model is consistent with the collective behaviour of myosin molecular

motors [14]. The sarcomere tension being well approximated by a combination of the �rst

two moments of the cross-bridge deformation distribution, the force-length relation can be

reduced to a simple set of two ordinary di�erential equations by scaling, using the method of

moments. This sarcomere constitutive law is embedded in the �ber rheological model used in

[3] for whole heart simulations.

A forthcoming paper [17] will be devoted to a detailed derivation of the equation of motion

for the obtained one-dimensional model, as well as to its numerical aspects and simulations.

Here, we focus on its analytical properties and on the qualitative behaviour of solutions to

the resulting system of equations. We prove here that a unique solution exists globally for

each regular data and remains globally bounded if the external forcing is bounded. In the

passive relaxation case, i. e. if no excitation is present, the solution is shown to decay to an

equilibrium.

From a mathematical analysis point of view, re�ned mechanical models of muscle contractions

on �ber or organ scales have not been paid much attention to yet. Let us nevertheless mention

the works of P. Colli, V. Comincioli, and others (see for instance [4, 5] and their references)

concerning the cell (sarcomere) and �ber scales. They study the wellposedness of the model of

Huxley with general deformation-dependent rates and nonlinear parallel element. They con-

sider only the isometric contraction case (the total deformation of the contractile and series

elastic elements is constant). This two-scale (cell and �ber) problem leads to a nonlinear and

nonlocal equation for the cross-bridge deformation distribution and the contractile element

deformation. In our case, due to the scaling technique used to derive the model of the con-

tractile element, the cross-bridge deformation distribution is no more to be determined and

it is then possible to consider problems involving the �ber and organ scales where the cell

deformation is no more constant but varies in time and along the �ber. Technical diÆculties

come from the fact that, on the organ scale, the force-length relation for the sarcomere leads

to an hysteresis operator in the �ber rheological model and that the inertial e�ects have to be

considered in the equation of motion of the whole �ber.

The paper is organized as follows. The problem formulation and the main results are stated

in section 1. The properties of the constitutive mapping are given in the following section and

the proof of the main theorem is detailed in section 3. Finally the asymptotic behaviour of

the solutions is characterized in sections 4 and 5.

1 Statement of the problem

We consider longitudinal vibrations of a �ber of normalized length 1 and mass density % , and

assume that the displacement y(x; t) , strain "(x; t) and the elastic stress component �(x; t)
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satisfy the following system of equations

%ytt = (�"t + �)x ; (1.1)

" = yx ; (1.2)

� = Ep"+ f(") + Es("� "
c) ; (1.3)

�c"
c
t = Es("� "

c)� �
c
; (1.4)

�
c
t = k

c
"
c
t � (�j"ctj+ juj)� c + �0u

+
; (1.5)

k
c
t = �(�j"ctj+ juj)kc + k0u

+ (1.6)

in the domain (x; t) 2 Q := ]0; 1[� ]0;1[ , where the subscripts t and x denote partial deriva-

tives, Ep; Es; %; �; �c; �0; k0; � are �xed positive constants, f : R! R is a given constitutive

function, u : Q ! R is a given external forcing, and u
+ := maxf0; ug is its positive part.

System (1.1) { (1.6) is coupled with initial and boundary conditions

y(x; 0) = y
0(x) ; yt(x; 0) = y

1(x) ; "c(x; 0) = "
oc(x) ; � c(x; 0) = �

oc(x) ; kc(x; 0) = k
oc(x) ;

(1.7)

y(0; t) = 0 ; (�"t + � + g(yt))(1; t) =  (t) (1.8)

where g : R! R,  : [0;1[! R are given functions.

Equations (1.4) { (1.6) represent the constitutive law of Hill-Maxwell type presented in [2]

and corresponding to the contractile element with strain "
c , stress � c , and variable sti�ness

k
c , driven by the electric activation u(x; t) . The boundary condition (1.8) says that the �ber

is �xed at x = 0 and attached to an active valve at x = 1, where  (t) is the reaction of the

valve. A detailed discussion on the above system can be found in [17].

The data ful�l the following hypothesis.

Hypothesis 1.1

(i) f; g : R ! R are non-decreasing and locally Lipschitz continuous functions satisfying

the conditions f(0) = g(0) = 0 and

lim
jxj!1

f(x)

x3
= 0 ; lim sup

jxj!1

g(x)

x
<1 ; (1.9)

(ii) y
0 2 W

2;2(0; 1) , y1; "oc; � oc; koc 2 W
1;2(0; 1) , y0(0) = 0 , and there exists a constant

k
�
> 0 such that k

oc(x) � k
�
a. e.;

(iii)  2 L1(0;1) ;  t 2 L1loc(0;1) ;

(iv) u 2 L1(Q) , ux 2 L2(0; 1; L1loc(0;1)) .

In Hypothesis 1.1, we denote by L1loc(0;1) the space of locally bounded measurable functions

v : [0;1[! R, in which we de�ne the seminorms

jvj
[0;t]

= sup ess
s2[0;t]

jv(s)j for t � 0 : (1.10)

In fact, with the metric �(v1;v2) = supT>0 jv1 � v2j[0;T ] =(1+jv1 � v2j[0;T ]) , the space L
1
loc(0;1)

becomes a Fr�echet space.

In the next sections, we prove the following main results.
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Theorem 1.2 Let Hypothesis 1.1 hold. Then system (1.1) { (1.8) admits a unique solu-

tion on Q such that the functions y; "; "
c
; �; �

c
; k

c
; �

c
=k

c
; "

c
t; �

c
t ; k

c
t are continuous on �Q and

belong to L
1(Q) , yt is continuous on �Q and belongs to L

1(0;1; L2(0; 1)) , ytt; �xt; "xt 2
L
2
loc(0;1; L2(0; 1)) , "

c
xt; k

c
xt; �

c
xt 2 L

2(0; 1; L1loc(0;1)) , and Eqs. (1.1) { (1.6) are satis�ed

almost everywhere.

Let us point out the fact that y; "; "c; �; � c; kc; � c=kc; "ct; �
c
t ; k

c
t remain globally bounded on Q .

In other words, the stress and strain cannot arbitrarily increase beyond a certain threshold if

the command u and the boundary forcing  remain bounded.

This result is in agreement with the natural expectation. The situation is however speci�c

here in the sense that the internal energy functional contains in the denominator the rigidity

coeÆcient kc which is not a priori bounded from below (in particular if u < 0). We will see

in the next sections that this fact causes technical diÆculties.

In fact, if we are interested merely in the existence of global solutions, the growth conditions

(1.9) can be removed. They only play a role in the derivation of the global bounds for the

solution, see Remark 3.1 at the end of Section 3.

In the passive relaxation case u � 0 ,  � 0 , we say something more about the asymptotic

behaviour of the solution.

Theorem 1.3 Let Hypothesis 1.1 hold with u � 0 and  � 0 . Then there exist functions

k
c
1; "

c
1; �

c
1; "1 2 L1(0; 1) , kc1(x) � 0 a. e., such that for t!1 we have

k
c(x; t)� k

c
1(x) ! 0 a. e.; (1.11)Z 1

0

�
j"(x; t)� "1(x)j2 + j"c(x; t)� "

c
1(x)j

2 + j� c(x; t)� �
c
1(x)j

2
�
dx ! 0 ; (1.12)Z 1

0

�
y
2
t (x; t) + �

2(x; t)
�
dx ! 0 ; (1.13)Z 1

0

�
jkct (x; t)j

2 + j"ct(x; t)j
2 + j� ct (x; t)j

2
�
dx ! 0 ; (1.14)Z 1

0

�
y
2
tt(x; t) + "

2
t (x; t)

�
dx ! 0 : (1.15)

The proof of the above statements is based on an estimation technique which involves several

consecutive steps. We start with some easy properties of the constitutive law.

2 The constitutive mapping

Equations (1.4) { (1.6) contain the spatial variable x merely as parameter. Assuming x to be

�xed, we can consider them as a system of ODEs with given input functions u; " 2 L1loc(0;1) .

Let us note that if u identically vanishes, then the restricted mapping "c 7! (� c; kc) given by

(1.5) { (1.6) is causal and rate-independent. In fact, it belongs to the family of the so-called

Duhem hysteresis operators, and an interested reader may �nd in [19] a detailed discussion on

this subject.
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We can replace (1.5) { (1.6) by

�
c
t =

k
c

�c
(Es("� "

c)� �
c)�

�
�

�c
jEs("� "

c)� �
cj+ juj

�
�
c + �0u

+
; (2.1)

k
c
t = �

�
�

�c
jEs("� "

c)� �
cj+ juj

�
k
c + k0u

+
; (2.2)

so that (1.4) { (1.6) becomes an ODE system with a locally Lipschitz continuous right-hand

side with respect to the three unknowns "c; � c; kc , with initial conditions of the form

"
c(0) = "

oc
; �

c(0) = �
oc
; k

c(0) = k
oc
> 0 : (2.3)

System (1.4) { (1.6) therefore admits a unique maximal solution on an interval [0; T [ for some

T > 0 . We now derive some estimates which will be useful in the sequel.

Lemma 2.1 Let u; " 2 L
1
loc(0;1) be given, and let ("c; � c; kc) : [0; T [! R

3
be the maximal

solution of (1.4) { (1.6) with initial conditions (2.3). Then T = +1 and for all t � 0 we

have

(i) 0 < k
c(t) < maxfkoc; k0g =: �k ;

(ii) j� c(t)j � maxfj� ocj; �k=�; �0g =: �� ;

(iii)

����� c(t)
kc(t)

� "
c(t)

���� � max

������ oc
koc

� "
oc

���� ; �0
k0

+ j"cj[0;t]

�
;

(iv) j"c(t)j � maxfj"ocj; j"j[0;t] + ��=Esg ;

(v) "t � �
d

dt

�
Ep

2
"
2 + F (") +

Es

2
("� "

c)2 +
(� c)2

2kc

�

= �c("
c
t)

2 + (�j"ctj+ juj)
(� c)2

2kc
+ u

+

 
k0

2

�
�
c

kc

�2

� �0
�
c

kc

!
,

where � is given by (1.3) and F (") :=
R "

0
f(z) dz .

Note that the estimates (i) { (iv) are all independent of u , (i) { (ii) are moreover independent

of " . Identity (v) is in fact the energy balance, where

U :=
Ep

2
"
2 + F (") +

Es

2
("� "

c)2 +
(� c)2

2kc
(2.4)

is the internal energy functional. In the absence of external excitation (this means u � 0), the

right-hand side of (v) corresponds to the dissipation rate and is positive in agreement with the

Second Principle of Thermodynamics. We also see that energy can be supplied to the system

only if u > 0 and the coeÆcient at juj = u
+ in the energy balance equation (v) is negative,

that is, 0 < �
c
< 2�0 k

c
=(k0 + k

c) .
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Proof of Lemma 2.1. For t 2 [0; T [ put B(t) =
R t

0
(�j"ct(s)j+ ju(s)j) ds . Then (1.6) yields

d

dt

�
eB(t)

k
c(t)
�
2
i
0; k0 _B(t) eB(t)

h
; (2.5)

and (i) follows. Similarly, from (1.5) we obtain that

d

dt

�
eB(t) j� c(t)j

�
�
��kc(t)"ct(t) + �0 u

+(t)
�� eB(t) � maxf�k=�; �0g _B(t) eB(t)

; (2.6)

hence (ii) is veri�ed. To prove (iii), we �rst notice that

d

dt

�
�
c(t)

kc(t)
� "

c(t)

�
+ k0

u
+(t)

kc(t)

�
�
c(t)

kc(t)
� "

c(t)

�
= k0

u
+(t)

kc(t)

�
�0

k0
� "

c(t)

�
; (2.7)

so that we are again in the \Gronwall" situation and argue as in (2.6). We similarly obtain

(iv) from (1.4) and (ii).

Estimates (i) { (iv) enable us to conclude that "c; � c; kc do not blow up in �nite time, hence

T = +1 . Identity (v) can easily be checked by direct di�erentiation. �

By virtue of Lemma 2.1, we may consider the mapping which with each u; " 2 L1loc(0;1) and

"
oc
; �

oc 2 R, koc > 0 associates the solution ("c; � c; kc) 2 (L1loc(0;1))3 of (1.4) { (1.6). We

now show that this mapping is locally Lipschitz continuous in suitable norms.

Lemma 2.2 Let ("; u); (~"; ~u) 2 L1loc(0;1)�L1loc(0;1) be given, and let ("c; � c; kc); (~"c; ~� c; ~kc)

be the respective solutions to Eqs. (1.4) { (1.6) with corresponding initial data ("oc; � oc; koc)

and (~"oc; ~� oc; ~koc) . Then for every T > 0 and every R > 0 such that

maxfjuj[0;T ] ; j~uj[0;T ] ; j"j[0;T ] ; j~"j[0;T ]g � R

there exists a constant K(T;R) depending only on T and R such that

max

�
j"c � ~"cj[0;T ] ; j�

c � ~� cj[0;T ] ;

���kc � ~kc
���
[0;T ]

; j"ct � ~"ctj[0;T ] ; j�
c
t � ~� ct j[0;T ] ;

���kct � ~kct

���
[0;T ]

�
(2.8)

� K(T;R) max
n
j"� ~"j[0;T ] ; ju� ~uj[0;T ] ; j"

oc � ~"ocj; j� oc � ~� ocj; jkoc � ~kocj
o

Proof. This is again an easy Gronwall-type exercise based on the estimates from Lemma 2.1

if Eqs. (1.5) { (1.6) are replaced by (2.1) { (2.2). We omit the details. �

3 Proof of Theorem 1.2: Space discretization

The solution to Eqs. (1.1) { (1.8) will be constructed as a limit of space-semidiscrete approx-

imations. We choose an integer n 2 N and replace the continuous variable x 2 [0; 1] by the

equidistant partition xj = j=n for j = 0; 1; : : : ; n , with the intention to let n tend to +1 .
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Index j stands for the approximate value at the point xj , and the x -derivative is replaced

by a di�erence quotient. We thus consider the following system of ODEs for j = 1; : : : ; n :

%�yj = n ((� _"j+1 + �j+1)� (� _"j + �j)) ; j = 1; : : : ; n � 1 ; (3.1)

� _"n = ��n � g( _yn) +  ; (3.2)

y0 = 0 ; (3.3)

"j = n(yj � yj�1) ; (3.4)

�j = Ep"j + f("j) + Es("j � "
c
j) ; (3.5)

�c _"
c
j = Es("j � "

c
j)� �

c
j ; (3.6)

_� cj = k
c
j _"

c
j � (�j _"cjj+ jujj)� cj + �0u

+
j ; (3.7)

_kcj = �(�j _"cjj+ jujj)kcj + k0u
+
j ; (3.8)

with uj(t) = n
R xj

xj�1
u(x; t) dx for j = 1; : : : ; n , and with initial conditions

yj(0) = y
0(xj); "

c
j(0) = "

oc(xj); �
c
j (0) = �

oc(xj); k
c
j(0) = k

oc(xj) for j = 1; : : : ; n ; (3.9)

_yj(0) = y
1(xj) for j = 1; : : : ; n� 1 : (3.10)

The value of _yn(0) cannot be prescribed. However, we can rewrite (3.2) as

_yn(t) = (�nI + g)�1(�n _yn�1(t)� �n(t) +  (t)) ; (3.11)

where I : R! R is the identity mapping. For t = 0 we have in particular

�n( _yn(0) � y
1(1)) + g( _yn(0))� g(y1(1)) (3.12)

= �n(y1(1� (1=n)) � y
1(1))� �n(0) � g(y1(1)) +  (0) ;

hence

j _yn(0) � y
1(1)j �

1
p
n

�Z 1

1�(1=n)

jy1x(x)j
2
dx

�1=2

+
1

�n
(j�n(0)j+ jg(y1(1))j + j (0)j) : (3.13)

System (3.1) { (3.8) is of the form _Y = �(Y; t) provided (3.2) is written in the form (3.11),

and Eqs. (3.7) { (3.8) are transformed similarly as in (2.1) { (2.2). The mapping � is locally

Lipschitz continuous in Y and measurable in t . There exists therefore for each n 2 N a

unique maximal solution to (3.1) { (3.10) de�ned on an interval [0; Tn[ , Tn > 0 .

We now derive a series of estimates which will enable us to pass to the limit as n!1 . We

will systematically use the convention that C; c denote any suitable positive constants (C

being \large" and c \small"), depending only on the data and independent of n and t .

Estimate 1. Test (3.1) by 1
n
_yj and sum over j = 1; : : : ; n � 1 . This yields for t 2 [0; Tn[

that

d

dt

 
1

n

n�1X
j=1

%

2
_y2j (t)

!
+

1

n

nX
j=1

�
� _"2j (t) + �j(t) _"j(t)

�
+ _yn(t) g( _yn(t)) = _yn(t) (t) ; (3.14)

7



where we have similarly as in Lemma 2.1 (v) that

�j _"j =
d

dt

�
Ep

2
"
2
j + F ("j) +

Es

2
("j � "

c
j)

2 +
(� cj )

2

2kcj

�
(3.15)

+�c( _"
c
j)

2 + (�j _"cjj+ jujj)
(� cj )

2

2kcj
+ u

+
j

 
k0

2

�
�
c
j

k
c
j

�2

� �0

�
c
j

k
c
j

!
:

From the inequalities k0z
2 � 2�0z � ��2

0=k0 for all z 2 R and

j _yi(t)j �
1

n

nX
j=1

j _"j(t)j �

 
1

n

nX
j=1

_"2j(t)

!1=2

8i = 1; : : : ; n ; (3.16)

we obtain under Hypothesis 1.1 the crucial estimate

d

dt

 
1

n

n�1X
j=1

%

2
_y2j (t) +

1

n

nX
j=1

�
Ep

2
"
2
j (t) + F ("j(t)) +

Es

2
("j(t)� "

c
j(t))

2 +
(� cj )

2(t)

2kcj (t)

�!
(3.17)

+ _yn(t) g( _yn(t)) +
1

n

nX
j=1

�
�

2
_"2j (t) + �c( _"

c
j)

2(t)
�
� C :

This is enough to conclude that the solution to (3.1) { (3.10) is global, i. e. Tn = +1 for all

n 2 N .

Estimate 2. Test (3.1) by 1
n
yj and sum over j = 1; : : : ; n� 1 . For each t > 0 we then have

d

dt

 
1

n

n�1X
j=1

% _yj(t) yj(t) +
1

n

nX
j=1

�

2
"
2
j (t)

!
+ yn(t) g( _yn(t)) +

1

n

nX
j=1

�j(t) "j(t) (3.18)

=
1

n

n�1X
j=1

% _y2j (t) + yn(t) (t) ;

where

�j "j =
d

dt

�
�c

2
("cj)

2
�
+ Ep"

2
j + f("j) "j + Es("j � "

c
j)

2 + �
c
j "

c
j (3.19)

�
d

dt

�
�c

2
("cj)

2
�
+
Ep

2
"
2
j + F ("j) +

Es

2
("j � "

c
j)

2 � C

by virtue of Lemma 2.1, hence

d

dt

 
1

n

n�1X
j=1

% _yj(t) yj(t) +
1

n

nX
j=1

�
�

2
"
2
j (t) +

�c

2
("cj)

2(t)
�!

(3.20)

+
1

n

nX
j=1

�
Ep

2
"
2
j(t) + F ("j(t)) +

Es

2
("j(t)� "

c
j(t))

2

�

�
1

n

n�1X
j=1

% _y2j (t) + jyn(t)j (jg( _yn(t))j+ j (t)j) + C

8



for all t > 0 . We further estimate the right-hand side of (3.20) using the inequalities

1

n

n�1X
j=1

_y2j (t) �
1

n

nX
j=1

_"2j(t) ; (3.21)

jyi(t)j �
1

n

nX
j=1

j"j(t)j �

 
1

n

nX
j=1

"
2
j (t)

!1=2

8i = 1; : : : ; n ; (3.22)

jg( _yn(t))j � C ( _yn(t) g( _yn(t)))
1=2

; (3.23)

where (3.23) follows from the condition (1.9). We now �x some (small) c > 0 and de�ne the

extended energy functionals

E(t) =
1

n

n�1X
j=1

%

�
1

2
_y2j + c _yjyj

�
(t) (3.24)

+
1

n

nX
j=1

�
Ep + c�

2
"
2
j + F ("j) +

Es

2
("j � "

c
j)

2 +
c�c

2
("cj)

2 +
(� cj )

2

2kcj

�
(t) ;

E1(t) =
1

n

nX
j=1

�
_"2j + ( _"cj)

2 + "
2
j + ("cj)

2 + F ("j)
�
(t) : (3.25)

Using (3.17) and (3.20) { (3.23) we �nd another small c > 0 such that

_E(t) + cE1(t) +
1

2
_yn(t) g( _yn(t)) � C 8t > 0 : (3.26)

We would like to replace E1(t) in (3.26) by E(t) . In other words, we have to get the term

(� cj )
2
=k

c
j in (3.24) under control. This can be done by invoking Lemma 2.1 which yields

(� cj )
2(t)

k
c
j(t)

� j� cj (t)j
������ cj (t)
k
c
j (t)

� "
c
j(t)

����+ j"cj(t)j
�
� C

�
1 +

��"cj��[0;t]
�

for t � 0 ; (3.27)

so that by (3.26) and (3.21) { (3.22) we have

_E(t) + cE(t) +
1

2
_yn(t) g( _yn(t)) � C

 
1 +

1

n

nX
j=1

��"cj��[0;t]
!

8t > 0 : (3.28)

Using the fact

E(0) � C
�
jy1j21 + jy0xj

2
1 + j"ocj21 + j� ocj21=k

�
�
� C ; (3.29)

where j � j1 denotes the norm of L1(0; 1) , we obtain from (3.28) the estimate

1

n

n�1X
j=1

_y2j (t) +
1

n

nX
j=1

�
"
2
j(t) + ("cj)

2(t)
�
� C E(t) � C

 
1 +

1

n

nX
j=1

��"cj��[0;t]
!

8t � 0 : (3.30)

Estimate 3.We use a discrete variant of the trick proposed in [1] and introduce new variables

by putting

pi(t) =
1

n

n�1X
j=i

_yj(t) ; qi(t) = %pi(t) + �"i(t) (3.31)

9



for i = 1; : : : ; n . According to usual conventions, this means in particular that pn(t) = 0.

Then (3.1) { (3.2) yield

_qi(t) + �i(t) + g( _yn(t)) =  (t) 8t > 0 8i = 1; : : : ; n : (3.32)

We rewrite Eq. (3.32) as

� _qi(t) + (Ep + Es)qi(t)� �Es"
c
i (t) + �f("i(t)) = ai(t) ; (3.33)

where, by (3.23),

jai(t)j � C

�
1 + jpi(t)j+

p
_yn(t) g( _yn(t))

�
: (3.34)

Equation (3.6) can be written in the form

�
2
�c _"

c
i(t)� �Esqi(t) + �

2
Es"

c
i (t) = bi(t) (3.35)

with (cf. Lemma 2.1)

jbi(t)j � C (1 + jpi(t)j) : (3.36)

We now test (3.33) by qi(t) and (3.35) by "
c
i(t) . By Hypothesis 1.1 (i) we have f("i(t)) qi(t) � 0

whenever "i(t) qi(t) � 0 . Hence, putting �f (z) = maxfjf(%z=�)j; jf(�%z=�)jg for z 2 R we

have

�f("i(t)) qi(t) � % �f (pi(t)) jpi(t)j 8t � 0 : (3.37)

Using the fact that the matrix A =

�
Ep + Es ��Es

��Es �
2
Es

�
is symmetric and positive de�nite,

we obtain

d

dt

�
�

2
q
2
i (t) +

�
2
�c

2
("ci)

2(t)

�
+ �

�
q
2
i (t) + ("ci)

2(t)
�

(3.38)

� �� f("i(t)) qi(t) + jqi(t)j jai(t)j+ j"ci(t)j jbi(t)j ;

where � > 0 is the smallest eigenvalue of A . Using (3.34), (3.36) we thus obtain

d

dt

�
�

2
q
2
i (t) +

�
2
�c

2
("ci)

2(t)

�
+ c

�
q
2
i (t) + ("ci)

2(t)
�

(3.39)

� C
�
1 + �f(pi(t)) jpi(t)j+ p

2
i (t) + _yn(t) g( _yn(t))

�
:

From (3.30) { (3.31) it follows that

p
2
i (t) �

 
1

n

n�1X
j=1

j _yj(t)j

!2

�
1

n

n�1X
j=1

_y2j (t) � C

 
1 +

1

n

nX
j=1

��"cj��[0;t]
!
; (3.40)

hence, by (1.9) and (3.37), for every Æ > 0 there exists CÆ > 0 such that

�f (pi(t)) jpi(t)j � CÆ + Æ

 
1

n

nX
j=1

��"cj��[0;t]
!2

� CÆ +
Æ

n

nX
j=1

��"cj��2[0;t] : (3.41)

Putting

Fi(t) = E(t) + c

�
�

2
q
2
i (t) +

�
2
�c

2
("ci)

2(t)

�
(3.42)

10



for c > 0 suÆciently small, we obtain from (3.28), (3.39) { (3.40) that

_Fi(t) + cFi(t) � C

 
1 +

1

n

nX
j=1

��"cj��[0;t] + CÆ +
Æ

n

nX
j=1

��"cj��2[0;t]
!

(3.43)

with Fi(0) � E(0) + C(jy1j21 + jy0xj
2
1 + j"ocj21) � C . This yields

Fi(t) � C

 
1 +

1

n

nX
j=1

��"cj��[0;t] + CÆ +
Æ

n

nX
j=1

��"cj��2[0;t]
!

(3.44)

and, in particular,

("ci )
2(t) � C

 
1 +

1

n

nX
j=1

��"cj��[0;t] + CÆ +
Æ

n

nX
j=1

��"cj��2[0;t]
!

8i = 1; : : : ; n 8t � 0 : (3.45)

Choosing Æ > 0 suÆciently small, we conclude that 1
n

Pn

j=1

��"cj��2[0;t] � C , hence

1

n

n�1X
j=1

_y2j (t) + max
j=1;:::;n

��"cj��[0;t] + max
j=1;:::;n

j"jj[0;t] � C 8t � 0 : (3.46)

Finally, from (3.5) { (3.8) we obtain that

max
j=1;:::;n

�� _"cj��[0;t] + max
j=1;:::;n

�� _� cj ��[0;t] + max
j=1;:::;n

��� _kcj ���
[0;t]

� C 8t � 0 : (3.47)

Estimate 4. Test (3.1) by �( _"j+1 � _"j) and sum over j = 1; : : : ; n� 1 . We obtain

d

dt

 
1

n

nX
j=1

%

2
_"2j

!
� %�yn _"n + �n

n�1X
j=1

( _"j+1 � _"j)
2 + n

n�1X
j=1

(�j+1 � �j)( _"j+1 � _"j) = 0 ; (3.48)

where

�( _"j+1 � _"j)
2 + (�j+1 � �j)( _"j+1 � _"j) (3.49)

=
d

dt

�
Ep

2
("j+1 � "j)

2 +
Es

2

�
("j+1 � "j)� ("cj+1 � "

c
j)
�2�

+�( _"j+1 � _"j)
2 + �c( _"

c
j+1 � _"cj)

2 + (f("j+1)� f("j))( _"j+1 � _"j) + (� cj+1 � �
c
j )( _"

c
j+1 � _"cj)

�
d

dt

�
Ep

2
("j+1 � "j)

2 +
Es

2

�
("j+1 � "j)� ("cj+1 � "

c
j)
�2�

+
�

2
( _"j+1 � _"j)

2 +
�c

2
( _"cj+1 � _"cj)

2 �C
�
("j+1 � "j)

2 + (� cj+1 � �
c
j )

2
�
:

To estimate the term �%�yn _"n , we put G(z) =
R z

0
g(s) ds for z 2 R, and use (3.2) to derive

the identity

�%�yn _"n =
%

�

d

dt
(G( _yn) + (�n �  ) _yn)�

%

�
( _�n � _ ) _yn : (3.50)

11



Using (3.2) once again leads to

_"n _yn +
1

�
_yn g( _yn) = �

1

�
(�n �  ) _yn ; (3.51)

and (3.5) for j = n yields

� _�n _yn = �(Ep + f
0("n) + Es) _"n _yn + Es _"

c
n _yn (3.52)

=
1

�
(Ep + f

0("n) + Es) _yn g( _yn) +

�
1

�
(Ep + f

0("n) + Es) (�n �  ) + Es _"
c
n

�
_yn

Combining Eqs. (3.50) and (3.52) with (3.46) { (3.47) we �nally �nd out that

�%�yn _"n �
%

�

d

dt
(G( _yn) + (�n �  ) _yn) + c _yn g( _yn)� (C + j _ j) j _ynj : (3.53)

Before integrating (3.48) from 0 to t , we need to estimate the expression

1

n

nX
j=1

_"2j (0)+n

n�1X
j=1

�
("j+1 � "j)

2(0) + ("cj+1 � "
c
j)

2(0)
�
+G( _yn(0))+(�n(0)� (0)) _yn(0) (3.54)

(up to appropriate constant coeÆcients) from above independently of n . We have

n

n�1X
j=1

("j+1 � "j)
2(0) = n

3

n�1X
j=1

 Z xj

xj�1

Z �+(1=n)

�

y
0
xx(�) d� d�

!2

�
Z 1

0

jy0xx(�)j
2
d� ; (3.55)

an estimate for _yn(0) follows from (3.17), and the other terms are straightforward. From

(3.48) { (3.55) it thus follows that

1

n

nX
j=1

_"2j (t) + n

n�1X
j=1

�
("j+1 � "j)

2(t) + ("cj+1 � "
c
j)

2(t)
�
+G( _yn(t)) (3.56)

+

Z t

0

 
n

n�1X
j=1

�
( _"j+1 � _"j)

2 + ( _"cj+1 � _"cj)
2
�
+ _yn g( _yn)

!
(s) ds

� C

 
(1 + j _ (t)j)j _yn(t)j+

Z t

0

 
n

n�1X
j=1

�
("j+1 � "j)

2 + (� cj+1 � �
c
j )

2
�
+ j _ynj

!
(s) ds

!
:

The right-hand side of (3.56) can be estimated using (3.16) for i = n and the inequalities

G( _yn(t)) � 0 , _yn(t) g( _yn(t)) � 0 . Lemma 2.2 together with the standard Gronwall argument

enable us to conclude that for every T > 0 there exists K(T ) > 0 independent of n such

that for all t 2 [0; T ] we have

1

n

nX
j=1

_"2j (t) + n

n�1X
j=1

�
("j+1 � "j)

2(t) + ("cj+1 � "
c
j)

2(t)
�

(3.57)

+

Z t

0

 
n

n�1X
j=1

�
( _"j+1 � _"j)

2(s) + ( _"cj+1 � _"cj)
2(s)

�
ds

!
� K(T )

12



As a consequence of (3.57) we have

n

n�1X
j=1

j"j+1 � "jj
2

[0;T ]
� K(T ) ; n

n�1X
j=1

Z T

0

( _�j+1 � _�j)
2(t) dt � K(T ) ; (3.58)

and Lemma 2.2 entails

n

n�1X
j=1

���� cj+1 � �
c
j

��2
[0;T ]

+
��kcj+1 � k

c
j

��2
[0;T ]

�
� K(T ) ; (3.59)

n

n�1X
j=1

��� _"cj+1 � _"cj
��2
[0;T ]

+
�� _� cj+1 � _� cj

��2
[0;T ]

+
��� _kcj+1 � _kcj

���2
[0;T ]

�
� K(T ): (3.60)

From Eq. (3.1) we �nally obtain

1

n

n�1X
j=1

Z
T

0

�y2j (t) dt � K(T ) : (3.61)

Proof of Theorem 1.2. We �x T > 0 , and for n 2 N we construct the interpolates for

x 2 [xj�1; xj[ , j = 1; : : : ; n , and t 2 [0; T ] by the formula

�y(n)(x; t) = yj�1(t) ; (3.62)

ŷ
(n)(x; t) = yj�1(t) + (x� xj) "j(t) (3.63)

with continuous extension to x = 1. For the other quantities occurring in Eqs. (1.1) { (1.6)

we use the recipe

�w(n)(x; t) = wj(t) ; (3.64)

ŵ
(n)(x; t) = wj�1(t) + n(x� xj) (wj(t)� wj�1(t)) (3.65)

with the convention w0 = w1 , where w stands for any item on the list f"; �; "c; � c; kcg . Note
that for all (x; t) 2 QT := ]0; 1[� ]0; T [ and for each of those \w" we have

j �w(n)(x; t)� ŵ
(n)(x; t)j2 � max

j
jwj(t)� wj�1(t)j2 �

nX
j=1

jwj(t)� wj�1(t)j2 (3.66)

�
1

n

Z 1

0

jŵ(n)
x j2(x; t) dx :

The estimates (3.46) { (3.47) and (3.57) { (3.61) imply that

�y(n); �y
(n)
t ; �"(n); �"c(n); ��(n)

; �� c(n); �kc(n); �"
c(n)
t ; ��

c(n)
t ; �k

c(n)
t are uniformly bounded in L1(Q) ;(3.67)

�y
(n)
tt ; "̂

(n)
xt ; �̂

(n)
xt are uniformly bounded in L2(QT ) ;(3.68)

"̂
c(n)
xt ; �̂

c(n)
xt ; k̂

c(n)
xt are uniformly bounded in L2(0; 1; L1(0; T )) :(3.69)
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The approximations have been chosen so as to satisfy a. e. in Q the system

%�y
(n)
tt = (�"̂

(n)
t + �̂

(n))x ; (3.70)

�"(n) = ŷ
(n)
x ; (3.71)

��(n) = Ep�"
(n) + f(�"(n)) + Es(�"

(n) � �"c(n)) ; (3.72)

�c�"
c(n)
t = Es(�"

(n) � �"c(n))� �� c(n) ; ; (3.73)

��
c(n)
t = �kc(n)�"

c(n)
t � (�j�"c(n)t j+ j�u(n)j)�� c(n) + �0(�u

(n))+ ; (3.74)

�k
c(n)
t = �(�j�"c(n)t j+ j�u(n)j)�kc(n) + k0(�u

(n))+ ; (3.75)

where �u(n)(x; t) = uj for x 2 [xj�1; xj[ , j = 1; : : : ; n , and t � 0 , as well as the boundary

conditions

ŷ
(n)(0; t) = 0 ; (�"̂

(n)
t + �̂

(n) + g(ŷ
(n)
t ))(1; t) =  (t) : (3.76)

By the usual compactness argument based on the estimates (3.66) { (3.69) and Sobolev's

embedding theorems, we obtain the existence of a solution on QT with the required regularity

by selecting a subsequence, if necessary, and passing to the limit as n ! 1 . We also note

that on the �xed interval [0; T ] , the values of kc(n)(x; t) are bounded from below by a constant

c(T ) , so that we may pass to the uniform limit also in the term �
c(n)

=k
c(n) . The �rst boundary

condition is preserved under uniform limit, the second one is veri�ed when passing to the limit

in the identityZ T

0

Z 1

0

�
�"̂

(n)
t + �̂

(n) + g(ŷ
(n)
t )
�
(x; t) a0(x) b(t) dx dt (3.77)

= �
Z T

0

Z 1

0

�
�"̂

(n)
xt + �̂

(n)
x + g

0(ŷ
(n)
t )�"

(n)
t

�
(x; t) a(x) b(t) dx dt

for every a 2 W 1;2(0; 1) and b 2 L2(0; T ) such that a(0) = 0. The proof of Theorem 1.2 will

be complete if we prove that the solution is unique for every T > 0 ; it can then be extended

to the whole Q . Let y1; y2 be two solutions. We test the di�erence of Eqs. (1.1) written for

y1 and y2 by (y1 � y2)t . The uniqueness proof is again based on a straightforward use of the

Gronwall lemma combined with Lemma 2.2 and we omit the details here. �

Remark 3.1 As mentioned in Section 1, the growth conditions are not necessary for the

existence of global solutions. Indeed, Estimate 1 is independent of the growth of f and g ,

and (3.17) yields for all T > 0 and t 2 [0; T ] that

1

n

n�1X
j=1

_y2j (t) +
1

n

nX
j=1

�
"
2
j + F ("j) + ("cj)

2
�
(t) +

Z T

0

1

n

nX
j=1

�
_"2j + ( _"cj)

2
�
(� ) d� � K(T ) : (3.78)

In order to get the term g( _yn) in Estimates 2 and 3 under control, we introduce auxiliary

functions

Pn(t) =
1

n

n�1X
j=1

pj(t) ; Sn(t) =
1

n

nX
j=1

�j(t) : (3.79)

Summing up Eqs. (3.32) over i = 1; : : : ; n and dividing by n we obtain

� _yn(t) + % _Pn(t) + Sn(t) + g( _yn(t)) =  (t) : (3.80)
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This enables us to rewrite (3.18) in the form

d

dt

 
1

n

n�1X
j=1

% _yj(t) yj(t) +
1

n

nX
j=1

�

2
"
2
j (t)�

�

2
y
2
n(t)� %Pn(t) yn(t)

!
+

1

n

nX
j=1

�j(t) "j(t) (3.81)

=
1

n

n�1X
j=1

% _y2j (t) + yn(t)Sn(t)� %Pn(t) _yn(t) :

By (3.78), (3.16) and (3.22), we have for t 2 [0; T ] that jPn(t)j � K(T ) , jyn(t)j � K(T ) ,R T

0
j _yn(t)j dt � K(T ) , and it remains to estimate the term involving f("j) in Sn(t) without

using the growth condition (1.9). Integrating (3.81) from 0 to T and using (3.19), (3.78), we

obtain Z T

0

1

n

nX
j=1

"j(t) f("j(t)) dt � K
�(T )

 
1 +

Z T

0

1

n

nX
j=1

jf("j(t))j dt

!
; (3.82)

where K�(T ) is a constant independent of n which we keep �xed from now on. For t 2 [0; T ]

set J = f1; : : : ; ng , Jn(t) = fj 2 J ; j"j(t)j � 2K�(T )g . We have

2K�(T )

Z
T

0

1

n

X
j2Jn(t)

jf("j(t))j dt �
Z

T

0

1

n

nX
j=1

"j(t) f("j(t)) dt (3.83)

� K
�(T )

 
1 +

Z T

0

1

n

nX
j=1

jf("j(t))j dt

!

� K(T ) +K
�(T )

Z T

0

1

n

X
j2Jn(t)

jf("j(t))j dt ;

hence Z T

0

jSn(t)j dt � K(T ) : (3.84)

We now use (3.80) again to modify Estimate 3. Introducing new variables

ri(t) = qi(t)� �yn(t)� %Pn(t) = �("i � yn) + %(pi � Pn) ; (3.85)

we rewrite (3.32){(3.33) in the form

� _ri(t) + (Ep + Es)ri(t)� �Es"
c
i(t) + �f("i(t)) = ~ai(t) ; (3.86)

where

~ai(t) = �Sn(t) + %pi(t)� (Ep + Es)(�yn(t) + %Pn(t)) : (3.87)

Equation (3.35) now reads

�
2
�c _"

c
i(t)� �Esri(t) + �

2
Es"

c
i(t) = ~bi(t) (3.88)

with j~bi(t)j � K(T ) . We test (3.86) by ri(t) and (3.88) by "ci(t) . Arguing as in (3.37) (ri(t)

and "i(t) have again di�erent signs only if they are both \small"), we obtain a counterpart of

(3.38) in the form

d

dt

�
�

2
r
2
i +

�
2
�c

2
("ci)

2

�
(t)+�

�
r
2
i + ("ci )

2
�
(t) � K(T )(1+j"ci(t)j+jri(t)j (1+jSn(t)j)) : (3.89)

The L1 -bound for Sn in (3.84) is suÆcient to conclude that j"ij , j"ci j are bounded in L1(0; T )

uniformly with respect to i and n , and the assertion follows as in the proof of Theorem 1.2.
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4 Proof of Theorem 1.3: Asymptotic behaviour

In this section, we prove Theorem 1.3. The fact that under vanishing external forcing u �
0 and  � 0 , the solution asymptotically converges to an equilibrium, is not surprising.

However, the set of possible equilibria is a continuum, and the problem has to be handled

properly. For the moment, only the estimate (3.67) is independent of the time interval, and

more estimates will be needed. We will proceed formally, manipulating directly with Eqs. (1.1)

{ (1.8), keeping in mind that for instance the time di�erentiation in Estimates 7 and 8 below is

rigorous only for the discrete system (3.1) { (3.10), and an underlying limit passage as n!1
is tacitly assumed.

Invoking the identity (2.6) and putting

'
0(x) =

�
oc(x)

koc(x)
� "

oc(x) for x 2 [0; 1] (4.1)

we may eliminate � c from the system and rewrite (1.1) { (1.6) in the form

%ytt = (�"t + �)x ; (4.2)

" = yx ; (4.3)

� = Ep"+ f(") + Es("� "
c) ; (4.4)

�c"
c
t = Es("� "

c)� k
c("c � '

0) ; (4.5)

k
c
t = ��j"ctjk

c
: (4.6)

For all x 2 [0; 1] , the function k
c(x; �) is non-decreasing, hence there exists the limit

k
c
1(x) = lim

t!1
k
c(x; t) � 0 ; k

c
1 2 L1(0; 1) : (4.7)

The expected limit values "1(x); "
c
1(x) for " and "

c , respectively, must for every x 2 [0; 1]

satisfy the system

Ep"1 + f("1) + Es("1 � "
c
1) = 0 ; (4.8)

Es("1 � "
c
1)� k

c
1("

c
1 � '

0) = 0 ; (4.9)

which obviously admits a unique solution "1; "
c
1 2 L1(0; 1) . More precisely, we have

Ep"1 + f("1) +
Esk

c
1

Es + kc1

("1 � '
0) = 0 ; (4.10)

hence

j"1j � j'0j a. e. ; j"1 � '
0j � j'0j a. e. (4.11)

From the identity

"
c
1 � '

0 =
Es

Es + kc1

("1 � '
0) (4.12)

we obtain also

j"c1 � '
0j � j'0j a. e. (4.13)
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Putting ~"(x; t) = "(x; t)�"1(x) , ~"c(x; t) = "
c(x; t)�"c1(x) , ~'0(x) = '

0(x)�"c1(x) , ~y(x; t) =R x

0
~"(z; t) dz , we may rewrite the system (4.2) { (4.6) in the form

%~ytt = (�~"t + �)x ; (4.14)

~" = ~yx ; (4.15)

� = Ep~"+ f(")� f("1) + Es(~"� ~"c) ; (4.16)

�c~"
c
t = Es(~"� ~"c)� k

c
1 ~"c � (kc � k

c
1)(~"

c � ~'0) ; (4.17)

k
c
t = ��j~"ctjk

c
; (4.18)

with boundary conditions

~y(0; t) = 0 ; (�~"t + � + g(~yt))(1; t) = 0; (4.19)

and with accordingly modi�ed initial conditions (note that the W 1;2 -regularity is lost { the

initial conditions for ~" and ~"c now belong to L1(0; 1) only).

Estimate 5. Testing (4.14) by ~yt we obtain similarly as in (3.14) { (3.15) that

d

dt

Z 1

0

�
%

2
~y2t +

Ep

2
~"2 + F (")� F ("1)� ~" f("1) +

Es

2
(~"� ~"c)2 +

k
c
1

2
(~"c)2 (4.20)

+
1

2
(kc � k

c
1) (~"

c � ~'0)2
�
(x; t) dx

+

Z 1

0

�
�~"2t + �c(~"

c
t)

2 +
�

2
k
cj~"ctj(~"

c � ~'0)2
�
(x; t) dx+ (~yt g(~yt))(1; t) = 0 :

Estimate 6. We now test (4.14) by ~y . This yields

d

dt

Z 1

0

�
% ~yt ~y +

�

2
~"2 +

�c

2
(~"c)2

�
(x; t) dx (4.21)

+

Z 1

0

�
Ep~"

2 + (f(")� f("1)) ~" + Es (~"� ~"c)2 +
1

2
(kc + k

c
1)(~"

c)2

+
1

2
(kc � k

c
1) (~"

c � ~'0)2
�
(x; t) dx+ (~y g(~yt))(1; t)

=

Z 1

0

�
% ~y2t +

1

2
(kc � k

c
1) ( ~'

0)2
�
(x; t) dx :

We have for (almost) all t > 0 thatZ 1

0

~y2t (x; t) dx �
Z 1

0

~"2t (x; t) dx ; (4.22)

j~y(1; t)j2 �
Z 1

0

~"2(x; t) dx ; (4.23)

g
2(~yt)(1; t) � C (~yt g(~yt))(1; t) : (4.24)

For some small c > 0 we now put

E(t) =

Z 1

0

�
%

2
~y2t + c%~yt ~y +

Ep + c�

2
~"2 + F (")� F ("1)� ~" f("1) +

Es

2
(~"� ~"c)2 (4.25)

+
k
c
1 + c�c

2
(~"c)2 +

1

2
(kc � k

c
1) (~"

c � ~'0)2
�
(x; t) dx ;
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and combining (4.20) with (4.21) we obtain (for a possibly smaller c > 0)

_E(t) + c E(t) � C

Z 1

0

(kc � k
c
1)(x; t) dx : (4.26)

The right-hand side of (4.26) tends to 0 as t!1 , hence the convergences (1.12), (1.13) are

veri�ed, while (1.14) follows from (4.17) { (4.18).

The remaining part of Theorem 1.3 is obtained by di�erentiating formally Eq. (4.2) as men-

tioned at the beginning of this section.

Estimate 7. Di�erentiate (4.2) by t and test by ytt . This yields

d

dt

Z 1

0

�
%

2
y
2
tt +

Ep

2
"
2
t +

Es

2
("t � "

c
t)

2 +
k
c

2
("ct)

2
�
(x; t) dx (4.27)

+

Z 1

0

�
�"

2
tt + �c("

c
tt)

2 + f
0(") "t "tt +

�

2
k
cj"ctj

3
�
(x; t) dx+ (y2tt g

0(yt))(1; t)

=

Z 1

0

�
� k

c ("c � '
0) j"ct j "

c
tt

�
(x; t) dx :

By virtue of (3.46), it follows from (4.27) that

d

dt

Z 1

0

�
%

2
y
2
tt +

Ep

2
"
2
t +

Es

2
("t � "

c
t)

2 +
k
c

2
("ct)

2
�
(x; t) dx (4.28)

+

Z 1

0

�
�

2
"
2
tt +

�c

2
("ctt)

2 +
�

2
k
cj"ctj

3
�
(x; t) dx+ (y2tt g

0(yt))(1; t)

� C

Z 1

0

�
("ct)

2 + "
2
t

�
(x; t) dx :

This is some sort of \higher order energy balance". The cubic dissipation term j"ctj3 is typical

for equations with convex hysteretic constitutive laws, cf. [16].

Estimate 8. Di�erentiate (4.2) by t and test by yt . We obtain

d

dt

Z 1

0

�
% ytt yt +

�

2
"
2
t +

�c

2
("ct)

2
�
(x; t) dx (4.29)

+

Z 1

0

�
Ep "

2
t + Es("t � "

c
t)

2 + f
0(") "2t + k

c("ct)
2
�
(x; t) dx+ (ytt yt g

0(yt))(1; t)

=

Z 1

0

�
% y

2
tt + � k

c ("c � '
0) j"ct j "

c
t

�
(x; t) dx :

For some small c > 0 we now put

F(t) =

Z 1

0

�
%

2
y
2
tt + c% ytt yt +

Ep + c�

2
"
2
t +

Es

2
("t � "

c
t)

2 +
k
c + c�c

2
("ct)

2
�
(x; t) dx : (4.30)

Using the inequalitiesZ 1

0

y
2
tt(x; t) dx �

Z 1

0

"
2
tt(x; t) dx ; (4.31)

(g0(yt) yt ytt)(1; t) � C

�Z 1

0

"
2
t (x; t) dx

�1=2 �Z 1

0

"
2
tt(x; t) dx

�1=2

: (4.32)
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we proceed as above to obtain that

_F(t) + cF(t) � C

Z 1

0

�
("ct)

2 + "
2
t

�
(x; t) dx : (4.33)

Invoking (4.20), we see that the function 	(t) = C
R 1

0
(("ct)

2 + "
2
t ) (x; t) dx on the right-hand

side of (4.33) belongs to L1(0;1) , that is,
R1
0

	(t) dt <1 . This fact and (4.33) imply that

limt!1 F(t) = 0, which completes the proof of Theorem 1.3. �

5 Example: A mass-spring system

It is natural to ask the question if the limit sti�ness kc1 in Theorem 1.3 may vanish or remains

positive. We have no answer in the general case. In order to have an idea about what can

be expected, we consider in this section a mass-spring system associated with our constitutive

law as a simpli�cation of (4.2) { (4.6). In other words, we solve the ODEs

%�" = �(� _"+ �) ; (5.1)

� = Ep"+ f(") + Es("� "
c) ; (5.2)

�c _"
c = Es("� "

c)� k
c("c � '

0) ; (5.3)

_kc = ��j _"cjkc (5.4)

with given constants %; �; �c; Ep; Es; � which are all positive and '
0 2 R. We prescribe the

initial conditions

"(0) = "
0
; _"(0) = "

1
; "

c(0) = "
oc
; k

c(0) = k
oc
> 0 : (5.5)

In addition to Hypothesis 1.1 (i), we assume that the derivative f 0 of f is locally Lipschitz

continuous. The above system actually corresponds to (3.1) { (3.8) for n = 2, u � 0 and

g � 0 , where " = "1 = 2y1 and % stands for %=4 , while � c is eliminated as in (4.1) { (4.6).

Let

k
c
1 = lim

t!1
k
c(t) � 0 (5.6)

and let "1 and "
c
1 be solutions to Eqs. (4.8) { (4.9). Repeating the argument of Estimates

5 and 6 in Section 4, we obtain that

lim
t!1

"(t) = "1 ; lim
t!1

"
c(t) = "

c
1 ; lim

t!1

�
j�(t)j+ j _"(t)j+ j _"c(t)j+ j _kc(t)j

�
= 0 : (5.7)

The counterparts of identities (4.27) and (4.29) read

d

dt

�
%

2
�"2 +

Ep

2
_"2 +

Es

2
( _"� _"c)2 +

k
c

2
( _"c)2

�
(t) +

�
��"2 + �c(�"

c)2 + f
0(") _" �"+

�

2
k
cj _"cj3

�
(t) (5.8)

=
�
� k

c("c � '
0)j _"cj �"c

�
(t) ;

d

dt

�
% _" �"+

�

2
_"2 +

�c

2
( _"c)2

�
(t) +

�
Ep _"

2 + Es( _"� _"c)2 + f
0(") _"2 + k

c( _"c)2
�
(t) (5.9)

=
�
% �"2 + � k

c("c � '
0)j _"cj _"c

�
(t) :
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We now use the integration-by-parts formul�

f
0(") _" �" =

d

dt

�
1

2
f
0(") _"2

�
�

1

2
f
00(") _"3 ; (5.10)

�k
c("c � '

0)j _"cj �"c =
d

dt

�
�

2
k
c("c � '

0)j _"cj _"c
�
�
�

2
k
cj _"cj3 +

�
2

2
k
c("c � '

0) ( _"c)3 ; (5.11)

and and choose an appropriate (small) constant c > 0 . Putting

E0(t) =
�
%

2
�"2 + c% _" �"+

Ep + f
0(") + c�

2
_"2 +

Es

2
( _"� _"c)2 +

k
c + c�c

2
( _"c)2 (5.12)

�
�

2
k
c("c � '

0)j _"cj _"c
�
(t)

we take possibly a smaller c > 0 and obtain

_E0(t) + c E0(t) � C
�
j _"(t)j3 + j _"c(t)j3

�
(5.13)

for some C > 0 . We now keep the constants c and C �xed and prove the following result.

Proposition 5.1 The limit value k
c
1 in (5.6) is positive.

Proof. We �nd %
�
> 0 and E

�
> 0 such that for all p; q; r 2 R we have

%p
2 + 2c%pq + Epq

2 + Es(q � r)2 � %
�
p
2 + E

�(q2 + r
2) : (5.14)

If E� � �k
c
1j'0j , then k

c
1 > 0 and we are done. Assume now that E�

> �k
c
1j'0j . We �nd

t0 > 0 suÆciently large and Æ > 0 such that for t � t0 we have

E
� � �k

c(t)j'0j � Æ ; (5.15)

j"c(t)� '
0j � j'0j+

1

�
; (5.16)

j _"(t)j+ j _"c(t)j �
c

4C
Æ ; (5.17)

where we used (5.7) and (4.13). For t � t0 we then have

E0(t) �
%
�

2
�"2(t) +

E
�

2

�
_"2(t) + ( _"c(t))2

�
+
k
c(t)

2
( _"c(t))2 �

�

2
k
c(t)

�
j'0j+

1

�

�
( _"c(t))2 (5.18)

�
Æ

2

�
_"2(t) + ( _"c(t))2

�
;

C
�
j _"(t)j3 + j _"c(t)j3

�
�

cÆ

4

�
_"2(t) + ( _"c(t))2

�
: (5.19)

From (5.13) we then obtain

_E0(t) +
c

2
E0(t) � 0 for t � t0 : (5.20)

We thus have E0(t) � E0(t0) e�(c=2)(t�t0) , hence

j _"c(t)j �

r
2

Æ
E0(t) � C1 e

�(c=4)(t�t0) (5.21)

for some C1 > 0 . Integrating Eq. (5.4) yields

k
c
1 � k

c(t0) e
�4�C1=c > 0 (5.22)

and the proof of Proposition 5.1 is complete. �
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