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Abstract

A new general stochastic-deterministic approach for a numerical solution of

boundary value problems of potential and elasticity theories is suggested. It is based

on the use of the Poisson-like integral formulae for overlapping spheres. An equiv-

alent system of integral equations is derived and then approximated by a system

of linear algebraic equations. We develop two classes of special Monte Carlo itera-

tive methods for solving these systems of equations which are a kind of stochastic

versions of the Chebyshev iteration method and successive overrelaxation method

(SOR). In the case of classical potential theory this approach accelerates the con-

vergence of the well known Random Walk on Spheres method (RWS). What is

however much more important, this approach suggests a �rst construction of a fast

convergent �nite-variance Monte Carlo method for the system of Lam�e equations.

1 Introduction

There are three main classes of stochastic numerical methods for solving PDEs:

(1)Methods based on probabilistic representations of solutions in the form of expectations

over di�usion stochastic processes; central problem is here the construction of e�ective nu-

merical solutions of relevant stochastic di�erential equations governing the above di�usion

processes [3].

(2) Random Walk on Spheres methods based on the Monte Carlo calculation of the itera-

tions of Green functions for standard domains like a sphere, ellipsoid, cylinder, etc., e.g.,

see [1], [10], [8]. This approach is very close to the �rst one; it was developed for equations

with constant coeÆcients, because for such equations it is possible to �nd the Green func-

tion explicitly. There are two di�erent justi�cation methods in this approach: the �rst

one is based on the interpretation of the random walk on spheres process as a martingale

[1] on a Markov chain embedded into the Wiener process; the second method exploits the

representation of the solution in the form of a Neumann series and the standard Markov

Chain Monte Carlo technique for evaluation of this series, e.g., see [10].

(3) Random Walk on Boundary methods based on the boundary integral equations of

the potential theory. These methods, suggested in 1982 by K. Sabelfeld in [9], were

generalized in [4], [14] to all classical, both interior and exterior boundary value problems

of the electrostatic, heat and elastic potential theory. Note that in this case, there are no

diÆculties with the boundary conditions and exterior problems. Important is also that

the dimension of the problem is actually reduced by one dimension since the phase space

of the integral equations is the boundary of the domain. As to the disadvantages of this

class of methods, - often, the variance analysis is very complicated.

The advantage of the methods (1) is that they are well theoretically developed, and can

be applied to quite general scalar second order PDEs with variable coeÆcients. However



the list of drawbacks is very serious: (1) the probabilistic representations are possible

only for scalar elliptic and parabolic equations; so a system of elliptic equations like the

Lam�e equation is out of the question; (2) there are a lot of diÆculties in relation with

the boundaries in the case of non-Dirichlet boundary conditions. Even for the Dirichlet

conditions, considerable diÆculties arise when approximating the random process near the

boundary: one should take care that in each step, the process is inside the domain. This

implies a rapid diminishing of the integration step when approaching the boundary, which

in turn rapidly increases the computational cost; (3) exterior boundary value problems are

hard or better to say impossible to solve by a numerical simulation of di�usion processes

in unbounded regions.

In this paper, we deal with a new class of Markov chain simulation technique which we

present for simplicity for the Laplace equation, but which is applicable also for systems

of elliptic equations. In a sense, the method uses the advantages of the approaches 1

and 2: here we use the Green functions for standard subdomains like a sphere, and

simultaneously reformulate the original di�erential boundary value problem in the form

of a system of integral equations of Fredholm type with a well de�ned deterministic

phase space, in contrast to the standard walk on spheres method where the spheres are

random, and we cannot there use the advantage of the Fredholm theory, e.g., see the

basic approach described in our book [12]. In [13], we have extended this approach by

using the Poisson integral formula for overlapping spheres, and considered the relevant

system of integral equations. The kernel of the Poisson integral formula was the generating

transition probability density function of the Markov chain. The iterative procedure was

actually a randomized method of simple iterations. Generally, this iterative procedure

diverges in the case of Lam�e equation. Therefore, we turn to a di�erent iteration method.

To this end, we switch to a discrete approximation of our system of integral equations.

Surprisingly, this not only has complicated the method, but in contrary, we have obtained

a convenient fast convergent method with a �nite variance.

2 2D Dirichlet problem and the Poisson kernel

2.1 Integral formulation

For simplicity, we will explain here the main idea of the method for the two-dimensional

Dirichlet problem for the Laplace equation. It turns out that even in this simple case

where the conventional random walk on spheres works as well, the new method converges

much faster.

Let us consider the boundary value problem

�u(x) = 0; x 2 D; u(y) = '; y 2 � = @D; (2.1)

where the domain D consists of two overlapping discs K(x
(1)
0 ; R1) and K(x

(2)
0 ; R2):

D = K(x
(1)
0 ; R1) [K(x

(2)
0 ; R2); K(x

(1)
0 ; R1) \K(x

(2)
0 ; R2) 6= ; ; (2.2)

We denote by 
1 the part of the circle S(x
(1)
0 ; R1) which belongs to the second disc while
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�1 is the part of the circle S(x
(1)
0 ; R1) not belonging to the second disc; analogously 
2

and �2 are de�ned. So the boundary of the domain D consists of �1 and �2.

The regular solution to the harmonic equation satis�es the spherical mean value relation

in each of the two discs:

u(x) =
R
2 � r

2

2�R

Z
S(x0;R)

u(y)dSy

jx� yj2 : (2.3)

Here R = R1 in the �rst, and R = R2 in the second disc, while r = ri = jx� x
(i)
0 j is the

distance from x to the circle's center, i = 1; 2.

It is not diÆcult to �nd out that the function

p(y;x) =
R
2
1 � jx� x

(1)
0 j2

2�R1
� 1

jx� yj2 (2.4)

is a probability density function of the variable y 2 S(x
(1)
0 ; R1), for all x 2 K(x

(1)
0 ; R1).

This immediately follows from the representation of the solution u = 1 to the Dirichlet

problem for the Laplace equation �u(x) = 0; u(y) = 1 through the Poisson integral.

From the probabilistic representation of the Dirichlet boundary value problem considered

the density p(y;x) coincides with the pdf of the �rst passage on S(x
(1)
0 ; R1) of a Wiener

process starting at x 2 K(x
(1)
0 ; R1).

It is possible to �nd explicitly the distribution function P (x ! y 2 
) - the probability

for a particle starting at x 2 K(x0; R), with r = jx � x0j, to reach an arc 
 2 S(x0; R)

de�ned by the limit angles �1 and �1, say, �1 < �2, since,

P (x! y 2 
) = R
2 � r

2

2�R

Z



dSy

jx� yj2 =
1

�
arctg

�
R + r

R � r
tg
�

2

�������
�2

�1

=
1

�
arctg

�
R+ r

R � r
tg
�2

2

�
� 1

�
arctg

�
R + r

R � r
tg
�1

2

�
: (2.5)

Let us now write down the Poisson formulae for both discs in the form

u(x) =
R
2
1 � r

2
1

2� R1

Z
S(x(1)0 ;R1)

u(y)

jx� yj2 dSy; u(y) =
R
2
2 � r

2
2

2� R2

Z
S(x(2)0 ;R2)

u(x0)

jy � x0j2 dSx0 : (2.6)

Let us introduce the notation: v1(x) = u(x) for x 2 
2, and v2(x) = u(x) for x 2 
1.

Then, (2.6) reads

v1(x) =

Z

1

p(y;x)v2(y) dSy + f1(x); v2(y) =

Z

2

p(x0; y)v1(x
0) dSx0 + f2(y); (2.7)
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where

f1(x) =

Z
�1

p(y; x)'(y) dSy; f2(y) =

Z
�2

p(x0; y)'(x0) dSx0 : (2.8)

It is convenient to rewrite the system (2.7) in the matrix-integral form:

v = Gv + F (2.9)

where v = (v1; v2)
T , F = (f1; f2)

T , and G is the matrix-integral operator which acts on v

as follows

Gv(x; y) =

0
@ 0

R

1

p(y; x)v2(y) dSyR

2

p(x0; y)v1(x0) dSx0 0

1
A :

The system of integral equations (2.9) with the integral operator G has nice properties.

First of all, the L1-norm of G is less than 1, for any con�guration of the two overlapping

discs, since
R

S(x;R)

p(y;x)dSy = 1. Hence (E�G)�1 exists and is represented as a convergent

Neumann series. This also follows from the next assertion which presents a nice property

of the Poisson kernel.

Lemma 1 For any x 2 
2 and any y 2 
1Z

1

p(y;x) dSy =

Z

2

p(y0; y) dSy0 = 1 � �
�
1

�
� �

�
2

�
;

where the angles ��1 and ��2 are de�ned as follows: 2��1 is the angle of view of the arc 
1
from the centre of the �rst circle, and 2��2 is the angle of view of the arc 
2 from the centre

of the second circle.

Proof. For any x 2 
2 we have obviously:

p(y;x) =
cos( )

�jx� yj �
1

2�R1
(2.10)

which follows from the cosine relation: jR2
1 � r1j2 + jx� yj2 = 2R1jx� yj cos( ) where  

is the angle between x� y and x� x
(1)
0 .

Using the relation (2.10) we can write:Z

1

p(y;x) dSy =
1

�

nZ

1

cos( )

jx� yjdS 
o
� 1

2�R1

Z

1

dS :

In the right-hand side, the �rst integral in the braces is the double layer potential integral

which is equal (e.g., see [10]) to the angle of view of the arc 
1 from the point x, i.e., to

(2��2��2)=2. The second integral is simply ��1=�. This proves the Lemma 1, since exactly

the same result is obviously obtained for the second circle, when y 2 
1.

4



In constructions of iterative numerical procedures, we will need the information about the

principal eigen-value of the integral operator. In the next theorem we �nd this eigen-value

explicitly.

Theorem 1. The integral operator G is a Fredholm operator with the kernels p(y;x),

p(x0; y), continuous on x 2 
2, y 2 
1, with integrable singularities at the points of

intersection of 
1 and 
2 of the type p(y;x) � sin(��1+�
�

2 )

� jx�yj as x ! y. The eigen-values of

G, �i, are all real, and �i = ��i�(G) where �(G) is the spectral radius of G (�i � 1 are

positive constants) given explicitly by

�(G) = 1� �
�
1

�
� �

�
2

�
:

Integral equation (2.9) has a unique solution which solves the Dirichlet problem (2.1).

Proof. First let us show that the singularities have the form p(y;x) � sin(��1+�
�

2)

� jx�yj as x! y.

Simple geometrical considerations show that R2 � r
2 = jx � yj � b, where b = jx � y

�j,
and y� is the second point of intersection of the line x� y with the circle S(x0; R). Thus

p(y;x) � b
2�R jx�yj . Now, as x 2 
2 ! y 2 
1, we have in the limit b = 2R sin(��1 + �

�
2).

Let us now consider the eigen-value problem. Note that the integral operator G is not

symmetric, but we can show that it can be symmetrized. Indeed, introducing the new

functions w1(x) = v1(x) �
p
R1=[R

2
1 � r

2
1]; w2(y) = v2(y) �

p
R2=[R

2
2 � r

2
2] we come to

the eigenvalue problem for the symmetric integral equation

�w = Ĝw

where

Ĝ =

0
B@

0
R

1

g(x;y)
jx�yj2 w2(y) dSyR


2

g(x;y)
jy�xj2 w1(x) dSx 0

1
CA :

Here g(x; y) is a symmetric function: g(x; y) = 1
2�

p
(R2

1 � r
2
1)(R

2
2 � r

2
2)=[R1R2]:

Thus the eigenvalues � are real, moreover, they are concentrated in the interval (��; �)
symmetrically relative to the origin, where � = �(G) < 1 is the spectral radius. Indeed,

if � is an eigen-value with the corresponding eigen-function ( 1;  2), then �� is also an

eigen-value with the corresponding eigen-function ( 1;� 2).

Let us now evaluate the spectral radius of our system of integral equations. Taking the

eigen-function as a constant (1; 1)T , we see that the corresponding eigenvalue is given by

�0 =

Z

i

p(y;x) dSy = 1� �
�
1

�
� �

�
2

�
; i = 1; 2 (2.11)

which does not obviously depend on x.

It is not diÆcult to show that �(G) = �0. Indeed, let � be an arbitrary eigen-value, and

( 1;  2)
T - the corresponding eigen-function. For any x 2 
2 we can write j�jj 1(x)j �

j 2(y
�)j�0, where y� is a point where j 2j reaches its maximum. For any y 2 
1 we have
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analogously: j�jj 2(y)j � j 1(x
�)j�0, where x� is the point of maximum of j 1j. From

these two inequalities we get the desired result: j�j2 � �
2
0. Thus �(G) = �0.

Finally, the equivalence of the integral equation and the Dirichlet problem is obvious: the

solution of the Dirichlet problem satis�es the integral equation whose solution is unique.

2.2 Approximating system of linear algebraic equations

Suppose we want to approximate the system of integral equations (2.9) by a system of

algebraic equations. To this end, we take uniform meshes x1; : : : ; xm1+1 on the arc 
1 and

y1; : : : ; ym2+1 on 
2 generating by the uniform polar angles distributions (the end points

are included); these meshes subdivide 
1 and 
2 in the set of arcs 

(i)
1 ; i = 1; : : : ;m1 and



(i)
2 ; i = 1; : : : ;m2, respectively. Since the Poisson kernel p(y; x) has a weak singularity, it

is convenient to take the approximation in the form:

Z

1

p(y; yk)v2(y)dSy =

m1X
i=1

p
(1)
i (xi; yk)v2(xi); k = 1; : : : ;m2;

and analogously,

Z

2

p(x0; xk)v1(x
0)dSx0 =

m2X
i=1

p
(2)
i (yi; xk)v1(yi); k = 1; : : : ;m1;

where

p
(1)
i (xi; yk) =

Z


(i)
1

p(y; yk)dSy ; p
(2)
i (yi; xk) =

Z


(i)
2

p(x0; xk)dSx0: (2.12)

These coeÆcients can be evaluated explicitly, using the formula (2.5). The same approx-

imation is used to calculate the right hand sides f1 and f2 in all grid points. Thus we

come to a discrete approximation of (2.9) in the form of the following system of linear

algebraic equations:

v
(k) =

m1+m2X
i=1

aki v
(i) + F

(k)
; k = 1; 2; : : : ;m1 +m2 (2.13)

where vk, k = 1; : : : ;m1 are the approximations to the function v1, and v
k, k = m1 +

1; : : : ;m1 + m2 are the approximations to the function v2. The same for the functions

F
(k).

Note that written in a 2 � 2-block matrix form, say, v = Av + f , the matrix A has zero

diagonal blocks, while the block A12 relates the values of the function v1 with the values

of function v2, and converse relation yields the matrix A21.

We use also di�erent approximations, in particular, based on linear interpolations of v

and F , and a re�nement 12-point Gauss approximation formula in the end points of the

arc.
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2.3 A chain of n overlapping discs

Generalization to the case of n circles is straightforward, and the relevant system of

integral equations is written in a block matrix form, whose general structure is shown

below in (2.14) for the case when the domain is a chain of overlapping discs (ChOD)

where each disc has intersections with only two immediate neighbour discs (which do not

overlap). Thus introducing k = 2(n � 1) functions vi and writing the Poisson formulae

in each disc we come to a system of k integral equations v = G v + f where the kernel

of the matrix integral operator G is a k � k-matrix G which has the following structure:

in the �rst row, only the kernel G12 is not zero, the second and the third rows have the

following non-zero kernels: G21; G24 and G31; G34. The same for the rows 4 and 5: the

non-zero entries are G43; G46 and G53; G56, etc., so that the j-th' row non-zero entries (j

is even) are Gj;j�1 and Gj;j+2, while the j + 1-th' row non-zero entries are Gj+1;j�1 and

Gj+1;j+2. The last row has only one non-zero entry: Gk;k�1. For illustration, in (2.14) we

present the kernel matrix G for 5 circles, so that k = 8.

G =

8>>>>>>>>>>>>>>>>>>>>>>>>>:

0 G12 0 0 0 0 0 0

G21 0 0 G24 0 0 0 0

G31 0 0 G34 0 0 0 0

0 0 G43 0 0 G46 0 0

0 0 G53 0 0 G56 0 0

0 0 0 0 G65 0 0 G68

0 0 0 0 G75 0 0 G78

0 0 0 0 0 0 G87 0

9>>>>>>>>>>>>>>>>>>>>>>>>>;
: (2.14)

Note that the kernel matrix G is cyclic, of index 2, and the general structure of the

eigen-values can be extracted from the following representation of the characteristic de-

terminant:

det(�E �G) = �
k�2r

rY
i=1

(�2 � �i�
2(G))

where r � 1 is an integer number, and �1 = 1, j�rj � j�r�1j � : : : � �1. So this type of

matrix always has real eigenvalues ��.
Let us turn to the approximation of the above system of integral equations by a system

of linear algebraic equations. In this case, instead of 2n � 2 integral equations for the

functions v1; : : : ; v2n�2, we will have an approximating system of linear algebraic equations

(u = Au+f) with a 5-diagonal block matrix (see (2.14)) with zero diagonal blocks, and in

each block-row there are only two non-zero blocks which relate the values of the function

u on the arc inside one disk with the values de�ned on two arcs belonging to two neighbor

discs. The �rst and last rows have only one non-zero block because they have only one

neighbor.

To ensure that the system of linear algebraic equations is a good approximation to the

exact system of integral equations it is enough to prove that (E � A)�1 exists. This is

ensured by the fact that our matrices are all substochastic, and their spectral radii are all

less than 1, see the error estimations given by (2.15).

So let us use the numbering of the arcs quite simple: the �rst arc 
1 is the arc inside the

7



�rst disc l = 1 which overlaps only with the second disc l = 2, where two further arcs

lie: 
2 and 
3, etc. This numbering results in the structure of the matrix shown in (2.14).

The relevant numbering of the functions is used: the functions vj(x), j = 2l�2, j = 2l�1

are de�ned on the arcs 
j which belong to the disc l where j = 2l � 2 and j = 2l � 1,

l = 2; : : : ; n� 1. Analogously for the �rst and last discs.

Let us de�ne the di�erence between vj(xi), j = 2l � 2, the exact solution of the system

of integral equations taken in l-th disc, at a point xi 2 
j , and the approximation u
(j)
i

taken as the i-th component of the solution of our linear equation (ith row in the j-th

block of the matrix A): �
(j)
i = u

(j)
i � vj(xi) : Hence the error vector � has in j-th block the

components �
(j)
i .

Let us also de�ne the errors Æj and Æ
f
j , the errors of approximation of the Poisson integrals

in l-th disc (j = 2l � 2) over 
j and �j , respectively. Thus we can write for the i-th row

in the lth disc (j > 1):

u
(j)
i � vj(xi) =

2n�2X
k=1

a
j�1
ik u

(j�1)
k �

Z

j�1

p(y;xi)vj�1(y)dS(y)

+

2n�2X
k=1

a
j+2
ik u

(j+2)
k �

Z

j+2

p(y;xi)vj+2(y)dS(y) + Æ
f
j (xi)

=

2n�2X
k=1

a
j�1
ik (u

(j�1)
k � v(j�1)(xk)) +

2n�2X
k=1

a
j+2
ik (u

(j+2)
k � v(j+2)(xk))

+

8><
>:

2n�2X
k=1

a
j�1
ik (v(j�1)(xk))�

Z

j�1

p(y;xi)vj�1(y)dS(y)

9>=
>; (2.15)

+

8><
>:

2n�2X
k=1

a
j+2
ik (v(j+2)(xk))�

Z

j+2

p(y;xi)vj+2(y)dS(y)

9>=
>;+ Æ

f
j (xi) :

The di�erence for the case j = 2l� 1 is treated analogously, we need only to replace j� 1

with j � 2, and j + 2 with j + 1.

Thus written in the matrix form these relations are

� = A�+ Æ + Æ
f
: (2.16)

Let �' = max
i
('i+1 � 'i) be the maximum di�erence taken over the all angular meshes.

For simplicity we take a simple estimations kÆk < C1�' and kÆfk < C2�'. Therefore,

we have

k�k � k(E �A)�1k (C1 + C2)�' : (2.17)

3 Stochastic iteration methods

In this section we present various Monte Carlo iterative procedures for solving linear sys-

tems of equations, generally being integral equations, with speci�c details for system of

8



linear algebraic equations. First we present a general iteration method with random pa-

rameters which in the deterministic limit tends to the iterative procedure with Chebyshev

parameters. In the next subsection we describe a randomized version of the successive

overrelaxation method (SOR). Both classes of methods will be used then to solve our

system of linear equations on circles.

3.1 A stochastic iterative procedure with optimal random pa-

rameters

Assume we have to solve a linear, generally, integral equation of the second kind:

u(x) = �

Z
X

k(x; y)u(y)dy + f(x) (3.1)

or in the operator form: u = �Ku + f ; X is the Euclidean space.

Standard Monte Carlo Markov chain algorithms (MCMC) for solving this kind of equa-

tions usually require that �(j�Kj) < 1, where the integral operator jKj is de�ned by its

kernel jk(x; yj, � is the spectral radius.
The �rst extension beyond the conventional Neumann series approach was suggested by K.

Sabelfeld in [9] and then developed in the book [10]. This approach is based on a spectral

transformation of the parameter �. This generates di�erent iteration procedures which are

convergent even if �(j�jjKj) > 1. However the main question - when the variance of the

relevant Monte Carlo estimator is �nite - was resolved under quite restrictive assumptions.

Here we deal with the following iterative procedure for the equation (3.1), with � = 1,

starting with u0 = 0; u1 = �0f :

uj+1 = �juj + �j(f +Kuj); j = 1; 2; : : : (3.2)

where �j; �j are some positive constants which we choose so that �j + �j = 1.

Simple analysis shows that if we assume that the eigen-functions �l (de�ned through

�k = �kK�k) form a complete system in the space L2(X) of square-integrable functions

on a space X, then the following estimation of the error can be made.

Let the initial error be �0 =
P1

i=1 ci�i, then

�n =

1X
i=1

ci

"
nY
j=1

(�j + �j�
�1
i )

#
�i =

1X
i=1

ci

"
nY
j=1

�
1� �j

�i � 1

�i

�#
�i : (3.3)

Hence if for all �i there exists a set of numbers � such that����1 � �
�k � 1

�k

���� = qk < 1� Æ; Æ > 0

then for all �j belonging to this set the method converges.

It is possible to construct di�erent Monte Carlo estimators following this iterative proce-

dure. We prefer to construct biased estimators: �rst, we �x n, the number of iterations
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we will perform, and choose the numbers �0; �1; �2; : : : ; �n�1 in the interval [0; 1]. How to

make such a choice optimal, we will discuss later.

Then we proceed as follows. First, we need to have a reversed indexation, so let �0k = �n�k,
k = 1; : : : ; n.

Start a Markov chain from the point where the solution should be found, say, x0, and

take the current state as X = x0. The current value of the iteration index is j = 1. Take

the initial value of the weight as Q = 1. The initial value of the random estimator is

� = f(x0)�
0
1.

1. Sample uniformly in (0; 1) a random number rand and check if rand > �
0
j. If so,

then calculate the random estimator

� = � +Qf(X)�0j+1

and go to the next iteration which means that we put j = j+1 and go to 1 if j < n.

2. Otherwise we simulate the transition from the current state X to the next state

Y according to the transition density p(x; y). Then recalculate the weight

Q = Qk(X;Y )=p(X;Y ), and the random estimator is scored as � = �+Q�0j+1f(Y ).
The current state is now i = k,X = Y ; we turn to the next iteration again by putting

j = j + 1 and goto 1 if j < n.

After n steps we �nish the evaluation of our random estimator �(x0). It is not diÆcult to

show that the constructed random estimator � is unbiased: un(x0) = E� :

Indeed, for i = 1; 2 this is obvious since u0 = 0, u1 = �0f . The next step is also the next

step in the Markov chain method since

uj+2 = (�j+1E + �j+1K)(�jE + �jK)uj + (�j+1E + �j+1K)�jf + �j+1f;

and so on, we have after n-steps:

uj+n =

(
nY
i=1

(�j+n�iE + �j+n�iK)

)
uj

+

n�1X
k=1

"(
n�kY
i=1

(�j+n�iE + �j+n�iK)

)
�j+k�1f

#
+ �j+n�1f : (3.4)

3.1.1 Optimal random parameters �k

The parameters �i and �i can be chosen according to the Chebyshev iteration method

which is based on polynomials which are uniformly close to zero. However in our method,

it is quite natural to choose these parameters randomly, according to a minimization of

the probabilistic error (see [5]). Remarkably, the Chebyshev choice of parameters follows

from this probabilistic approach.

10



To analyze the error, it is convenient to work with the operator B = E�K. We introduce

the corresponding polynomial by

Pn(t) =

nY
i=1

(1 � �it) (3.5)

which relates, in view of (3.4), the errors through

�j+n = Pn(B)�j : (3.6)

It is the general idea, in the iterative methods, to make the polynomial Pn(t) as closer

to zero as possible, and in the deterministic approach the problem was solved by Markov

and Chebyshev. In our case, our parameters �k and �k = 1 � �k are random, and it is

natural to measure the error in the probabilistic sense, as well presented in [5]. Let us

follow this approach.

So let us assume that we have chosen n random numbers �1; : : : ; �n which are equally

and independently distributed on some interval. Then the polynomial Pn is a random

variable, and we can write:

ln jPnj =
nX
k=1

ln pk (3.7)

where pk = j1��k tj. Note that the random numbers lnpk are equally and independently

distributed, so we can apply the central limit theorem. This implies that the distribution

of ln pk tends the the Gaussian distribution, as n increases:

K(x) =
1p

2�nD
exp

n
� (x� na)2

2nD

o

where a = hln j1 � �k tji is the expectation, and D - the variance of ln pk. Standard

considerations yield

P

�
jPnj > �

�
� 1� �

�
ln(�)� nap

2nD

�

where � is the function � = 2p
�

R x
0
e
�t2

dt. From this follows that to ensure that the

probability of deviation of Pn(t) tends to zero we have to require that the expectation a

is negative.

Let '(x) be the distribution density of �k which is de�ned on the interval [M�1
;m

�1]
where m and M are the lower and upper boundaries of the spectrum of the operator

E �K. Thus we have

a =

1=mZ
1=M

ln jtx� 1j'(x) dx; D =

1=mZ
1=M

(ln jtx� 1j � a)2'(x) dx : (3.8)

It is natural to assume that the expectation a does not depend on t, which implies that

da

dt
=

1=mZ
1=M

x'(x)

tx� 1
dx = 0 : (3.9)
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A density function on [M�1
;m

�1] which solves (3.9) has the form:

'(x) =
1

� x

p
(1�mx)(Mx� 1)

: (3.10)

This gives

a = � ln

p
M +

p
mp

M �p
m

; (3.11)

and

D < �
2 + 8 ln 2

r
m

M
+O((

m

M
)3=2) :

From this, the following estimation of the number of iterations n required to reach the

error � can be derived:

n >
ln(�)

a

where the expectation a is given by (3.11).

Sampling from the density ' is simple: by the inversion method we �nd �rst the simulation

formula for the random number ��1k , which �nally yields

�k =
2

(M �m) cos(� randk) +M +m
(3.12)

where randk are random numbers uniformly and independently distributed on (0; 1). A

variance reduction can be achieved by the following modi�cation: the interval is uniformly

divided into n subintervals, and then, change in the simulation formula (3.12) �k with

(j��j)=n where j are integer numbers which cyclically vary with period n as j = 1; : : : ; n

and �j are random numbers uniformly distributed on (0; 1). Remarkably, if �j are changed

with their expectations 0.5, we come to the method with optimal Chebyshev parameters,

see for details [5].

3.2 SOR method

Again, let us explain the main idea in the simple case of two overlapping discs and the

governing system of integral equations (2.9). The matrix integral operator G can be

represented as G = L+U where L and U are the lower and upper - triangular operators,

respectively:

Lv =
 

0 0R

2

p(x0; y)v1(x0) dSx0 0

!
; Uv =

 
0
R

1

p(y; x)v2(y) dSy

0 0

!
:

Introducing a scalar parameter ! we rewrite our equation v = Gv + F in the form:

v = (E � !L)�1[(1� !)E + !U ]v + !(E � !L)�1F : (3.13)

12



This is a general form of the SOR method (e.g., see [2]). In the case we deal with we note

that (E � !L)�1 = E + !L, therefore, our equation has the following simple form:

v = Tv + d

where
T = (E + !L)[(1� !)E + !U ]; d = !(E + !L)F :

If the integral operator T were a contracting operator, we could apply a standard collision

estimator. This can be applied directly to the integral form, or to the approximating

system of linear algebraic equations. Here it is convenient again to use a Markov chain

of length n, to evaluate the n-th approximation. Note that the structure of the operator

T has a nice probabilistic sense: in each step, we either stay in the current state with

probability 1 � !, or, otherwise, make a transition according the operators U and L,
successively. Note that in the case of matrix operators, there are well known interrelations

between the spectra of G and T, e.g., see [2], [6] which can be used to analyse the

convergence and variance of stochastic methods.

Let us discuss the case of n > 2 overlapping discs, each disc having no more than 2

neighbors (the ChOD-domain). The remarkable property (E � !L�1 = E + !L does

not hold for our system of equations with the chosen indexation of the arcs generating

the matrix G (for illustration, see, e.g., the matrix G in (2.14) in the case of 5 discs).

However it can be shown that this indexation can always be chosen so that the property

(E � !L)�1 = E + !L holds true.

We de�ne now a family of domains for which this theory works. First, let us de�ne a

closed subset of discs as follows: the �rst disc in this subset overlaps with the second disc,

the second with the third, etc, and the last disc overlaps again with the �rst disc; note

that in this subset, each disc has only two overlapping discs.

Let us de�ne an S2-disc domain as follows: each disc may overlap with arbitrary number

of discs, however each intersection is a result of overlapping only of two discs. Further,

S2-disc domain may include a subset of a closed set of discs, but the number of discs in

such a subset should be even.

Thus we will deal in the following theorem with the family of S2-disc domains, which is

quite general.

Theorem 2. Assume that D is an S2-disc domain. Then the indexation of arcs can be

chosen so that the matrix G is cyclic, of index 2, and the property (E �!L)�1 = E +!L

holds true.

4 Discrete random walks

In this section we present stochastic algorithms which are applied to the discrete approx-

imation of the relevant integral equations. Hence the stochastic algorithms are based on

discrete versions of the iteration methods described (I - a nonstationary iteration method

(3.2), and II - SOR method). These algorithms can be considered as a Random Walk ap-

proach for solving the relevant system of linear algebraic equations on the basis of relevant

iteration method which is di�erent from the conventional Monte Carlo method based on
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the convergent Neumann series. Note that for a chosen iteration method, di�erent ran-

domization schemes can be constructed.

4.1 Discrete Random Walk for the iteration method (3.2)

Let us consider a system of linear algebraic equations (SLAE) which approximates the

relevant system of integral equations for our domain. The SLAE can be written in the

form (2.13), or in the form related to the appropriate indexation.

So we have to construct a Monte Carlo estimator for a system of m linear algebraic

equations

xi =

mX
j=1

aijxj + bi; i = 1; : : : ;m

or in the matrix form,

x = Ax+ b : (4.1)

We assume that Max, min, the maximal and minimal eigen-values of the matrix A are

known or at least estimated.

As discussed in section 3.1, we will construct unbiased random estimators �n for un, the

n-th approximation to the solution x, and more precisely, to its l-th component uln.

First of all, we have to choose a nonnegative transition density matrix pij = p(i ! j);

i; j = 1; : : : ;m;
Pm

j=1 pij = 1 for all i, and consistent with the matrix A, i.e., pij 6= 0 if

aij 6= 0. It is convenient to take

pij =
jaijjPm

j=1 jaijj
:

This ensures that the random walk will be concentrated only on non-zero elements which

is important since we deal with sparse block matrices. We will not have absorptions in

our random walk.

The �rst variant of the algorithm can be presented as follows:

1. Choose n random parameters according to the formula:

�i =
2

Max+min+ (Max�min) cos(� rand(i))
; i = 1; : : : ; n

where rand(i), i = 1; : : : ; n are independent samples generated by a rand-generator. The

initial score is set to zero: S = 0. Calculate the initial value of the estimator as v = bl �1.

2. The initial weight Q = 1, and the initial number of iteration j = 1; �x the initial state

as i = l.

3. Take a sample 
j = rand(j);

if 
j > �j, then calculate v = v+Qbi �j+1, and make the next iteration, i.e., j = j+1 and

go to 3. if j, the number of iterations is less than n; otherwise make a score: S = S + v,

and start the new statistics from 2.

4. Otherwise, if 
j < �j, we simulate the transition from the old state i to the new state

k according to the density pik = p(i! k).
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Recalculate the weight and the random estimator: Q = Qaik=pik ; v = v +Q�j+1 bk ;

then, renew the state as i = k, and go to the next iteration, i.e., j = j +1, and go to p.3,

if j, the number of iterations is less than n; otherwise make a score: S = S + v, and start

the new statistics from p.1.

Averaging the estimator over statistics of size N gives the result: uln � S=N .

4.2 Discrete Random Walk method based on SOR

Here we present two variants of the random walk algorithm. In the �rst version, we

assume that D is a S2-disc domain, so that (E �!L)�1 = E +!L, and hence our system

(4.1) can be rewritten in the form

x = Tx+ f ; (4.2)

where T = (E + !L)((1 � !)E + !U), and f = (E + !L)b.

The �rst algorithm for calculation of n-th approximation is based on a direct randomized

calculation of the �nite number of iterations of the matrix T , i.e., by evaluation of the

Neumann series f+Tf+T 2
f+ : : :+T nf . As in the previous section, we do not introduce

absorption in our Markov chain. So to calculate the component xl of the solution to (4.2),

we suggest the following algorithm

1. Fix n, the number of iterations to be made, and choose the parameter !, say, equal to

1 as in Seidel's method. The initial score is set to zero: S = 0. Calculate the matrix T ,

and the vector f .

2. Set the initial weight Q = 1, the number of iteration j = 1, and the current state of

the Markov chain i = l. The initial value of the estimator is set as v = fl,

3. Simulate the transition from the state i to the new state k according to the density

pik = p(i! k) which is chosen, e.g., as in the method of the previous section:

pij =
jtijjPm

j=1 jtijj
:

Recalculate the weight and the random estimator:

Q = Qtik=pik ; v = v +Qfk ;

then, renew the state as i = k, and go to the next iteration, i.e., j = j +1, and go to p.3,

if j, the number of iterations is less than n; otherwise make a score: S = S + v, and start

the new statistics from p.2.

Averaging the estimator over statistics of size N gives the result.

Another version of this is algorithm is the following. Let Li;j and Ui;j be the entries of

the triangular matrices E + !L and (1 � !)E + !U , respectively. Two new transition

densities are de�ned by

pL(i! i
0) =

jLi;jjPm

j=1 jLi;j j
; pU (i

0 ! k) =
jUi;jjPm

j=1 jUi;jj
: (4.3)
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According to the representation T = (E+!L)((1�!)E+!U), make the transition from

the state i to state k in two steps: �rst, sample the transition from i to a state i0 according
to the matrix E+!L (i.e., the transition i! i

0 is sampled from the pdf pL(i! i
0) de�ned

in (4.3)), and then make the transition i0 ! k according to the matrix ((1 � !)E + !U)

(i.e., the transition i0 ! k is sampled from the pdf pU (i0 ! k) de�ned in (4.3)). In each

step the weight is recalculated, so that in the �rst step Q = QLi;i0=pL(i ! i
0) and then,

Q = QUi0;k=pU (i0 ! k) , with the �nal random estimator v = v +Qfk.

It is worth mentioning that in the simulation of these discrete distributions, it is quite

useful to apply the highly economical algorithm described in [7], because in the prepro-

cessing stage, we �x the number of the grid points and then the cost of the algorithm will

not depend of the matrices size - it needs only one sample made by the random generator

and a couple of \if" operators. This makes possible to work with very large matrices L

and U .

5 Conclusion and extensions

We have presented in this paper only the main idea, and the details are given for simplicity

only for the case eminently loved in the probability theory and stochastic numerics - the

Dirichlet problem for the Laplace equation. Our main motivation however were systems

of elliptic equations and equations of higher order where both the classical probabilistic

approach and Markov Chain Monte Carlo methods fail.

The method presented is quite general, and wemention here two examples of extensions we

have made. The �rst example is the Dirichlet problem for the system of Lam�e equations:

��u(x) + (�+ �) grad div u(x) = 0; x 2 D; u(y) = g; y 2 �

where � and � are the Lam�e constants of elasticity.

All the considerations can be extended starting from the generalized Poisson formula:

u(x) =

Z
S(x0;R)

p(y;x)Bu(y) dS(y) (5.1)

where the matrix B is given in a simple and explicit form, see [12].

Second example is the biharmonic problem:

�2
u(x) = 0; x 2 D; u

���
�
= g0;

@u

@n

����
�

= g1:

Here n is the exterior normal vector to the boundary �.

The generalized Poisson formula in this case has the same form as (5.1) where the vector

v includes the function u and its derivatives.

These two examples and more will be presented in a forthcoming paper [11].
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