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Abstract

This work studies the stability of spatially extended neuronal ensembles.
We first derive the model equation from statistical properties of the neuron
population. The obtained integro-differential equation considers synaptic and
space-dependent transmission delay for both general and gamma-distributed
synaptic connectivities. The latter connectivity type reveals infinite, finite
and vanishing self-connectivities. The work derives conditions for stationary
and nonstationary instabilities for both kernel types. In addition, a nonlinear
analysis for general kernels yields the order parameter equation of the Turing
instability. To compare the results to findings for partial differential equations
(PDEs), two typical PDE-types are derived from the examined model equa-
tion. In case of the gamma-distributed kernels, the stability conditions are
formulated in terms of the mean excitatory and inhibitory interaction ranges.
As a novel finding, we obtain Turing instabilities in fields with local inhibition-
lateral excitation, while wave instabilities occur in fields with local excitation
and lateral inhibition. Numerical simulations support the analytical results.

1 Introduction

Understanding the basic mechanisms of neural activity is supposed to yield insights
to major brain functions such as cognitive processes (1), motor coordination (2)
or perception (3). In addition, the understanding of pathological phenomena will
support the clinical treatment of patients. Several studies in recent years indicate
that some of the known pathologies represent large-scale coherent phenomena orig-
inating from mutual activity of neural populations. We mention the hand tremor
in Parkinson disease (4), epileptic seizures (5) or hallucinations. For instance, the
latter frequently result from specific circumstances such as fatigue or sleep depriva-
tion (6) and, in some cases, exhibit a shift of the neural state to an instability by
increased neuronal excitation (7). Ermentrout and Cowan (8) introduced a meso-
scopical neuronal field theory and explained visual hallucination patterns by loss of
stability at bifurcation points. Furthermore external stimuli may also evoke coher-
ent brain activity indicating synchronous neuronal activity on a mesoscopic spatial
level (9; 10; 11; 12; 3). In this context, Freeman (13) has shown in an early work that
encephalographic activity relates to mesoscopic dendritic currents. Dipol and cur-
rent source density models support these findings (14). These findings corroborate
the study of mesoscopic models to gain further insights to brain activity.

Many workings studying mesoscopic neuronal activity treat synaptically coupled
neuronal ensembles (15; 16; 17; 18; 19; 20; 21; 22; 23). Our work follows the basic
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field approach of Jirsa and Haken (9), who combined the ensemble models of Wilson
and Cowan (24) and Nunez (25). This model considers a single type of neurons,
which are interconnected by axons terminating at either excitatory or inhibitory
synapses. Though the model accounts for the intrinsic delay due to axonal propaga-
tion, the delay does not affect temporal and spatial dynamics. An extended model
introduces the synaptic response delay and thus adds a further time scale (26). It
turns out that the relation between synaptic and propagation delay affects the stabil-
ity of the system (27). This model is equivalent to the model type studied extensively
by Ermentrout (8; 18; 28) and others (29; 30; 31) neglecting axonal transmission
delay. Further studies considering the transmission delay revealed novel criteria for
the onset of wave instabilities (26; 27; 32) and confirmed its importance to traveling
phenomena (33). In addition to the temporal scales, the synaptic connectivity ker-
nels define the spatial scales of the neuronal field. In most studies, these connectivity
kernels exhibit their maximum at zero distances, i.e. strong self-connectivity.

In contrast to previous studies, the present work discusses the neural field dynamics
by an analytical stability analysis for general connectivity kernels and taking into
account the transmission delay. The analysis includes the derivation of the nonlin-
ear order parameter equation for Turing instabilities and the comparison to partial
differential equation models. In addition, experimental findings of Nunez (25) mo-
tivate us to focus to the family of gamma-distributed connectivity kernels, which
exhibit divergent, finite, and negligible probability densities of self-connections for
diverse parameters. To our best knowledge, this treatment has not been done yet in
a general way. The discussion shows novel effects caused by divergent and vanishing
self-connections.

The paper is organized as follows. The subsequent section presents the derivation
of the field equation. In section 3, stability conditions for both stationary and non-
stationary instabilities are derived analytically for general kernels, followed by the
derivation of the order parameter equation of the Turing instability. In addition,
the model equation is compared to partial differential equations. Finally Section 4
applies the obtained results to the case of gamma-distributed kernels, followed by
numerical simulations. Section 5 summarizes the results and closes the work.

2 The model

The present work treats the well-known rate model of synaptically coupled neuronal
ensembles. In the following, the model is motivated and derived from the statistics
of the neuron population.

2.1 Model sections

Chemical synapses convert incoming action potentials to postsynaptic currents by
emission of neurotransmitters (34). Most excitatory synapses emit neurotransmit-

2



ters called glutamate, which enhance the activity of the postsynaptic cells, while
the neurotransmitter γ-aminobutyric (GABA) emitted by inhibitory synapses di-
minishes the postsynaptic cell activity. In a simplified model, synapses bind to
dendrites which exhibit passive spread of current through the its tissue. According
to this approach, Freeman (35) was one of the first to show that the incoming action
potentials mathematically convolute with an impulse response function he(t) and
hi(t) at excitatory and inhibitory synapses, respectively. The presented approach
accounts for this finding and neglects shunting effects.

In experimental practice single cell activation is measured frequently as the number
of action potentials exceeding a certain threshold potential during a fixed time in-
terval. Hence it is reasonable to discuss the mean pulse rate at time t. In addition,
the model introduces spatial patches Γ(x) at location x each containing an ensemble
of synapses, that is, the activity discussed is coarse grained in space. Consequently,
postsynaptic potentials averaged over time and space obey

V̄ e,i(x, t) = ḡe,i

∫ t

−∞

dτ he,i(t − τ) P̄e,i(x, τ) , (1)

where ḡe,i denote the efficacy of excitatory and inhibitory synapses and P̄e,i(x, t)
represents the presynaptic pulse rate coarse grained in time and space. The synap-
tic response behaviour is defined by (1) and represents the Green function for the
temporal operator L̂ with L̂h(t) = δ(t) and δ(t) being the Dirac δ(t) function.

Equation (1) assumes presynaptic pulse activity which is fast compared to the slow
synaptic response. We remark that the replacement of sequences of actual spike
trains is only justified if quantities relevant for the network dynamics are insensitive
to trial-to-trial fluctuations, i.e. time coding of spikes is not relevant. This is given in
case of uncorrelated single action potentials, which is assumed here. The introduced
spatial patches Γ(x) represent neuronal assemblies or neuronal pools (16; 24; 25; 36)
which have been found experimentally both in cortical (37; 38) and subcortical (39)
areas.

Essentially, we assume variations of synaptic properties in the considered neuronal
population (40). Thus PSPs V e,i(t) at single neurons become random variables with
the corresponding probability distributions pe

S(V e − V̄ e) and pi
S(V i − V̄ i). Since

excitatory and inhibitory PSPs sum up at the trigger zone of each neuron (41; 33),
the probability density function of the effective membrane potential V = V e −V i is

pS(V − V̄ ) =
1

2π

∫

dzφe
S(z)φi

S(−z)e−izV , (2)

where V̄ = V̄ e − V̄ i and φe
S, φi

S are the characteristic functions of the corresponding
probability density functions of pe

S, pi
S.

Now, the adjacent model section focuses on the conversion of membrane potentials
to pulse activity. A single neuron generates an action potential, that is, it fires if
the membrane potential V (t) at the trigger zone exceeds a certain threshold Vth.
Thus, the probability of a single neuron to fire is Θ(V (t) − Vth), where Θ denotes
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the Heaviside function. In addition, there are different types of neurons, e.g. short-
range interneurons or pyramidal cells showing axonal connections on a longer range.
In most cases, the former type diminishes synaptic activity, while the latter builds
excitatory synaptic connections. For an ensemble of neurons at spatial location x,
there is a distribution of firing thresholds Dk(Vth− V̄th, t) subject to the neuron type
k. Hence the expected number of firing neurons is

Nk(t) =

∫ ∞

−∞

dV pS(V − V̄ (t))

∫ ∞

−∞

dVthΘ(V − Vth)Dk(Vth − V̄th, t)

=

∫ ∞

−∞

dw

∫ w+V̄ (t)−V̄th

−∞

du pS(w)Dk(u, t).

where V̄th denotes the mean firing threshold and pS is taken from Eq. (2). The
time-averaged pulse activity at location x is given by

N̄k(x, t) =

∫ ∞

−∞

dw

∫ w+V̄ (x,t)−V̄th

−∞

du pS(w)D̄k(u) (3)

with the time-averaged distribution of firing thresholds D̄k(u). Here, N̄k(x, t) rep-
resents the average number of firing neurons of type k at time t in a neuronal
ensemble at location x. Equation (3) gives the general definition of the so-called
transfer function.

To be more specific, in case of normal-distributed synaptic probability distributions
pe,i

S , the effective membrane potentials obey a normal distribution pS ∼ N (0, σ2
S).

Additionally, for Gaussian-distributed firing thresholds

D̄k(u) =
Pmax√
2πσk

e−u2/2σ2

k ,

the transfer function and nonlinear gain read

N̄k(x, t) =
Pmax

2
(1 + erf(

V̄ (x, t) − V̄th√
2ηk

)) = PmaxSk(V (x, t)) (4)

∂N̄k(x, t)

∂V̄
=

Pmax√
2πηk

e−(V̄ (x,t)−V̄th)2/2η2

k ,

respectively, where η2
k = σ2

S + σ2
k, erf(x) represents the Gaussian error function and

Pmax denotes the maximum firing rate. By virtue of the probabilistic origin of
N̄k(x, t), it owns a sigmoidal shape and the corresponding nonlinear gain reveals a
maximum Pmax/(

√
2πηk). Equation (4) shows accordance to previous results (42)

for a single neuron type.

Finally, the model field contains axonal fibres linking trigger zones and dendritic
structures of terminal neurons. With the probabilities of excitatory and inhibitory
axonal connections Ke(x, y) and Ki(x, y), respectively, the nonlocal interactions
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yield temporal propagation delays in case of finite axonal propagation speeds ve and
vi. Hence, the presynaptic pulse activity reads

P̄e,i(x, t) =

∫

V

dx′Ke,i(x, x′)N̄k(x
′, t − |x − x′|

ve,i

) + µe,iI(x, t) (5)

with coupling factors µe,i. The additional pulse activity I(x, t) introduces an external
input, e.g. from other cortical regions or from the midbrain (25).

2.2 The field equation

Combining the previous results, the evolution equation reads

L̂V (x, t) =

∫ ∞

−∞

aeKe(x − y)Se(V (y, t − |x − y|
ve

))

−aiKi(x − y)Si(V (y, t − |x − y|
vi

))dy + µI(x, t) (6)

with ae,i = ḡe,iPmax and µ = µe−µi. Equation (6) accounts for tow types of neurons,
namely excitatory pyramidal cells k = e and inhibitory stellate cells k = i.

3 Analysis for general kernels

This section aims to study the stability of a stationary state V0 which is constant
in space. Here, we choose one type of neuron Se = Si = S and specify the impulse
response function to h(t) = α1α2/(α2 − α1)(exp(−α1t) − exp(−α2t))Θ(t). After
rescaling time to t → t

√
α1α2, the temporal operator reads

L̂ = (
∂2

∂t2
+ γ

∂

∂t
+ 1) (7)

with γ = α1/α2 + α2/α1 ≥ 2. In case of constant external input µI(x, t) = I0,
Eq. (6) gives the implicit equation for the stationary state V (x, t) = V0 as

V0 = (ae − ai)S(V0) + I0. (8)

and Fig. 1 illustrates its different solutions for ae > ai with respect to I0 as external
control parameter. We mention the similarity to a cusp catastrophe (43).

For deviations u(x, t) = V (x, t) − V0 = u0e
λt+ikx, the characteristic equation reads

L(λ) = s

∫ ∞

−∞

dz
(

aeKe(z)e−
λ

ve
|z| − aiKi(z)e

− λ

vi
|z|

)

e−ikz (9)

with the nonlinear gain s = δS/δV at V = V0. Here and in the following, δ/δV
denotes the functional derivative. Since I0 determines V0 and s, the nonlinear gain
represents the control parameter in the following.
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When s = 0, one has L(λ) = λ2 + γλ + 1 = 0, so that Re λ < 0 and the pertur-
bations u are damped out. It follows that V0 is asymptotically stable for all small
s, since the values (λ, k) satisfying the dispersion relation (9) depend continuously
on s. However, increasing s further may result in a loss of stability; in this critical
transition one has Re λ = 0. Thus setting λ = iω for some ω ∈ R in (9), we get

1 − ω2 + iωγ = s

∫ ∞

−∞

dz
(

aeKe(z)e−iω|z|/ve − aiKi(z)e−iω|z|/vi

)

eikz. (10)

Comparing the magnitudes of both sides,

√

(1 − ω2)2 + γ2ω2 ≤ s

∫ ∞

−∞

dz (ae|Ke(z)| + ai|Ki(z)|) . (11)

By simple calculus and the fact that γ ≥ 2,

(1 − ω2)2 + γ2ω2 ≥ 1 for all ω ∈ R. (12)

Also by definition (cf. section 2.1)

∫ ∞

−∞

dz|Ke,i(z)| = 1. (13)

Using (12) and (13) in (11), we obtain the necessary condition for loss of stability

1 ≤ s(ae + ai). (14)

Hence, the stationary state V0 is asymptotically stable for s < 1/(ae + ai). In order
to investigate the dynamics of the nonlinear equation (6), it is useful to classify the
different ways in which V0 may lose its stability subject to the parameter s.

3.1 Stationary instability

For stationary bifurcations, ω = 0 and the threshold for s becomes

sc =
1

aeK̂e(kc) − aiK̂i(kc)
=

1

K̂(kc)
, kc = arg min

k
K̂(k) (15)

where K̂e and K̂i are the Fourier transforms, i.e. the characteristic functions, of the
connectivity probability densities Ke and Ki, respectively.

In case of a constant bifurcation, the stationary state loses stability for

s >
1

K̂(0)
=

1

ae − ai

. (16)

Figure 2 shows the corresponding bifurcation diagram for various parameters ae, ai.
As mentioned in Section 2.1, the nonlinear gain s is constrained from above by
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sm = 1/(
√

2πη). It follows, that if sm < 1/(ae − ai) holds all stationary solutions
are stable with respect to constant bifurcations.

However, increasing s from zero, a non-constant bifurcation may emerge for K̂(k) >
K̂(0) and (ae + ai) > K̂(kc) > (ae − ai) with kc 6= 0 and ae > ai. That is, Eq. (15)
represents the condition for the instability onset with k 6= 0. The corresponding
bifurcation has been found first by Turing in non-equilibrium activator-inhibitor
systems (44; 45). As mentioned in Section 2.1, the nonlinear gain s is constraint
from above with maximum sm = 1/(

√
2πη). Subsequently, Turing bifurcations

might occur only if K̂(kc) > 1/sm ∼ η, i.e. in case of small statistical variances
of membrane potentials and firing thresholds. This additional condition relates the
statistical field properties directly with the macroscopic behaviour.

3.2 Non-stationary instability

This type of bifurcation is characterized by a solution pair (λ, k) of (9) with λ =
iω 6= 0. We shall show that such bifurcations are possible only if the transmission
speeds ve,i are sufficiently small, and obtain an estimate to quantify this statement.

Considering the imaginary part of (10),

ωγ = −s
∫ ∞

−∞
dz (aeKe(z) sin(ω|z|/ve) − aiKi(z) sin(ω|z|/vi)) cos(kz)

+s
∫ ∞

−∞
dz (aeKe(z) cos(ω|z|/ve) − aiKi(z) cos(ω|z|/vi)) sin(kz).

Note that the integrand in the first integral is an even function of z while that in
the second integral is an odd function. Thus the second integral vanishes, and we
have

ωγ = −2s

∫ ∞

0

dz (aeKe(z) sin(ωz/ve) − aiKi(z) sin(ωz/vi)) cos(kz)

which yields

|ω|γ ≤ 2s

∫ ∞

0

dz (ae|Ke(z) sin(ωz/ve)| + ai|Ki(z) sin(ωz/vi)|) .

Using the fact that | sin x| ≤ |x| for all x, we obtain

|ω|γ ≤ 2s

∫ ∞

0

dz (ae|Ke(z)ωz/ve| + ai|Ki(z)ωz/vi|)

and since ω 6= 0 at a non-stationary bifurcation,

γ ≤ s

(

ae

ve

∫ ∞

0

dz 2Ke(z)z +
ai

vi

∫ ∞

0

dz 2Ki(z)z

)

.

Note that the integrals are the definitions of the mean spatial interaction ranges

ξe =

∫ ∞

−∞

dz |z|Ke(z) , ξe =

∫ ∞

−∞

dz |z|Ki(z) (17)
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for excitatory and inhibitory connections. Hence we define τe = ξe/ve and τi = ξi/vi

as the mean delay times respectively for the excitatory and inhibitory information
transmission in the field. In this way, we can express a necessary condition for
non-stationary bifurcations to occur, namely

s ≥ sc =
γ

aeτe + aiτi

. (18)

Since all quantities are positive, it is clear that at least one of the velocities ve or vi

must be finite for the occurrence of non-stationary bifurcations. A similar condition
is derived in (27) for the case ve = vi. This result generalizes in some aspects previous
results of Crook et al. (32) for networks of coupled oscillators. They revealed the
importance of the ratio between spatial excitatory range and transmission speed for
exponential kernels in context of the oscillation stability.

With Eq. (18) and the previous condition 1/(ae + ai) < s < 1/(ae − ai) for non-
constant bifurcations , the parameter regime for nonstationary bifurcation is given
by

γ

τe
ae

ai

+ τi

< ais <
1

ae

ai

− 1
,

1
ae

ai

+ 1
< ais

As can be shown by simple calculus, there is a threshold

ae/ai =
γ + τi

γ − τe

, τe < γ

beyond which no nonstationary bifurcations occur, while τe > γ allows nonstationary
bifurcations for all ae/ai ≥ 1. Figure 3 illustrates these findings.

Finally, we apply an asymptotic analysis for large transmission speeds ve,i. Let us
consider the integral

∫ ∞

−∞

dzK(z)e−ikze−λ|z|/v =

∫ ∞

−∞

dzK(z)e−ikz

∞
∑

n=0

1

m!
(−λ|z|/v)m

=
∞

∑

n=0

1

m!

∫ ∞

−∞

dzK(z)|z|me−ikz(−λε)m

=
∞

∑

n=0

1

m!
(−λε)mK̂m(k)

with

K̂m(k) =

∫ ∞

−∞

dz|z|mK(z)e−ikz = 2

∫ ∞

0

dzzmK(z) cos(kz)

and ε = 1/v. We use this series expansion in the characteristic equation (9), where,
in case of local inhibitory and long-range excitatory connections, the delay due to
inhibitory connections is neglected, i.e. 1/vi = 0. For excitatory and inhibitory
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kernels, large transmission speed ve and λ = iω, we set 1/ve = ε and obtain by
neglecting higher order terms εn ∀ n > 2

L(iω) ≈ sK̂(k) − iωaesK̂
e
1(k)ε − ae

ω2s

2
K̂e

2(k)ε2.

After separating real and imaginary part, we get

sco = − γ

aeεK̂e
1(k

∗)
, Ω2 = 2

scoK̂(k∗) − 1

aescoε2K̂e
2(k

∗) − 2

(19)

That is, increasing s from zero the Hopf instability sets in at sco with wave number
k∗. In case of k∗ = 0, the emerging pattern exhibits global in-phase oscillations with
oscillation frequency Ω, while k∗ 6= 0 yields wave-like phenomena with phase speed
vph = ω/k∗.

3.3 Nonlinear analysis of the Turing instability

Now in order to learn something about the nonlinear behaviour near the bifurcation
point, this section aims at the nonlinear amplitude equation of the Turing instability.
As showed in the previous examinations, the Turing bifurcation does not depend on
the transmission speeds and thus it is ve, vi → ∞ in this section.

Expanding Eq. (6) to cubic nonlinear order about V0, it is

L̂V (x, t) =

∫ ∞

−∞

dyK(x − y)S(V (y, t)) + I0

L̂u(x, t) ≈
∫ ∞

−∞

dyK(x − y)
[

su(y, t) + βu2(y, t) + εu3(y, t)
]

(20)

with K = aeKe − aiKi and β = (δ2/δV 2)/2, ε = (δ3/δV 3)/6 computed at V = V0.

Now, we expand the field by the spatial eigenfunctions of the linear problem

u(x, t) =

∫ ∞

−∞

dkξ(k, t)eikx (21)

with amplitudes ξ(k, t) = ξ∗(−k, t) and ∗ denotes the complex conjugate. In the fol-
lowing, ξ(k, t) is abbreviated to ξ(k) for simplicity, while it remains time-dependent.
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Inserting (21) to (20) and integrating both sides over the space domain, we have

L̂ξ(k) =
1

2π

∫ ∞

−∞

dxe−ikx[s

∫ ∞

−∞

dk1

∫ ∞

−∞

dyK(x − y)eik1yξ(k1)

+β

∫ ∞

−∞

dk1

∫ ∞

−∞

dk2

∫ ∞

−∞

dyK(x − y)eiy(k1+k2)ξ(k1)ξ(k2)

+ε

∫ ∞

−∞

dk1

∫ ∞

−∞

dk2

∫ ∞

−∞

dk3

∫ ∞

−∞

dyK(x − y)eiy(k1+k2+k3)ξ(k1)ξ(k2)ξ(k3)]

=
1

2π

∫ ∞

−∞

dxe−ikx[s

∫ ∞

−∞

dk1K̂(k1)e
ik1xξ(k1)

+β

∫ ∞

−∞

dk1

∫ ∞

−∞

dk2K̂(k1 + k2)e
ix(k1+k2)ξ(k1)ξ(k2)

+ε

∫ ∞

−∞

dk1

∫ ∞

−∞

dk2

∫ ∞

−∞

dk3K̂(k1 + k2 + k3)e
ix(k1+k2+k3)ξ(k1)ξ(k2)ξ(k3)]

L̂ξ(k) = sK̂ξ(k) + βK̂(k)

∫ ∞

−∞

dk1ξ(k1)ξ(k − k1)

+εK̂(k)

∫ ∞

−∞

dk1

∫ ∞

−∞

dk2ξ(k1)ξ(k2)ξ(k − k1 − k2)] (22)

Since L̂ is a temporal differential operator of second order, we write Eq. (22) as a
system of two first-order differential equations

ξ̇(k) = η(k) (23)

η̇(k) = (−1 + sK̂)ξ(k) − γη(k) + N(ξ(k)), (24)

while N(·) represents the nonlinear terms in Eq. (22). Now, we transform this equa-
tion system to a coordinate system with diagonal linear part by x(k) = P(k)y(k),
where x(k) = (η(k), ξ(k))t and P(k) is the 2 × 2 transformation matrix. It follows

ẏ(k) = D(k)y + P−1(k)n(y(k)), (25)

while n = (0, N(y))t, D(k) = P−1(k)A(k)P(k) is a 2×2 matrix and A(k) represents
the linear matrix in the system (23)-(24). The matrix D is diagonal, if the columns
of P contain the eigenvectors of matrix A. The eigenvalues of A are

α(k) =
1

2
(−γ +

√

γ2 + 4(−1 + sK̂(k))), (26)

δ(k) =
1

2
(−γ −

√

γ2 + 4(−1 + sK̂(k))) < 0 (27)

with corresponding eigenvectors v(k) = (1, α(k))t and w(k) = (1, δ(k))t. Since α(k),
δ(k) are real and detP(k) 6= 0 for all k, the coordinate transformation by P(k) is
valid. Thus the transformed differential equation system (23)-(24) reads

ẏ1(k) = α(k)y1(k) − N(y(k)) (28)

ẏ2(k) = δ(k)y2(k) + N(y(k)) (29)
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with y = (y1, y2)
t. Hence by virtue of the properties of α(k) and δ(k), the modes

y2(k) are stable for all k, while y1(k) are stable for (k−kc)/kc � 1. In contrast y1(k)
evolves on a much larger time scale near the Turing threshold sK̂(k) = 1, i.e. k ≈ kc

(cf. Eq.(15)). In the following, the latter modes are denoted z(k), while the stable
modes y1(k) are renamed to s(k). According the center manifold theorem (46)
z(k) evolves on a center manifold, while the other modes obey y2(k) = fk(z(k))
and s(k) = gk(z(k)) for some functions fk, gk. In more physical terms, the present
separation of time scales near the bifurcation threshold yields a slaving mechanism
and a circular causality (47). That is the modes z(k) slave y2(k) and s(k), while
these slaved modes also determine the evolution of z(k).

Now, we approximate fk(z(k)) and gk(z(k)) to lowest nonlinear orders and expand
the nonlinear term in (28) to cubic polynomial order in z. Applying the introduced
coordinate transformation ξ = y1 + y2,

ẏ2(k) = δ(k)y2(k) + βK̂(k)

∫ ∞

−∞

dk′z(k′)z(k − k′) (30)

ṡ(k) = α(k)s(k) − βK̂(k)

∫ ∞

−∞

dk′z(k′)z(k − k′) (31)

ż(k) = α(k)z(k) − βK̂(k)

∫ ∞

−∞

dk′[z(k′)z(k − k′) + z(k′)s(k − k′)

+s(k′)z(k − k′) + z(k′)y2(k − k′) + y2(k
′)z(k − k′)]

+εK̂(k)

∫ ∞

−∞

dk′

∫ ∞

−∞

dk′′z(k′′)z(k′)z(k − k′ − k′′) (32)

Essentially after adiabatic elimination in Eq. (30) and (31) and inserting the results
to Eq. (32), we find the order parameter equation

ż(k) = α(k, s)z(t) + Π(k, s)z3(k) ∀ k ≈ kc (33)

by utilizing z(k) = z(−k). In addition,

Π(k, s) = K̂(k)
[

Cβ2(s) + ε(s)
]

(34)

C = 2K̂(0)(
1

δ(0)
− 1

α(0)
) + K̂(2kc)(

1

δ(2kc)
− 1

α(2kc)
) > 0. (35)

In contrast to standard bifurcation theory, here both α and Π depend on the control
parameter s.

Now recall that the general Turing instability exhibits stable stationary points zst >
0 for s > sc due to nonlinear saturation, that is Π < 0. Figure 4 shows plots of
β2 and ε with respect to the control parameter s. It turns out that Π < 0 and
thus ε < 0 only if s exceeds a certain threshold. In this case, Eq. (33) describes
the supercritical pitchfork bifurcation with the necessary nonlinear saturation. In
contrast Π > 0 yields no stable stationary solutions zs > 0 and both the applied
quadratic approximations for the modes y2(k) and s(k) and the adiabatic elimination
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procedure turn out being insufficient. That is, higher order polynomials need to be
discussed. However, in the following we focus to the case of Π < 0.

Figure 5 presents plots of Π with respect to the bifurcation thresholds sc for some
ξe, ξi. For Π(sc) < 0, pitchfork bifurcations occur at s ≈ sc. Figure 6 shows the
bifurcation diagram of the stationary solution zst with respect to α (right panel)

with zst =

√

α(s)/[K̂(k)(Cβ2(s) + ε(s))]. The corresponding potential Vpot(z) with

ż = −dVpot/dz is plotted in Fig. 6(left panel) for some control parameter s.

3.4 Comparison to partial differential equations

The integro-differential equation (6) accounts for long-range interaction. To inves-
tigate its relation to partial differential equations (PDEs), we re-write the integral
as

∫ ∞

−∞

dyK(x − y)S(V (y)) =

∫ ∞

−∞

dηK(η)S(V (x − η))

=

∫ ∞

−∞

dηK(η)
∞

∑

n=0

(−1)n 1

n!

∂nS(V (x − η))

∂(x − η)n
|x−η=xη

n

=
∞

∑

n=0

(−1)nKn
∂nS(V (x))

∂xn

with the kernel moments Kn =
∫

dηK(η)ηn ∀n ∈ N. In the present work, the
kernels are symmetric and thus Kn = 0 for odd orders n. Then we find

∫ ∞

−∞

dyK(x − y)S(V (y)) ≈ K0S(V (x)) + K2
δS2

δV 2

(

∂V

∂x

)2

+ K4
δ4S

δV 4

(

∂V

∂x

)4

+K2
δS

δV

∂2V

∂x2
+ 6K4

δ3S

δV 3

(

∂V

∂x

)2
∂2V

∂x2

+3K4
δ2S

δV 2

(

∂2V

∂x2

)2

+ 4K4
δ2S

δV 2

∂V

∂x

∂3V

∂x3

+K4
δS

δV

∂4V

∂x4
(36)

Now, we distinguish between different neuron types as introduced in Section 2.1.
In the following, Ke

n and K i
n denote kernel moments for excitatory and inhibitory

interactions, respectively. First, let us assume excitatory neurons which exhibit
short but non-vanishing interaction, while inhibitory connections are local only. In
case of Si >> Se, the transfer function Se for excitatory neurons expands to linear
polynomial order about a fixed V0. In case of the first-order operator L̂ and short
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range excitation Ke
2n → 0 ∀n > 1, we obtain

(
∂u

∂t
+ 1)u(x, t) ≈ Ke

0Se(V0) + sKe
0u(x, t) + sKe

2

∂2u

∂x2

−K i
0Si(u(x) + V0)

∂u

∂t
u(x, t) = f(u(x), s, V0) + D

∂2u

∂x2
(37)

with s = δSe/δV and the polynomial f(u). Equation (37) represent a reaction-
diffusion equation with the diffusion coefficient D = sKe

2 .

In case of longer excitatory interaction with Ke
2n → 0 ∀n > 2, while expanding

the transfer functions Se and Si to linear and third polynomial order about V0,
respectively, we get

(
∂u

∂t
+ 1)u(x, t) ≈ Ke

0S(V0) + sKe
0u(x, t) + sKe

2

∂2u

∂x2
+ sKe

4

∂4u

∂x4

−(K i
0S(V0) + sK i

0u(x, t) + βK i
0u

2(x, t) + εK i
0u

3(x, t))

and finally after an affine transformation and scaling of time

∂u

∂t
u(x, t) = β1u(x, t) − β2u

3(x, t) + β3e
∂2u

∂x2
+

∂4u

∂x4
. (38)

This PDE is a variant of the well-known Swift-Hohenberg equation (48; 49).

4 Gamma-distributed kernels

In most previous works (8; 26; 50), neuronal fields exhibit axonal connections which
are maximal at zero distance and monotonically decreasing for increasing distance.
Then, the combination of excitatory and inhibitory axonal networks may yield
four different spatial interactions, namely pure excitation, pure inhibition, local
excitation-lateral inhibition and local inhibition-lateral excitation. In contrast, the
current work picks up an interesting result of Nunez (25), who estimated the dis-
tribution of axonal cortico-cortical fiber lengths in humans based on distributions
in mice. He found that cortico-cortical, i.e. excitatory, connections in humans may
obey a gamma distribution with maximum at some centimeters. A similar prob-
lem has been addressed by Rinzel et al. (51), who found new propagation patterns
in inhibitory networks with vanishing self-connections. Since there is also strong
anatomical evidence for self-connections in inhibitory networks in cat visual cor-
tex (52), we set the corresponding axonal distribution to a decreasing exponential.

4.1 Field properties

For gamma distributed connections, the connection probabilities read

Ke(x, y) =
1

2rp
eΓ(p)

|x − y|p−1e−|x−y|/re , Ki(x, y) =
1

2ri

e−|x−y|/ri (39)
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where p > 0 is a parameter of the gamma distribution, Γ(p) denotes the gamma
function and re, ri are the spatial ranges of excitatory and inhibitory connectivity
kernels, respectively. After scaling t → t

√
α1α2, x → x/re, ve,i → ve,i/(re

√
α1α2), we

get

Ke(x) =
1

2Γ(ξe)
|x|ξe−1e−|x| , Ki(x) =

1

2ξi

e|x|/ξi , (40)

with ξe = p, ξi = ri/re taken from (17). The temporal operator L̂ is taken from
section 3, and furthermore Se = Si = S.

In most studies treating spatial structures in neuronal fields, excitatory and in-
hibitory connectivity kernels are of the same functional type such as exponentials
or Gaussians. In these models, the excitation and inhibition comes in by different
spatial scales, say re, ri. In consequence, the spatial interaction ranges can be scaled
to ξe = 1 and ξi 6= 1. That is, the single parameter ξi reflects the relation of the
excitatory and the inhibitory spatial scale and thus defines the spatial interaction.
In contrast, Eq. (39) introduces the additional parameter p yielding two variables.
Now ξi 6= 1 still gives the relation of excitation and inhibition, while ξe is related to
the excitatory self-interaction.

To be more precise, Figure 7 shows both kernels for various parameters ξe, ξi and
we observe singular self-excitations for ξe < 1 (Fig. 7, left panel). At a first glance,
this singularity of the probability density Ke may appear unphysical. However,
this effect occurs even in much more simple processes and we mention the standard
Brownian motion exhibiting a singular probability density of sojourn times (53; 54).
In addition, ξe > 1 leads to Ke(0) = 0, while the maximum of Ke(x) is located at
x0 = ξe − 1. That is the self-excitation vanishes and the maximum connectivity
is reached at the distance x0 from the origin. Subsequently by considering the
inhibitory kernel, ξe < 1 yields local inhibition with the self-interaction aeKe(0) −
aiKi(0) = −ai/ξ

2
i for all ξi and ae, ai > 0, while ξe > 1 reflects local excitations

for all ξi and ae, ai > 0. These cases contrast to the well-known case ξe = 1, which
facilitates both local excitation and inhibition subject to ae/ai and ξi.

4.2 Stationary instability

For the special choice of kernels (40), the condition for the Turing instability (15)
reads sc = 1/K̂(kc) with

K̂(k) =
ae√

1 + k2
ξe

cos(ξe arctan(k)) − ai

1 + ξ2
i k

2
.

Since sc > 0 and K̂(k) → 0 as k → ∞, K̂(kc) represents a positive local maximum
for finite kc. The corresponding sufficient condition reads

∂2K̂(k)

∂k2
|k=0 > 0 ⇒ ξ2

i >
ae

2ai

ξe(ξe + 1) (41)
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with

∂2K̂(k)

∂k2
= − aeξe(ξe + 1)

√
1 + k2

ξe+2
cos((ξe + 2) arctan(k)) + 2aiξ

2
i

1 − 3ξ2
i k

2

(1 + ξ2
i k

2)3
.

Figure 8 shows the corresponding parameter space.

In case of ae > ai and ξe < 1, Turing patterns occur only for ξi > ξe (Fig. 9),
i.e. for larger mean inhibitory interaction than mean excitatory interaction. This
behaviour shows accordance to previous findings. However, for ξi < ξe we find also
Turing instabilities with the additional condition ξe ≥ (ae/ai)/(2 − ae/ai). That
is Turing patterns occur even for local inhibitory interactions, which has not been
found in previous works. In case of ae < ai, Turing patterns might also occur for
ξi < ξe and ξe ≥ (ae/ai)/(2 − ae/ai).

Figure 10 shows the effective kernel aeKe(x) − aiKi(x) and corresponding Fourier
transform K̂(k) for both ξe = 1 and ξe = 2.0. We observe that the kernels exhibit
local excitation-lateral inhibition interaction with ξe = 1, while for ξi > 1 Turing in-
stabilities may also occur for ξe = 2 although the kernel elicits local inhibition-lateral
excitation interaction. Eventually recalling the findings of Nunez (25), experiments
indicate intracortical inhibitory connections with ri ≈ 1mm and cortico-cortical
connections with re = 20mm, that is ξi = 0.05. In addition, ae > ai and ξe = 3.
Subsequently, according to Eq. (41) and Fig. 8, Turing patterns do not occur for
these parameters and have not been found in experiments yet.

4.3 Non-stationary instability

According to section 3.2, the bifurcation threshold sco for oscillatory instabilities
depends strongly on the kernel Fourier moments K̂m. These moments read for
kernels (40)

K̂e
m(k) =

Γ(ξe + m)

Γ(ξe)
√

1 + k2
(ξe+m)

cos((ξe + m) arctan(k))

K̂i
m(k) =

Γ(m + 1)ξm
i√

1 + k2
(m+1)

cos((m + 1) arctan(ξik)).

Figure 11 shows plots of vph with respect to ve for various ξe, ξi. We point out that
the phase speed is smaller than the transmission speed in accordance to previous
experimental (55) and theoretical results (26; 27). In contrast to previous findings,
there are also oscillatory instabilities for ξe < 1, i.e. local excitation-lateral inhibition
fields.

4.4 Numerical simulation

For the numerical investigations, Eq. (4) is approximated by the logistic function
N̄ = Pmax/(1 + exp(−1.8(V − 3.0))) (56). The synaptic parameters are set to
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α1/α2 = 1.46 i.e. γ = 2.1, while the propagation speed along excitatory axonal
connections is set to ve = 10 and the delay corresponding to short-range inhibitory
connections is neglected. The subsequent temporal integration procedure applies an
Euler algorithm while the spatial integration algorithm represents an adaptive inte-
gration procedure. This algorithm divides the integration region into subintervals,
and on each iteration the subinterval with the largest estimated error is bisected.
Each interval is integrated according to the 61 point Gauss-Kronrod rules (57).
Further, periodic boundary conditions are set yielding the integration rule

∫ ∞

−∞

K(|x − y|)f(y)dy ≈
∫ L

0

K(L/2 − |L/2 − |x − y||)f(y)dy.

with L = Ndx.

The first simulation aims to verify the Turing instability found analytically in section
(3.3). Figure 12 presents the Turing instability by a space-time plot for initial values
V 0(x, t) = V0 + 0.5(cos(0.5kcx) + cos(kcx) + cos(2.0kcx)) for L/ve ≤ t ≤ 0 with the
critical wave number kc.

Finally to verify the novel findings of the previous section, we simulate the field
activity for ξe = 2.0 and ξi = 1.92 with the same initial conditions. Figure 13
presents the corresponding space-time plot, which confirms the Turing instability
for local inhibition-lateral excitation fields.

5 Conclusion

The present work derives the neural model from statistical neural properties and
analyses the integro-differential equation with respect to its stability. The first part
of the analysis gives conditions for stationary and non-stationary instabilities. It is
shown that the stationary bifurcation threshold is independent of the transmission
speed and defined mainly by the Fourier transforms of the excitatory and inhibitory
connectivity kernel. This result yields the condition for the onset of Turing in-
stabilities. In turn, the non-stationary bifurcations strongly depend on the mean
interaction time of excitatory and inhibitory connections, where the interaction time
represents the ratio of mean interaction range to transmission speed. Furthermore,
a perturbation analysis for large transmission speeds yields the bifurcation thresh-
old for Hopf-instabilities, the corresponding wave number, and the phase velocity
of the emerging wave instabilities. Here, the bifurcation threshold depends mainly
on the excitatory and inhibitory kernel Fourier moments. To gain further infor-
mation on the existence of instabilities, the order parameter equation for Turing
patterns is derived and discussed in some detail. A subsequent comparison of the
model to partial differential equations reveal the relation to reaction-diffusion models
and the Swift-Hohenberg equation. Finally, applications to the gamma-distributed
excitatory kernels reveal Turing instabilities for local inhibition-lateral excitation
fields and wave instabilities for local excitation-lateral inhibition fields. These novel
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findings contrast previous results and originate from the divergent and vanishing
self-connection, respectively.

The presented study aims to generalize the analysis of non-locally interacting neural
fields in order to gain a classification scheme for observed spatio-temporal patterns.
We mention the important generalization of Kishimoto and Amari (30) in lateral-
inhibition type fields in the absence of transmission delay. Since neurophysiologi-
cal properties of observed neural tissue are not accessible precisely, a classification
scheme might link model functionals with observed phenomena. For example, ob-
served traveling waves necessitate a mean interaction time beyond a certain thresh-
old defined by synaptic kernel properties. In addition, this classification might be
important for estimating interaction parameters from multi-site neuronal data (58).
Due to the large number of different activity phenomena, further studies in this area
could incorporate additional mechanisms like standing and traveling pulse fronts (59)
or the consideration of feedback delay (60; 61; 62).

17



References

[1] M. Gazzaniga (Ed.), The new cognitive neurosciences, MIT Press, Cambridge,
2000.

[2] J. Kelso, Dynamic Patterns: The Self-Organization of Brain and Behavior, MIT
Press, Cambridge, 1995.

[3] W. J. Freeman, Neurodynamics: An Exploration in Mesoscopic Brain Dynam-
ics, Springer-Verlag, Berlin, 2000.

[4] P. Tass, Phase resetting in medicine and biology : stochastic modelling and
data analysis, Springer, Berlin, 1999.

[5] F. H. L. da Silva, W. Blanes, S. Kalitzin, J. Parra, P. Suffczynski, D. Velis,
Epilepsies as dynamical diseases of brain systems: basic models of the transition
between normal and epileptic activity, Epilepsia 44 (Suppl. 12) (2003) 72–83.

[6] J. R. Brasic, Hallucinations, Percep. Motor Skills 86 (1998) 851

[7] S. H. Isaacson, J. Carr, A. J. Rowan, Cibroflocacin-induced complex partial
status epilepticus manifesting as an acute confusional state, Neurol. 43 (1993)
1619

[8] G. B. Ermentrout, J. D. Cowan, A mathematical theory of visual hallucination
patterns, Biol. Cybern. 34 (1979) 137

[9] V. K. Jirsa, H. Haken, Field theory of electromagnetic brain activity,
Phys. Rev. Lett. 7 (5) (1996) 960

[10] C. Uhl (Ed.), Analysis of Neurophysiological Brain Functioning, Springer-
Verlag, Berlin, 1999.

[11] A. Hutt, H. Riedel, Analysis and modeling of quasi-stationary multivariate
time series and their application to middle latency auditory evoked potentials,
Physica D 177 (2003) 203

[12] H. Haken, Principles of Brain Functioning, Springer, Berlin, 1996.

[13] W. J. Freeman, A model for mutual excitation in a neuron population in olfac-
tory bulb, IEEE Trans. Biomed. Engin. 21 (1974) 350

[14] J. C. Mosher, P. S. Lewis, R. M. Leahy, Multiple dipol modeling and localization
from spatio-temporal meg-data, IEEE Trans. Biomed. Eng. 39 (6) (1992) 541

[15] P. A. Robinson, P. N. Loxley, S. C. O‘Connor, C. J. Rennie, Modal analy-
sis of corticothalamic dynamics, electroencephalographic spectra and evoked
potentials, Phys. Rev. E 63 (2001) 041909.

18



[16] W. Gerstner, Time structure of the activity in neural network models,
Phys. Rev. E 51 (1) (1995) 738

[17] P. Bressloff, S. Coombes, Physics of the extended neuron, Int. J. Mod. Phys. B
11 (20) (1997) 2343

[18] B. Ermentrout, Neural networks as spatio-temporal pattern-forming systems,
Rep. Prog. Phys. 61 (1998) 353

[19] W. M. Kistler, R. Seitz, J. L. van Hemmen, Modeling collective excitations in
cortical tissue, Physica D 114 (1998) 273

[20] R. Ben-Yishai, R. L. Bar-Or, H. Sompolinsky, Theory of orientation tuning in
visual cortex, Proc. Natl. Acad. Sci. 92 (1995) 3844

[21] T. Wennekers, Dynamic approximation of spatio-temporal receptive fields in
nonlinear neural field models, Neural Comp. 14 (2002) 1801

[22] K. J. Friston, Transients, metastability and neuronal dynamics, NeuroImage 5
(1997) 164

[23] J. Eggert, J. L. van Hemmen, Unifying framework for neuronal dynamics,
Phys. Rev. E 61 (2) (2000) 1855

[24] H. R. Wilson, J. D. Cowan, Excitatory and inhibitory interactions in localized
populations of model neurons, Biophys. J. 12 (1972) 1

[25] P. L. Nunez, Neocortical dynamics and human EEG rhythms, Oxford University
Press, New York - Oxford, 1995.

[26] A. Hutt, M. Bestehorn, T. Wennekers, Pattern formation in intracortical neu-
ronal fields, Network: Comput. Neural Syst. 14 (2003) 351

[27] F. M. Atay, A. Hutt, Stability and bifurcations in neural fields with finite
propagation speed and general connectivity, SIAM J. Appl. Math. in press.

[28] G. B. Ermentrout, J. D. Cowan, Large scale spatially organized activity in
neural nets, SIAM J. Applied Math. 38 (1) (1980) 1

[29] S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields,
Biol. Cybernetics 27 (1977) 77

[30] K. Kishimoto, S. Amari, Existence and stability of local excitations in homo-
geneous neural fields, J. Math. Biology 7 (1979) 303–318.

[31] R. Osan, G. B. Ermentrout, The evolution of synaptically generated waves in
one- and two-dimensional domains, Physica D 163 (2002) 217

[32] S. M. Crook, G. B. Ermentrout, M. C. Vanier, J. M. Bower, The role of ax-
onal delays in the synchronization of networks of coupled cortical oscillators,
J. Comput. Neurosci. 4 (1997) 161

19



[33] W. J. Freeman, Characteristics of the synchronization of brain activity imposed
by finite conduction velocities of axons, Int. J. Bif. Chaos 10 (10) (2000) 2307

[34] J. C. Eccles, M. Ito, J. Szentagothai, The Cerebellum as a Neuronal Machine,
Springer-Verlag, New York, 1967.

[35] W. J. Freeman, Mass Action in the Nervous System, Academic Press, New
York, 1975.

[36] J. Eggert, J. L. van Hemmen, Modeling neuronal assemblies: Theory and im-
plementation, Neural Comput. 13 (9) (2001) 1923

[37] V. B. Mountcastle, Modality and topographic properties of single neurons of
cat’s somatic sensory cortex., Neurophysiol. 20 (1957) 408

[38] D. H. Hubel, T. N. Wiesel, Receptive fields of cells in striate cortex of very
young, visually unexperienced kittens, J. Physiol 26 (1963) 994

[39] K. J. Sanderson, The projection of the visual field to the lateral geniculate and
medial interlaminar nuclei in the cat, J. Comp. Neurol. 143 (1971) 101

[40] B. Katz (Ed.), Nerve, Muscle and Synapse, McGraw-Hill, New York, 1966.

[41] W. J. Freeman, Tutorial on neurobiology: from single neurons to brain chaos,
Int. J. Bif. Chaos 2 (3) (1992) 451

[42] D. J. Amit, Modeling brain function: The world of attactor neural networks,
Cambridge University Press, Cambridge, 1989.

[43] J. Cowan, G. Ermentrout, Some aspects of the ’eigenbehavior’ of neural nets,
in: S. Levin (Ed.), Studies in mathematical biology, part I: Cellular behavior
and the development of pattern, MAA, Washington DC, 1978, pp. 67

[44] A. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. London
327B (1952) 37

[45] V. Castets, E. Dulos, J. Boissonade, P. D. Kepper, Experimental-
evidence of a sustained standing turing-type non-equilibrium chemical-pattern,
Phys. Rev. Lett. 64 (1990) 2953

[46] L. Perko, Differential Equations and Dynamical Systems, Springer, Berlin,
1998.

[47] H. Haken, Advanced Synergetics, Springer, Berlin, 1983.

[48] J. Swift, P. Hohenberg, Hydrodynamic fluctuations at the convective instability,
Phys. Rev. A 15 (1977) 319.

[49] M. C. Cross, P. C. Hohenberg, Pattern formation outside of equilibrium,
Rev. Mod. Phys. 65 (3) (1993) 851

20



[50] H. R. Wilson, J. D. Cowan, A mathematical theory of the functional dynamics
of cortical and thalamic nervous tissue, Kybernetik 13 (1973) 55

[51] J. Rinzel, D. Terman, X. J. Wang, B. Ermentrout, Propagating activity patterns
in large-scale inhibitory neuronal networks, Science 279 (1998) 1351

[52] G. Tamas, E. H. Buhl, P. Somogyi, Massive autaptic self-innervation of gabaer-
gic neurons in cat visual cortex, J. Neurosci. 17 (16) (1997) 6352

[53] P. Levy, Sur certains processus stochastique homogènes, Comp. Math. 7 (1939)
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Figure 1: Illustration for the detection of constant stationary solutions of Eq. (8).
For I0 < 1.32, there are three solutions, while for I0 > 1.32 there is only a single one
at large values of V0. Simple iteration studies near the solutions reveal their stability:
Filled circles represent stable fixed points, while empty circles illustrate unstable
fixed points. At the critical value I = 1.32, there is a saddle node solution (hatched
circle) synchronous to a stable fixed point at large values of V0, cf. Fig. 2. Here, we
applied the sigmoid function S = 1/(1 + exp(−c(V − Vr))) (35; 63), ae = 10, ai = 5
and c = 1.8, Vr = 3.0 (56).

Figure 2: Bifurcation diagram and nonlinear gain for constant bifurcations for ae >
ai. Left panel: Stability of the stationary state V0 with respect to external input
I0. For ae − ai > 4/c = 2.22, both stable (solid line) and unstable branches (dashed
line) exist, while for ae − ai ≤ 2.22 there is only a single stable solution. Right
panel: The nonlinear gain s with respect to the constant state V0. The horizontal
line s = 1/(ae−ai) separates stable from unstable states and determines the critical
values of V0. In both panels, we applied the sigmoid function introduced in Fig. 1.

Figure 3: Necessary parameter regime for nonstationary instabilities for diverse
mean excitatory interaction time τe and synaptic delay constant γ. Valid parameters
(hatched area) are constrained by the threshold of Eq. (18) plotted as solid line,
the threshold of constant bifurcation (dotted line) and the threshold of asymptotic
stability (dashed line).

Figure 4: Expansion factors β2 and ε plotted with respect to the control parameter
s. The solid line part gives the parameter range of stable solutions V0, for which
Turing instabilities might occur. The dashed line part denotes the parameter domain
of unstable stationary solutions V0, cf. Fig. 2. In both panels ae = 8, ai = 5.0, and
we applied the sigmoid function introduced in Fig. 1.
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Figure 5: The factor Π of the cubic term in Eq. (33) plotted with respect to the
bifurcation threshold sc from Eq. (15) for various ξe, ξi. Each suitable parameter
set ae, ai, ξe, ξi maps to a maximum of K̂(k) and thus a single value sc. Thus the
plots have been computed by decreasing ae leading to increasing sc, while 0 <
ae − ai < 4/c. The range of ae depends on ξe, ξi. The parameters have been chosen
as ai = 5.0, γ = 2.1 and the sigmoid function is as in Fig. 1.

Figure 6: Potential Vpot and bifurcation diagram of the order parameter equation
(33). It has been found that kc = 0.6, sc = 0.423 and V0 = 2.723 at sc with
parameters ae = 6.0, ai = 5.0, ξe = 1.0, ξi = 2.0, γ = 2.1 and the sigmoid function
from Fig. 1.

Figure 7: Excitatory and inhibitory kernels for various parameters. All kernels
are finite except for Ke(x) for p = 0.5. In case of ξe > 1, the excitatory kernel
Ke(x) exhibits a maximum at x = ξe − 1. We point out that ξe < 1 yields divergent
excitatory self-connectivity, while the excitatory self-connectivity vanishes for ξi > 1.

Figure 8: Sufficient parameter regimes of Turing patterns with respect to spatial
interaction ranges ξi, ξe and various values of ae/ai. The thin solid line denotes
ξi = ξe, while filled and empty squares, triangles and diamonds mark different cases
discussed in Figs. 9 and 10.

Figure 9: Function K̂(k) for ξe < ξi. Parameter values are chosen according to
Fig. 8. Both values of ξe allow a local maximum of K̂(k) for k > 0 and thus
facilitate Turing patterns. Here, ae = 10andai = 5.

Figure 10: The kernel function aeKe(x)−aiKi(x) and the function K̂(k) for ξe ≥ ξi.
Parameter values are chosen according to Fig. 8. In case of ξe = 1.0, local excitation-
lateral inhibition (ξi = 1.10) yields a local maximum of K̂, i.e. Turing patterns, while
local inhibition-lateral excitation (ξi = 0.90) prohibits Turing patterns. In contrast,
ξe = 2.0 exhibits local inhibition-lateral excitation for both values of ξi, while K̂
shows a local maximum for ξi = 1.96. Here, ae = 5, ai = 5.
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Figure 11: Plots of the traveling wave speed vph with respect to the transmission
speed ve for various parameters ξe, ξi. For ξe < 1, the field reveals traveling waves for
local excitation and lateral inhibition, which strongly contrasts to previous findings.
The plots show an increase of vph by decreasing the inhibitory range ξi and increasing
the excitatory range ξe. The applied parameters are ae = 60, ai = 55, vi = 100 and
γ = 2.1.

Figure 12: Space-time plot revealing the Turing instability for local excitation-lateral
inhibition interaction. Parameters are set to ξe = 1.0, ξi = 2.0, ae = 6.0, ai = 5.0
with external stimulus I0 = 2.36 yielding V0 = 2.75 and sc = 0.428, kc = 0.589. The
temporal evolution is calculated with dt = 0.01 while the space is discretized with
dx = 0.08, N = 400. The greyscale encodes the deviation from the stationary state.
The resulting pattern wavenumber agrees well with kc.

Figure 13: Space-time plot revealing the Turing instability for local inhibition-lateral
excitation interaction. Parameters are set to ξe = 2.0, ξi = 1.92, ae = 131.0, ai =
130.0 with external stimulus I0 = 2.2 yielding V0 = 2.48 and sc = 0.365, kc = 0.24.
The temporal evolution is calculated with dt = 0.01 while the space is discretized
with dx = 0.15, N = 400. The greyscale encodes the deviation from the stationary
state. The resulting pattern wavenumber agrees well with kc.
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