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AbstractWe show that maps with in�nitely many homoclinic tangencies of arbitrar-ily high orders are dense among real-analytic area-preserving di�eomorphismsin the Newhouse regions.1 IntroductionIn [1, 2, 3, 5] we have established that an arbitrarily small smooth perturbation of atwo-dimensional map with a quadratic homoclinic tangency can produce homoclinictangencies of arbitrarily high orders and, as a consequence, arbitrarily degenerateperiodic orbits (see also [4]). These results have shown that global bifurcations ofcodimension 1 can be accompanied by bifurcations of arbitrarily high codimension,i.e. the unfolding of global bifurcations can lead to the increase of the level ofdegeneracy, contrary to the usual logic coming from the singularity theory.Based on this we made a conclusion that a complete description of dynamics andbifurcations of systems with homoclinic tangencies is impossible in principle (seemore discussion in [3, 4, 5]). We recall that systems with homoclinic tangencies aredense in open regions in the space of smooth dynamical systems [6, 7, 9]. Moreover,these regions (Newhouse regions) exist near any system with a homoclinic tangency[9, 10, 11, 13, 14]. In fact, homoclinic tangencies and, hence, Newhouse regionsin the parameter space have been found in a huge variety of di�erent models withchaotic dynamics. Thus, they exist in the H�enon map (see discussion in [15]), inthe standard map [12] and in \soft billiards" [16], they obviously appear in theprocess of the development of a Smale horseshoe (after period-doubling), they playa central role in in the transition from quasiperiodicity to chaos (the destruction ofinvariant tori) [17, 45, 18, 19, 22], they are present in Lorenz-like models beyondthe boundary of the region of existence of Lorenz attractor [20, 21], in systems with\spiral chaos", like Chua circuit of R�ossler model (see [23, 24]), and with wild spiralattractor [25]. According to our results in [1]-[5], in all these models one shouldexpect an incomprehensibly complex behavior.Recently, it has been realized that the density of systems with homoclinic tangenciesof arbitrarily high orders in the Newhouse regions is a useful working tool for provingthat many seemingly exotic dynamical phenomena are, in fact, generic. Thus, itwas shown in [26] that the results of [1]-[5] disprove a Smale's conjecture on thegenericity of the exponential growth of the number of periodic orbits with period. In[27], our results were used to show that generic two-dimensional Cr-di�eomorphisms1



from the Newhouse regions, with r �nite, cannot be topologically conjugate to anyC1-di�eomorphism, and that they have transitive sets of full Hausdor� dimension.In the same manner, in [28] the ultimate topological complexity of such sets wasestablished, and it was shown in [29] that the probability for a system to havein�nitely many coexisting stable periodic orbits is positive for a dense set of �nite-parameter families.The fact that systems with homoclinic tangencies of arbitrarily high orders are densein the Newhouse regions was proven in [3, 5] for the space of general smooth maps,and one of our genericity conditions excluded area-preserving maps. Therefore, thevalidity of the result (and the above cited results based on it) in the area-preservingcase can be questioned. In the present paper we close the problem and provide auni�ed proof which works in the area-preserving case as well. Moreover, we enhanceour perturbation technique so that the new proof covers the real analytic case too.Let f be a di�eomorphism of a two-dimensional manifold. We assume f to be Cr(r = 2; : : : ;1) or C! (i.e. real-analytic). Let f have a saddle periodic orbit L whosestable and unstable manifolds have a quadratic tangency at some point M . This isa tangency of invariant manifolds, therefore they are tangent at each point of theorbit of M . By construction, this orbit � is homoclinic to L, i.e. it closes on L bothat forward and backward iterations of f .Fix any, suÆciently large compact subset K of the phase space (in the theorem belowwe assume that K contains a neighborhood of �[L). Fix also some small complexneighborhoodQ ofK. For small Æ we will say that two real analytic di�eomorphismsare Æ-close if they are Æ-close at every point of Q. For �nite r we will say that twoCr-smooth di�eomorphisms are Æ-close if they are Æ-close on K in a Cr-metric. TwoC1-di�eomorphisms will be called Æ-close if they are (r �Æ)-close on K in a Cr-metricfor every r < 1Æ . We can now formulate our main theorem.Theorem 1. Arbitrarily close to f there exists a di�eomorphism f � (an area-preserving one if f itself is area-preserving) for which there exist in�nitely manyorbits of homoclinic tangency of every order between the stable and unstable mani-folds of L.The proof occupies Sections 2-4. In Section 2 we give necessary formulas for thePoincar�e return maps near the periodic and homoclinic orbits and describe the formof the perturbations which we use (Lemma 1). In Section 3 we prove certain keylemmas and in Section 4 we construct the sequence of perturbations which leadsfrom f to f �.The main reason why the homoclinic tangency can be perturbed in such a way that atangency of a higher order is created is the presence of a \hidden degeneracy" in thesystem. Thus, it was established in [34, 35, 36] that non-conservative systems witha homoclinic tangency of the \third class" in the terminology of [31] have a modulus(i.e. a continuous invariant) of local 
-conjugacy (i.e. the topological conjugacy2



on the set of nonwandering orbits which lie entirely in a small neighborhood ofthe orbit of homoclinic tangency). Such a modulus is, for example, the ratio � ofthe logarithms of the multipliers of the saddle periodic orbit to which the givenhomoclinic orbit converges. This means that two such systems cannot be locally
-conjugate if the corresponding values of � are di�erent. As a result, � can betaken as an additional bifurcation parameter, by changing which more degeneratehomoclinic tangencies can be obtained (see more discussion in [37, 5]).Two-dimensional area-preserving maps with homoclinic tangencies have no moduli[33] (thus � � 1 for such systems). Therefore, in order to prove the main theorem inthe area-preserving case, we �rst prove (Lemmas 2,3) that a small perturbation of amap with a homoclinic tangency can produce a heteroclinic cycle with two di�erentsaddle periodic orbits, one transverse heteroclinic orbit, and one orbit of heteroclinictangency; moreover, such heteroclinic cycle belongs to the third class of [38]. Sincethe heteroclinic cycles of the third class have local 
-moduli both in dissipativeand conservative case [38], we can prove that systems with homoclinic tangencies ofarbitrarily high orders are dense among the systems with such heteroclinic cycles, byapplying a re�ned version of the machinery (here Lemmas 4,5) developed in [3, 5].In fact, a stronger statement is proved in Section 4. Namely, we show that the di�eo-morphism f � constructed in Theorem 1 has a non-trivial hyperbolic set (a horseshoe)which includes the original saddle periodic orbit L, and there exists in�nitely manyorbits of tangency of every order between stable and unstable manifolds of everyperiodic orbit in this hyperbolic set.We might as well assume from the very beginning that the original di�eomorphismf has a zero-dimensional transitive hyperbolic set � whose stable and unstablemanifolds have a tangency. Then, our main theorem is reformulated as follows (theproof is also given in Section 4):Theorem 2. Arbitrarily close to f there exists a di�eomorphism f � (an area-preserving one if f itself is area-preserving) for which there exist in�nitely manyorbits of tangency of every order between the stable and unstable manifolds of everypair of periodic orbits of �.As we mentioned, the Cr-closure (r = 2; :::;1; !) of the set of Cr-maps with ho-moclinic tangencies contains open (Newhouse) regions. For the space of all two-dimensional Cr-maps this statement was proved in [9], while extending this resultonto the space of two-dimensional area-preserving Cr-maps was a long-standing openproblem, until the proof was obtained in [13, 14]. It also follows from [8, 13, 14]that the C1-closure of the Newhouse regions in the space of two-dimensional area-preserving di�eomorphisms coincides with the set of all non-Anosov area-preservingdi�eomorphisms (whether the same remains true in the Cr-topology with r � 2occurs to be a so far intractable question). Our main theorem immediately implies
3



Theorem 3.Maps with in�nitely many homoclinic tangencies of all orders are densein the Newhouse regions.2 Preliminary constructions.2.1 Local map.Consider a Cr-di�eomorphism f of a two-dimensional manifold, r = 2; :::;1; !,where r = ! stands for real-analytic di�eomorphisms. Let f have a saddle periodicorbit L. This means that there is a point O such that fmO = O (the positive integerm is the period of L, and L = fO; fO; :::; fm�1Og), and that one can introducecoordinates (x; y) with the origin at O such that the map fm : (x; y) 7! (�x; �y) willhave the following form near O:�x = �x+ o(x; y); �y = 
y + o(x; y); (1)where j�j < 1 and j
j > 1. In the case of area-preserving map f , we have additionallyj�
j = 1: (2)We will denote the map fm near the point O as T0 and will call it the local map. Thesaddle �xed point O(0; 0) of T0 has the stable and unstable invariant Cr-manifoldswhich have, locally, the form y = '(x) and x = '(y), respectively, with '(0) = 0,'0(0) = 0,  (0) = 0,  0(0) = 0.Let �(x) be the inverse function to x 7! x � '( (x)), i.e. �(x � '( (x))) = x atsmall x. The area-preserving coordinate transformation(x; y)new = (x� '(y); y �  (�(xnew))) (3)straightens the local invariant manifolds, i.e. they take the form xnew = 0 andynew = 0. Hence, the local map (1) takes the following form in the new coordinates�x = �x + p(x; y)x; �y = 
y + q(x; y)y; (4)where the functions p and q vanish at the origin. Note that if we consider a familyf" of maps, Cr with respect to both (x; y) and the parameters ", then the invariantmanifolds of saddle periodic orbits are Cr with respect to the parameters as well, sothe local map near a saddle periodic point can be brought to the form (4) by a Crtransformation for all ".When proving the results of Sections 3 and 5 we will use the fact (see [32, 33, 36])that by an additional, close to identity coordinate transformation, one may achievethat the functions p and q will vanish identically both at x = 0 and y = 0:p(x; 0) � 0; p(0; y) � 0;q(x; 0) � 0; q(0; y) � 0: (5)4



If the map f is area-preserving, then this coordinate transformation can be chosenarea-preserving too [40]. Indeed, according to [36], there exists a function �(x; y),vanishing identically at x = 0, such that the �rst line in (5) is satis�ed after theimplicitly de�ned change x = xnew+ �(xnew; y) of the coordinate x. Let us make thearea-preserving coordinate transformation de�ned by the formulasx = xnew + �(xnew; y); ynew = y + Z y0 � 0x(xnew; s)ds:By construction, after this change of coordinates, the map (4) will satisfy the �rstline of identities (5), and it will remain area-preserving. The latter means thatdet �+ p(x; y) + p0x(x; y)x p0y(x; y)xq0x(x; y)y 
 + q(x; y) + q0y(x; y)y ! = �
for all small (x; y). At x = 0 or y = 0 this identity reduces, respectively, to q(0; y)+q0y(0; y)y = 0 and q(x; 0) = 0, which gives us the second line of identities (5) indeed.In the case where the smoothness r of f is �nite, the given coordinate transformationis Cr�1 and it is, in general, only Cr�2 with respect to " if f depends on parameters" (see [40, 41]).In the case r =1 or r = !, the coordinate transformation is also C1or, respectively, C! with respect to (x; y), and we may ensure any �nite smoothnesswith respect to the parameters.According to [42, 43], for any small x(0) and y(k) and for any k � 0 there existuniquely de�ned, small x(k) and y(0) such that (x(k); y(k)) = T k0 (x(0); y(0)) and all thepoints in the orbit f(x(0); y(0)); T0(x(0); y(0)); :::; T k0 (x(0); y(0))g lie in a small neighbor-hood of zero. We denotex(k) = �kx(0) + �k�k(x(0); y(k)); y(0) = 
�ky(k) + 
�k�k(x(0); y(k)) (6)(in the case where the map depends on parameters, �k and �k are functions of " aswell). By [32, 33, 36, 41], when the identities (5) are satis�ed, the functions �k and�k are uniformly small along with all the derivatives up to the order (r � 1) withrespect to (x0; yk) and up to the order (r � 2) with respect to parameters:k�k; �kk = o(1)k!+1 (7)(in the case of in�nite r we have the uniform smallness for all the derivatives up toany given �nite order).2.2 Global map.Let us now assume that the map f has an orbit of homoclinic tangency. It meansthat in the local unstable manifold W uloc of the point O there is a point M�(0; y�)such that its image M+ = f lM� for some positive integer l lies in the local stablemanifold W sloc of O, and the curve f lW uloc is tangent to W sloc at the point M+. The5



orbit of the point M� is homoclinic, because all its iterations tend to O both atforward and backward iterations of f .We call the map f l in a small neighborhood of M� the global map and denote it byT1. It can be written as�x� x+ = ax + b(y � y�) + g1(x; y);�y = cx+ �(y) + g2(x; y); (8)where the functions g1 and g2 do not contain linear terms, and g2 vanish identicallyat x = 0. By (8), the equation of the curve T1W uloc is�x = x+ + b(y � y�) + g1(0; y); �y = �(y): (9)The condition of the tangency of T1W uloc and W sloc at y = y� reads as�(y�) = 0; �0(y�) = 0: (10)Note that f is a di�eomorphism, hence det T 01(M�) 6= 0; i.e.bc 6= 0: (11)Note that the same holds true when we consider a heteroclinic tangency, i.e. whenwe have two saddle periodic points, O1 and O2, and the image of some piece ofW uloc(O1) by some iteration of the map f is tangent to W sloc(O2) at some point: ifthe local invariant manifolds are straightened, i.e. the local maps are brought to theform (4) near O1 and O2, then the global map T1 acting from a small neighborhood ofsome pointM� 2 W uloc(O1) into a small neighborhood of some pointM+ 2 W sloc(O2)is de�ned, and formulas (8){(11) hold.The homoclinic or heteroclinic tangency has the order n if �(n+1)(y�) 6= 0 while�(j)(y�) = 0 for all j � n (so the quadratic tangency is the tangency of order 1).Of course, to de�ne the tangency of order n, we should require from our map atleast the smoothness r � n + 1. When the map f depends on parameters ", theglobal map T1 can still be written in the form (8), but the functions g1, g2, � andthe coeÆcients a, b, c, x+ and y� may now depend on ". If we have a homoclinic(or heteroclinic) tangency of order n at " = 0, we may choose y�(") in such a way,that �(n)(y�) = 0 for all small ". We will always �x this choice of y�("), and wedenote, under this assumption,�j(") = �(j)(y�)=j! (j = 0; : : : ; n� 1); (12)so that�(y; ") = �0 + :::+ �n�1(y � y�)n�1 + d(y � y�)n+1 + o((y � y�)n+1); (13)with d 6= 0. The tangency is said to be split generically ifrank @(�0; :::; �n�1)=@" = n6



at " = 0.Let us rewrite the parametric equation (9) for the curve T1W uloc in the explicit form:�y = 	"(�x). When there is a tangency of order n, we have 	(n+1)(x+) 6= 0, while	(j)(x+) = 0 for all j � n at " = 0. It follows that we may choose x+(") in such away, that 	(n)(x+) = 0 for all small ". If we denote, under this assumption,~�j(") = 	(j)(x+)=j! (j = 0; : : : ; n� 1); (14)then, obviously, the vector (~�0; : : : ; ~�n�1) and the vector of the functionals �j de�nedby (12) are related by a di�eomorphism. Hence, the equivalent condition for thetangency to be split generically isrank @(~�0; :::; ~�n�1)=@" = n:Analogously, one can easily see from (8) that the curve T�11 W sloc near the point M�is given by the equationx = �̂0 + :::+ �̂n�1(y � y�)n�1 + d̂(y � y�)n+1 + o((y � y�)n+1); (15)with d̂ 6= 0, and with (�̂0; : : : ; �̂n�1) related to the vector of �j by a di�eomorphism.This gives us one more equivalent condition for the tangency to be split generically:rank @(�̂0; :::; �̂n�1)=@" = n:2.3 Splitting of homoclinic and heteroclinic tangencies.Below we will frequently use the existence of an n-parameter family of maps (area-preserving maps, if the original map f is area-preserving) in which a given homoclinicor heteroclinic tangency of order n is split generically. Let us �rst recall the con-struction for the case of �nite smoothness. Let �y = 	(�x) be the equation of thecurve T1W uloc. Include the function 	 into any Cr-smooth n-parameter family offunctions 	", such that 	0 = 	. Fix a small Æ > 0 and denoteH"(x; y) = ��Æ(x� x+; y) Z xx+(	"(s)� 	0(s))ds (16)where �Æ(u; v) is a Cr+1-smooth cut-o� function which vanish identically at ku; vk �2Æ and equals to 1 at ku; vk � Æ. Let F" be the time-1 map by the orbits of theHamiltonian system _x = @H"@y ; _y = �@H"@x :By construction, F" is a Cr-smooth area-preserving map, which equals to identityoutside a small neighborhood of the point M+ for all "; at " = 0 it is equal toidentity everywhere. Near the point M+ the map F" acts as(x; y) 7! (x; y +	"(x)� 	0(x)): (17)7



Consider the family F" Æ f , which includes our original map f at " = 0. Sinceevery map of the family coincides with f outside a small neighborhood of f�1M+,it follows that the global map (F" Æ f)l from a small neighborhood of the point M�to a neighborhood of M+ equals to F" Æ T1 (where T1 is the global map for the mapf). By (17), the equation of the curve F" Æ T1W uloc near this point is�y = 	"(�x):Now, take any 	" such that det @(~�0; : : : ; ~�n�1)@" 6= 0 (18)(where the functionals ~�j are given by (14)). In particular, we may take	"(�x) = n�1Xj=0 "j(�x� x+)j;which would correspond toH"(x; y) = ��Æ(x� x+; y) n�1Xj=0 "j (�x� x+)j+1j + 1 ; (19)and ~�j = "j in this case. Now recall, that inequality (18) means exactly that thetangency between T1W uloc andW sloc is split generically in the family F"Æf , as required.Note that this construction allows us to transform locally the piece of the unsta-ble manifold T1W uloc near the point M+ into any suÆciently close curve by a smallperturbation which does not destroy the area-preservation property of the map f .Note also that our perturbation is localized in a small neighborhood of one homo-clinic (heteroclinic) point, so it does not a�ect any other homoclinic or heteroclinictangencies which are bounded away from this point.In the same way one can show that the multiplier � of the saddle periodic orbit O canbe changed by a small smooth localized perturbation of the map f (the perturbationis area-preserving, if f is area-preserving), without destroying any �nite number ofgiven homoclinic or heteroclinic tangencies. Indeed, consider a one-parameter familyf" = F" Æ f , where the area-preserving di�eomorphism F" is the time-1 shift by the
ow de�ned by the HamiltonianH"(x; y) = �"�Æ(x; y)xy; (20)where (x; y) are the coordinates near O for which the local invariant manifolds arestraightened, and �Æ is the cut-o� function (like in (16)) with some suÆciently smalland �xed Æ > 0. By construction, F0 = id, hence f0 = f . At non-zero ", the mapF" can di�er from identity only in the Æ-neighborhood of O, so if Æ is small enough,then the new local map is F" Æ T0. Direct computation of the multiplier gives then�" = e�"�, so @�"@" = ��" 6= 0:8



The lines x = 0 and y = 0 are invariant with respect to the map F", hence theyremain local unstable and, respectively, stable invariant manifolds of the point O forall small ". Since the position of the local invariant manifolds is not changed andsince the perturbation is localized in a suÆciently small neighborhood of the pointO, any given number of homoclinic or heteroclinic tangencies is not split by suchperturbation, as required.These results can be generalized as follows. Let a two-dimensionalCr-di�eomorphismf have a number of saddle periodic orbits L1; : : : ; Ls and a number of homoclinicor heteroclinic to them orbits �1; : : : ;�m, corresponding to the tangency of thestable and unstable manifolds of orders n1; : : : ; nm (we assume r � r0 � 1 +max(n1; : : : ; nm)). Thus, for all di�eomorphisms Cr0-close to f we can de�ne s+n1+: : : nm smooth functionals: the multipliers �i (i = 1; : : : ; s) of the periodic orbits Li,and the functionals �ij (j = 0; : : : ; ni�1; i = 1; : : : ; m) which determine the splittingof the homoclinic and heteroclinic tangencies (see (13)). Note that the functionals�ij depend on the choice of the coordinate transformation which straightens the localinvariant manifolds, so we assume that this transformation is canonically given byformula (3).Consider the HamiltonianH"(x; y) = "1�1(x; y) + : : :+ "�n��n(x; y) (21)where �l, (l = 1; : : : ; �n) are the functions given by the right-hand sides of (20)and (19), localized in suÆciently small neighborhoods of the appropriately chosenperiodic and homo/heteroclinic points, respectively. As it follows from our consid-erations above, the family f" = F"Æf where F" is the time 1 map by the 
ow de�nedby the Hamiltonian (21) satis�esdet @(�1(f"); : : : ; �s(f"); �10(f"); : : : ; �mnm�1(f"))@("1; : : : ; "�n) 6= 0: (22)Now note that inequality (22) preserves under any, suÆciently small in the Cr0-topology, perturbations of the family f". In particular, the inequality (22) will stillbe valid if we replace the functions �l in (21) by their suÆciently close (in the Cr0+1-topology) polynomial approximations ��l. Thus, we have now established that thereexists a polynomial Hamiltonian�H"(x; y) = "1��1(x; y) + : : :+ "�n���n(x; y) (23)such that the family F" Æ f satis�es the inequality (22), with F" being the time 1map corresponding to �H".Thus, we have proved the following lemma.Lemma 1. There exists an analytic �n-parameter family of real-analytic area-preserving di�eomorphisms F" such that in the family F"Æf the tangencies �1; : : : ;�m9



split generically and independently, and the multipliers of the periodic orbits L1; : : : ; Lschange independently as well.This lemma is proven for all di�eomorphisms f whose smoothness r exceeds themaximal order of the homo/heteroclinic tangencies under consideration (r � r0). Inparticular, it holds true for real-analytic f . Thus, we have now the existence of �nite-parameter families in which any given �nite number of homoclinic or heteroclinictangencies is split generically and independently in the real-analytic case as well.The main facts which we will use below in the proof of the main theorem and whichfollow from this lemma are that given any suÆciently smooth, or real analytic, dif-feomorphism with any given �nite number of homoclinic or heteroclinic tangencies,we can split any of these tangencies generically by a small (in a smooth or, respec-tively, real analytic topology) perturbation which does not split the other tangencies,neither it changes the values of the multipliers of the saddle periodic orbits involved.As well, we can change a multiplier of either of the saddles, without changing themultipliers of the other ones, nor destroying the tangencies. By construction, if theoriginal map f is area-preserving, the perturbed maps will be area-preserving too.3 Secondary homoclinic and heteroclinic tangen-ciesHere we show how perturbations of homoclinic and heteroclinic cycles can producesecondary homoclinic and heteroclinic tangencies of various types. Statements anal-ogous to the following lemma were given in [9, 10, 46] for di�erent situations. Herewe give a uni�ed proof which includes the area-preserving case.Lemma 2. Let f� be a one-parameter family of two-dimensional Cr-di�eomorphisms(r � 3). Let f0 have a saddle periodic point O with an orbit of quadratic homoclinictangency which splits generically as � varies. Then, arbitrarily close to � = 0 thereexists a value of � for which the map f� has an orbit of quadratic homoclinic tan-gency (which splits generically as � varies) and a homoclinic orbit corresponding toa transverse intersection of the invariant manifolds of O.Proof. Note that orbits of transverse homoclinic intersection may exist already atthe moment of the original homoclinic tangency; in this case the sought value of �is 0. Otherwise, we have to �nd a converging to zero sequence of non-zero valuesof � for which the map has new, secondary homoclinic tangencies accompanied bytransverse homoclinic orbits. We will explore both possibilities in the proof.By (9), (13), the equation of the curve T1(W uloc) isy = �+ db2 (x� x+)2 + o((x� x+)2): (24)10



At �d < 0 this curve intersects W sloc \ �+ : fy = 0g transversely at two points.Assume that the coordinates near O are chosen such that (4), (5) hold. Then, by(6),(24), the image (x̂; ŷ) of a point (x; y) 2 T1(W uloc) by the map T k0 gets in a smallneighborhood of the homoclinic point M� (the domain of the global map T1) if andonly if x̂ = �kx + �k�k(x; ŷ); y = 
�kŷ + 
�k�k(x; ŷ): (25)The point (x; y) will be homoclinic if T1(x̂; ŷ) 2 W sloc, which means (see (8))0 = cx̂+ �+ d(ŷ � y�)2 + o(jx̂j+ (ŷ � y�)2):Thus, a homoclinic point (x; y): T1T k0 (x; y) 2 W sloc, T�11 (x; y) 2 W uloc corresponds toa solution of the system0 = �+ c�kx+ + c�kX + dY 2 + �1(X; Y; �) + �2(Y; �);0 = �� 
�ky� � 
�kY + db2X2 + �3(X; Y; �) + �4(X; �); (26)where we denote X = x� x+; Y = ŷ � y�. The functions � satisfy�1 = o(�k); �2 = o(Y 2);�3 = o(
�k); �4 = o(X2): (27)Note that the right-hand sides of system (26) are at least C2 with respect to Xand Y : the map f is at least C3 by assumption, but we lose one smoothness whenintroduce the coordinates bringing the local map to the form (4),(5). Accordingly,the �rst derivative of the right-hand side with respect to (X; Y ) is C1 with respectto X, Y and �. In particular, the coeÆcients �, 
, x+, y�, b and c are C1-functionsof � (while d is a constant).Note that d 6= 0 implies that we may shift the origin of coordinates to a smallconstant: (X; Y ) 7! (X+o(
�k); Y +o(�k)), so that the �rst derivative of the right-hand side of the �rst equation in (26) with respect to Y and of the right-hand sideof the second equation with respect to X will vanish at (X; Y ) = 0. After that, thesystem will take the form0 = �+ �1k + c�kX + dY 2 + ~�1(X; Y; �) + ~�2(Y; �);0 = �+ �2k � 
�kY + db2X2 + ~�3(X; Y; �) + ~�4(X; �); (28)where we denote as �1;2k the independent of X and Y terms:�1k = c�kx+ + o(�k); �2k = �
�ky� + o(
�k); (29)and the functions ~� satisfy ~�1 = o(�kX); ~�2 = o(Y 2);~�3 = o(
�kY ); ~�4 = o(X2): (30)The nondegenerate solutions of (28) correspond to transverse homoclinics, and thedegenerate ones correspond to homoclinic tangencies. We will consider system (28)11



for even k only, so �k > 0 and 
�k > 0, no matter what are the signs of � and 
. Itis easy to see then, that when cx+d < 0 and y�d > 0 the system has non-degeneratesolutions Y = �scx+d + o(1) j�jk=2; X = �bsy�d + o(1) j
j�k=2at � = 0 for all suÆciently large k. This means that at � = 0, in addition tothe original orbit of homoclinic tangency, we have also transverse homoclinic orbits,which gives us the lemma in this case.If, on the contrary, cx+d > 0 or y�d < 0, we will search for secondary homoclinictangencies at small � 6= 0. They correspond to solutions of (26) for which theJacobian of the right-hand side vanishes. Thus, they solve the system0 = c�k
�k + 4d2b2 (X + '1(X; Y ))(Y + '2(X; Y )) + o(�k
�k);0 = �k + c�kX + 
�kY + dY 2 � db2X2 + o(�kjXj+ Y 2 +X2 + 
�kjY j); (31)where the constant term �k is given by�k = c�kx+
�ky� + o(�k + 
�k); (32)and '1 = o(jXj+ 
�kjY j); '2 = o(jY j+ �kjXj): (33)We obtained the second equation in (31) as follows: from the �rst equation of (28)we expressed � as a function of (X; Y ), and plugged the result into the secondequation. Thus, in (31) there is no dependence on �, so by �, 
, c, x+, y� in (31),(32) we mean the values of these coeÆcients at � = 0.The non-degenerate solutions of (31) correspond to quadratic homoclinic tangenciesfor � found from either one of the two equations in (28). Note that the value ofparameter � is found uniquely for any given small X and Y , and this remains truefor an arbitrary small perturbation of the map under consideration, which meansthat the corresponding tangency splits indeed generically as � varies.Consider, �rst, the case j�
j < 1 (hence �k
k ! 0 as k ! +1). If y�d > 0 andcx+d > 0 (the case y�d > 0 and cx+d < 0 has already been considered), we scalethe variables as follows:(X; Y ) 7! bj
j�k=2sy�d (Xnew;� c4y�d�k Y new):In the new variables, system (31) recasts as1 = XY + o(1)k!+1; 1 = X2 + o(1)k!+1: (34)For all k large enough, this system has nondegenerate solutions X = Y = �1+o(1).In the non-rescaled variables it corresponds to X = O(j
j�k=2); Y = O(�kj
j�k=2).12



The �rst equation of (28) gives us then, that the corresponding homoclinic tangencieshappen at � = �k = �cx+�k(1 + o(1)). By our current assumptions cx+d > 0,hence �kd < 0, i.e. the found secondary homoclinic tangencies coexist with primarytransverse homoclinic orbits, as required.In the case y�d < 0, we use the following scaling:(X; Y ) 7! qjy�=djj
j�k=2 (� cb24jy�dj�k(Xnew � '1(0; Y )); Y new):In the new variables, system (31) recasts as1 = XY + o(1)k!+1; 1 = Y 2 + o(1)k!+1: (35)For all k large enough, this system has nondegenerate solutions X = Y = �1+o(1).In the non-rescaled variables it corresponds to X = o(j
j�3k=2); Y = O(j
j�k=2). Thesecond equation of (28) gives us then, that the corresponding homoclinic tangencieshappen at � = �k = y�
�k(1 + o(1)). Since we assume here y�d < 0, it followsthat �kd < 0, i.e. the found secondary homoclinic tangencies coexist with primarytransverse homoclinic orbits in this case too. This �nishes the proof of the lemmain the case j�
j < 1.The case j�
j > 1 is reduced to the previous one if we consider the map f�1 insteadof f . Thus, it remains to prove the lemma in the case j�
j = 1, which includes thearea-preserving maps. Let us choose the sequence of (even) values of k such thatthere exists the limit (�nite or in�nite)limk!+1 �k=�2k =M: (36)If M = +1, we scale (X; Y ) 7! br�kd (Xnew;� c4d �2k�k Y new)if �kd > 0, and (X; Y ) 7! qj�k=dj (� cb24jdj �2kj�kjXnew; Y new)if �kd < 0. In the �rst case the system (31) takes the form (34). Its non-degeneratesolutions correspond to (X = O(j�jk=2); Y = O(j�j3k=2)), and the �rst equation of(28) gives � = �k = �cx+�k(1 + o(1)) for the moments of homoclinic tangencies.The assumption �kd > 0 implies (see (32)) that either cx+d > 0 or y�d > 0. Thelatter implies cx+d > 0 as well (because the case cx+d < 0, y�d > 0 has alreadybeen considered). Thus �kd < 0, i.e. the found secondary homoclinic tangenciescoexist with primary transverse homoclinic orbits.In the second case the system (31) reduces to the form (35). Its non-degeneratesolutions correspond to (X = O(j�j3k=2); Y = O(j�jk=2)), and the second equationof (28) gives � = �k = y��k(1 + o(1)) for the moments of homoclinic tangencies.13



The assumption �kd < 0 implies that either cx+d < 0 or y�d < 0, but the formerinequality implies y�d < 0 anyway. Thus �kd < 0 in this case too.It remains to consider the case where M is �nite in (36). It follows, in particular,that cx+ + y� = 0, which implies cx+d > 0. We make the following rescaling:(X; Y ) 7! 1d�k(b2cXnew;�Y new):The system (31) takes the form0 = 1� 4XY + o(1)k!+1;0 =Md� (bc)2(X2 �X) + Y 2 � Y + o(1)k!+1: (37)It is easy to see that this system has a nondegenerate solution in the region fX <0; Y < 0g for any Md and bc 6= 0. In the non-rescaled variables this solutiongives (X; Y ) = O(�k), and from (28) we have � = �k = �cx+�k(1 + o(1)) for themoments of homoclinic tangencies. Again we have �kd < 0, so the coexistence of thesecondary homoclinic tangencies with primary transverse homoclinics is establishedin this last remaining case as well. The lemma is proven.The existence of a transverse homoclinic toO implies [42] the existence of a nontrivialzero-dimensional transitive hyperbolic set � (a Smale horseshoe) which includes O.Thus, Lemma 2 can be reformulated as the existence of a nontrivial hyperbolic setwhose stable and unstable sets have a quadratic homoclinic tangency at the values of� arbitrarily close to zero. Since the stable and unstable manifolds of any periodicorbit in � approximate, in the Cr topology, any leaf in, respectively, W s(�) andW u(�), and since the found homoclinic tangency splits generically as � changes, itfollows that for any two periodic points in � a quadratic heteroclinic tangency oftheir invariant manifolds can be obtained by an arbitrarily small variation of �, andthis tangency also splits generically.Let O1, O2 be two di�erent saddle periodic points in �, di�erent from O and withall multipliers positive (such periodic points always exist in any horseshoe). Letus �x some small � for which W u(O2) and W s(O1) have a quadratic heteroclinictangency. A heteroclinic orbit corresponding to a transverse intersection of W u(O1)and W s(O2) also exists at the same �, because O1 and O2 belong to the sametransitive hyperbolic set �.We introduce the coordinates (xi; yi) near the points Oi (i = 1; 2) such that the localinvariant manifolds are straightened, i.e. the local maps T0i take the form (see (4)):�xi = �ixi + pi(xi; yi)xi; �yi = 
iyi + qi(xi; yi)yi;where 0 < �i < 1 < 
i. Note that the point Oi divides its stable and unstablemanifolds into two invariant components each, we will denote these components asW u+(Oi), W u�(Oi) and W s+(Oi), W s�(Oi).Choose a pair of heteroclinic points: M+1 (x+1 ; 0) in a small neighborhood of O1and M+2 (0; y�2 ) in a small neighborhood of O2, which belong to the same orbit of14



heteroclinic tangency. The global map T21 from a small neighborhood of M�2 into asmall neighborhood of M+1 is written as follows (see (8),(13)):x1 � x+1 = ax2 + b(y2 � y�2 ) + : : : ; y1 = cx2 + d(y2 � y�2 )2 + : : : : (38)Choose also a pair of heteroclinic points M�1 (0; y�1 ) in a small neighborhood ofO1 and M+2 (x+2 ; 0) in a small neighborhood of O2, which belong to a transverseheteroclinic orbit. In the terminology of [38, 39], the heteroclinic cycle belongs tothe \third class", when cy�1 x+2 > 0: (39)Note that we can always choose the pointsO1 and O2 among the \inner" points of thehorseshoe �, i.e. the leaves of W s(�) and W u(�) converge, respectively, to W s(O1)and W u(O1) from both sides, and the same holds true for O2. In other words, wecan always choose the points O1 and O2 such that each of the manifolds W u+(O1),W u�(O1), has, in �, an orbit of transverse intersection with each of the manifoldsW s+(O2), W s�(O2). These four orbits correspond to di�erent combinations of thesigns of y�1 and x+2 . Thus, no matter what is the sign of c, we can always choose atransverse heteroclinic in such a way that (39) holds.Lemma 3. Under the conditions of Lemma 2, arbitrarily close to � = 0 there existvalues of � for which the map f� has a non-trivial transitive hyperbolic set � whichincludes the point O and two saddle periodic points O1 and O2 such that W u(O2) andW s(O1) have a quadratic heteroclinic tangency which splits generically as � varies.In � there exists also an orbit of transverse intersection of W u(O1) and W s(O2)such that the corresponding heteroclinic cycle belongs to the third class.The peculiarity of the di�eomorphisms with the heteroclinic cycles of the third classis that they have moduli of local 
-conjugacy [38]. In particular, the value� = � ln 
1ln�2 (40)is such a modulus: if two di�eomorphisms with a heteroclinic cycle of the thirdclass have di�erent values of �, they are not locally 
-conjugate (it is well knownthat � is an invariant of topological conjugacy for maps with a quadratic heteroclinictangency [44, 45, 46], however the fact that it is also an invariant of local 
-conjugacyholds true only for maps with heteroclinic cycles of the third class [38]). It followsthat any change in � must lead to bifurcations in the set of orbits lying in a smallneighborhood of the heteroclinic cycle. Thus, we have the following result [39]:Lemma 4. Let f" be any smooth family of Cr-di�eomorphisms (r � 3) such thatall di�eomorphisms in the family have a heteroclinic cycle of the third class, i.e. forall " there are two periodic points O1 and O2, an orbit of transverse intersectionof W u(O1) and W s(O2), and an orbit of quadratic heteroclinic tangency between15



W u(O2) and W s(O1) (it does not split as " varies), plus sign condition (39) holds.If the value of � changes monotonically with ", i.e.@@" �(f") 6= 0;then there is a dense set of values of " for which the map f" has a quadratic hetero-clinic tangency (which splits generically as " varies) between W u(O1) and W s(O2).Let us give an idea of the proof. Note that by lambda-lemma, since W u(O1) andW s(O2) intersect transversely, there are pieces of W s(O2) which converge in theCr-topology to W sloc(O1) and pieces of W u(O1) which converge to W uloc(O2). By (6),these pieces of W s(O2) near the point M+1 form an in�nite sequence of curvesW si : y1 � 
�i1 y�1 ; (41)and the pieces of W u(O1) near the point M�2 form an in�nite sequence of curvesW uj : x2 � �j2x+2 ; (42)where y�1 and x+2 are the coordinates of the points, respectively, M�1 and M+2 onthe transverse heteroclinic orbit. By (38), the curves T1W uj form a sequence ofparabola-like curves, extended towards positive y1 if d > 0 and towards negative y1if d < 0, with the tops at y1 � cx+2 �j2. Thus, W si and T1W uj intersect transverselywhen d(
�i1 y�1cx+2 �j2 � 1)� 0; (43)and have no intersection when d(
�i1 y�1cx+2 �j2 � 1)� 0: (44)Now take any two arbitrarily close values "1 6= "2. By assumption, �("1) 6= �("2),and we may assume �("1) > �("2). Hence, we can �nd two suÆciently large integersi and j such that i ln
1 � jj ln�2j � 0at " = "1 and i ln
1 � jj ln�2j � 0at " = "2. Taking into account (39), it follows that one of inequalities (43), (44) isful�lled at " = "1, and another one at " = "2. We see that for such chosen i andj the intersection of the curves T1W ui and W sj disappears when " runs the intervalbetween "1 and "2. Hence, the two curves must have a tangency at some " from thisinterval, which is the required heteroclinic tangency between W u(O1) and W s(O2).A formal proof of the lemma can be found in [39].The following lemma deals with secondary heteroclinic or homoclinic tangencies ofhigh orders. It is a version of Lemma 2 from [5]. Since our formulation here isslightly di�erent, we give a complete proof.16



Lemma 5. Let f", " = (�0; : : : ; �n�1; �), be a smooth (n + 1)-parameter family oftwo-dimensional Cr-di�eomorphisms (r > n + 2) which have saddle periodic pointsO1, O2, O3 (not necessarily di�erent) such that at � = 0 the manifolds W u(O1) andW s(O2) have a tangency of order n, and at � = 0 the manifoldsW u(O2) andW s(O3)have a quadratic tangency. Suppose that the tangency between W u(O1) and W s(O2)splits generically as � varies, and the tangency between W u(O2) and W s(O3) splitsgenerically as � varies. Then there exists a sequence "k ! 0 such that the map f"has an orbit of tangency of order (n+ 1) between W u(O1) and W s(O3) at " = "k.Proof. Let (x; y) be the Cr�1-coordinates near O2 for which formulas (4),(5) holdfor the local map T0, hence formulas (6) hold for its iterations T k0 . LetM+(x+; 0) bea point at which W u(O1) has the tangency of order n with W sloc(O2) at � = 0, andM�(0; y�) be a point at which W s(O3) has the quadratic tangency with W uloc(O2)at � = 0. As it was explained in Section 2, we may choose parameters � in such away (see (14)) that the equation of the piece of W u(O1) near M+ will bey = �0 + :::+ �n�1(x� x+)n�1 + d(x� x+)n+1 + o((x� x+)n+1): (45)The parameter � can be chosen in such a way that the equation of the piece ofW s(O3) near M� will be (see (15)):x = � + d̂(y � y�)2 + o((y � y�)2): (46)By (6), the image of the curve (45) by the map T k0 has the sought tangency of order(n + 1) with the curve (46) if and only if the following curves have a tangency oforder (n + 1):
�k(Y +y�)+
�k�k(X+x+; Y +y�) = �0+:::+�n�1Xn�1+dXn+1+o(Xn+1); (47)and �k(X + x+) + �k�k(X + x+; Y + y�) = � + d̂Y 2 + o(Y 2) (48)(here (x+ + X) is the x-coordinate of the point of tangency and (y� + Y ) is they-coordinate of the image of the same point by the map T k0 ).One can rewrite equations (47),(48) in the explicit form:
�kY = ��0 + ::: + ��n�1Xn�1 + ��nXn + dXn+1 + o(Xn+1); (49)and �kX = �� + ��1Y + d̂Y 2 + o(Y 2); (50)where ��0 = �0 � 
�ky� + o(
�k);��j = �j + o(
�k) (j = 1; : : : ; n� 1);��n = o(
�k)and �� = � � �kx+ + o(�k); ��1 = o(�k):17



After the change of variablesXnew = X � ��12d̂ ; Y new = Y � ��n(n+ 1)dequations (49), (50) recast as
�kY = �00 + :::+ �0n�1Xn�1 + dXn+1 + o(Xn+1); (51)and �kX = � 0 + d̂Y 2 + o(Y 2); (52)where �00 = �0 � 
�ky� + o(
�k);�0j = �j + o(
�k) (j = 1; : : : ; n� 1);� 0 = � � �kx+ + o(�k): (53)Let us rescale the variables:X = � 1(d̂d2) 12n+1 � k2n+1
� 2k2n+1Xnew; Y = (�1)n+1 1(d̂n+1d) 12n+1 �k n+12n+1
� k2n+1Y new:Equations (51),(52) change toY =M0 + :::+Mn�1Xn�1 +Xn+1 + o(1)k!+1; (54)and X = N � Y 2 + o(1)k!+1; (55)whereMj = �0j (�1)n+1�jd (d̂d2)n+1�j2n+1 �� k(n+1�j)2n+1 
 2k(n+1�j)2n+1 (j = 0; : : : ; n� 1);N = � 0(d̂d2) 12n+1��k 2n+22n+1
 2k2n+1 : (56)As it is proven in [5], for all suÆciently large k there are uniquely de�ned, uniformly(with respect to k) bounded values of the rescaled parameters N and M0; : : : ;Mn�1for which the curves (54) and (55) have a tangency of order (n + 1). The proof isquite straightforward. The equation of the curve (55) can be rewritten asY = �qN �X + o(1): (57)We obtain the sought tangency of order (n+1) if and only if the �rst (n+2) termsof the Taylor expansion of (54) coincide at some X� with the corresponding termsof the Taylor expansion of one of the two branches of (57). Given any N and X�, wecan always achieve that initial segments of length n of the two expansions coincide18



by an appropriate choice of M0; : : : ;Mn�1. The coincidence conditions for the tworemaining terms read as(n+ 1)X� = ��nn! (N �X�) 12�n + o(1)k!+1;1 = � �n+1(n + 1)!(N �X�)� 12�n + o(1)k!+1; (58)where �n = �12 � 12 � 32 � � � 2n� 32 < 0:Equalities (58) show that there can be no tangency of order (n+1) with the \plus"branch of (57), while for the \minus" branch the uniquely de�ned values of N andX� corresponding to the sought tangency exist indeed:N = X�(n+ 12) + o(1)k!+1; X� = 22n� 1  j�n+1j(n+ 1)!!2=(2n+1) + o(1)k!+1:The found tangency of order (n + 1) between the curves (54) and (55) correspondsto the tangency of order (n+ 1) between the curves (47) and (48). Since the corre-sponding values of N;M0; : : : ;Mn�1 remain uniformly bounded for all large k, therespective values of " = (�; �0; : : : ; �n�1) tend to zero as k ! +1 (see (53), (56)).This completes the proof of the lemma.4 Homoclinic tangencies of arbitrarily high or-dersIn this section we prove our main theorem. Let f be a two-dimensionalCr-di�eomorphism(r = 2; : : : ;1; !) having a saddle periodic orbit O and an orbit of a quadratic ho-moclinic tangency of W u(O) and W s(O). By Lemma 1 we may include f into aone-parameter family f� of Cr-di�eomorphisms (all area-preserving if f itself is area-preserving) for which the homoclinic tangency splits generically. Then, by Lemma2, arbitrarily close to f in this family we �nd a di�eomorphism ~f which has a non-trivial transitive hyperbolic set � which includes the point O, and some leaf of theunstable set of � has a quadratic tangency (which splits generically as � varies) withsome leaf of the stable set of �.In another setting we may assume the existence of such set � from the very be-ginning. In any case, as Lemma 3 gives it to us, we may achieve by an additionalarbitrarily small perturbation that the di�eomorphism ~f will have a quadratic het-eroclinic tangency between stable and unstable manifolds of two periodic points O1and O2 in �, and the orbit of this tangency will be a part of the heteroclinic cycleof third class.This tangency is split generically as the parameter � varies. It follows that for anyfamily of maps which approximates f� suÆciently closely, at least in the C2-topology,19



there will exist a value of the parameter corresponding to a quadratic heteroclinictangency between W s(O1) and W u(O2). Hence, even if our original map f were notanalytic, by choosing a suÆciently close real analytic approximation to f� (note thatif f� is a family of area-preserving maps, it can always be approximated by a familyof real analytic, and even polynomial [30] area-preserving maps) we �nd near f areal analytic (and area-preserving if f is area-preserving) map ~f with a quadratictangency betweenW s(O1) andW u(O2). Thus, from now on, all the di�eomorphismswe obtain as small perturbations of f will be real-analytic. Moreover, all of themwill be area-preserving if f is. Thus, the term \perturbation" means now a smallreal analytic perturbation which does not destroy the area-preservation property (allthe perturbations below will be of the type given by Lemma 1).Let n1; n2; : : : be an arbitrary in�nite sequence of positive integers, and ((L11; L12);(L21; L22); (L31; L32); : : :) be an arbitrary sequence of pairs of periodic points fromthe hyperbolic set �. We will prove that ~f can be perturbed in such a way that theperturbed map will have an in�nite sequence of homoclinic/heteroclinic tangencies,and these will be exactly the tangencies of orders nk between W u(Lk1) andW s(Lk2),k = 1; 2; : : :. The perturbation which we construct can be as small as we need, and itdoes not lead out of the class of area-preserving maps if the original map f is area-preserving. This will, obviously, give us a proof of the main theorem (by lettingthe numbers nk take all natural values in�nitely many times, and by choosing allLkj equal to the same periodic point O we will have in�nitely many homoclinictangencies of every order).Take an arbitrarily small Æ > 0 and let Æk > 0 be such thatÆ1 + Æ2 + : : : = Æ:We will construct a sequence of real analytic maps fk, f0 � ~f , such that each ofthem retains the heteroclinic tangency between W s(O1) and W u(O2), and fk has kadditional orbits of tangency: between W u(L11) and W s(L12) of order n1, betweenW u(L21) and W s(L22) of order n2, etc.. We will construct maps fk in such a waythat the distance between fk+1 and fk will be less than Æk. Hence, the sequencefk will have a limit f � which lies on the distance less than Æ from ~f and has therequired in�nite sequence of tangencies.Thus, in order to prove the main theorem, we need to prove that given a di�eomor-phism fk which has the heteroclinic cycle of the third class and k � 0 additionalorbits of homoclinic/heteroclinic tangencies, one can perturb it, destroying neitherthe heteroclinic tangency between W u(O2) andW s(O1) nor the k additional tangen-cies, nor changing the order of these tangencies, such that the new di�eomorphismfk+1 will have one more orbit of tangency, between W u(Lk+1;1) and W s(Lk+1;2), ofthe given order nk+1. We will construct such perturbation from fk to fk+1 as a �nitesequence of perturbations each of which can be made arbitrarily small, so the totalsize of the resulting perturbation will be less than Æk+1, as required.By Lemma 1, we can include fk into a one-parameter family fk" such that neitherof the given heteroclinic and homoclinic tangencies splits as " varies, nor the mul-20



tipliers of the point O1 change, while the multiplier �2 of the point O2 changeswith non-zero velocity. It follows that the 
-modulus � is changing with non-zerovelocity as well. Hence, by Lemma 4, arbitrarily close to fk we �nd in this familya di�eomorphism which has an additional quadratic heteroclinic tangency betweenW u(O1) and W s(O2). When " changes, this tangency splits generically. Recall thatthe points O1, O2, Lk+1;1 and Lk+1;2 belong to the same transitive hyperbolic set �,therefore W u(Lk+1;1) accumulates onto W u(O1) and W s(Lk+1;1) accumulates ontoW s(O2). Thus, by an additional arbitrarily small change in ", when splitting thetangency between W u(O1) and W s(O2) we can obtain a new quadratic homoclinictangency between W u(Lk+1;1) and W s(Lk+1;1).If nk+1 > 1, we repeat the procedure nk+1 times, obtaining each time a new quadratichomoclinic tangency between W u(Lk+1;1) and W s(Lk+1;1), without perturbing theother tangencies. Next, we include the map into a two-parameter family of maps forwhich two of the newly obtained quadratic homoclinic tangencies split genericallyand independently, while all the other tangencies are kept in place. By Lemma 5,by an arbitrarily small variation of parameters within any such family we can obtaina cubic homoclinic tangency. If nk+1 > 2, we include then the map into a three-parameter family of maps for which the cubic tangency and one of the remainingquadratic homoclinic tangencies split generically and independently, while all theother tangencies remain unperturbed. According to Lemma 5 again, by an arbitrar-ily small variation of the parameters we obtain now a quartic tangency, etc.. Thus,repeating the procedure, after a �nite number of arbitrarily small consecutive pertur-bations we obtain a new homoclinic tangency of order nk+1 between W u(Lk+1;1) andW s(Lk+1;1), in addition to the heteroclinic tangency between W u(O2) and W s(O1)and the k tangencies between W u(L11) and W s(L12), W u(L21) and W s(L22), ...,W u(Lk1) and W s(Lk2) which the map fk already had. If Lk+1;2 = Lk+1;1, it meansthat we have found the tangency we sought, and the map fk+1 is constructed. IfLk+1;2 6= Lk+1;1, we note that Lk+1;1 and Lk+1;2 belong to the same transitive hy-perbolic set �, therefore W s(Lk+1;2) accumulates onto W s(Lk+1;1). Thus, by anarbitrarily small perturbation which splits the homoclinic tangency W u(Lk+1;1) andW s(Lk+1;1) generically (and does not split the other tangencies) we obtain the soughttangency between W u(Lk+1;1) and W s(Lk+1;2).End of the proof.AcknowledgmentsThis work was partially supported by the grants CRDF No.Ru-M1-2583-MO-04,RFFI No. 02-01-00273, \Universitety Rossii" No. 1905, RFFI No. 04-01-00487.Leonid Shilnikov acknowledges support of the Alexander von Humboldt foundation.The authors acknowledge the hospitality of Klaus Schneider and WIAS.
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