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Abstract

We show that maps with infinitely many homoclinic tangencies of arbitrar-
ily high orders are dense among real-analytic area-preserving diffeomorphisms
in the Newhouse regions.

1 Introduction

In [1, 2, 3, 5] we have established that an arbitrarily small smooth perturbation of a
two-dimensional map with a quadratic homoclinic tangency can produce homoclinic
tangencies of arbitrarily high orders and, as a consequence, arbitrarily degenerate
periodic orbits (see also [4]). These results have shown that global bifurcations of
codimension 1 can be accompanied by bifurcations of arbitrarily high codimension,
i.e. the unfolding of global bifurcations can lead to the increase of the level of
degeneracy, contrary to the usual logic coming from the singularity theory.

Based on this we made a conclusion that a complete description of dynamics and
bifurcations of systems with homoclinic tangencies is impossible in principle (see
more discussion in [3, 4, 5]). We recall that systems with homoclinic tangencies are
dense in open regions in the space of smooth dynamical systems [6, 7, 9]. Moreover,
these regions (Newhouse regions) exist near any system with a homoclinic tangency
9, 10, 11, 13, 14]. In fact, homoclinic tangencies and, hence, Newhouse regions
in the parameter space have been found in a huge variety of different models with
chaotic dynamics. Thus, they exist in the Hénon map (see discussion in [15]), in
the standard map [12] and in “soft billiards” [16], they obviously appear in the
process of the development of a Smale horseshoe (after period-doubling), they play
a central role in in the transition from quasiperiodicity to chaos (the destruction of
invariant tori) [17, 45, 18, 19, 22|, they are present in Lorenz-like models beyond
the boundary of the region of existence of Lorenz attractor [20, 21], in systems with
“spiral chaos”, like Chua circuit of Rossler model (see [23, 24]), and with wild spiral
attractor [25]. According to our results in [1]-[5], in all these models one should
expect an incomprehensibly complex behavior.

Recently, it has been realized that the density of systems with homoclinic tangencies
of arbitrarily high orders in the Newhouse regions is a useful working tool for proving
that many seemingly exotic dynamical phenomena are, in fact, generic. Thus, it
was shown in [26] that the results of [1]-[5] disprove a Smale’s conjecture on the
genericity of the exponential growth of the number of periodic orbits with period. In
[27], our results were used to show that generic two-dimensional C"-diffeomorphisms



from the Newhouse regions, with r finite, cannot be topologically conjugate to any
C*°-diffeomorphism, and that they have transitive sets of full Hausdorff dimension.
In the same manner, in [28] the ultimate topological complexity of such sets was
established, and it was shown in [29] that the probability for a system to have
infinitely many coexisting stable periodic orbits is positive for a dense set of finite-
parameter families.

The fact that systems with homoclinic tangencies of arbitrarily high orders are dense
in the Newhouse regions was proven in [3, 5] for the space of general smooth maps,
and one of our genericity conditions excluded area-preserving maps. Therefore, the
validity of the result (and the above cited results based on it) in the area-preserving
case can be questioned. In the present paper we close the problem and provide a
unified proof which works in the area-preserving case as well. Moreover, we enhance
our perturbation technique so that the new proof covers the real analytic case too.

Let f be a diffeomorphism of a two-dimensional manifold. We assume f to be C”
(r=2,...,00) or C¥ (i.e. real-analytic). Let f have a saddle periodic orbit L whose
stable and unstable manifolds have a quadratic tangency at some point M. This is
a tangency of invariant manifolds, therefore they are tangent at each point of the
orbit of M. By construction, this orbit I' is homoclinic to L, i.e. it closes on L both
at forward and backward iterations of f.

Fix any, sufficiently large compact subset K of the phase space (in the theorem below
we assume that K contains a neighborhood of I'U L). Fix also some small complex
neighborhood @ of K. For small § we will say that two real analytic diffeomorphisms
are d-close if they are d-close at every point of ). For finite » we will say that two
CT-smooth diffeomorphisms are §-close if they are d-close on K in a C"-metric. Two
C°°-diffeomorphisms will be called é-close if they are (r-d)-close on K in a C"-metric
for every r < %. We can now formulate our main theorem.

Theorem 1. Arbitrarily close to f there exists a diffeomorphism f* (an area-
preserving one if f itself is area-preserving) for which there ezist infinitely many
orbits of homoclinic tangency of every order between the stable and unstable mani-

folds of L.

The proof occupies Sections 2-4. In Section 2 we give necessary formulas for the
Poincaré return maps near the periodic and homoclinic orbits and describe the form
of the perturbations which we use (Lemma 1). In Section 3 we prove certain key

lemmas and in Section 4 we construct the sequence of perturbations which leads
from f to f*.

The main reason why the homoclinic tangency can be perturbed in such a way that a
tangency of a higher order is created is the presence of a “hidden degeneracy” in the
system. Thus, it was established in [34, 35, 36] that non-conservative systems with
a homoclinic tangency of the “third class” in the terminology of [31] have a modulus
(i.e. a continuous invariant) of local 2-conjugacy (i.e. the topological conjugacy



on the set of nonwandering orbits which lie entirely in a small neighborhood of
the orbit of homoclinic tangency). Such a modulus is, for example, the ratio 6 of
the logarithms of the multipliers of the saddle periodic orbit to which the given
homoclinic orbit converges. This means that two such systems cannot be locally
Q-conjugate if the corresponding values of 6 are different. As a result, # can be
taken as an additional bifurcation parameter, by changing which more degenerate
homoclinic tangencies can be obtained (see more discussion in [37, 5]).

Two-dimensional area-preserving maps with homoclinic tangencies have no moduli
[33] (thus @ = 1 for such systems). Therefore, in order to prove the main theorem in
the area-preserving case, we first prove (Lemmas 2,3) that a small perturbation of a
map with a homoclinic tangency can produce a heteroclinic cycle with two different
saddle periodic orbits, one transverse heteroclinic orbit, and one orbit of heteroclinic
tangency; moreover, such heteroclinic cycle belongs to the third class of [38]. Since
the heteroclinic cycles of the third class have local 2-moduli both in dissipative
and conservative case [38], we can prove that systems with homoclinic tangencies of
arbitrarily high orders are dense among the systems with such heteroclinic cycles, by
applying a refined version of the machinery (here Lemmas 4,5) developed in [3, 5].

In fact, a stronger statement is proved in Section 4. Namely, we show that the diffeo-
morphism f* constructed in Theorem 1 has a non-trivial hyperbolic set (a horseshoe)
which includes the original saddle periodic orbit L, and there exists infinitely many
orbits of tangency of every order between stable and unstable manifolds of every
periodic orbit in this hyperbolic set.

We might as well assume from the very beginning that the original diffeomorphism
f has a zero-dimensional transitive hyperbolic set A whose stable and unstable
manifolds have a tangency. Then, our main theorem is reformulated as follows (the
proof is also given in Section 4):

Theorem 2. Arbitrarily close to f there exists a diffeomorphism f* (an area-
preserving one if f itself is area-preserving) for which there ezist infinitely many
orbits of tangency of every order between the stable and unstable manifolds of every
pair of periodic orbits of A.

As we mentioned, the C"-closure (r = 2,...,00,w) of the set of C"-maps with ho-
moclinic tangencies contains open (Newhouse) regions. For the space of all two-
dimensional C"-maps this statement was proved in [9], while extending this result
onto the space of two-dimensional area-preserving C"-maps was a long-standing open
problem, until the proof was obtained in [13, 14]. It also follows from [8, 13, 14]
that the C'-closure of the Newhouse regions in the space of two-dimensional area-
preserving diffeomorphisms coincides with the set of all non-Anosov area-preserving
diffeomorphisms (whether the same remains true in the C"-topology with r > 2
occurs to be a so far intractable question). Our main theorem immediately implies



Theorem 3. Maps with infinitely many homoclinic tangencies of all orders are dense
in the Newhouse regions.

2 Preliminary constructions.

2.1 Local map.

Consider a C"-diffeomorphism f of a two-dimensional manifold, r = 2, ..., 00, w,
where r = w stands for real-analytic diffeomorphisms. Let f have a saddle periodic
orbit L. This means that there is a point O such that f™O = O (the positive integer
m is the period of L, and L = {O, fO, ..., f"'O}), and that one can introduce
coordinates (z,y) with the origin at O such that the map f™ : (z,y) — (Z,7) will
have the following form near O:

z=Ar+o(r,y), y=y+o(zy), (1)
where |A| < 1 and |y| > 1. In the case of area-preserving map f, we have additionally
M| =1 (2)

We will denote the map f™ near the point O as T and will call it the local map. The
saddle fixed point O(0,0) of T, has the stable and unstable invariant C"-manifolds
which have, locally, the form y = ¢(z) and z = ¢(y), respectively, with ¢(0) = 0,
¢'(0) = 0, %(0) = 0, ¥'(0) = 0.

Let ¢(z) be the inverse function to z — z — p(¢(z)), i.e. ¢z — p(Y(z))) = z at
small . The area-preserving coordinate transformation

(z,9)"" = (z — o(y),y — P(6(z""))) (3)

straightens the local invariant manifolds, i.e. they take the form z™** = 0 and
y™* = 0. Hence, the local map (1) takes the following form in the new coordinates

where the functions p and ¢ vanish at the origin. Note that if we consider a family
fe of maps, C" with respect to both (z,y) and the parameters ¢, then the invariant
manifolds of saddle periodic orbits are C" with respect to the parameters as well, so
the local map near a saddle periodic point can be brought to the form (4) by a C”
transformation for all €.

When proving the results of Sections 3 and 5 we will use the fact (see [32, 33, 36))
that by an additional, close to identity coordinate transformation, one may achieve
that the functions p and ¢ will vanish identically both at z = 0 and y = 0:

p(z,0) =0,  p(0,y) =0,
(5)
q(z,0) =0, q(0,y) = 0.



If the map f is area-preserving, then this coordinate transformation can be chosen
area-preserving too [40]. Indeed, according to [36], there exists a function ((z,y),
vanishing identically at z = 0, such that the first line in (5) is satisfied after the
implicitly defined change z = z™** + ((z"*", y) of the coordinate z. Let us make the
area-preserving coordinate transformation defined by the formulas

Yy
T = xnew +C(mnew’y)’ ynew — y+A C;,(Cﬂnew,S)dS.

By construction, after this change of coordinates, the map (4) will satisfy the first
line of identities (5), and it will remain area-preserving. The latter means that

A+p(z,y) +p,(z,y)z py(z,y)z _
det , , = Ay
7, (z,y)y v+ q(z,y) + gz, y)y

for all small (z,y). At z = 0 or y = 0 this identity reduces, respectively, to ¢(0,y) +
q,(0,y)y = 0 and q(z,0) = 0, which gives us the second line of identities (5) indeed.

In the case where the smoothness r of f is finite, the given coordinate transformation
is C" ! and it is, in general, only C" 2 with respect to ¢ if f depends on parameters
e (see [40, 41]).In the case r = oo or r = w, the coordinate transformation is also C*
or, respectively, C* with respect to (z,y), and we may ensure any finite smoothness
with respect to the parameters.

According to [42, 43], for any small z(® and y¥) and for any k > 0 there exist

uniquely defined, small z(*) and y(®) such that (z(®), y®)) = Tk (z(® y(©) and all the
points in the orbit {(z(®, y©), Ty(2®, y®), .., TF(z©®, y(®)} lie in a small neighbor-
hood of zero. We denote

z® = MO p Mg (20, yW), O =y Fy® 4R (2@, ®) (6

(in the case where the map depends on parameters, &, and 7 are functions of € as
well). By [32, 33, 36, 41], when the identities (5) are satisfied, the functions &, and
m, are uniformly small along with all the derivatives up to the order (r — 1) with
respect to (zg,yx) and up to the order (r — 2) with respect to parameters:

1€k, 7el| = 0(1)k 400 (7)

(in the case of infinite 7 we have the uniform smallness for all the derivatives up to
any given finite order).

2.2 Global map.

Let us now assume that the map f has an orbit of homoclinic tangency. It means
that in the local unstable manifold W}, of the point O there is a point M~ (0,y")

loc

such that its image M+ = f!M~ for some positive integer [ lies in the local stable
manifold W} of O, and the curve f'W} is tangent to W} at the point M*. The



orbit of the point M~ is homoclinic, because all its iterations tend to O both at
forward and backward iterations of f.

We call the map f! in a small neighborhood of M~ the global map and denote it by
Ti. It can be written as

-zt =ar+bly—y )+ anzy), (8)
g = cz + ®(y) + gao(z, y),

where the functions g; and g, do not contain linear terms, and g, vanish identically
at z = 0. By (8), the equation of the curve TyW}2, is

Z=z" +bly—y ) +a0,y), 7=2(y). (9)

The condition of the tangency of T1W}%. and W} at y =y~ reads as

oy )=0, Py )=0. (10)
Note that f is a diffeomorphism, hence det T{(M ) # 0; i.e.

be # 0. (11)

Note that the same holds true when we consider a heteroclinic tangency, i.e. when
we have two saddle periodic points, O; and O,, and the image of some piece of

 (O1) by some iteration of the map f is tangent to W} _(O3) at some point: if
the local invariant manifolds are straightened, i.e. the local maps are brought to the
form (4) near O; and O,, then the global map 77 acting from a small neighborhood of
some point M~ € W, (O;) into a small neighborhood of some point M+ € W _(O,)
is defined, and formulas (8)—(11) hold.

The homoclinic or heteroclinic tangency has the order n if ®*+1(y~) # 0 while
®U)(y~) = 0 for all § < n (so the quadratic tangency is the tangency of order 1).
Of course, to define the tangency of order n, we should require from our map at
least the smoothness » > n + 1. When the map f depends on parameters €, the
global map T} can still be written in the form (8), but the functions g;, go, ® and
the coefficients a, b, ¢, z* and ¥y~ may now depend on . If we have a homoclinic
(or heteroclinic) tangency of order n at £ = 0, we may choose y~ (¢) in such a way,
that ™ (y~) = 0 for all small e. We will always fix this choice of 3~ (¢), and we
denote, under this assumption,

pie) = @ (y) /3t (j=0,...,n 1), (12)
so that
O(y,e) =po+ .t a(y—y )" Hdly—y )" +o((ly—y )", (13)
with d # 0. The tangency is said to be split generically if

rank A(ug, ..., hn1)/0 = n

6



at e = 0.

. in the explicit form:
7 = W.(Z). When there is a tangency of order n, we have W1 (z*+) £ 0, while
W (z+) =0 for all j < n at ¢ = 0. It follows that we may choose z*(¢) in such a
way, that W(™ (z¥) = 0 for all small . If we denote, under this assumption,

ij(e) =W (@) /it (j=0,...,n-1), (14)

Let us rewrite the parametric equation (9) for the curve Ty W}

then, obviously, the vector (fy, . .., fin_1) and the vector of the functionals u; defined
by (12) are related by a diffeomorphism. Hence, the equivalent condition for the
tangency to be split generically is

rank (g, ..., fin_1)/0 = n.

Analogously, one can easily see from (8) that the curve 7} "W} near the point M~

loc
is given by the equation
T = fio+ e+ fnoa(y —y ) Hdly -y )" oy -y )M, (15)

with d # 0, and with (o, - - -, fin—1) related to the vector of p; by a diffeomorphism.
This gives us one more equivalent condition for the tangency to be split generically:

rank (g, ..., fln_1) /O = n.

2.3 Splitting of homoclinic and heteroclinic tangencies.

Below we will frequently use the existence of an n-parameter family of maps (area-
preserving maps, if the original map f is area-preserving) in which a given homoclinic
or heteroclinic tangency of order n is split generically. Let us first recall the con-
struction for the case of finite smoothness. Let § = ¥(Z) be the equation of the

curve T1W}% .. Include the function ¥ into any C"-smooth n-parameter family of
functions ¥,, such that ¥, = W. Fix a small § > 0 and denote
Ha(z,y) = (e —2",9) [ (Ba(s) ~ Wo(s))ds (16)

where x;(u, v) is a C"'-smooth cut-off function which vanish identically at ||u,v|| >
24 and equals to 1 at ||u,v]| < §. Let F. be the time-1 map by the orbits of the

Hamiltonian system
T 8H5 . BHE

T = , =— i
0y Y or
By construction, F, is a C"-smooth area-preserving map, which equals to identity

outside a small neighborhood of the point M™* for all €; at € = 0 it is equal to
identity everywhere. Near the point M* the map F, acts as

(z,y) = (2,9 + Ve(z) — Yo()). (17)

7



Consider the family F; o f, which includes our original map f at € = 0. Since
every map of the family coincides with f outside a small neighborhood of f 'M™,
it follows that the global map (F; o f)! from a small neighborhood of the point M~
to a neighborhood of M equals to F; o T (where T; is the global map for the map
f). By (17), the equation of the curve F, o TyW}*_ near this point is

loc
g = V. (Z).
Now, take any W, such that

a(ﬁo, e ,anfl)
Oe

(where the functionals fi; are given by (14)). In particular, we may take

det 40 (18)

which would correspond to

(f _ ﬂ']+)j+1

n—1
HE ) = - +a j
) = e 2 S e T

J=0

, (19)

and fi; = ¢; in this case. Now recall, that inequality (18) means exactly that the
tangency between T1W}* and W is split generically in the family F,o f, as required.

loc loc

Note that this construction allows us to transform locally the piece of the unsta-
ble manifold T} W}, near the point M into any sufficiently close curve by a small
perturbation which does not destroy the area-preservation property of the map f.
Note also that our perturbation is localized in a small neighborhood of one homo-
clinic (heteroclinic) point, so it does not affect any other homoclinic or heteroclinic

tangencies which are bounded away from this point.

In the same way one can show that the multiplier A of the saddle periodic orbit O can
be changed by a small smooth localized perturbation of the map f (the perturbation
is area-preserving, if f is area-preserving), without destroying any finite number of
given homoclinic or heteroclinic tangencies. Indeed, consider a one-parameter family
fe = F. o f, where the area-preserving diffeomorphism F; is the time-1 shift by the
flow defined by the Hamiltonian

H.(z,y) = —exs(z,y)ry, (20)

where (z,y) are the coordinates near O for which the local invariant manifolds are
straightened, and yx; is the cut-off function (like in (16)) with some sufficiently small
and fixed § > 0. By construction, Fy = id, hence fy = f. At non-zero ¢, the map
F, can differ from identity only in the d-neighborhood of O, so if § is small enough,
then the new local map is F, o Ty. Direct computation of the multiplier gives then
Ae = €€, s0

O,

Oe

——) #£0.



The lines z = 0 and y = 0 are invariant with respect to the map F;, hence they
remain local unstable and, respectively, stable invariant manifolds of the point O for
all small e. Since the position of the local invariant manifolds is not changed and
since the perturbation is localized in a sufficiently small neighborhood of the point
O, any given number of homoclinic or heteroclinic tangencies is not split by such
perturbation, as required.

These results can be generalized as follows. Let a two-dimensional C"-diffeomorphism
f have a number of saddle periodic orbits Lq,..., L, and a number of homoclinic
or heteroclinic to them orbits I'y,...,I',,, corresponding to the tangency of the
stable and unstable manifolds of orders ny,...,n,, (we assume r > ry = 1 +
max(ni,...,ny)). Thus, for all diffeomorphisms C™-close to f we can define s+n;+
... Ny smooth functionals: the multipliers A; (i = 1, ..., s) of the periodic orbits L;,
and the functionals /,L; (j=0,...,n,—1;i=1,...,m) which determine the splitting
of the homoclinic and heteroclinic tangencies (see (13)). Note that the functionals
u§ depend on the choice of the coordinate transformation which straightens the local
invariant manifolds, so we assume that this transformation is canonically given by
formula (3).

Consider the Hamiltonian

He(z,y) = e1Gi(z,y) + ... + ealal, y) (21)

where (;, (I = 1,...,7n) are the functions given by the right-hand sides of (20)
and (19), localized in sufficiently small neighborhoods of the appropriately chosen
periodic and homo/heteroclinic points, respectively. As it follows from our consid-
erations above, the family f, = F.o f where F; is the time 1 map by the flow defined
by the Hamiltonian (21) satisfies

a()‘l(fs)a T )‘S(fs)a U(l)(fs)a T aﬂnmmfl(fs))

det
¢ 8(61,,Eﬁ)

£ 0. (22)

Now note that inequality (22) preserves under any, sufficiently small in the C"°-
topology, perturbations of the family f.. In particular, the inequality (22) will still
be valid if we replace the functions (; in (21) by their sufficiently close (in the CTo*1-
topology) polynomial approximations ¢;. Thus, we have now established that there
exists a polynomial Hamiltonian

He(x;y) :Elgl(may)—l_"'"i_sﬁgﬁ(xay) (23)

such that the family F; o f satisfies the inequality (22), with F, being the time 1
map corresponding to H..

Thus, we have proved the following lemma.

Lemma 1. There exists an analytic n-parameter family of real-analytic area-
preserving diffeomorphisms F, such that in the family F.of the tangenciesT'y, ..., 1"y,



split generically and independently, and the multipliers of the periodic orbits Ly, . . ., L,
change independently as well.

This lemma is proven for all diffeomorphisms f whose smoothness r exceeds the
maximal order of the homo/heteroclinic tangencies under consideration (r > 7). In
particular, it holds true for real-analytic f. Thus, we have now the existence of finite-
parameter families in which any given finite number of homoclinic or heteroclinic
tangencies is split generically and independently in the real-analytic case as well.

The main facts which we will use below in the proof of the main theorem and which
follow from this lemma are that given any sufficiently smooth, or real analytic, dif-
feomorphism with any given finite number of homoclinic or heteroclinic tangencies,
we can split any of these tangencies generically by a small (in a smooth or, respec-
tively, real analytic topology) perturbation which does not split the other tangencies,
neither it changes the values of the multipliers of the saddle periodic orbits involved.
As well, we can change a multiplier of either of the saddles, without changing the
multipliers of the other ones, nor destroying the tangencies. By construction, if the
original map f is area-preserving, the perturbed maps will be area-preserving too.

3 Secondary homoclinic and heteroclinic tangen-
cies

Here we show how perturbations of homoclinic and heteroclinic cycles can produce
secondary homoclinic and heteroclinic tangencies of various types. Statements anal-
ogous to the following lemma were given in [9, 10, 46] for different situations. Here
we give a unified proof which includes the area-preserving case.

Lemma 2. Let f, be a one-parameter family of two-dimensional C"-diffeomorphisms
(r > 3). Let fy have a saddle periodic point O with an orbit of quadratic homoclinic
tangency which splits generically as p varies. Then, arbitrarily close to u = 0 there
exists a value of u for which the map f, has an orbit of quadratic homoclinic tan-
gency (which splits generically as p varies) and a homoclinic orbit corresponding to
a transverse intersection of the invariant manifolds of O.

Proof. Note that orbits of transverse homoclinic intersection may exist already at
the moment of the original homoclinic tangency; in this case the sought value of u
is 0. Otherwise, we have to find a converging to zero sequence of non-zero values
of u for which the map has new, secondary homoclinic tangencies accompanied by
transverse homoclinic orbits. We will explore both possibilities in the proof.

By (9), (13), the equation of the curve T3 (W}%,.) is

loc

y=ut @ =) +ol(z - 2*)?) (24)

10



At ud < 0 this curve intersects W, N 11T : {y = 0} transversely at two points.

Assume that the coordinates near O are chosen such that (4), (5) hold. Then, by
(6),(24), the image (Z,9) of a point (z,y) € Ty(W},) by the map T¢ gets in a small
neighborhood of the homoclinic point M~ (the domain of the global map 7}) if and
only if

&=+ )‘kfk(xa g): Y= Vikg + 77k77k($a g) (25)
The point (z,y) will be homoclinic if T (z, y) € W;., which means (see (8))

0=ct+p+dg—y ) +o(lz|+ (7 —-y)?.

Thus, a homoclinic point (z,y): T1T¢(z,y) € W corresponds to

locs Tlil(a%y) € Wy
a solution of the system

loc

0=p+ Aot + XX +dY? + 61(X, Y, p) + ¢o(Y, 1),

26
O=p—7 "y =7 Y +EX2+ ¢3(X, Y, 1) + ba(X, ), (26)
where we denote X =z — z1,Y = ¢ — y . The functions ¢ satisfy
= o(\F), = o(Y?),
¢1 ( 7)k ¢2 ( ) (27)

)a ¢4 = O(XZ)'

Note that the right-hand sides of system (26) are at least C? with respect to X
and Y: the map f is at least C? by assumption, but we lose one smoothness when
introduce the coordinates bringing the local map to the form (4),(5). Accordingly,
the first derivative of the right-hand side with respect to (X,Y) is C' with respect
to X, Y and p. In particular, the coefficients A, v, z*, vy, b and ¢ are C'-functions
of p (while d is a constant).

b3 = o(y

Note that d # 0 implies that we may shift the origin of coordinates to a small
constant: (X,Y) — (X +o(y %), Y +0(A¥)), so that the first derivative of the right-
hand side of the first equation in (26) with respect to Y and of the right-hand side
of the second equation with respect to X will vanish at (X,Y) = 0. After that, the
system will take the form

0=p+vp +cAX +dY? + ¢ (X, Y, ) + ¢o(Y, ),

0=p+v2— v Y + 2X%+65(X,Y, n) + da(X, ), 28)
where we denote as v, the independent of X and Y terms:
v =Xzt +o(\), =My +o(v7h); (29)
and the functions ¢ satisfy
q:Sl = o(A\*X), q:52 = o(Y?), (30)

g3 = o(7v *Y), b4 =o(X?).

The nondegenerate solutions of (28) correspond to transverse homoclinics, and the
degenerate ones correspond to homoclinic tangencies. We will consider system (28)
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for even k only, so A¥ > 0 and 7 * > 0, no matter what are the signs of A and ~. It
is easy to see then, that when cz™d < 0 and y d > 0 the system has non-degenerate

solutions
- -
Y = /S o(1) W2, X = by L o(1) ]2

at u = 0 for all sufficiently large k. This means that at g = 0, in addition to
the original orbit of homoclinic tangency, we have also transverse homoclinic orbits,
which gives us the lemma in this case.

If, on the contrary, cz™d > 0 or y d < 0, we will search for secondary homoclinic
tangencies at small u # 0. They correspond to solutions of (26) for which the
Jacobian of the right-hand side vanishes. Thus, they solve the system

dZ
0=cNy ™ 14— (X + o1 (X, V)Y + 02X, Y)) + o( Ay,

b2
(31)

d

0=vp +cAX +y7FY +dY? - b—2X2 +o(M X[+ Y2+ X2+ y7F|Y)),

where the constant term v is given by

vp = ezt y By o(AF 4R, (32)
and

o1 =o(|X[+77HY]), @2 =o0(Y|+N|X]). (33)

We obtained the second equation in (31) as follows: from the first equation of (28)
we expressed p as a function of (X,Y), and plugged the result into the second
equation. Thus, in (31) there is no dependence on u, so by A, v, ¢, z, y~ in (31),
(32) we mean the values of these coefficients at u = 0.

The non-degenerate solutions of (31) correspond to quadratic homoclinic tangencies
for p found from either one of the two equations in (28). Note that the value of
parameter u is found uniquely for any given small X and Y, and this remains true
for an arbitrary small perturbation of the map under consideration, which means
that the corresponding tangency splits indeed generically as u varies.

Consider, first, the case |A\y| < 1 (hence A*y* — 0 as k — +o0). If y~d > 0 and
cxtd > 0 (the case y~d > 0 and cz*d < 0 has already been considered), we scale
the variables as follows:

(X, Y) — b|,y|fk/2 £ (Xnew’ _L)\k Ynew)_

d 4y—d
In the new variables, system (31) recasts as
1=XY +0(1)is100) 1= X%+ 0(1)issoo- (34)

For all k large enough, this system has nondegenerate solutions X =Y = +1+o0(1).
In the non-rescaled variables it corresponds to X = O(|y|7%/2),Y = O(\*|y|7*/2).

12



The first equation of (28) gives us then, that the corresponding homoclinic tangencies
happen at u = ux = —cx™A¥(1 + 0(1)). By our current assumptions cztd > 0,
hence prd < 0, i.e. the found secondary homoclinic tangencies coexist with primary
transverse homoclinic orbits, as required.

In the case y~d < 0, we use the following scaling:

(X, V) o g Jdl 2 (=L e (0, 1)), Y.

Aly~d
In the new variables, system (31) recasts as
1= XY +0(1)kssio0 1=Y?4+ 0100 (35)

For all k large enough, this system has nondegenerate solutions X =Y = +1+o0(1).
In the non-rescaled variables it corresponds to X = o(|y|3¥/2), Y = O(|y|7¥/2). The
second equation of (28) gives us then, that the corresponding homoclinic tangencies
happen at u = up = y v F(1 + 0o(1)). Since we assume here y d < 0, it follows
that purd < 0, i.e. the found secondary homoclinic tangencies coexist with primary
transverse homoclinic orbits in this case too. This finishes the proof of the lemma
in the case [\y| < 1.

The case |A\y| > 1 is reduced to the previous one if we consider the map f~! instead
of f. Thus, it remains to prove the lemma in the case |Ay| = 1, which includes the
area-preserving maps. Let us choose the sequence of (even) values of k such that
there exists the limit (finite or infinite)

lim v, /2% = M. 36
/

k—+o0

If M = 400, we scale

[ Vg C A2k
X Y -k Xneu) - _Ynew

if v,d > 0, and
cbZ )\2k
-~ 4]d] [

if vxd < 0. In the first case the system (31) takes the form (34). Its non-degenerate
solutions correspond to (X = O(|A[¥/2),Y = O(|A[**/2)), and the first equation of
(28) gives pu = pp = —cxTAF(1 + o(1)) for the moments of homoclinic tangencies.
The assumption vxd > 0 implies (see (32)) that either cztd > 0 or y~d > 0. The
latter implies cxtd > 0 as well (because the case cz™d < 0, y~d > 0 has already
been considered). Thus urd < 0, i.e. the found secondary homoclinic tangencies
coexist with primary transverse homoclinic orbits.

(X; Y) — ‘Vk/d‘ ( Xnew’ Ynew)

In the second case the system (31) reduces to the form (35). Its non-degenerate
solutions correspond to (X = O(|A[**/2), Y = O(|A]*/?)), and the second equation
of (28) gives u = up = y A*(1 + 0(1)) for the moments of homoclinic tangencies.
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The assumption v,d < 0 implies that either cx™d < 0 or y d < 0, but the former
inequality implies y~d < 0 anyway. Thus uid < 0 in this case too.

It remains to consider the case where M is finite in (36). It follows, in particular,
that cx™ +y~ = 0, which implies cz*d > 0. We make the following rescaling:

1
(X,Y) — E)\’“(bZCX”””, —ymew),

The system (31) takes the form

0=1—4XY + 0(1)kss00,
(37)
0=Md— (be)2(X2— X)+ Y2~ Y + 0(1)s_ss00-

It is easy to see that this system has a nondegenerate solution in the region {X <
0,Y < 0} for any Md and bc # 0. In the non-rescaled variables this solution
gives (X,Y) = O()*), and from (28) we have u = pp = —czTA*(1 + o(1)) for the
moments of homoclinic tangencies. Again we have ud < 0, so the coexistence of the
secondary homoclinic tangencies with primary transverse homoclinics is established
in this last remaining case as well. The lemma is proven.

The existence of a transverse homoclinic to O implies [42] the existence of a nontrivial
zero-dimensional transitive hyperbolic set A (a Smale horseshoe) which includes O.
Thus, Lemma 2 can be reformulated as the existence of a nontrivial hyperbolic set
whose stable and unstable sets have a quadratic homoclinic tangency at the values of
u arbitrarily close to zero. Since the stable and unstable manifolds of any periodic
orbit in A approximate, in the C" topology, any leaf in, respectively, W*(A) and
W*(A), and since the found homoclinic tangency splits generically as u changes, it
follows that for any two periodic points in A a quadratic heteroclinic tangency of
their invariant manifolds can be obtained by an arbitrarily small variation of u, and
this tangency also splits generically.

Let O, Oy be two different saddle periodic points in A, different from O and with
all multipliers positive (such periodic points always exist in any horseshoe). Let
us fix some small y for which W*(O,) and W#*(O;) have a quadratic heteroclinic
tangency. A heteroclinic orbit corresponding to a transverse intersection of W*(Oy)
and W*(O,) also exists at the same u, because O; and O, belong to the same
transitive hyperbolic set A.

We introduce the coordinates (z;, y;) near the points O; (i = 1,2) such that the local
invariant manifolds are straightened, i.e. the local maps Tp; take the form (see (4)):
Ti = Ni@i + pi(Ti, Yi)Ti, i = %ivi + ¢i(@i, Yi) Vi,

where 0 < A; < 1 < «;. Note that the point O; divides its stable and unstable
manifolds into two invariant components each, we will denote these components as

W"+(Oi), W"’(O,-) and Ws+(0i), W""(O,-).

Choose a pair of heteroclinic points: M;"(zi,0) in a small neighborhood of O,
and M, (0,y,) in a small neighborhood of Oy, which belong to the same orbit of
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heteroclinic tangency. The global map 7%; from a small neighborhood of M, into a
small neighborhood of M;" is written as follows (see (8),(13)):

Ty —zf =aze+b(ya —yy )+ ..., yr=cry+d(ys —ys )2+ .. .. (38)

Choose also a pair of heteroclinic points M; (0,3, ) in a small neighborhood of
O; and My (z3,0) in a small neighborhood of O, which belong to a transverse
heteroclinic orbit. In the terminology of [38, 39|, the heteroclinic cycle belongs to
the “third class”, when

cy, 3 > 0. (39)

Note that we can always choose the points O; and O5 among the “inner” points of the
horseshoe A, i.e. the leaves of W*(A) and W*(A) converge, respectively, to W*(Oy)
and W*(O;) from both sides, and the same holds true for O,. In other words, we
can always choose the points O; and O; such that each of the manifolds W**(0,),
W"=(0,), has, in A, an orbit of transverse intersection with each of the manifolds
Wet(0,), W*(O,). These four orbits correspond to different combinations of the
signs of y; and z§. Thus, no matter what is the sign of ¢, we can always choose a
transverse heteroclinic in such a way that (39) holds.

Lemma 3. Under the conditions of Lemma 2, arbitrarily close to u = 0 there exist
values of u for which the map f, has a non-trivial transitive hyperbolic set A which
includes the point O and two saddle periodic points O and O such that W"(O3) and
W?*(O,) have a quadratic heteroclinic tangency which splits generically as p varies.
In A there exists also an orbit of transverse intersection of W*(O1) and W*(O,)
such that the corresponding heteroclinic cycle belongs to the third class.

The peculiarity of the diffeomorphisms with the heteroclinic cycles of the third class
is that they have moduli of local Q-conjugacy [38]. In particular, the value

Iny
= 40
@ In )\2 ( )

is such a modulus: if two diffeomorphisms with a heteroclinic cycle of the third
class have different values of «, they are not locally Q-conjugate (it is well known
that a is an invariant of topological conjugacy for maps with a quadratic heteroclinic
tangency [44, 45, 46|, however the fact that it is also an invariant of local 2-conjugacy
holds true only for maps with heteroclinic cycles of the third class [38]). It follows
that any change in a must lead to bifurcations in the set of orbits lying in a small
neighborhood of the heteroclinic cycle. Thus, we have the following result [39]:

Lemma 4. Let f. be any smooth family of C"-diffeomorphisms (r > 3) such that
all diffeomorphisms in the family have a heteroclinic cycle of the third class, i.e. for
all € there are two periodic points O1 and Oy, an orbilt of transverse intersection
of W*(O1) and W*(O,), and an orbit of quadratic heteroclinic tangency between
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W*(Oq) and W*(O) (it does not split as € varies), plus sign condition (39) holds.
If the value of o changes monotonically with €, i.e.

0
% a(fs) 7& 0,

then there is a dense set of values of € for which the map f. has a quadratic hetero-
clinic tangency (which splits generically as € varies) between W*(O1) and W*(O,).

Let us give an idea of the proof. Note that by lambda-lemma, since W*(O;) and
W?*(O,) intersect transversely, there are pieces of W*(O,) which converge in the
C"-topology to W} _.(O) and pieces of W*(O;) which converge to W}*.(O,). By (6),
these pieces of W#(O,) near the point M;" form an infinite sequence of curves

Wy ~m 'y (41)
and the pieces of W"(O;) near the point M, form an infinite sequence of curves
Wi zy ~ Nz, (42)

where y; and zj are the coordinates of the points, respectively, M; and M,  on
the transverse heteroclinic orbit. By (38), the curves 71W}' form a sequence of
parabola-like curves, extended towards positive y; if d > 0 and towards negative y;
if d < 0, with the tops at y; ~ cx;’)\%. Thus, W and T1W}' intersect transversely
when

Vi 'y
d - —1) >0, 43
(=) (43)
and have no intersection when
vty
- — 1)« 0. 44
(=) (14)

Now take any two arbitrarily close values e; # £5. By assumption, a(e;) # a(e2),
and we may assume a(e1) > a(es). Hence, we can find two sufficiently large integers
1 and j such that

ilny; — jlIn Ay >0

at e = e; and
ilny; —jlIn Ay €0

at € = e5. Taking into account (39), it follows that one of inequalities (43), (44) is
fulfilled at € = &1, and another one at € = 5. We see that for such chosen i and
j the intersection of the curves 77 W}* and W} disappears when £ runs the interval
between £; and £,. Hence, the two curves must have a tangency at some ¢ from this
interval, which is the required heteroclinic tangency between W"(O;) and W*(Os,).

A formal proof of the lemma can be found in [39].

The following lemma deals with secondary heteroclinic or homoclinic tangencies of
high orders. It is a version of Lemma 2 from [5]. Since our formulation here is
slightly different, we give a complete proof.

16



Lemma 5. Let f., € = (o, ..., ln_1,v), be a smooth (n + 1)-parameter family of
two-dimensional C"-diffeomorphisms (r > n + 2) which have saddle periodic points
01, Oy, O3 (not necessarily different) such that at p = 0 the manifolds W*(O;) and
W*(O,) have a tangency of order n, and at v = 0 the manifolds W*(Os) and W*(O3)
have a quadratic tangency. Suppose that the tangency between W*(O) and W*(O,)
splits generically as p varies, and the tangency between W*"(O3) and W*(Os) splits
generically as v varies. Then there exists a sequence €, — 0 such that the map f.
has an orbit of tangency of order (n + 1) between W*(O1) and W*(O3) at € = &.

Proof. Let (z,y) be the C" '-coordinates near O, for which formulas (4),(5) hold
for the local map Ty, hence formulas (6) hold for its iterations 7. Let M T (z*,0) be
a point at which W*(O;) has the tangency of order n with W} _(O,) at u = 0, and
M~(0,y) be a point at which W*(O3) has the quadratic tangency with W}.(O3)
at v = 0. As it was explained in Section 2, we may choose parameters x in such a
way (see (14)) that the equation of the piece of W*"(O;) near Mt will be

Y=g+ ..+ ,Ufnfl(x _ m-!—)nfl 4 d(iL‘ _ x+)n—|—1 4 O((CC _ x+)n+1)_ (45)

The parameter v can be chosen in such a way that the equation of the piece of
W?#(O3) near M~ will be (see (15)):

z=v+dly y ) +o(lyy ) (46)

By (6), the image of the curve (45) by the map 7} has the sought tangency of order
(n + 1) with the curve (46) if and only if the following curves have a tangency of
order (n + 1):

'y*k(Y—I—yf)—i—’y*knk(X—i—:cﬂ Y+y )= ug+...—|—,un,1X”71—|—dX"+1—|—0(X”+1), (47)

and
M(X 4 27)+ A6 (X + 2t Y +y) =v+dY? +o(Y?) (48)

(here (z* + X) is the z-coordinate of the point of tangency and (y~ + Y) is the
y-coordinate of the image of the same point by the map TF).

One can rewrite equations (47),(48) in the explicit form:

VY =g 4 A B X I X+ dX T 4 o( XY, (49)
and .
MX =v+n0Y +dY? +o(Y?), (50)
where . .
fo=po — 7y "y +o(y "),
pp=pi+o(y*)  (G=1...,n-1),
M = 0(7716)
and

7 =v— Mz oAk, 71 = o(AF).
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After the change of variables

Xnew — Y _ V_lA’ yrew _y _ Hn
2d (n+1)d
equations (49), (50) recast as
Y = e X X 4 o( XY, (51)
and R
MNX =V +dY? +o(Y?), (52)
where

py = po — v *y + oy F),
i = pi+o(y*) (j=1,...,n—=1), (53)
vV =v— Azt + o(AF).

Let us rescale the variables:

1

X = _%)\ﬁy’%)(”w, Y = (—1)" M@y maynew,
(dd2) 7+ (dr+1id) =

Equations (51),(52) change to

Y = My+ .o+ My 1 X"+ X 4+ 0(1)kss 400 (54)
and

X=N-Y240(1)r’s 00, (55)
where
J— n+17.7 ~ n i n —7 n —J
M; = u;( Y (dd?) s At e (j=0,...,n—1),

d (56)

2n42 2k

N = V/(dd?) = A Fodi gzt

As it is proven in [5], for all sufficiently large k there are uniquely defined, uniformly
(with respect to k) bounded values of the rescaled parameters N and My, ..., M,
for which the curves (54) and (55) have a tangency of order (n + 1). The proof is
quite straightforward. The equation of the curve (55) can be rewritten as

Y =+/N X +o(1) (57)

We obtain the sought tangency of order (n + 1) if and only if the first (n + 2) terms
of the Taylor expansion of (54) coincide at some X* with the corresponding terms
of the Taylor expansion of one of the two branches of (57). Given any N and X*, we
can always achieve that initial segments of length n of the two expansions coincide
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by an appropriate choice of My, ..., M, 1. The coincidence conditions for the two
remaining terms read as

where

5
Equalities (58) show that there can be no tangency of order (n+ 1) with the “plus”
branch of (57), while for the “minus” branch the uniquely defined values of N and
X* corresponding to the sought tangency exist indeed:

1 5 P 2/(2n+1)

The found tangency of order (n + 1) between the curves (54) and (55) corresponds
to the tangency of order (n + 1) between the curves (47) and (48). Since the corre-
sponding values of N, My, ..., M, _; remain uniformly bounded for all large k, the
respective values of € = (v, po, . - ., tn_1) tend to zero as k — +oo (see (53), (56)).
This completes the proof of the lemma.

4 Homoclinic tangencies of arbitrarily high or-
ders

In this section we prove our main theorem. Let f be a two-dimensional C"-diffeomorphism
(r =2,...,00,w) having a saddle periodic orbit O and an orbit of a quadratic ho-
moclinic tangency of W*(O) and W*(O). By Lemma 1 we may include f into a
one-parameter family f,, of C"-diffeomorphisms (all area-preserving if f itself is area-
preserving) for which the homoclinic tangency splits generically. Then, by Lemma

2, arbitrarily close to f in this family we find a diffeomorphism f which has a non-
trivial transitive hyperbolic set A which includes the point O, and some leaf of the
unstable set of A has a quadratic tangency (which splits generically as p varies) with
some leaf of the stable set of A.

In another setting we may assume the existence of such set A from the very be-
ginning. In any case, as Lemma 3 gives it to us, we may achieve by an additional
arbitrarily small perturbation that the diffeomorphism f will have a quadratic het-
eroclinic tangency between stable and unstable manifolds of two periodic points O
and O, in A, and the orbit of this tangency will be a part of the heteroclinic cycle
of third class.

This tangency is split generically as the parameter u varies. It follows that for any
family of maps which approximates f, sufficiently closely, at least in the C2-topology,
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there will exist a value of the parameter corresponding to a quadratic heteroclinic
tangency between W*(O;) and W"(O,). Hence, even if our original map f were not
analytic, by choosing a sufficiently close real analytic approximation to f, (note that
if f, is a family of area-preserving maps, it can always be approximated by a family
of real analytic, and even polynomial [30] area-preserving maps) we find near f a
real analytic (and area-preserving if f is area-preserving) map f with a quadratic
tangency between W*(O;) and W*"(O;). Thus, from now on, all the diffeomorphisms
we obtain as small perturbations of f will be real-analytic. Moreover, all of them
will be area-preserving if f is. Thus, the term “perturbation” means now a small
real analytic perturbation which does not destroy the area-preservation property (all

the perturbations below will be of the type given by Lemma 1).

Let ny,mna,... be an arbitrary infinite sequence of positive integers, and ((L11, L12),
(La1, Laa), (L1, L3z), . ..) be an arbitrary sequence of pairs of periodic points from
the hyperbolic set A. We will prove that f can be perturbed in such a way that the
perturbed map will have an infinite sequence of homoclinic/heteroclinic tangencies,
and these will be exactly the tangencies of orders ny between W*(Lg;) and W*(Lys),
k=1,2,.... The perturbation which we construct can be as small as we need, and it
does not lead out of the class of area-preserving maps if the original map f is area-
preserving. This will, obviously, give us a proof of the main theorem (by letting
the numbers n; take all natural values infinitely many times, and by choosing all
Lyi; equal to the same periodic point O we will have infinitely many homoclinic
tangencies of every order).

Take an arbitrarily small § > 0 and let §; > 0 be such that
01+ +...=0.

We will construct a sequence of real analytic maps fx, fo = f, such that each of
them retains the heteroclinic tangency between W*(O;) and W*(O,), and f; has k
additional orbits of tangency: between W*(L1;) and W*(Ly5) of order ny, between
W"(Lay) and W*(Lgy) of order ny, etc.. We will construct maps f; in such a way
that the distance between f;,; and f; will be less than d;. Hence, the sequence
fi will have a limit f* which lies on the distance less than § from f and has the
required infinite sequence of tangencies.

Thus, in order to prove the main theorem, we need to prove that given a diffeomor-
phism f; which has the heteroclinic cycle of the third class and k£ > 0 additional
orbits of homoclinic/heteroclinic tangencies, one can perturb it, destroying neither
the heteroclinic tangency between W*(O,) and W*(O;) nor the k additional tangen-
cies, nor changing the order of these tangencies, such that the new diffeomorphism
fr+1 will have one more orbit of tangency, between W*(Ly11) and W*(Lyi12), of
the given order n; ;. We will construct such perturbation from f; to fi,1 as a finite
sequence of perturbations each of which can be made arbitrarily small, so the total
size of the resulting perturbation will be less than 1, as required.

By Lemma 1, we can include f; into a one-parameter family fi. such that neither
of the given heteroclinic and homoclinic tangencies splits as € varies, nor the mul-
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tipliers of the point O; change, while the multiplier Ay of the point O, changes
with non-zero velocity. It follows that the 2-modulus « is changing with non-zero
velocity as well. Hence, by Lemma 4, arbitrarily close to f; we find in this family
a diffeomorphism which has an additional quadratic heteroclinic tangency between
W*(O,) and W*(O;). When € changes, this tangency splits generically. Recall that
the points Oy, Og, Lii11 and L4 o belong to the same transitive hyperbolic set A,
therefore W"(Lg1,1) accumulates onto W*(O;) and W*(Ly41 1) accumulates onto
W*#(O;). Thus, by an additional arbitrarily small change in e, when splitting the
tangency between W"(0O;) and W*(O,) we can obtain a new quadratic homoclinic
tangency between W*(Lgi1,1) and W*(Lyy11).

If ngy 1 > 1, we repeat the procedure ng ;1 times, obtaining each time a new quadratic
homoclinic tangency between W*"(Ly11) and W*(Lg1,1), without perturbing the
other tangencies. Next, we include the map into a two-parameter family of maps for
which two of the newly obtained quadratic homoclinic tangencies split generically
and independently, while all the other tangencies are kept in place. By Lemma 5,
by an arbitrarily small variation of parameters within any such family we can obtain
a cubic homoclinic tangency. If ng.; > 2, we include then the map into a three-
parameter family of maps for which the cubic tangency and one of the remaining
quadratic homoclinic tangencies split generically and independently, while all the
other tangencies remain unperturbed. According to Lemma 5 again, by an arbitrar-
ily small variation of the parameters we obtain now a quartic tangency, etc.. Thus,
repeating the procedure, after a finite number of arbitrarily small consecutive pertur-
bations we obtain a new homoclinic tangency of order ny; between W*(Lj 1) and
W*(Lg41.1), in addition to the heteroclinic tangency between W*(Oy) and W*(Oy)
and the k tangencies between W*"(Lq;) and W*(Lya), W"(Lgy) and W*(Lag), ...,
W*(Ly1) and W*(Lgy) which the map fi already had. If Ly,;9 = Lgi11, it means
that we have found the tangency we sought, and the map fy,; is constructed. If
Lyt12 # Lisi11, we note that Lyyq; and Lgyq 2 belong to the same transitive hy-
perbolic set A, therefore W*(Lg;12) accumulates onto W*(Lyy11). Thus, by an
arbitrarily small perturbation which splits the homoclinic tangency W*(Lg11,1) and
W*(Ly1.1) generically (and does not split the other tangencies) we obtain the sought
tangency between W*"(Lgi1,1) and W* (L1 2).

End of the proof.
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