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A Finite Volume Scheme for Nonlinear Parabolic Equations Derived from
One-Dimensional Local Dirichlet Problems

ROBERT EYMARD, JÜRGEN FUHRMANN, AND KLAUS GÄRTNER

Abstract. In this paper, we propose a new method to compute the numerical flux of a finite

volume scheme, used for the approximation of the solution of the nonlinear partial differential
equation ut + div(~qf(u)) − ∆φ(u) = 0 in a 1D, 2D or 3D domain. The function φ is supposed

to be strictly increasing, but some values s such that φ′(s) = 0 can exist. The method is based
on the solution, at each interface between two control volumes, of the nonlinear elliptic two point

boundary value problem (qf(v) + (φ(v))′)′ = 0 with Dirichlet boundary conditions given by the

values of the discrete approximation in both control volumes. We prove the existence of a solution
to this two point boundary value problem. We show that the expression for the numerical flux

can be yielded without referring to this solution. Furthermore, we prove that the so designed

finite volume scheme has the expected stability properties and that its solution converges to the
weak solution of the continuous problem. Numerical results show the increase of accuracy due to

the use of this scheme, compared to some other schemes.

1. Introduction

The simulation of two-phase flow in porous media must be performed in different industrial
settings: for example, in the petroleum engineering setting, one must approximate the solution of
oil/water flow (see for example [3]); in the hydrological setting, one has to simulate air/water flow.
In both cases, the equations to be considered include many mathematical features. In particular, an
equation of nonlinear convective/diffusive type arises, the solution of which is the saturation of one
of the two phases. This equation is obtained after eliminating the pressure of the other of the two
phases. We thus study in this paper the following problem: find a numerical approximate solution
to the equation

ut + div(~qf(u))−∆φ(u) = 0 (1.1)
with an initial condition

u(x, 0) = u0(x) (1.2)
and a boundary condition

u(x, t) = ū(x, t) (1.3)
on ∂Ω× (0, T ). We suppose that the following hypotheses are fulfilled:

1.1. Assumption.
(i) Ω is an open bounded connected subset of Rd, with d = 1, 2 or 3,
(ii) ū is the trace on ∂Ω × (0, T ) of a function, again denoted ū, which is assumed to satisfy

ū ∈ H1(Ω× (0, T )),
(iii) u0 ∈ L2(Ω),
(iv) ~q ∈ C1(Ω̄,Rd) is such that div~q = 0,
(v) let φ ∈ C1(R,R) be Lipschitz continuous and strictly monotonically increasing
(vi) f ∈ C0(R,R)

Denote U [ = ess inf ū⊥ ess inf u0, U ] = ess sup ū> ess supu0.
The derivative φ′ is understood in the distribution sense. As φ is Lipschitz continuous, we have

that φ′ ∈ L∞(R).
Moreover, we will write a>b = max(a, b), a⊥b = min(a, b).

The existence and uniqueness of a weak solution to problem (1.1)-(1.3) has been extensively
studied (see [2] and [4]). Many numerical schemes have been proposed to approximate the solution
of this problem. In particular, approximate solutions using Finite Volume methods have been
shown to be convenient (see [10], [13], [11]) for two reasons: first, these methods are suitable for
purely nonlinear hyperbolic equations, secondly they have been proved to be efficient in the case
of degenerate parabolic equations. The use of these methods implies to formulate a numerical
approximation G of (~qf(u)−∇φ(u)) ·~n at the interface between two grid blocks, where ~n is the unit
vector normal to the interface between the two grid blocks, oriented from the first to the second
one. We denote by a and b the respective approximate values of u in the first and in the second
grid block at a given time step, by h the distance between the respective “centers” of these grid
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2 ROBERT EYMARD, JÜRGEN FUHRMANN, AND KLAUS GÄRTNER

blocks. We suppose that q is an average value of ~q · ~n at the interface. A classical method consists
in defining the numerical flux G by the relation

G = ψ(a, b, q) +
φ(a)− φ(b)

h
,

where ψ(a, b, q) is a numerical flux for the hyperbolic term div(~qf(u)), which is not necessarily
the same for all interfaces. Many choices can be taken for the function ψ, provided they fulfill
properties of regularity (ψ must be continuous in order to prove the existence of a discrete solution),
of consistency (ψ(a, a, q) = qf(a) for all reals a) and of monotonicity (ψ(a, b, q) is increasing with
respect to a and decreasing with respect to b). Among others, the classical Godunov scheme [14]

ψgodunov(a, b, q) =


min

s∈[a,b]
(qf(s)) if a ≤ b,

−ψ(b, a,−q) = max
s∈[b,a]

(qf(s)) otherwise (1.4)

fulfill these conditions. A drawback of this method is that it does not make use of the nonlinear
diffusion generated by the function φ in order to get, as far as possible, a less diffusive scheme.
Indeed, if – in the case of Lipschitz continuous f – the following Péclet-type condition holds:

h |q| ess sup{|f ′(a)|, a ∈ R} ≤ 2 ess inf{φ′(a), a ∈ R}, (1.5)

the choice
ψ(a, b, q) =

q

2
(f(a) + f(b)) (1.6)

can be done, leading to an accurate and stable scheme. Unfortunately, functions φ such as the
ones resulting from actual examples of two-phase flow problems do not satisfy the existence of some
α > 0 such that φ′(a) > α for a.e. a (the diffusion degenerates when one of the phases vanishes)
and a local Péclet condition cannot be satisfied.

A scheme which in the linear case (φ = Id, f = Id) minimizes artificial diffusion is the Il’in
scheme [15] (also known as Allen-Southwell [1], Scharfetter-Gummel [18]). In this case, we express
G by the relation

G = q
aeqh − b

eqh − 1
=
aB(−qh)− bB(qh)

h
(1.7)

where B(x) = x
ex−1 is the Bernoulli function. It is well known that it is possible to obtain this

scheme by solving a two point boundary value problem on (0, h)
[−v′ + qv]′ = 0 on (0, h),
v(0) = a,

v(h) = b.

(1.8)

and taking G as the constant value between 0 and h of −v′ + qv.
In this paper, we generalize this method to nonlinear problems like (1.1). We set G = g(a, b, q, h),

where the function g(a, b, q, h) is defined from the solution of the following local problem:
[−φ(v)′ + qf(v)]′ = 0 on (0, h),
v(0) = a,

v(h) = b.

(1.9)

Then g(a, b, q, h) is set to be equal to the constant value −[φ(v(x))]′ + qf(v(x)) for all x ∈ (0, h).
The above problem appears as a nonlinear 1D elliptic problem, with non homogeneous Dirichlet
boundary conditions. We prove in this paper that the value of g(a, b, q, h) is given by the following
relation:

if a ≤ b then, setting G[
a,b = min

s∈[a,b]
(qf(s)),

if ∀ε > 0,
∫ b

a

φ′(s)ds
qf(s)−G[

a,b + ε
≤ h, then

g(a, b, q, h) = G[
a,b

else

g(a, b, q, h) = G ∈ (−∞, G[
a,b) such that

∫ b

a

φ′(s)ds
qf(s)−G

= h

else if a > b then
g(a, b, q, h) = −g(b, a,−q, h).

(1.10)
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Note that Definition (1.10) is meaningful since it is obvious that
∫ b

a

φ′(s)ds
qf(s)−G

is a strictly increasing

expression with respect to G ∈ (−∞, G[
a,b) and tends to 0 as G tends to −∞. Furthermore, formula

(1.10) is then easy to numerically implement. We also see, in the case where φ′ ≡ 0, that formula
(1.10) gives back the Godunov flux (1.4). However, such a situation will not be studied in this
paper.

The paper is organized as follows: In section 2, we deduce properties of the function g(a, b, q, h)
as given by (1.10). Section 3 is devoted to the study of the boundary value problem (1.9), and
its relation to the function g(a, b, q, h). In both sections 2 and 3, we distinguish between the cases
where F (u) = qf ◦ φ−1 is continuously differentiable resp. continuous. In Section 4, we study the
finite volume scheme based on the flux functions g(a, b, q, h) and we prove its convergence. Finally,
in section 5, we present some numerical examples which show the increasing of precision due to the
use of this new numerical scheme.

1.2. Remark. It would be sufficient to assume that φ and f are defined on [U [, U ]]. To proceed in
this case, we would need to extend the domains of definition in an appropriate way.

1.3. Remark. The convergence study of the case where φ is increasing, but not strictly increasing,
could be done as well. However, in such a case, we would have to use some more complex tools [11].

2. Properties of the numerical flux

Before obtaining the results on the function g(a, b, q, h) defined by (1.10), we regard the function
G(F,A,B, h) which is given, for all (A,B, h) ∈ R× R× (0,+∞) and F ∈ C[A,B], by

if A ≤ B then, setting F [
A,B = min

s∈[A,B]
F (s),

if ∀ε > 0,
∫ B

A

ds

F (s)− F [
A,B + ε

≤ h then

G(F,A,B, h) = F [
A,B

else

G(F,A,B, h) = G ∈ (−∞, F [
A,B) such that

∫ B

A

ds

F (s)−G
= h

else if A > B then
G(F,A,B, h) = −G(−F,B,A, h).

(2.1)

Note again that definition (2.1) is meaningful since
∫ B

A

ds

F (s)−G
is a strictly increasing expression

with respect to G ∈ (−∞, F [
A,B) and tends to 0 as G tends to −∞.

2.1. Lemma (Properties of G(F,A,B, h) in the case where F ∈ C1[A,B]). Let h > 0, A,B ∈ R
with A < B and let F ∈ C1[A,B] be given. Let G(F,A,B, h) be defined as in (2.1).

(i) For fixed A,B, the function h 7→ G(F,A,B, h) defined for all h > 0 is continuously differ-
entiable and strictly monotonically increasing, and satisfies lim

h→0
G(F,A,B, h) = −∞ and

lim
h→∞

G(F,A,B, h) = min
s∈[A,B]

F (s).

(ii) For fixed h, the function (α, β) 7→ G(F, α, β, h), defined for all (α, β) ∈ [A,B] × [A,B], is
strictly increasing with respect to α, and strictly decreasing with respect to β.

(iii) For fixed h, the function (α, β) 7→ G(F, α, β, h) is Lipschitz continuous with a Lipschitz
constant lower or equal to 2 max

s∈[A,B]
|F ′(s)|+ 1

h .

Proof. (i). Let us denote by F [
A,B = min

s∈[A,B]
F (s). The property lim

G→−∞

∫ B

A
ds

F (s)−G = 0 is straightfor-

ward. Let us now prove that lim
G→F [

A,B

∫ B

A
ds

F (s)−G = +∞. Let us first assume that M = max
s∈[A,B]

|F ′(s)|

is such that M > 0. Let C ∈ [A,B] be such that F (C) = F [
A,B = min

s∈[A,B]
F (s). Then we get for all
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s ∈ [A,B], 0 ≤ F (s)− F (C) ≤M |s− C|, and therefore∫ B

A

ds
F (s)−G ≥

∫ B

A

ds

M |s− C|+ F (C)−G

=
∫ C

A

ds

M(C − s) + F (C)−G
+
∫ B

C

ds

M(s− C) + F (C)−G

=
1
M

(
log
(
M(C −A)
F (C)−G

+ 1
)

+ log
(
M(B − C)
F (C)−G

+ 1
))

Since one of the two values M(C −A) and M(B−C) is necessarily strictly positive, it is then clear
that

lim
G→F (C)

1
M

(
log
(
M(C −A)
F (C)−G

+ 1
)

+ log
(
M(B − C)
F (C)−G

+ 1
))

= +∞.

In the case M = 0, then F (s) = F [
A,B for all s ∈ [A,B]. Then∫ B

A

ds

F (s)−G
=
∫ B

A

ds

F [
A,B −G

=
B −A

F [
A,B −G

,

and the conclusion lim
G→F [

A,B

∫ B

A
ds

F (s)−G = +∞ follows.

(ii). Let us first show the monotonicity of the function α 7→ G(F, α, β, h), for β ∈ [A,B] given.
Let A ≤ ᾱ < α < β ≤ B be given. Let us denote by G = G(F, α, β, h) and Ḡ = G(F, ᾱ, β, h), which
means in this case ∫ β

ᾱ

ds

F (s)− Ḡ
= h (2.2)

and ∫ β

α

ds

F (s)−G
= h. (2.3)

Subtracting (2.3) to (2.2) gives∫ α

ᾱ

ds

F (s)− Ḡ
+
∫ β

α

Ḡ−G

(F (s)−G)(F (s)− Ḡ)
ds = 0,

which proves that

G− Ḡ =
(∫ α

ᾱ

ds

F (s)− Ḡ

)
/

(∫ β

α

ds

(F (s)−G)(F (s)− Ḡ)

)
,

and therefore G− Ḡ > 0. We thus get that G(F, α, β, h) is strictly increasing with respect to α for
α < β. A similar argument shows that G(F, α, β, h) is strictly decreasing with respect to β.

(iii). Let now A ≤ ᾱ < α < β < β̄ ≤ B be given. Let us denote by Ḡ = G(F, ᾱ, β̄, h). The later
means in this case ∫ β̄

ᾱ

ds

F (s)− Ḡ
= h. (2.4)

We note that, by monotonicity, Ḡ < G. Let us define F̄ : [α, β] → R, s̄ 7→ F̄ (s̄) =
F
(
ᾱ+ β̄−ᾱ

β−α (s̄− α)
)
. Since Ḡ satisfies (2.4), we get, thanks to the change of variable s =

ᾱ+ β̄−ᾱ
β−α (s̄− α),

β̄ − ᾱ

β − α

∫ β

α

ds̄

F̄ (s̄)− Ḡ
= h. (2.5)

After replacing the symbol s̄ by s in (2.5), we subtract the above relation from (2.3). We get∫ β

α

(β − α)(F̄ (s)− Ḡ)− (β̄ − ᾱ)(F (s)−G)
(F (s)−G)(F̄ (s)− Ḡ)

ds = 0.

This gives∫ β

α

(β̄ − ᾱ)(F̄ (s)− Ḡ− F (s) +G) + (ᾱ− α− β̄ + β)(F̄ (s)− Ḡ)
(F (s)−G)(F̄ (s)− Ḡ)

ds = 0,

leading to

G− Ḡ =

∫ β

α

F (s)− F̄ (s) + α−ᾱ−β+β̄
β̄−ᾱ

(F̄ (s)− Ḡ)

(F (s)−G)(F̄ (s)− Ḡ)
ds∫ β

α

ds

(F (s)−G)(F̄ (s)− Ḡ)

.



A Finite Volume Scheme Derived from 1D Local Dirichlet Problems. 5

Since F (s)−G > 0 and F̄ (s)− Ḡ > 0 for all s ∈ [α, β], we get

G− Ḡ ≤ max
s∈[α,β]

|F (s)− F̄ (s)|+ |α− ᾱ|+ |β − β̄|
β̄ − ᾱ

(
max

s∈[α,β]
F̄ (s)− Ḡ

)
.

We first remark that max
s∈[α,β̄]

F̄ (s) = max
s∈[ᾱ,β]

F (s) and that, using the mean value theorem in (2.2),

there exists γ̄ ∈ [ᾱ, β̄] such that ∫ β̄

ᾱ

ds

F (s)− Ḡ
=

β̄ − ᾱ

F (γ̄)− Ḡ
= h,

which produces

Ḡ = F (γ̄)− β̄ − ᾱ

h
.

We thus get

G − Ḡ ≤ max
s∈[α,β]

|F (s) − F̄ (s)| +
α− ᾱ− β + β̄

β̄ − ᾱ

(
max

s∈[ᾱ,β̄]
F (s)− F (γ̄) +

β̄ − ᾱ

h

)
.

Since M = max
s∈[A,B]

|F ′(s)|, we have, for all s ∈ [α, β],

|F (s)− F̄ (s)| =
∣∣∣∣F (s)− F

(
ᾱ+

β̄ − ᾱ

β − α
(s− α)

)∣∣∣∣
≤ M

β − α

(
(β − α)(s− ᾱ)− (β̄ − ᾱ)(s− α)

)
≤M max(|α− ᾱ|, |β − β̄|)
≤M(|α− ᾱ|+ |β − β̄|)

and
max

s∈[ᾱ,β̄]
F (s)− F (γ̄) ≤M(β̄ − ᾱ).

Gathering the three above inequalities, we get

G− Ḡ ≤M(|α− ᾱ|+ |β − β̄|) +
|α− ᾱ|+ |β − β̄|

β̄ − ᾱ
(β̄ − ᾱ)(M +

1
h

),

which gives

G− Ḡ ≤ (2M +
1
h

)(|α− ᾱ|+ |β − β̄|).

Let us now consider the case where A ≤ ᾱ < α = β < β̄ ≤ B. In this case, the relations
G = F (α) = F (β) and Ḡ = F (γ̄)− β̄−ᾱ

h , with γ̄ ∈ [ᾱ, β̄], lead to

G− Ḡ =F (α)− F (γ̄) +
β̄ − ᾱ

h

≤M(β̄ − ᾱ) +
β̄ − ᾱ

h

=M(β̄ − β + α− ᾱ) +
β̄ − β + α− ᾱ

h

≤(M +
1
h

)(|α− ᾱ|+ |β − β̄|).

This suffices to prove that (α, β) 7→ G(F, α, β, h) is Lipschitz continuous with the constant 2M+ 1
h for

all α, β ∈ [A,B] with α ≤ β. Since, for all α ≥ β, G(F, α, β, h) = −G(−F, β, α, h), the same proofs
hold with −F instead of F , leading to the same Lipschitz constant 2M+ 1

h for all α, β ∈ [A,B]. �

Now, we examine the case of a weaker hypothesis on F , namely F ∈ C[0, h] instead of F ∈
C1[0, h].

2.2. Lemma (Regularity of G(F,A,B, h) with respect to F ). Let h > 0, A,B ∈ R with A ≤ B and
let F1, F2 ∈ C[A,B]. Then

|G(F1, A,B, h)− G(F2, A,B, h)| ≤ max
s∈[A,B]

|F1(s)− F2(s)|. (2.6)
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Proof. Let us denote, for i = 1, 2, by F [
i = min

s∈[A,B]
Fi(s) and Gi = G(Fi, A,B, h). We first assume

that for both values i = 1, 2, Gi < F [
i holds, which leads to

∫ B

A
ds

Fi(s)−Gi
= h. Since we have∫ B

A

ds

F1(s)−G1
−

∫ B

A

ds

F2(s)−G2
=

∫ B

A

F2(s)− F1(s) +G1 −G2

(F1(s)−G1)(F2(s)−G2)
ds = 0,

we get

G1 −G2 =

∫ B

A

F1(s)− F2(s)
(F1(s)−G1)(F2(s)−G2)

ds∫ B

A

1
(F1(s)−G1)(F2(s)−G2)

ds

,

which gives (2.6), thanks to (F1(s) − G1)(F2(s) − G2) > 0 for all s ∈ [A,B]. Let us now assume
that G1 < F [

1 and that G2 = F [
2 , which means, thanks to Definition (2.1), that for any ε > 0,∫ B

A

ds

F2(s)− F [
2 + ε

≤ h.

The above inequality gives∫ B

A

ds

F1(s)−G1
−
∫ B

A

ds

F2(s)− F [
2 + ε

=
∫ B

A

F2(s)− F1(s) +G1 − F [
2 + ε

(F1(s)−G1)(F2(s)− F [
2 + ε)

ds ≥ 0,

which produces

G1 − F [
2 + ε ≥

∫ B

A

F1(s)− F2(s)
(F1(s)−G1)(F2(s)− F [

2 + ε)
ds∫ B

A

1
(F1(s)−G1)(F2(s)− F [

2 + ε)
ds

.

This proves that
G1 ≥ F [

2 − ε− max
s∈[A,B]

|F1(s)− F2(s)|.

Since the above inequality holds for all ε > 0 and since G1 < F [
1 ≤ F [

2 + max
s∈[A,B]

|F1(s)− F2(s)|, we

get
F [

2 + max
s∈[A,B]

|F1(s)− F2(s)| > G1 ≥ F [
2 − max

s∈[A,B]
|F1(s)− F2(s)|,

which also leads to (2.6). The case Gi = F [
i for i = 1, 2 results from F [

1 ≤ F [
2 + max

s∈[A,B]
|F1(s)−F2(s)|

and F [
2 ≤ F [

1 + max
s∈[A,B]

|F1(s)− F2(s)|. This completes the proof of (2.6) in the general case. �

2.3. Lemma (Properties of G(F,A,B, h) in the case where F ∈ C[A,B]). Let F ∈ C[A,B]. We
regard the function (α, β) 7→ G(F, α, β, h), defined for all (α, β) ∈ [A,B]× [A,B].

(i) It is increasing with respect to α, and decreasing with respect to β.
(ii) It is continuous.
(iii) There exists γ ∈ [α⊥β, α>β] such that

G(F, α, β, h) = F (γ)− β − α

h
. (2.7)

Proof. (i). Consider, for F ∈ C[A,B], a sequence of functions Fn ∈ C1[A,B] which uniformly
converge to F . Applying Lemma 2.1 and (2.6), we get that for all (α, β) ∈ [A,B] × [A,B],
|G(F, α, β, h) − G(Fn, α, β, h)| ≤ max

s∈[A,B]
|F (s) − Fn(s)|, which proves that the sequence of func-

tions (α, β) 7→ G(Fn, α, β, h) uniformly converges to the function (α, β) 7→ G(F, α, β, h). Hence the
function (α, β) 7→ G(F, α, β, h), is increasing with respect to α, and decreasing with respect to β.

(ii). The function is continuous as the limit of a sequence of uniformly converging continuous
functions.

(iii). Let us denote G = G(F, α, β, h). Let us assume that α ≤ β and that
∫ β

α
ds

F (s)−G = h. Then
the mean value theorem gives that there exists γ ∈ [α, β] with∫ β

α

ds

F (s)−G
= (β − α)

1
F (γ)−G

= h,

which gives (2.7). Otherwise, let us suppose that for all ε > 0,∫ β

α

ds

F (s)−G+ ε
≤ h.
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We then have that there exists γε ∈ [α, β] such that∫ β

α

ds

F (s)−G
= (β − α)

1
F (γε)−G+ ε

,

and therefore

G ≤ −β − α

h
+ F (γε) + ε.

Extracting a sequence from γε which converges as ε→ 0, we get that there exists γ0 ∈ [α, β] with

G ≤ −β − α

h
+ F (γ0).

Since G = min
s∈[α,β]

F (s), we get

min
s∈[α,β]

F (s) ≤ min
s∈[α,β]

F (s) +
β − α

h
≤ F (γ0).

Therefore there exists γ ∈ [α, β] such that

F (γ) = min
s∈[α,β]

F (s) +
β − α

h
,

which again gives (2.7) in this case. Finally, the case β ≤ α is similar. �

We can now obtain the results on the function g defined by (1.10), which will be sufficient to
derive the convergence of the numerical scheme in section 4.

Note that Definitions (1.10) and (2.1) meet the property g(a, b, q, h) = G(qf ◦ φ−1, φ(a), φ(b), h)
since for all G < F [

A,B = G[, ∫ b

a

φ′(s)ds
qf(s)−G

=
∫ B

A

dt

F (t)−G
.

Indeed, thanks to the following Lemma 2.4, we can apply the change of variable t = φ(s).

2.4. Lemma. (Change of variable) Let a, b ∈ R be given with a ≤ b, and let w ∈ C[a, b] be a
Lipschitz continuous monotonous function. Let A,B be defined by A = w(a) and B = w(b). Let
f ∈ C[A,B] be given. Then the identity∫ b

a

f(w(x))w′(x)dx =
∫ B

A

f(s)ds (2.8)

holds.

Proof. Let us suppose that w′ ≥ 0 a.e. in (a, b) and that B > A (otherwise, the function w is a
constant, and then (2.8) holds). Let ξε ∈ C[a, b], for all ε > 0, be a strictly positive function such
that ‖ξε − w′‖L1(a,b) → 0 as ε→ 0 and

∫ b

a
ξε(s)ds = B −A (it suffices to prolong w′ by periodicity

on R, to regularize with a mollifier, to add ε(B − A)/(b − a) and multiply by 1/(1 + ε)). Let the
function wε be defined by wε(x) = A+

∫ x

a
ξε(s)ds. Then the function wε is a diffeomorphism from

[a, b] to [A,B] such that wε uniformly converges to w in C(a, b) and w′ε converges to w′ in L1(a, b)
as ε→ 0. Then the change of variable y = wε(x) is possible, and the equality∫ b

a

f(wε(x))w′ε(x)dx =
∫ B

A

f(s)ds

holds. Thanks to the dominated convergence theorem of Lebesgue and to the continuity of f , we
get∫ b

a

f(w(x))w′(x)dx = lim
ε→0

∫ b

a

f(wε(x))w′ε(x)dx = lim
ε→0

∫ B

A

f(s)ds =
∫ B

A

f(s)ds

resulting in (2.8). �

2.5. Lemma (Properties of g(a, b, q, h)). Let a, b, q ∈ R and let h ∈ (0,+∞) be given. Let f ∈ C(R)
be given and let φ ∈ C(R) be a strictly increasing Lipschitz continuous function. Let g(a, b, q, h) be
defined by (1.10). The following properties are then available.

(i) The function g is continuous with respect to (a, b), and it is (not strictly) increasing with
respect to a and (not strictly) decreasing with respect to b.

(ii) There exists c ∈ [a⊥b, a>b] such that

g(a, b, q, h) = −φ(b)− φ(a)
h

+ qf(c), (2.9)
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(iii) The following inequality holds.

(a− b)g(a, b, q, h) ≥ (ζ(a)− ζ(b))2

h
+ q

∫ b

a

f(s)ds, (2.10)

where ζ ∈ C(R) is a Lipschitz continuous function such that, for a.e. s ∈ R, ζ ′(s) =√
φ′(s).

Proof. The first item is a consequence of g(a, b, q, h) = G(qf ◦φ−1, φ(a), φ(b), h), and of Lemma 2.3.
We then set F = qf ◦ φ−1, A = φ(a), B = φ(b) and G = g(a, b, q, h) = G(F,A,B, h). The second
item is a consequence of (2.7) and of F = qf ◦ φ−1. The third item can be proved by the following
method. For all ε > 0, we have, ∫ b

a

φ′(s)ds
q f(s)−G+ ε

≤ h.

From the Cauchy-Schwarz inequality, we get, for all function α(s) > 0(∫ b

a

ζ ′(s)ds

)2

≤

(∫ b

a

ζ ′(s)2ds
α(s)

)(∫ b

a

α(s)ds

)
.

We choose α(s) = q f(s)−G+ ε. It leads to(∫ b

a

ζ ′(s)ds

)2

≤

(∫ b

a

φ′(s)ds
q f(s)−G+ ε

)(∫ b

a

(q f(s)−G+ ε)ds

)
,

and therefore

(ζ(b)− ζ(a))2 ≤ h

(∫ b

a

q f(s)ds−G(b− a) + ε(b− a)

)
.

Letting ε tend to 0 in the above inequality, we get

(ζ(b)− ζ(a))2 ≤ h

(∫ b

a

q f(s)ds−G(b− a)

)
,

which is (2.10). �

2.6. Remark. As an immediate consequence of (ii), we get, using Definition (1.4), that, for a ≤ b,

g(a, b, q, h) ≥ ψgodunov(a, b, q)− φ(b)− φ(a)
h

,

and for a ≥ b,

g(a, b, q, h) ≤ ψgodunov(a, b, q)− φ(b)− φ(a)
h

.

3. Study of a 1D steady nonlinear elliptic problem

First, we transform Problem (1.9), setting A = φ(a), B = φ(B) and F = qf ◦ φ−1 and changing
the unknown v in φ(v). Our objective is then the following: for A < B, h > 0 and for a given
function F ∈ C[A,B], prove that any function v ∈ C1[0, h] solution to the problem

(−v(x)′ + F (v(x)))′ = 0, ∀x ∈ (0, h)
v(0) = A

v(h) = B,

(3.1)

in the sense that it satisfies that there exists G ∈ R such that
−v(x)′ + F (v(x)) = G, ∀x ∈ [0, h]
v(0) = A

v(h) = B,

(3.2)

is such that G = G(F,A,B, h) as defined in (2.1).
First, we will consider the more obvious case of continuously differentiable F (lemmas 3.1, 3.2).

A limit process then leads to results for the case of continuous F (lemma 3.4).
Hence we consider the auxiliary problem

−v′′(x) + p(x)v′(x) = 0 on (0, h)
v(0) = A

v(h) = B.

(3.3)
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3.1. Lemma (Existence of solution of (3.3)). Let h > 0, A,B ∈ R with A ≤ B and let p ∈ C[0, h].
Then Problem (3.3) has a unique solution v ∈ C2[0, h] which is strictly monotonically increasing
and verifies

B −A

h
exp(−2Mh) ≤ v′(x) ≤ B −A

h
exp(2Mh), (3.4)

denoting M = max
x∈[0,h]

|p(x)|.

Proof. Let us define the functions e,E : [0, h] → R, by

e(x) = exp
(∫ x

0

p(η)dη
)

and E(x) =
∫ x

0

e(ξ)dξ, ∀x ∈ [0, h].

A standard integration of the above problem gives

v(x) = A+ (B −A)
E(x)
E(h)

and v′(x) = (B −A)
e(x)
E(h)

, ∀x ∈ [0, h]. (3.5)

In order to obtain (3.4), we note that exp(−Mh) ≤ e(x) ≤ exp(Mh), and h exp(−Mh) ≤ E(x) ≤
h exp(Mh). �

3.2. Lemma (Existence of a solution of (3.2) for F ∈ C1[A,B]). Let h > 0, A,B ∈ R with A ≤ B
and let F ∈ C1[A,B]. Let us denote by M = max

s∈[A,B]
|F ′(s)|. Then Problem (3.1) has a unique,

strictly monotonically increasing solution v ∈ C2[0, h] such that (3.4) is satisfied. Furthermore, the
constant G ∈ R such that G = −v(x)′ + F (v(x)) for all x ∈ [0, h] is such that G = G(F,A,B, h).

Proof. Let K be the closed convex subset of C[0, h] defined by K =
{u ∈ C[0, h], u(x) ∈ [A,B], ∀x ∈ [0, h]}. In order to prove the existence of a solution, we
consider the mapping L : K → C2[0, h], such that for all w ∈ K, v = L(w) is the solution of
problem (3.3) with p ∈ C[0, h] defined by p : x 7→ F ′(w(x)) (the existence and uniqueness of
L(w) is given by Lemma 3.1). Let us remark that, since F ′ is uniformly continuous on [0, h],
for a given ε > 0, there exists η > 0 such that, for all w̃ ∈ K with max

x∈[0,h]
|w(x) − w̃(x)| ≤ η,

max
x∈[0,h]

|F ′(w(x))−F ′(w̃(x))| ≤ ε. We then get, thanks to (3.5), that the corresponding functions e,

E, ẽ, Ẽ satisfy
max

x∈[0,h]
|e(x)− ẽ(x)| ≤ exp(Mh)hε

and thus
max

x∈[0,h]
|E(x)− Ẽ(x)| ≤ exp(Mh)h2ε,

which gives
max

x∈[0,h]
|L(w)(x)− L(w̃)(x)| ≤ (B −A)2h exp(4Mh)ε,

which proves that L : C[0, h] → C[0, h] is continuous. Since L(K) is bounded in C1[0, h], it is thus
compact in C[0, h] by the Ascoli theorem [16]. Thus by Schauder’s fix point theorem, L has a fix
point, denoted v, which therefore satisfies v = L(v) and thus v ∈ C2[0, h] and v is a solution of
(3.1). Moreover, the conclusion of Lemma 3.1 applies to v solution of (3.3) with p = F ′(v), and
thus we get that this function v satisfies (3.4) with M = max

s∈[A,B]
|F ′(s)|. Integrating (3.1) gives the

existence of the constant G such that, for all x ∈ [0, h],

G = −v(x)′ + F (v(x)), ∀x ∈ [0, h]. (3.6)

Thanks to (3.4), we get that F (v(x)) − G ≥ B−A
h exp(−2Mh) > 0 for all x ∈ [0, h]. Integrating

(3.6) yields ∫ h

0

v(x)′

F (v(x))−G
dx = h. (3.7)

Thanks to (3.4), v is a diffeomorphism, which allows for the change of variable s = v(x) in (3.7).
This leads to the relation ∫ B

A

ds

F (s)−G
= h, (3.8)

which proves that G = G(F,A,B, h).
Finally, we have to prove uniqueness of the solution. Assume, that v and w both are solutions

of (3.1). As F ∈ C1[A,B], the mean value theorem allows us to obtain a continuous function α(x)
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such that F (v) − F (w) = α(x)(v − w). Further, by (3.8), the flux G for both solutions is equal.
Therefore, we obtain that for u = v − w, the following holds:

−u′ + α(x)u = 0
u(0) = 0
u(1) = 0

Standard integration of this problem yields u = 0, and thus, v = w. �

In the case where F is only continuous, let us consider the following example:

3.3. Example. 
−u′ +

√
1− u2 = G in (0, h)

u(0) = −1
u(h) = 1.

The differential equation has solutions −1, 1 and sin(x− x0) with G = 0 = F [. These can be glued
together in order to fulfill the boundary conditions. Namely, for h > π, we get the solutions

u(x) =


−1, x ∈ (0, x0 − π

2 ]
sin(x− x0), x ∈ (x0 − π

2 , x0 + π
2 )

1, x ∈ [x0 + π
2 , h)

for any x0 ∈ (π
2 , h−

π
2 ), showing that this problem has an infinite number of solutions.

Example 3.3 indicates the way to extend the results from the case of continuously differentiable
F to the case of continuous F . Problem (3.1) must be taken in the sense of Problem (3.2). The
following lemma states that Problem (3.2) has at least one solution which is necessarily monotone
(not strictly monotone) and which belongs to C1[0, h] (not to C2[0, h]), and that a uniqueness
property is available for G, but not for u.

3.4. Lemma (Existence of a solution of (3.2) for F ∈ C[A,B]). Let h > 0, A,B ∈ R with A ≤ B
and let F ∈ C[A,B]. Let us denote by F [

A,B = min
s∈[A,B]

F (s). Then the following statements hold:

(i) Problem (3.2) has at least one solution (v,G) ∈ C1[0, h] × (−∞, F [
A,B ] with v′(x) ≥ 0 for

all x ∈ [0, h].
(ii) For any solution (v,G) of (3.2), G is the unique value given by G = G(F,A,B, h) defined

by (2.1).

Proof. Let Fn ∈ C1[A,B], for all n ∈ N, be given such that max
s∈[A,B]

|F (s) − Fn(s)| tends to 0 as

n → ∞. Thanks to Lemma 3.2, let us define vn ∈ C2[0, h] as the solution of Problem (3.1) for
F = Fn. It thus satisfies

−vn(x)′ + Fn(vn(x)) = Gn, ∀x ∈ [0, h], (3.9)
where Gn = G(Fn, A,B, h). Thanks to Lemma 2.2, the sequence (Gn)n∈N converges to G =
G(F,A,B, h). We thus get from (3.9) that the sequence (vn)n∈N is bounded in C1[0, h]. From
Ascoli’s theorem, we get that there exists a subsequence, again denoted (vn)n∈N, and a function
v ∈ C[0, h], such that (vn)n∈N converges to v in C[0, h]. Moreover, using (3.9), we get

vn(x)′ = F (vn(x)) + (Fn(vn(x))− F (vn(x))−Gn, ∀x ∈ [0, h],

which proves that the sequence (v′n)n∈N converges to F (v) − G in C[0, h]. We thus get that the
function v satisfies v ∈ C1[0, h] and that (v,G) is solution to Problem (3.2). We have thus proved the
first part of the lemma. Let us now prove that any solution (v,G) ∈ C1[0, h]×R to Problem (3.2) is
monotone and that G = G(F,A,B, h). Let us assume that v is not monotone. Then there exist two
values x1, x2 in [0, h] such that v(x1) = v(x2) and v′(x1)v′(x2) < 0. But as −v(x1)′ + F (v(x1)) =
−v(x2)′ + F (v(x2)), we conclude that v′(x1) = v′(x2), leading to a contradiction. Consequently,
∀x ∈ [0, h], v(x) ∈ [A,B]. From the mean value theorem, we get that there exists x̄ ∈ [0, h] such
that v′(x̄) = B−A

h > 0 which proves that for all x ∈ [0, h], v′(x) ≥ 0. Therefore, we necessarily
get G ≤ F [

A,B . Assume that there exists x0 ∈ [0, h] such that v′(x0) = 0. In such a case, we get
G = F (v(x0)), which implies G = F [

A,B . We thus get, for all ε > 0,

v(x)′ + ε = F (v(x))− F [
A,B + ε, ∀x ∈ [0, h],

which gives ∫ h

0

(v′(x) + ε)dx
F (v(x))− F [

A,B + ε
= h,
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yielding ∫ h

0

v′(x)dx
F (v(x))− F [

A,B + ε
≤ h.

Thanks to Lemma 2.4, we can apply the change of variable s = v(x) which gives∫ B

A

ds

F (s)− F [
A,B + ε

≤ h, ∀ε > 0.

We thus proved that in this case G = G(F,A,B, h). Otherwise, if for all x ∈ [0, h], v′(x) > 0, we
get that G < F [

A,B , and since v is a diffeomorphism from [0, h] to [A,B], we can make the change
of variable s = v(x) in ∫ h

0

v′(x)dx
F (v(x))−G

= h,

thus obtaining ∫ B

A

ds

F (s)−G
= h.

We thus have proved in this case as well that G = G(F,A,B, h). �

4. Study of the resulting finite volume scheme

We give in this section the main steps which permit to define a finite volume scheme, we give
the results of convergence. We first introduce the notion of admissible discretization [10] which is
useful to define a finite volume scheme.

4.1. Definition (Admissible discretization). Under assumption 1.1, an admissible finite volume
discretization of Ω× (0, T ), denoted by D, is given by D = (T , E ,P, τ), where:

• T is a finite family of non empty open polygonal convex disjoint subsets of Ω (the “control
volumes”) such that Ω = ∪K∈TK. We then denote, for all K ∈ T , by ∂K = K \K the
boundary of K and mK > 0 the N -dimensional Lebesgue measure of K (it is the area of
K in the two-dimensional case and the volume in the three-dimensional case).

• E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such that, for all
σ ∈ E , there exists a hyperplane E of RN and K ∈ T with σ = ∂K ∩ E and σ is a non
empty open subset of E. We then denote mσ > 0 the (N − 1)-dimensional measure of σ.
We assume that, for all K ∈ T , there exists a subset EK of E such that ∂K = ∪σ∈EK

σ. It
then results from the previous hypotheses that, for all σ ∈ E , either σ ⊂ ∂Ω or there exists
(K,L) ∈ T 2 with K 6= L such that K ∩ L = σ; we denote in the latter case σ = K|L.
We denote by NK the set of control volumes L 6= K such that there exists σ ∈ EK with
σ = K|L. The subset of E of the edges σ such that there exist two control volumes K and
L with σ = K|L is denoted by Eint.

• P is a family of points of Ω indexed by T , denoted by P = (xK)K∈T . This family is such
that, for all K ∈ T , xK ∈ K̄. For all σ ∈ E such that there exists (K,L) ∈ T 2 with
σ = K|L, it is assumed that xK 6= xL and that the straight line (xK , xL) going through
xK and xL is orthogonal to K|L. We denote dKL = dist(xk, xl). For all K ∈ T such that
meas(∂K ∩ ∂Ω) 6= 0 we assume that xK ∈ ∂Ω (the set of such control volumes is denoted
Text, the set of control volumes such that meas(∂K ∩ ∂Ω) = 0 is denoted Tint). We set, for
all K ∈ T and σ ∈ EK ,

DK,σ = {txK + (1− t)y, t ∈ (0, 1), y ∈ σ}

and we assume that for all K ∈ T , K̄ =
⋃

L∈NK

D̄K,K|L.

• τ > 0 is the time step. Let NT be the largest integer such that NT τ ≤ T .

The size respectively regularity of the discretization are defined by
size(D) = sup{diam(K),K ∈ T } ∪ {τ}

reg(D) = inf
{

dist(xK ,K|L)
diam(K)

,K ∈ T , L ∈ NK

}
.

For all K ∈ T and L ∈ NK , we denote by ~nK,L the unit vector normal to K|L outward to K.
For any family of values {vn

K}K∈D,n∈N, we define the piecewise constant function vD : Ω×R → R
as

vD(x, t) = vn+1
K , ∀(x, t) ∈ K × (nτ, (n+ 1)τ), ∀(K,n) ∈ T × N.

We now give a scheme which permits to obtain an approximation of the solution of the continuous
problem given in the introduction of this paper.
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4.2. Definition (The implicit finite volume scheme). Under assumption 1.1, let D be an admissible
discretization of Ω × (0, T ) in the sense of Definition 4.1. We set, as given in the introduction of
this paper,

qKL =
1

mKL

∫
K|L

~q(x) · ~nKLds(x), ∀K ∈ T , ∀L ∈ NK . (4.1)

Setting

ūn+1
K =

1
τ mK

∫ (n+1)τ

nτ

∫
K

ū(x, s)dxds, ∀K ∈ T , ∀n ∈ N, (4.2)

we take into account the boundary condition by

un+1
K = ūn+1

K , ∀K ∈ Text, ∀n ∈ N, (4.3)

and we take into account the initial condition by

u0
K =

1
mK

∫
K

u0(x)dx, ∀K ∈ T . (4.4)

We then define the scheme by

mK(un+1
K − un

K) + τ
∑

L∈NK

mKL g(un+1
K , un+1

L , qKL, dKL) = 0,∀K ∈ Tint, ∀n ∈ N. (4.5)

Then an approximate solution to problem (1.1)-(1.3) is given by uD(x, t).

4.3. Remark. The following results cannot be extended to the explicit scheme since we do not exhibit
in this paper the Lipschitz continuity of g in the general case.

4.4. Lemma (Stability, existence and uniqueness of a discrete solution). Under assumptions 1.1,
let D be an admissible discretization of Ω× (0, T ) in the sense of Definition 4.1.

(i) For any solution uD of the scheme (4.1)-(4.5), we have the estimates

un+1
K ≤ max{un

K} ∪ {un+1
L }L∈NK

∀K ∈ Tint, n > 0

un+1
K ≥ min{un

K} ∪ {un+1
L }L∈NK

∀K ∈ Tint, n > 0
(4.6)

(ii)
un+1

K ∈ [U [, U ]] ∀K ∈ Tint, n > 0 (4.7)

(iii) There exists one and only one solution {un+1
K }K∈Tint, n∈N of (4.1)-(4.5).

Proof. First, for λ ∈ [0, 1], define

gλ
KL(u, v) = mKL

(
(1− λ)

u− v

dKL
+ λg(u, v, qKL, dKL)

)
.

It is straightforward that gλ
KL is continuous and for each fixed λ ∈ [0, 1], it has the same monotonicity

properties as g. Let us regard the scheme

mK
un+1

K − un
K

τ
+
∑

L∈NK

gλ
KL(un+1

K , un+1
L ) = 0,∀K ∈ Tint, ∀n ∈ N. (4.8)

Positivity ofmK and monotonicity of gλ in the first argument allow to solve each individual equation
of (4.8) for un+1

K , thus yielding a function Uλ
K such that

un+1
K = Uλ

K(un
K , {un+1

L }L∈NK
). (4.9)

Uλ
K is non decreasing with respect to all of its arguments: Assume L0 ∈ NK , and let vn+1

L0
≥ un+1

L0

and define vn+1
K by

mK
vn+1

K − un
K

τ
+

∑
L∈NK\{L0}

gλ
KL(vn+1

K , un+1
L ) + gλ

KL0
(vn+1

K , vn+1
L0

) = 0

Subtracting this equation from (4.8) and adding 0 = −gλ
KL0

(vn+1
K , un+1

L0
) + gλ

KL0
(vn+1

K , un+1
L0

) yields

mK
vn+1

K − un+1
K

τ
+

∑
L∈NK\{L0}

(
gλ

KL(vn+1
K , un+1

L )− gλ
KL(un+1

K , un+1
L )

)
+ gλ

KL0
(vn+1

K , un+1
L0

)− gλ
KL0

(un+1
K , un+1

L0
) + gλ

KL0
(vn+1

K , vn+1
L0

)− gλ
KL0

(vn+1
K , un+1

L0
) = 0

Define
Ũλ

K(ξ) =
mK

τ
ξ +

∑
L∈NK

gλ
KL(ξ, un+1

L )
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By monotonicity of g in the second argument we get

Ũλ
K(vn+1

K )− Ũλ
K(un+1

K ) = gλ
KL0

(vn+1
K , un+1

L0
)− gλ

KL0
(vn+1

K , vn+1
L0

) ≥ 0

But by construction, Ũλ
K is strictly monotone, so necessarily, vn+1

K ≥ un+1
K .

Now, let vn
K ≥ un

K and define vn+1
K by

mK
vn+1

K − vn
K

τ
+
∑

L∈NK

gλ
KL(vn+1

K , un+1
L ) = 0

Subtracting from (4.8) yields

mK
vn+1

K − un
K

τ
+

∑
L∈NK

(
gλ

KL(vn+1
K , un+1

L )− gλ
KL(un+1

K , un+1
L )

)
= mK

vn
K − un

K

τ
≥ 0,

therefore, as above Ũλ
K(vn+1

K )− Ũλ
K(un+1

K ) ≥ 0, again yielding vn+1
K ≥ un+1

K .
As the next step, we verify that for all a ∈ R,

a = Uλ
K(a, {a}L∈NK

). (4.10)

Looking at (4.8), it remains to show that∑
L∈NK

gλ
KL(a, a) = 0,∀K ∈ Tint, ∀n ∈ N.

Equation (2.9) yields gλ
KL(a, a) = λmKLqKLf(a). Equation (4.1), the Gaussian integral theorem

and the assumption div~q = 0 from 1.1 ensure that
∑

L∈NK
mKLqKL = 0.

Let umax = max{un
K} ∪ {u

n+1
L }L∈NK

. Then by (4.10) and monotonicity of Uλ
K ,

umax = Uλ
K(umax . . . umax) ≥ Uλ

K(un
K , {un+1

L }L∈NK
) = un+1

K ,

thus verifying the first inequality of (4.6). A similar discussion yields the second inequality. Let K
be such that un+1

K = umax = max{un+1
L }L∈T . Assume that K ∈ Tint. we then remark that

un+1
K = umax = Uλ

K(un
K , {un+1

L }L∈NK
) ≤ Uλ

K(un
K , {umax}L∈NK

),

while at the other hand, umax = Uλ
K(umax, {umax}L∈NK

). This implies umax ≤ un
K , and the proof

of the L∞ estimate (4.7) follows by induction.
All the results shown in this proof so far hold for any λ ∈ [0, 1] under the assumption that a

solution exists. Let Nint = card Tint. Then the scheme (4.8) defines a discrete nonlinear equation
in RNint

Uλ(un+1)−Mun = 0 (4.11)

where M is a diagonal matrix consisting of the values mK . For λ = 0, the system is linear. Its
matrix is diagonally dominant with non-positive off diagonal entries, and its graph is connected,
so it has the M -property, implying that U0(un+1) −Mun = 0 has a unique solution. Thus the
topological degree of the affine mapping U0(·) −Mun is nonzero. Furthermore, Uλ(·) −Mun is
continuous in its argument and in λ, and for any λ, any solutions are bounded by the L∞ estimate.
Being a bounded set of solutions of a continuous operator, the set of possible solutions is compact.
Therefore the homotopy invariance of the topological degree yields that the degree of U1(·)−Mun

is nonzero proving the existence of at least one solution of U1(un+1)−Mun = 0 which is equivalent
to our original scheme (4.5) [17, 6].

To prove uniqueness, we follow the reasoning of [10]. Let λ = 1 and UK = U1
K and gKL = g1

KL.
Assume that un+1 and vn+1 are two solutions of (4.8). From equation (4.9) and the monotonicity
of U we get

un+1
K − UK(un

K>vn
K , {un+1

L >vn+1
L }L∈NK

) ≤ 0

vn+1
K − UK(un

K>vn
K , {un+1

L >vn+1
L }L∈NK

) ≤ 0,

and, therefore

un+1
K >vn+1

K − UK(un
K>vn

K , {un+1
L >vn+1

L }L∈NK
) ≤ 0

Similarly, we obtain

un+1
K ⊥vn+1

K − UK(un
K⊥vn

K , {un+1
L ⊥vn+1

L }L∈NK
) ≥ 0
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Subtracting and taking into account a>b− a⊥b = |a− b| and the monotonicity of gKL in the first
argument allows to obtain

mK
|un+1

K − vn+1
K | − |un

K − vn
K |

τ
+∑

L∈NK

(gKL(un+1
K >vn+1

K , un+1
L >vn+1

L )− gKL(un+1
K ⊥vn+1

K , un+1
L ⊥vn+1

L )) ≤ 0

Taking into account that gKL(u, v) = −gLK(v, u) leads to canceling of all fluxes along interior edges
and to the fact that for any {vK}K∈T ,∑

K∈Tint

∑
L∈NK

gKL(vK , vL) = −
∑

K∈Text

∑
L∈NK

gKL(vK , vL).

Therefore,∑
K∈Tint

mK
|un+1

K − vn+1
K | − |un

K − vn
K |

τ
≤

∑
K∈Text

∑
L∈NK

(
gKL(un+1

K >vn+1
K , un+1

L >vn+1
L )− gKL(un+1

K ⊥vn+1
K , un+1

L ⊥vn+1
L )

)
.

But for any K ∈ Text,

gKL(un+1
K >vn+1

K , un+1
L >vn+1

L )− gKL(un+1
K ⊥vn+1

K , un+1
L ⊥vn+1

L )

= gKL(ūn+1
K , un+1

L >vn+1
L )− gKL(ūn+1

K , un+1
L ⊥vn+1

L ) ≤ 0

Adding trivial terms at the boundary yields the L1 contraction estimate∑
K∈T

mK |un+1
K − vn+1

K | ≤
∑
K∈T

mK |un
K − vn

K |

leading to the uniqueness of the discrete solution. �

For a discrete function vD = {vn
K}K∈T ,n∈N define

ND(vD)2 =
NT∑
n=0

τ
∑
K∈T

∑
L∈NK

mKL

dKL
(vn+1

K − vn+1
L )2

4.5. Lemma (Discrete L2(0, T ;H1(Ω)) estimate). Under assumptions 1.1, let D be an admissible
discretization of Ω× (0, T ) in the sense of Definition 4.1. Let {un+1

K }K∈T ,n∈N and {ūn+1
K }K∈T ,n∈N

be given by (4.1)-(4.5). Let ρ > 0 such that reg(D) ≥ ρ. Then, there exists a constant C1, only
depending on Ω, f , φ, u0, ū , ρ, and not on size(D) such that

ND(ζ(uD)− ζ(ūD))2 ≤ C1

Proof. We mainly follow the reasoning in [11]. We multiply (4.5) by wn+1
K = un+1

K − ūn+1
K (which

vanishes for all K ∈ Text), and sum on n and K. We obtain: A+ Ā+B = 0, where

A =
NT∑
n=0

∑
K∈Tint

mK(wn+1
K − wn

K)wn+1
K

Ā =
NT∑
n=0

∑
K∈Tint

mK(ūn+1
K − ūn

K)wn+1
K

B = τ

NT∑
n=0

∑
K∈Tint

∑
L∈NK

mKL g(un+1
K , un+1

L , qKL, dKL)wn+1
K

Thanks to (1.10) and to wn+1
K = 0 if K ∈ Text we get

B = τ

NT∑
n=0

1
2

∑
K∈T

∑
L∈NK

mKL g(un+1
K , un+1

L , qKL, dKL)(wn+1
K − wn+1

L )

which delivers B = B′ − B̄ with

B′ = τ

NT∑
n=0

1
2

∑
K∈T

∑
L∈NK

mKL g(un+1
K , un+1

L , qKL, dKL)(un+1
K − un+1

L )
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B̄ = τ

NT∑
n=0

1
2

∑
K∈T

∑
L∈NK

mKL g(un+1
K , un+1

L , qKL, dKL)(ūn+1
K − ūn+1

L ),

leading to B′ = B̄ −A− Ā.
Estimate of A: We get, thanks to b(b− a) = 1

2b
2 + 1

2 (b− a)2 − 1
2a

2 that

A ≥ 1
2

∑
K∈Tint

mK

(
(wNT +1

K )2 − (w0
K)2

)
≥ −1

2

∑
K∈Tint

mK(w0
K)2 ≥ −1

2
||u0 − ū(·, 0)||L2(Ω) = CA

(4.12)

Estimate of Ā: For K ∈ T , n ≤ NT define

ũn
K =

1
mK

∫
K

u(x, tn) dx

Then

Ā =
NT∑
n=0

∑
K∈Tint

mK(ūn+1
K − ũn

K)wn+1
K +

NT∑
n=0

∑
K∈Tint

mK(ũn
K − ūn

K)wn+1
K .

A density argument allows to estimate

|ūn+1
K − ũn

K | ≤ ||ūt||L1(K×(tn,tn+1))

|ūn
K − ũn

K | ≤ ||ūt||L1(K×(tn−1,tn))

Using the L∞ bound we obtain

|Ā| ≤ 2||ūt||L1(Ω×[0,T ])|u] − u[| = CĀ.

Estimate of B̄: Equation (2.9) allows to obtain

B̄ = τ

NT∑
n=0

1
2

∑
K∈T

∑
L∈NK

mKL

dKL
(φ(un+1

K )− φ(un+1
L ))(ūn+1

K − ūn+1
L )

+ τ

NT∑
n=0

1
2

∑
K∈T

∑
L∈NK

mKLqKLf(un+1
KL )(ūn+1

K − ūn+1
L ) (4.13)

where un+1
KL ∈ [uK⊥uL, uK>uL]. We apply Young’s inequality for the first sum. In the second sum

we use continuity of f and boundedness of un+1
KL . This allows to obtain for any α > 0

|B̄| ≤ α

2
ND(φ(uD))2 +

1
2α
ND(ūD)2 + Cq,f

NT∑
n=0

1
2

∑
K∈T

∑
L∈NK

mKL√
dKL

√
dKL|ūn+1

K − ūn+1
L |

For the first sum, we remark that there is a constant Cφ such that |φ(u)− φ(v)| ≤ Cφ|ζ(u)− ζ(v)|.
This allows to estimate

|B̄| ≤C2
φ

α

2
ND(ζ(uD))2 +

1
2α
ND(ūD)2

+ Cq,fND(ūD)

(
τ

NT∑
n=0

∑
K∈T

∑
L∈NK

mKLdKL

) 1
2

≤C2
φND(ζ(uD))2 +

1
2α
ND(ūD)2 + Cq,fND(ūD)dmΩ

As we can estimate ND(ūD) ≤ F (ρ)||ū||L2((0,T ),H1(Ω) [9] we obtain the estimate

|B̄| ≤ Cφ
α

2
ND(ζ(uD))2 + CB̄(α, ρ)

Final estimate: Using (2.10) we get B′ ≥ 1
2ND(ζ(uD))2 which for any α > 0 leads to

1
2
ND(ζ(uD))2 ≤ Cφ

α

2
ND(ζ(uD))2 + CB̄(α, ρ) + CA + CĀ

allowing to deduce for α = 1
2Cφ

ND(ζ(uD))2 ≤ C∗ = 4(CB̄(α, ρ) + CA + CĀ). But then, [9]

ND(ζ(uD)− ζ(ūD))2 ≤ 2ND(ζ(uD))2 + 2ND(ζ(ūD))2

≤ 2C∗ + 2C2
ζF (ρ)||ūD||L2((0,T ),H1(Ω).

�

We can then obtain similar results to those of [10] and [11].
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4.6. Lemma (Space and time translate estimates). Under assumptions 1.1, let D be an admissible
discretization of Ω × (0, T ) in the sense of Definition 4.1 such that reg(D) ≥ ρ > 0 Let un+1

K and
ūn+1

K for all K ∈ T and n ∈ N such that nτ ≤ T , be given by (4.1)-(4.5). Then we get the existence
of C2, only depending on Ω, f , φ, u0, ū, ρ and not on D such that the function zD = ζ(uD)− ζ(ūD)
(prolonged by 0 outside of Ω× (0, T )) satisfies∫ T

0

∫
Ω

(zD(x+ ξ, t)− zD(x, t))2dxdt ≤ C2|ξ| (|ξ|+ 4 size(D)), ∀ξ ∈ Rd, (4.14)

and ∫ T

0

∫
Ω

(zD(x, t+ θ)− zD(x, t))2dxdt ≤ C2|θ|, ∀θ ∈ R. (4.15)

Proof. The proof of (4.14) is a classical consequence of Lemma 4.5 (the results of [10] apply, since
zn
K = 0 holds for any n ∈ N and K ∈ Text). Let us now turn to the proof of (4.15). Denoting, for

all t ∈ R+, we notice that∫ T

0

∫
Ω

(zD(x, t + θ) − zD(x, t))2dxdt =
∑

K∈Tint

∫ T

0

mK(zNt+θ+1
K − zNt+1

K )2dt = A − 2B + Ā,

with

A =
∑

K∈Tint

∫ T

0

mK(ζ(uNt+θ+1
K )− ζ(uNt+1

K ))2dt,

B =
∑

K∈Tint

∫ T

0

mK(ζ(uNt+θ+1
K ) − ζ(uNt+1

K ))(ζ(ūNt+θ+1
K ) − ζ(ūNt+1

K ))dt,

and

Ā =
∑

K∈Tint

∫ T

0

mK(ζ(ūNt+θ+1
K )− ζ(ūNt+1

K ))2dt.

Using the hypothesis ū ∈ H1(Ω × (0, T )), and the L∞ estimate on the discrete solution, we easily
get that B and Ā are respectively bounded by expressions under the form C|θ|. Let us turn to the
study of A. Introducing a Lipschitz constant Cζ for the function ζ, we get

A ≤ Cζ

∑
K∈Tint

∫ T

0

mK(ζ(uNt+θ+1
K )− ζ(uNt+1

K ))(uNt+θ+1
K − uNt+1

K )dt,

which gives A ≤ CζA
′ with

A′ =
∑

K∈Tint

∫ T

0

mK(ζ(uNt+θ+1
K )− ζ(uNt+1

K ))
Nt+θ∑

n=Nt+1

(un+1
K − un

K)dt.

Using the scheme (4.1)-(4.5) and after gathering by edges, we get that

A′ =
1
2

∑
K∈T

τ
∑

L∈NK

∫ T

0

Nt+θ∑
n=Nt+1

g(un+1
K , un+1

L , qKL, dKL)×

×
(
ζ(uNt+θ+1

L )− ζ(uNt+θ+1
K )− ζ(uNt+1

L ) + ζ(uNt+1
K )

)
dt.

Using expression (2.9), the discrete L∞ estimate and the Young inequality, we then get the
existence of some C3 > 0, only depending on Ω, f , φ, u0, ū and not on D such that

A′ ≤ C3

∫ T

0

Nt+θ∑
n=Nt+1

(an + bNt+1 + bNt+θ+1 + τ)dt,

with
an =

∑
K∈T

τ
∑

L∈NK

mKL

dKL
(φ(un+1

K )− φ(un+1
L ))2,

and
bn =

∑
K∈T

τ
∑

L∈NK

mKL

dKL
(ζ(ūn+1

K )− ζ(ūn+1
L ))2.

Since
∑NT

n=0 a
n and

∑NT

n=0 b
n are bounded depending only on ρ (thanks to Lemma 4.5), we can then

apply Lemma 4.6 of [12] (also proved in [10]). This gives a result under the form A′ ≤ C|θ|. Thanks
to the discrete L∞ estimate, and to the prolongation by 0 outside Ω× (0, T ), we then conclude that
(4.15) holds. �
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We are now able to prove the following result.

4.7. Theorem (Convergence of the scheme). Under assumptions 1.1, let D be an admissible dis-
cretization of Ω × (0, T ) in the sense of Definition 4.1. Let uD be given by (4.1)-(4.5). Then the
function uD converges in L2(Ω× (0, T )) to u as size(D) tends to 0, and reg(D) ≥ ρ, where u is the
unique weak solution of Problem 1 in the following sense:

(i) u ∈ L∞(Ω× (0, T )) is such that ζ(u)− ζ(ū) ∈ L2(0, T ;H1
0 (Ω)),

(ii) for all test function ϕ ∈ C∞c (Ω× [0, T )), we have∫ T

0

∫
Ω

u(x, t)ϕt(x, t)dxdt+∫ T

0

∫
Ω

(f(u(x, t)) ~q(x)−∇φ(u)(x, t)) · ∇ϕ(x, t)dxdt+
∫

Ω

u0(x)ϕ(x, 0)dx = 0.

Proof. This proof is similar to that of [10], [11] and [12]. We consider a sequence of discretizations
(Dm)m∈N with size tending to 0. Applying Lemma 4.6 and Kolmogorov’s theorem, we can extract
a subsequence such that the sequence (zDm

)m∈N (we recall that zDm
= ζ(uDm

)−ζ(ūDm
)) converges

in L2(Ω× (0, T )) to some function z̃ such that z̃ ∈ L2(0, T ;H1
0 (Ω)). Since the sequence (ūDm

)m∈N
strongly converges and since ζ is strictly increasing and continuous, we thus get that the sequence
(uDm)m∈N converges in L2(Ω × (0, T )) as well to some function ũ ∈ L2(Ω × (0, T )) such that
z̃ = ζ(ũ) − ζ(ū) ∈ L2(0, T ;H1

0 (Ω)), which shows that the boundary condition is satisfied. It now
suffices to obtain the weak relation satisfied by ũ, in order to show that ũ = u. Equation (2.9) can
be rewritten as

g(un+1
K , un+1

L , qKL, dKL) = qKLf(un+1
KL ) +

φ(un+1
K )− φ(un+1

L )
dKL

,

where un+1
KL = un+1

LK is a value belonging to the interval with ends un+1
K and un+1

L . Then, the
multiplication of the scheme (4.5) by ϕ(xK , (n + 1)τ), where ϕ is a regular test function with a
compact support, leads to Am +Bm + Cm = 0, in which we define:

Am =
NT∑
n=0

∑
K∈Tint

mK(un+1
K − un

K)ϕ(xK , (n+ 1)τ),

Bm =
NT∑
n=0

τ
∑

K∈Tint

∑
L∈NK

mKLqKLf(un+1
KL )ϕ(xK , (n+ 1)τ)

and

Cm =
NT∑
n=0

τ
∑

K∈Tint

∑
L∈NK

mKL
φ(un+1

K )− φ(un+1
L )

dKL
ϕ(xK , (n+ 1)τ).

These terms then classically verify (see [10], [11] and [12]) the following convergence properties:

lim
m→∞

Am = −
∫ T

0

∫
Ω

ũ(x, t)ϕt(x, t)dxdt−
∫

Ω

u0(x)ϕ(x, 0)dx,

and

lim
m→∞

Cm =
∫ T

0

∫
Ω

∇φ(ũ)(x, t) · ∇ϕ(x, t)dxdt.

The only relation which is slightly different from the above references is

lim
m→∞

Bm = −
∫ T

0

∫
Ω

f(ũ(x, t)) ~q(x) · ∇ϕ(x, t)dxdt. (4.16)

Let

B̃m =
NT∑
n=0

τ
∑

K∈Tint

∑
L∈NK

mKLq̃KLf(un+1
KL )ϕ(xK , (n+ 1)τ)

with
q̃KL =

1
meas(DKL)

∫
DKL

~q(x) · ~nKLdx,

where DKL = DK,K|L ∪DL,K|L is the so called “diamond”. The regularity of ~q allows to assume
that qKL can be estimated by q̃KL assuring that Bm and B̃m have the same limit.

Let us define the function ∇Dmϕ, by ∇Dmϕ(x, t) = d
dKL

(ϕ(xL, (n+ 1)τ)− ϕ(xK , (n+ 1)τ))~nKL

for a.e. (x, t) ∈ DKL × (nτ, (n + 1)τ) and for all σ = K|L, and by ∇Dm
ϕ(x, t) = 0 for a.e.

(x, t) ∈ DK,σ× (nτ, (n+1)τ), for all σ ∈ Eext . We get from [8] that ∇Dmϕ weakly converges to ∇ϕ
in L2(Ω× (0, T )). We then define the function ûDm

by the value un+1
KL in DKL× (nτ, (n+1)τ) and,
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for all σ ∈ Eext, by the value un+1
K in DK,σ × (nτ, (n+ 1)τ) where K is such that σ ∈ EK . It is easy

to see, thanks to Lemma 4.5 that ζ(ûDm
)− ζ(uDm

) tends to 0 in L2(Ω× (0, T )) as m → ∞. This
proves that ûDm

also converges in L2(Ω× (0, T )) to ũ. Since, gathering by edges, we observe that

B̃m = −
∫ T

0

∫
Ω

f(ûDm(x, t)) ~q(x) · ∇Dmϕ(x, t)dxdt,

passing to the strong-weak limit in the above expression gives (4.16), which concludes the proof
that ũ is a weak solution of Problem 1. The uniqueness of this weak solution yields the convergence
of all the sequence, and achieves the proof of the theorem. �

5. Numerical experiment

This section illustrates the method and its typical properties on an example such that a simple
analytical solution is known. It does not go into implementational details but touches on this
example the two main issues: an initial guess for the local Newton’s method (needed to solve the
nonlinear problem (1.10)), and the evaluation of derivatives close to singularities by asymptotic
expressions. The techniques used should ease the application of the suggested method in other
cases, too.
We consider the case where, in (1.1), we take Ω = (0, 1), φ : s 7→ s2, f : s 7→ s, q ∈ [0,+∞), in
(1.2) we take u0 = 0 and in (1.3), we take, for a given v ∈ (q,+∞), ū(0, t) = (v− q)vt/2 and we set
ū(1, t) = 0 for t < 1/v and ū(1, t) = (v − q)(vt− 1)/2 otherwise. The unique weak solution of this
problem is then given by

u(x, t) =
{

(v − q)(vt− x)/2 if x < vt,
0 if x ≥ vt.

Since this situation corresponds to a decreasing solution, we now examine the computation of the
numerical flux G = g(a, b, q, h) = −g(b, a,−q, h), defined by (1.10) in the case 0 ≤ b < a. In
this case, we get that G is such that G > qa and that

∫ a

b
2sds
G−qs = h. The case q = 0 leads to

G = 1
h (a2 − b2). Let us suppose that q > 0. This gives, by integration, the equation

G

q
ln

G
q − b
G
q − a

=
qh

2
+ a− b.

We set γ = G
q − a and d = qh

2 + a− b. This leads to the equations

(γ + a) ln
(

1 +
a− b

γ

)
− d = 0 (5.1)

and
γ(ed/(γ+a) − 1)− (a− b) = 0. (5.2)

Both equations (5.1) and (5.2) are useful to derive close bounds of γ. Note that, from Lemma 2.5,
we know that γ ≤ γ0, where γ0 = (G− ψgodunov(a, b, q))/q is the Godunov approximation, defined
by

γ0 :=
a2 − b2

qh
.

Using (5.2), a super-solution for all h with the correct asymptotics for small and large h (see Figure
1) can be derived by

γ ≤ γ2 :=
a− b

ed/(γ0+a) − 1
.

The same argument can be used to construct a sub-solution for large h by choosing the sub-solution
γ = 0 in the exponent of (5.2)

γ ≥ γ3 :=
a− b

ed/a − 1
.

Using in (5.1), the inequality ln(1+x) ≥ x−x2/2 for x ≥ 0 gives, in the case (4+ ε)qha ≤ (a+ b)2,

γ1 ≤ γ,

with

γ1 =
a2 − b2

2qh

(
1 +

√
1− 4hqa

(a+ b)2

)
.

The convex combinations of super- and sub-solutions

γinit =

{
θγ2 + (1− θ)γ1,

θγ2 + (1− θ)γ3.
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Figure 1. Asymptotic expansions (γ1, γ2, γ3, γinit, the numeric solution γnumeric,
and the Godunov flux function γ0 for a = 2, b = 1 q = 1 (left); the local error of the
implicit scheme (lines, t = 0.004, τ = 3.125 · 10−7, h = 0.01, 0.01/2, . . . , 0.01/16)
and the Godunov scheme (markers) with respect to the analytic solution (right).
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Figure 2. Experimental order of convergence for spatial step sizes hn = h0(1/2)n

and different time step sizes τ0 = 3.125 · 10−7, (||uh − u||∞) of the implicit scheme
(left, line: c h1) and Godunov scheme (right, line: c h3/4).

(θ = 0.75) and using the above inequality with ε = 0.05 provide initial values to solve either (5.1) or
(5.2) by a local Newton’s method in typically 4 steps to rounding precision 10−15. The asymptotic
expression γinit is used to compute the derivatives ∂g/∂a, ∂g/∂b directly when the parameters are
to close to the singularities to proceed via the chain rule and the original equations.

The following pictures, obtained with q = 100, v = 200, t = 0.004 (in this case, the analytical
solution vanishes at x0 = 0.8) illustrate these generic properties of the flux functions, show the error
and the order of convergence of the implicit Euler scheme for different time step sizes (τ). Results
for the Godunov case are added, too.

The experiments suggest differences in the order of convergence with respect to h and the Go-
dunov scheme, the interference with the time discretization error can not be neglected. The qualita-
tive properties of the scheme (maximum principle, stability for all h, direct relation to the equation)
may be the points of interest for some applications.

6. Conclusions

Dealing in this paper with a nonlinear hyperbolic - degenerate parabolic problem, a new finite
volume scheme can be obtained, taking for numerical flux at each interface between two grid blocks
the solution of a 1D steady flow problem. This last problem, which is formulated as a nonlinear
elliptic equation, is shown to possess an analytical solution which can easily be numerically ap-
proached. Thus, taking advantage from the nonlinear diffusion to stabilize the convective discrete
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Figure 3. As Figure 2, but ||uh − u||2 (left, line: c h3/2, right, line: c h1).
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Figure 4. As Figure 2, but ||uh − u||1 (left, line: c h2, right, line: c h1).

term, this finite volume scheme produces an increased accurateness compared to schemes where
the convective part is approximated independently with the nonlinear diffusive part. Some further
works remain to be done, in order to ameliorate the algorithm for solving the nonlinear equation
providing the numerical flux.
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