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Abstract. Let τi be a collection of i.i.d. positive random variables
with distribution in the domain of attraction of α-stable law with
α < 1. The symmetric Bouchaud’s trap model on Z is a Markov
chain X(t) whose transition rates are given by wxy = (2τx)−1 if
x, y are neighbours in Z. We study the behaviour of two correla-
tion functions: P[X(tw + t) = X(tw)] and P

[

X(t′) = X(tw)∀t′ ∈

[tw, tw + t]
]

. It is well known that for any of these correlation
functions a time-scale t = f(tw) such that aging occurs can be
found. We study these correlation functions on time-scales differ-
ent from f(tw), and we describe more precisely the behaviour of a
singular diffusion obtained as the scaling limit of Bouchaud’s trap
model.

1. Introduction and results

Bouchaud’s trap model (BTM) was introduced in [Bou92] as a phe-
nomenological model for studying the dynamics of complex disordered
systems like spin glasses. Although the model is quite simple, it man-
ifests some major features observed in real physical systems, aging in
low temperature regime being one of them. For physical motivation be-
hind the model see the original paper [Bou92] or [BCKM98] and their
references.

The aim of this paper is to obtain a finer description of the behaviour
of some time-correlation functions that are known to manifest aging in
the one-dimensional BTM. Our attention is concentrated mainly on
the behaviour of these functions at time scales that are much shorter
or longer than the scale at which aging occurs. The description of this
behaviour is important in systems where multiple aging scales exist,
since even if such a system is observed only at one time-scale where
aging occurs, the other time-scales can produce corrections that should
be controlled. We further describe asymptotic behaviour of “aging lim-
its” whose existence was proved in [FIN02, BČ04]. Our work is mainly
motivated by the paper [BB03] where similar results are obtained using
computer simulations and physical arguments.

The methods that we use to control the behaviour of the time-
correlation functions allow us to get a more precise description of a
singular diffusion obtained as the scaling limit of the one-dimensional
BTM, and which was for the first time introduced in [FIN02]. In partic-
ular, we get sub-diffusive upper bounds on the transition kernel of this
diffusion, which we believe to be (except for multiplicative constants)
optimal.
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We will study the following, so called symmetric, one-dimensional
version of BTM. Let τ = {τx}x∈Z be a collection of i.i.d. positive ran-
dom variables on some probability space (Ω,P,F). The distribution of
τi will be specified later. The symmetric BTM in dimension one is a
continuous time Markov chain on Z satisfying X(0) = 0 and

P[X(t+ dt) = y|X(t) = x] = wxydt (1)

with transition rates wxy given by

wxy = (2τx)
−1 if |x− y| = 1, (2)

and zero otherwise. In words, the process X waits at site x for an
exponentially distributed time with mean value τx and then jumps
with equal probability to one of the neighbouring sites. For this reason
we call τx the depth of the trap at x.

Let us recall briefly the main results about the aging in the BTM
which are relevant to our paper. Usually, proving an aging result con-
sists in finding a two-point function F (tw, tw + t), that is a quantity
measuring the behaviour of the system at time t+ tw after it has aged
for the time tw, such that a nontrivial limit

lim
tw→∞

F (tw, tw + f(tw)) = Cf (3)

exists for an increasing function f(t), satisfying f(t) → ∞ as t → ∞.
In BTM such two-point functions may be found if for some 0 < α < 1
the random variables τx satisfy1

P[τx > u] = u−α(1 + o(1)) as u → ∞. (4)

It was observed in [RMB00] that if this condition is satisfied, then the
two-point function

R(tw, tw + t) = EP[X(t+ tw) = X(tw)|τ ], (5)

i.e. the probability that at the end of the observation period (at time
t + tw) the system is in the same state as it was in the beginning (at
time tw) averaged over the random environment τ , has aging behaviour.
This was proved in [FIN02]. There it is shown that under (4) there is
a non-trivial function R(θ) such that

lim
tw→∞

R(tw, tw + θtw) = R(θ). (6)

This limiting function R(θ) depends on the law of τx only through the
index α.

Another two-point function that is often considered in BTM is

Π(tw, tw + t) = EP[X(t′) = X(tw)∀t′ ∈ [tw, tw + t]|τ ], (7)

1Some of the cited results were actually proved under weaker condition, namely
that τx are in the domain of attraction of an α-stable law. We prefer, however, the
condition (4) since the more general setting unnecessarily complicates the reasoning.
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giving the probability that the system does not change its state between
tw and tw + t again averaged over τ . In [BČ04] it was proved that if
(4) holds, then the two-point function Π satisfies

lim
tw→∞

Π(tw, tw + θtγw) = Π(θ) (8)

for some non-trivial function Π(θ) and

γ =
1

1 + α
< 1. (9)

Since the time-scale tγw is much smaller than tw, such behaviour may
be referred to as sub-aging.

The proofs of the these results are based on the fact that it is possible
to find a scaling limit of the one-dimensional BTM. This limit was for
the first time identified in [FIN02] as a singular diffusion Z with speed
measure ρ given as Lebesgue-Stieltjes measure associated to an α-stable
subordinator. (The definition of the singular diffusion is recalled in
Section 2 of this paper.) The fixed time distributions of this diffusion
are purely atomic, and the functions R(θ) and Π(θ) can be expressed
using Z as

R(θ) = P[Z(1 + θ) = Z(1)], (10)

Π(θ) =

∫ ∞

0

P[ρ(Z(1)) ∈ du]e−θ/u. (11)

It is a rather direct consequence of the methods of [FIN02, BČ04]
that the functions R(θ) and Π(θ) both tend to zero as θ → ∞ and to
one as θ → 0. Similarly, it is not difficult to show that

lim
tw→∞

Π
(

tw, tw + f(tw)
)

=

{

0 if tγw = o(f(tw))

1 if f(tw) = o(tγw),
(12)

and

lim
tw→∞

R
(

tw, tw + f(tw)
)

=

{

0 if tw = o(f(tw))

1 if f(tw) = o(tw).
(13)

To conclude the overview we would like to point out some results
about aging in trap models on different state spaces. The BTM on a
large complete graph was initially proposed in physics literature as
an ansatz for the dynamics of the Random Energy Model [MB96,
BM97]. The relation between these two models was justified rigor-
ously in [BBG03a, BBG03b]. The BTM on the lattice Z

2 was studied
in [BČM03], where (sub)aging was proved for both two-point functions
R and Π. This result was further generalised to Z

d, d ≥ 3, in [Čer03].
We will now formulate our results assuming always that (4) is sat-

isfied. To avoid technical complications we further assume that there
exists c > 0 such that

P[τi > c] = 1. (14)
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This assumption is harmless since very shallow traps have little influ-
ence on the dynamics. In the following theorem we give the rates of
convergence in (12) and describe the asymptotic behaviour of Π(θ).

Theorem 1.1. Assume that conditions (4) and (14) hold.
(a) Short time behaviour. Let f(t) be an increasing function satis-

fying tκ ≥ f(t) ≥ tµ for all t large and for some γ > κ ≥ µ > 0.
Then

lim
t→∞

(f(t)

tγ

)α−1
(

1 − Π(t, t+ f(t))
)

= K1, (15)

with 0 < K1 <∞.

(b) Long time behaviour. Let g(t) be such that tγ = o(g(t)). Then

lim
t→∞

(g(t)

tγ

)α

Π
(

t, t+ g(t)
)

= K2, (16)

with 0 < K2 <∞.

(c) Behaviour of Π(θ). The function Π(θ) defined in (8) satisfies

lim
θ→0

θα−1(1 − Π(θ)) = K1, (17)

lim
θ→∞

θαΠ(θ) = K2. (18)

Results that we present here for the two-point function R are rela-
tively weaker. The reason for this is that the process X usually makes
a lot of excursions from X(tw) between the times tw and tw + t that
we want to consider. The behaviour of the function R is therefore in-
fluenced by the random environment in the neighbourhood of X(tw)
which we cannot control precisely.

Theorem 1.2. Assume that conditions (4)and (14) hold.
(a) Long time behaviour. Let f(t) be such that t = o(f(t)). Then

0 < lim inf
t→∞

(f(t)

t

)αγ

R
(

t, t+ f(t)
)

≤ lim sup
t→∞

(f(t)

t

)αγ

R
(

t, t+ f(t)
)

<∞. (19)

(b) Behaviour of R(θ). The function R(θ) defined in (6) satisfies

0 < lim inf
θ→∞

θαγR(θ) ≤ lim sup
θ→∞

θαγR(θ) <∞. (20)

Remarks. 1. We will give quite explicit formulas for the constants K1

and K2 appearing in Theorem 1.1. As these formulas require some ad-
ditional notation, we prefer to postpone their presentation to Sections 4
and 6.

2. Note also that, as in [FIN02] and [BČ04], we take in (5) and (7) the
average over the random environment τ . The averaging is necessary for
the existence of a limit in (6) and (8). For fixed τ these limits do not
exist. However, from the proofs we present for averaged case we can
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get quenched results in the short time regime without a major effort.
Namely, the following quenched version of Theorem 1.1(a) holds true.

Theorem 1.3. Let the conditions of Theorem 1.1(a) be fulfilled and
let

Π(tw, tw + t|τ ) = P[X(t′) = X(tw)∀t′ ∈ [tw, tw + t]|τ ]. (21)

Then
(f(t)

tγ

)α−1
(

1 − Π(t, t+ f(t)
∣

∣

τ )
) law
−−→ Z as t→ ∞ (22)

for some non-degenerate random variable Z.

Before we proceed to the proofs of these theorems, let us explain at
the heuristic level the behaviour of the process X at large times. After
the first n jumps the process typically visits O(n1/2) sites. The deepest
trap that it finds during n jumps has therefore the depth O(n1/2α) as
can be verified from (4). This trap is typically visited O(n1/2) times.
Since the depths are in the domain of attraction of an α-stable law with
α < 1, the time needed for n jumps is essentially determined by the
time spent in the deepest trap. This time is O(n(1+α)/2α). Inverting
this expression we get that before time t the process visits typically
O(tαγ) sites and the deepest traps it finds during this time have the
depth of order tγ. Moreover, the process is usually located in one of
these deep traps at the time t. More precisely, it was proved in [BČ04]
that the distribution of the random variable τX(t)/t

γ converges to a
non-degenerate distribution as t → ∞. The sub-aging (8) is then an
almost direct consequence of this claim.

Being in the trap with the depth tγ, the process needs typically a time
of the same order to jump out. In Theorem 1.1(a) we are interested
in 1 − Π(t, t+ f(t)) with f(t) � tγ, that is in the probability that a
jump occurs in a time much shorter than tγ. There are essentially two
possible strategies which leads to such an event:

(i) τX(t) has the typical order tγ but the jump occurs in an excep-
tionally short time.

(ii) X(t) is in a non-typically shallow trap and stays there a typical
time.

We prove in Section 4 that the second strategy dominates. Therefore,
we will need to study the probability of being in a very shallow trap
or, equivalently, to describe the tail of P[τX(t)/t

γ ≤ u] for u close to 0.
This description can be found in Proposition 4.2. We will use the fact
that although the BTM never reaches equilibrium in a finite time, it
is nearby equilibrium if we observe only traps that are much shallower
than the typical depth tγ on intervals that are small with respect to
the typical size of X(t). This puts on rigorous basis the concept of
local equilibrium that was introduced in [RMB00]. The concept does
not give the right predictions for the values of the limiting functions
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R(θ) and Π(θ) but it is useful to describe their asymptotic behaviour
as was already observed in this paper.

In Theorem 1.1(b) we are interested in the possibility that the system
does not jump for an exceptionally large time g(t). It should be not
surprising that this event is related to the event of being in an unusually
deep trap with the depth of order g(t). We will see that the process
X can reach such trap only if it is sufficiently close to its starting
point. Since the process visits usually O(tαγ) sites before time t, it is
not difficult to argue heuristically that the probability that X hits a
trap with depth larger than g(t) before t decreases as (g(t)/tγ)−α. We
will give precise arguments that leads to this claim and to the proof of
Theorem 1.1(b) in Section 6.

For the study of the two-point function R in Section 7 we need
to know how behaves the quenched probability P[X(t) = X(0)|τ ] for
large times t. In Section 3 an upper bound for this probability is
given together with quenched sub-diffusive bounds on the decay of the
probability to get far from the starting point. These bounds are used
frequently within the paper.

One of the main tools in proving aging in one-dimensional BTM
is coupling between different time scales which was for the first time
introduced in [FIN02]. As we make frequent use of it, we recall it in
Section 2.

2. Coupling between different time scales

Let (Ω̄, F̄ , P̄) be a probability space. On this space we define (as in
[FIN02]) a two-sided α-stable Lévy process V (x), x ∈ R, with cadlag
paths given by V (0) = 0 and

Ē
[

exp
(

− λ(V (x+ y) − V (x))
)]

= exp
[

αy

∫ ∞

0

(

e−λw − 1
)

w−1−α dw
]

= exp
[

− yλαΓ(1 − α)
]

.
(23)

We use ρ to denote the Lebesgue-Stieltjes measure associated to V ,
that is ρ(x, y] = V (y) − V (x). It is known that

ρ(dx) =
∑

i

viδxi(dx), (24)

where (xi, vi) yields an inhomogeneous Poisson point process on R ×
(0,∞) with intensity dxαv−1−α dv.

For each ε > 0 we define a sequence of random variables τ ε
i on Ω̄ in a

way that the family {τ ε
i , i ∈ Z} has the same distribution as {τi, i ∈ Z}.

The construction is as follows.
Let G : [0,∞) 7→ [0,∞) be such that

P̄[V (1) > G(u)] = P[τ0 > u]. (25)
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The function G is well defined since V (1) has a continuous distribution
function, G is nondecreasing, right continuous, and hence has a nonde-
creasing, right continuous generalised inverse G−1(s) = inf{t : G(t) ≥
s}. The random variables τ ε

i are then defined by

τ ε
i = G−1

(

ε−1/αρ(εi, ε(i+ 1)]
)

. (26)

The family τ ε
i has the required properties, that is for fixed value of ε

the random variables τ ε
i are i.i.d. and have the same distribution as τ0.

An easy proof of this fact can be found in [FIN02] or [BČ04].
To couple the different time scales of BTM we introduce a collection

of measures µε,

µε(dx) =
∑

i∈Z

ε1/ατ ε
i δεi(dx). (27)

Let W be a Brownian motion defined also on (Ω̄, F̄ , P̄) that is inde-
pendent of V . For any ε > 0 we use Xε(t) to denote a process defined
as the time change of W using the speed measure µε. For sake of
completeness and in order to introduce some notation we give here a
definition of the time change.

Definition 2.1. Let ν be a positive measure on R and let `(t, x) be a
local time of Brownian motion W . We define φ(t) =

∫

`(t, x)ν(dx).
Let ψ(s) be a generalised right-continuous inverse of φ(t), ψ(s) =
inf{t;φ(t) ≥ s}. Then the process Y defined by Y (t) = W (ψ(t)) is
called time-changed Brownian motion with speed measure ν.

The relevance of the processes Xε can be seen from the following
lemma that was proved in [FIN02] and [BČ04].

Lemma 2.2. For all ε > 0 the process
(

Xε(t), µε(Xε(t))
)

, t ≥ 0,

has the same distribution as the process
(

εX(tε−1/αγ), ε1/ατX(tε−1/αγ)

)

,
t ≥ 0. In particular, Xε is a nearest-neighbour random walk on εZ.

We see from this lemma that the behaviour of X at a large time
tε = ε−1/αγ can be obtained from the behaviour of Xε at time t = 1.
In particular,

R(tε, tε + f(tε)) = P̄
[

Xε(1) = Xε(1 + f(tε)/tε)
]

, (28)

Π(tε, tε + f(tε)) =

∫ ∞

0

P
[

τX(tε) ∈ du
]

e−f(tε)/u

=

∫ ∞

0

P̄
[

µε[Xε(1)] ∈ du
]

exp
(

−
f(tε)ε

1/α

u

)

. (29)

The first step in proving aging in BTM (see [FIN02, BČ04]) is the
observation that the family µε converges to ρ P̄-a.s. vaguely and also in
so called point process sense. The point process convergence is defined
as follows.
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Definition 2.3. [FIN02] Given a family ν, νε, ε > 0 of locally finite
measures on R, we say that νε converges in the point process sense to ν,

and write νε
pp
→ ν, as ε→ 0, provided the following holds: if the atoms

of ν, νε are, respectively, at the distinct locations yi, y
ε
i′ with weights

wi, w
ε
i′, then the subsets of Vε := ∪i′{(yε

i′, w
ε
i′)} of R × (0,∞) converge

to V := ∪i{(yi, wi)} as ε → 0 in the sense that for any open U , whose
closure Ū is a compact subset of R × (0,∞) such that its boundary
contains no points of V , the number of points |Vε∩U | in Vε∩U is finite
and equals |V ∩ U | for all ε small enough.

Remark that, unlike vague or weak convergence, the point process
convergence is sensitive to the event being exactly in one specified
trap. That is why this convergence plays a decisive role in studying
the behaviour of the two-point functions R and Π.

The convergence of the speed measures µε implies convergence of the
processes Xε as was proved for the weak convergence in [Sto63] and for
the point process convergence in [FIN02].

Proposition 2.4. For P̄-a.e. realisation of the measure ρ and for any
t > 0, the distribution ofXε(t) converges weakly and in the point process
sense to the distribution of a singular diffusion Z at time t, where the
singular diffusion Z is defined as the time change of W using ρ as
the speed measure. Further, the distribution of the random variable
µε[Xε(t)] converges to the distribution of ρ[Z(t)] for a.e. ρ weakly and
in the point process sense.

Using this proposition and formulas (28), (29) it is possible to get
the expressions for Π(θ) and R(θ) as they appear in [FIN02, BČ04],

R(θ) = P̄[Z(1 + θ) = Z(1)], (30)

Π(θ) =

∫ ∞

0

P̄
[

ρ[Z(1)] ∈ du
]

e−θ/u. (31)

From this point we consider only the processes Xε defined on the
space (Ω̄, P̄). Therefore we simplify the notation by omitting the bars.

We will often use scaling arguments based on the fact that the fol-
lowing equalities in distribution hold. For any t ≥ 0, λ > 0 and x ∈ R

V (x)
d
= λ−1/αV (λx)

W (t)
d
= λ−1W (λ2t)

`(t, x)
d
= λ−1`(λ2t, λx)

Z(t)
d
= λ−1Z(tλ(1+α)/α).

(32)

The equalities in the left column are well known. The first equality
on the right can be derived easily using properties of the local time.
The forth equality follows from the definition of Z and the previous
three equalities. Indeed, let V λ(x), W λ(t), and `λ(t, x) be the right-
hand sides of first three equalities in (32). We define Zλ as the time
change of W λ using the Lebesgue-Stieltjes measure associated to V λ

as the speed measure. Then using the notation from Definition 2.1 we
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get φλ(t) :=
∫

`λ(t, x) dV λ(x) = λ−(1+α)/αφ(λt2). Therefore, its inverse
ψλ(s) = λ−2ψ(λ(1+α)/αs) and Zλ(t) := W λ(ψλ(t)) = λZ(λ(1+α)/αt).

Finally, we introduce some additional analytical objects related to
time changing. Let Y be the time change of Brownian motion with
locally finite speed measure ν. Then there exists a function pν(x, y; t)
such that for any Borel B ⊂ R, t > 0 (see for example [RW00])

Px[Y (t) ∈ B] =

∫

B

pν(x, y; t)ν(dy), (33)

where we use the symbol Px for distribution of the process started at x,
that is defined naturally by time changing of Brownian motion started
at x. The function pν is given by (33) only for x, y in the support of
ν. Therefore, we define pµε(x, y, t) =: pε(x, y, t) for x, y 6∈ εZ by linear
interpolation. The set of atoms of ρ is a dense subset of R. It is a
result of the theory of quasi-diffusions that this function is continuous
on this set if t > 0, and therefore has unique continuous extension on
R that we call also pρ. We summarise some known properties of pε, pρ

in the following lemma.

Lemma 2.5. Let ν ∈ {ρ, µε} and let x be an atom of ν. Then
(i) The function pν is a solution of the system

∂pν

∂t
(x, y; t) = Lνpν(x, y; t)

pν(x, y; 0) =ν(x)−1δx(y).
(34)

The generator Lµε =: Lε of the process Xε is weighted discrete Laplace
operator, that is for y ∈ εZ

Lεf(y) =
∂2f(y)

µε(∂y)∂y
=

1

2τ ε
yε−1ε1/αγ

{

f(y+ ε)+ f(y− ε)− 2f(y)
}

. (35)

For the definition of the generator Lρf = d2f/dρdx (whose properties
we do not use) we refer to [DM76, KW82].

(ii) pν is continuous on the set {(x, y, t) : x, y ∈ R, t > 0}, and
pν(x, y; t) = p(y, x; t).

(iii) For all t > 0, x ∈ R, the function pν(x, ·, t) has one maximum in
R and there exists an interval I(x, t) such that it is concave on I(x, t)
and convex outside of it.

(iv) The Dirichlet form Eε associated to Xε defined on L2(µε) is given
by

Eε(f, g) =

∫

fLεgdµε =
1

2ε

∑

x∈εZ

(

f(x+ε)−f(x)
)(

g(x+ε)−g(x)
)

. (36)

We will use pε(x) as a shorthand for pµε(0, x; 1), similarly we write
pρ(x) for pρ(0, x; 1). We use the letters C , c to denote positive constants
that have no particular importance. The value of these constants can
change during computations.
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3. Some estimates on pε

In this section we give some estimates on pε, which can be of their
own interest. In the averaged case they correspond up to multiplicative
constants to the numerical results obtained in [BB03]. Some of the
averaged results proved here can be obtained more easily using scaling
arguments. However, as we will need quenched results later, we use
more robust techniques.

Lemma 3.1. (Diagonal upper bound) Let B(x, r) denotes the closed
ball around x with radius r, B(x, r) = [x− r, x+ r]. We use Vε(x, r) to
denote its volume with respect to µε, Vε(x, r) = µε(B(x, r)). Then for
any x ∈ R and r > 0

pε

(

x, x; 4rVε(x, r)
)

≤ lim
s↑r

2

Vε(x, s)
. (37)

Proof. We use a similar method as in [BCK04]. Without loss of gen-
erality we assume that x = 0. To simplify the notation we define
Vε(r) = Vε(0, r), and B(r) = B(0, r) = [−r, r]. Since all arguments are
independent of ε we omit it from the notation. Let δ > 0 and let Uδ(r)
be an increasing smooth function satisfying

V(r − δ) ≤ Uδ(r) ≤ V(r). (38)

Set ft(y) = pε(0, y; t) and ψ(t) = ‖ft‖2
L2(µε)

. Markov property and

Lemma 2.5(ii) imply that ψ(t) = f2t(0). Since, by (33),
∫

[−r,r]

ft(y)µε(dy) < 1, (39)

there exists y = y(r) ∈ [−r, r] with ft(y) ≤ V(r)−1 ≤ Uδ(r)
−1. To

estimate p(0, 0; t) = ft(0) = ψ(t/2) we write

1

2
ft(0)

2 ≤ ft(y)
2 + |ft(y) − ft(0)|

2. (40)

Let I = [0 ∧ y, 0 ∨ y] and let f̄t(x) = ft(x)1l{x ∈ I}. Further, let
h(x) = xy−11l{x ∈ I}. Then h is a harmonic function for Lε on I as
can be checked easily. From well known properties of Dirichlet forms
(or using the Cauchy-Schwarz inequality) it follows that

E(ft, ft) ≥ E(f̄t, f̄t)

≥ E(h, h)(f̄t(y) − f̄t(0))
2 = (2|y|)−1(ft(y)− ft(0))

2.
(41)

Putting the last two displays together we get

2rE(ft, ft) ≥ −
1

Uδ(r)−2
+

1

2
ψ(t/2)2. (42)

From (36)

ψ′(t) = −2E(ft, ft) ≤
2Uδ(r)

−2 − ψ(t/2)2

2r
, (43)
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and ψ′′(t) = 4
∫

(Lft)
2 dµ ≥ 0, so ψ′(t/2) ≤ ψ′(t). Hence,

ψ′(t) ≤ ψ′(2t) ≤
2Uδ(r)

−2 − ψ(t)2

2r
. (44)

We set φ(t) = 2/ψ(t), so φ is increasing and

φ′(t) = −
1

2
φ2(t)ψ′(t) ≥

2 − φ(t)2Uδ(r)
−2

2r
. (45)

Now take r = r(t) such that φ(t) = Uδ(r(t)). This gives φ′(t) =
r′(t)U ′

δ(r(t)) ≥ (2r(t))−1 and thus

t ≤ 2

∫ t

0

r(s)r′(s)U ′
δ(r(s))ds = 2

∫ r(t)

0

uU ′
δ(u) du ≤ 2r(t)Uδ(r(t)).

(46)
Fix R and choose s such that R = r(s). Then s ≤ 2r(s)Uδ(r(s)) =
2RUδ(R), so φ(2RUδ(R)) ≥ φ(s) = Uδ(R). Using now the definitions
of ψ, φ, and ft we get

p(0, 0; 4RUδ(R)) ≤
2

Uδ(R)
. (47)

We finish the proof using (38) and taking limit δ → 0 . ˜

We further prove the off-diagonal upper bounds. We will not esti-
mate directly pε(x, y; t) but only Px[sups≤t |Xε(s) − x| > D]. As the
notation used in the upper bounds in the quenched case is relatively
complicated, we first present an argument leading to the upper bound
and then formulate the obtained results as a lemma. In the proof we
follow [Bas02] with modifications that are needed for random environ-
ment and sub-diffusive decay.

For the Brownian motion W that is used in the time change (and
that is not necessarily started at the origin) we define

T r = inf{t : W (t) −W (0) ≥ r}. (48)

Let

Sε(r) =

∫

[W (0),W (0)+r)

`(T r, x)µε(dx), (49)

which means that Sε(r) is the time that Xε spends in [Xε(0), Xε(0)+r)
before hitting the right border of this interval. Note that due to scal-
ing properties of Brownian motion W and Lévy process V (see (32))
the random variable Sε(r) has the same distribution as r(1+α)/αSε/r(1).
Similarly, conditionally on ρ = ρ0 and W (0) = x, the random vari-
able Sε(r) has the same distribution as r(1+α)/αSε/r(1) conditionally
on W (0) = 0 and ρ = Scx,r(ρ0), where the scaling Scx,r of measure is
defined by

Scx,r(ρ)(dx) =
∑

i

r−1/αviδ(xi−x)/r(dx) if ρ(dx) =
∑

i

viδxi(dx).

(50)
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Note also that Scx,r(ρ) has the same distribution as ρ.
Take now D, t, r, and n such that for some a which will be fixed

later these constants satisfy

n =
[

a
( D

tαγ

)1+α]

and r = D/n. (51)

Then, for fixed ε, using the equalities in distribution discussed in the
previous paragraph, we get

Ex[e
−nt−1Sε(r)|ρ] = E0[e

−a−1/αSε/r(1)| Scx,r(ρ)] =: exp(−Ha
ε (x, r; ρ)),

Ex[e
−nt−1Sε(r)] = E0[e

−a−1/αSε/r(1)] =: exp(−Ha
ε/r).

(52)

The constants Ha
ε converge to some constant Ha as ε → 0 as follows

from the vague convergence of measures µε and (49). Similarly, the
distribution of Ha

ε (x, r; ρ) converges as ε/r → 0. This condition corre-
sponds to

r � ε or D � ε−1/αta−1/α. (53)

Finally, we fix a and ε1 small enough such that for all ε < ε1

EHa
ε (x, r; ρ) ≥ 2 and Ha

ε ≥ 2. (54)

Let T0 = 0 and define inductively Ti+1 = T r ◦ θTi, where θt is the
standard time shift. Then, by decomposition at Ti,

Px

[

sup
s≤t

Xε(s) − x ≥ D
∣

∣ρ
]

≤ Px

[

n−1
∑

i=0

Sε(r) ◦ θTi ≤ t
∣

∣

∣
ρ
]

≤ Px

[

n−1
∏

i=0

exp(−λSε(r) ◦ θTi) ≥ e−λt
∣

∣

∣
ρ
]

(55)

Take λ = nt−1. Since Sε(r) ◦ θTi are independent for different indices i,
the last expression is bounded by

≤ en

n−1
∏

i=0

Ex+ir

[

exp(−nt−1Sε(r))
∣

∣ρ
]

= exp
{

n−
n−1
∑

i=0

Ha
ε (x+ ir, r; ρ)

}

,

(56)
and similarly for the averaged case

Px

[

sup
s≤t

Xε(s) −Xε(0) ≥ D
]

≤ exp
{

n −
n−1
∑

i=0

Ha
ε/r

}

≤ exp(−n) (57)

for all ε/r < ε1. We have proved the claim (a) of the following lemma.
The claim (b) can be proved using the same reasoning as in (55),(56)
taking λ = r = 1, a = 1 instead of (51) and λ = nt−1. Note that the
estimate (b) is far to be optimal.
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Lemma 3.2. (a) Let D ≤ t(aε1ε)
−1/α (i.e. ε/r ≤ ε1), and let n be

given by (51). Then

Px

[

sup
s≤t

Xε(s) − x ≥ D
∣

∣ρ
]

≤ exp
{

n−
n−1
∑

i=0

Ha
ε (x+ ir, r; ρ)

}

, (58)

Px

[

sup
s≤t

Xε(s) − x ≥ D
]

≤ exp
{

− a
( D

tαγ

)1+α}

. (59)

(b) For all D ≥ 0,

Px

[

sup
s≤t

Xε(s) − x ≥ D
∣

∣ρ
]

≤ exp
{

t−
D−1
∑

i=0

H1
ε (x+ i, 1; ρ)

}

, (60)

Px

[

sup
s≤t

Xε(s) − x ≥ D
]

≤ C exp{t− cD}. (61)

(c) For all r > 0 the random variables Ha
ε (x + ir, r; ρ) converge ρ-

a.s. as ε → 0.

This lemma has a simple corollary, which follows from the weak
convergence Xε(t) → Z(t) as ε→ 0, namely the following sub-diffusive
estimate holds.

Corollary 3.3. For any t > 0 and x > 0 the singular diffusion Z
satisfies

P
[

|Z(t)| ≥ x
]

≤ C exp
(

− c(x/tαγ)1+α
)

. (62)

4. Short time behaviour of function Π

In this section we prove Theorem 1.1(a). We show that the second
of the two strategies discussed in Introduction dominates. More pre-
cisely, we show that the traps with depth of order f(t) give the largest
contribution to 1 −Π(t, t+ f(t)). We will use expression (29) to com-
pute Π(t, t+f(t)). Note that in the language of processes Xε the traps
of original BTM with depth f(tε) correspond to atoms of µε with the
weight

h(ε) := f(tε)/t
γ
ε = f(ε−1/αγ)ε1/α. (63)

From the assumptions of Theorem 1.1(a) follows that the function h
satisfies

ε(1−(1+α)µ)/α ≤ h(ε) ≤ ε(1−(1+α)κ)/α (64)

for all ε small enough and therefore

lim
ε→0

h(ε) = 0. (65)

To estimate the contributions of traps with different depth we define
for a, b ∈ [0,∞] a random variable Z(ε; a, b),

Z(ε; a, b) = h(ε)α−1

∫ b

a

P
[

µε(Xε(1)) ∈ du
∣

∣ρ
]

[

1−exp
(

−
h(ε)

u

)]

. (66)
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By (29), the quantity we want to control satisfies

(f(tε)

tγε

)α−1
(

1 − Π(tε, tε + f(tε))
)

= EZ(ε; 0,∞) =: EZ(ε). (67)

Theorems 1.1 (a) and 1.3 are therefore direct consequences of the fol-
lowing proposition

Proposition 4.1. As ε → 0 the family Z(ε) converges P-a.s. and in
L1(P) to a nontrivial random variable Z defined by

Z = Γ(α + 2)
α

1 − α

∫ ∞

−∞

pρ(x) dx. (68)

The constant K1 defined in Theorem 1.1 is equal to EZ.

Proof. Choose two constants η1, η2 which satisfy

1

α
> η1 >

1

α
−
µ(α + 1)

α
> 1 − κ(α+ 1) > η2 > 0. (69)

With this choice εη1 ≤ h(ε) ≤ εη2/α ≤ εη2 for ε < 1.
To show that the second of two strategies dominates the behaviour

of Z(ε) we first prove that the atoms with weights larger than εη2 do
not contribute, that is

lim
ε→0

Z(ε; εη2,∞) = 0 P-a.s. and in L1(P). (70)

Indeed, since 1 − e−x ≤ x, we have uniformly in ρ

h(ε)α−1

∫ ∞

εη2

P
[

µε(Xε(1)) ∈ du
∣

∣ρ
]

(

1 − exp
(

−
h(ε)

u

)

)

≤ h(ε)α−1
(

1 − exp(h(ε)ε−η2)
)

≤ h(ε)αε−η2 . (71)

Using (64) we can bound the last expression by Cε1−κ(1+α)−η2, by (69)
1 − κ(1 + α) − η2 > 0. This proves (70).

We must now control the remaining part, that is Z(ε; 0, εη2). Set

Fε(u) = P
[

µε(Xε(1)) ≤ u
∣

∣ρ
]

. (72)

Integrating by parts we get

Z(ε; 0, εη2) = h(ε)α−1
[

Fε(ε
η2)

(

1 − exp(h(ε)ε−η2)
)

+

∫ εη2

0

Fε(u)h(ε)

u2
exp

(

−
h(ε)

u

)

du
]

. (73)

As ε → 0 the first term becomes negligible as can be shown using a
similar estimate as for (71). Dividing further the domain of integration
in the second term into [0, εη1) and [εη1, εη2), and using the substitution
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v = h(ε)−1u, we get for the first part

h(ε)α

∫ εη1

0

Fε(u)

u2
exp

(

−
h(ε)

u

)

du

≤ h(ε)α−1

∫ εη1h(ε)−1

0

v−2e−1/v dv. (74)

For small values of ε the integrand is increasing on the whole do-
main of integration, so that we can bound the previous expression by
Q(ε−1) exp(−ε−c) for some c > 0 and for some at most polynomially
increasing Q. Therefore (74) tends to zero uniformly in ρ. The result
of the previous paragraph and (70) imply that if the following limits
exist, then limε→0 Z(ε) = limε→0 Z1(ε), where

Z1(ε) = h(ε)α

∫ εη2

εη1

Fε(u)

u2
exp

(

−
h(ε)

u

)

du. (75)

We can see now that we need to study the behaviour of Fε for small
values of u. In the next section we will prove

Proposition 4.2. For P-a.e. ρ, the function Fε defined in (72) can be
written as

Fε(u) = Cεu
1−α + fε(u)u

1−α, (76)

where

Cε =
α

1 − α

∫ ∞

−∞

pε(x) dx. (77)

Cε and fε further satisfy

lim
ε→0

Cε =
α

1 − α

∫ ∞

−∞

pρ(x) dx =: C P-a.s. and in L1(P), (78)

lim
ε→0

sup
{

|fε(u)| : u ∈ (εη1, εη2)
}

= 0 P-a.s. and in L1(P). (79)

Remark. It is necessary to exclude u ∈ (0, εη1) from the supremum in
(79), since the behaviour of Fε for such u is influenced by the behaviour
of the distribution of τ0 near the origin that is not specified.

First, we use Proposition 4.2 to finish the proof of Proposition 4.1.
Applying again the substitution v = h(ε)−1u we obtain

Z1(ε) = Cε

∫ εη2h(ε)−1

εη1h(ε)−1

v−1−α exp(−1/v) dv +R(ε). (80)

Using (78) and the fact that, by (69), the integration domain converges
to (0,∞), we obtain that the main term converges to

C

∫ ∞

0

v−1−α exp(−1/v) dv. (81)
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The last display is equal to Z (see (68)) as can be verified by a simple
integration. The absolute value of the error term R(ε) can be bounded
for ε small enough by

2 sup
{

|fε(u)| : u ∈ (εη1, εη2)
}

·

∫ ∞

0

v−1−α exp(−1/v) dv, (82)

which is negligible by (79). ˜

Remark. The claim (17) of Theorem 1.1(c) can be proved by methods
that are very similar to the methods that we used in the just finished
proof. They differ only in the way how the limits are taken. To prove
Theorem 1.1(a) we needed to take the limit ε → 0 and in the same
time observe the atoms with the weight close to h(ε) → 0. To show
(17), the limit ε → 0 must be taken first, and then the probability
that ρ(Z(1)) is of order θ → 0 should be studied. It is easy to observe
that this change does not produce any problems in the argumentation
we presented. The equivalent of Proposition 4.2, that is P[ρ(Z(1)) ≤
u|ρ] = Cu1−α(1 + o(1)) as u→ 0 is a direct consequence of smoothness
of pρ and properties (24) of ρ. Similar remarks apply also to proofs of
(18) and Theorem 1.2(b).

5. Proof of Proposition 4.2

To finish the proof of Theorem 1.1(a) we need to show Proposi-
tion 4.2. We first prove claim (78).

Lemma 5.1.
∫ ∞

−∞

pε(x) dx →

∫ ∞

−∞

pρ(x) dx as ε → 0 P-a.s. and in L1(P).

(83)

Proof. First, we use Lemma 3.2 to estimate
∫ ∞

K
pε(x) dx for large K.

The integral over (−∞,−K] can be treated in the same way, while for
the integral over [−K,K] we will need different methods. The functions
pρ and also pε with ε small enough are decreasing on [K,∞) if K is
large enough. Therefore,

∫ ∞

K

pε(x) dx ≤
∞

∑

k=K

pε(k). (84)

Further, for k ≥ K,

P[Xε(1) ≥ k|ρ] ≥ P
[

Xε(1) ∈ [k, k + 1)
∣

∣ρ
]

≥ pε(k + 1)µε

(

[k, k + 1)
) (85)

Using this and Lemma 3.2(b) we get

pε(k) ≤
C

∏k−2
j=0 exp(−H1

ε (j, 1; ρ))

µε

(

[k − 1, k)
) =: qε(k). (86)
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and
∫ ∞

K

pε(x) dx ≤
∞

∑

k=K

qε(k). (87)

To control the denominator of (86) we need one technical lemma.

Lemma 5.2. The family τ ε
i satisfy

sup
ε≤1

E
[

µε

(

[0, 1)
)−1]

= sup
ε≤1

E

[{

ε1/α

ε−1

∑

i=1

τi
}−1]

<∞. (88)

Proof. Let Fτ be the common distribution function of τ ε
i ’s. Since τ ε

i ’s
satisfy (4) and (14), there exists κ > 0 small such that Fτ(x) ≤ 1−κx−α

for all x ≥ c. Define

Fσ(x) =

{

1 − κx−α for x ≥ c

0 for 0 ≤ x < c.
(89)

Since Fσ(x) ≥ Fτ (x) for all x ≥ 0 there exists a sequence of i.i.d. ran-
dom variables σi with the common distribution function Fσ defined on
the same probability space as τi satisfying σi ≤ τi for all i. Therefore

E

[{

ε1/α

ε−1

∑

i=0

τi

}−1]

≤ E

[{

ε1/α max
i≤ε−1

σi

}−1]

:= E[Yε]. (90)

The distribution function of Yε satisfies

FYε(x) =

{

1 for x ≥ ε−1/αc−1

1 − (1 − κxαε)ε−1

for x < ε−1/αc−1.
(91)

The expectation of Yε is therefore

E[Yε] = ε−1/αc−1(1 − κc−α)ε−1

+

∫ ε−1/αc−1

0

καxα(1 − εκxα)−1+ε−1

dx

≤ C + c

∫ ∞

0

xα exp[−εκxα(ε−1 − 1)] dx.

(92)

The last expression can be easily bounded uniformly for small ε. This
finishes the proof. ˜

We can now bound (86) and (87). It follows from Lemma 3.2 that
H1

ε (j, 1; ρ) converge for and all j ∈ N as ε → 0 to some nontrivial ran-
dom variable. The random variables H1

ε (j, 1; ρ) with different indices j
depend on ρ on disjoint intervals, therefore they are mutually indepen-
dent. The denominator of qε(k) is also independent of any H1

ε (j, 1; ρ)
that appears in the numerator. From these claims and Lemma 5.2 it
follows that there exist q < 1 and C < ∞ such that for all ε small
enough E[qε(k)] ≤ Cqk. Therefore, the expectation of (87) is finite.
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For any δ > 0 and for a.e. ρ it is thus possible to choose K = K(ρ)
independent of ε such that for all ε small enough

∫

|x|≥K

pε(x) dx ≤ δ/2. (93)

Similarly, one can choose L such that

E

∫

|x|≥L

pε(x) dx ≤ δ/2. (94)

Inside of the interval [−K,K] it is not difficult to conclude from the
regularity properties of pε and from the point process convergence of
fixed time distributions of Xε (Proposition 2.4) that

pε(x) → pρ(x) as ε → 0 uniformly for x ∈ [−K,K], P-a.s. (95)

Indeed, fix δ > 0 and choose δ′ small enough such that the set I(δ′) of
atoms of ρ

I(δ′) = {x : ρ[x] ≥ δ′} (96)

satisfies

sup
y∈[−K,K]

min
x∈I(δ′)

|x− y| ≤ δ, (97)

and further, writing I(δ′) =: {x1, . . . xr}, with xi < xi+1 for all i ∈
{1, . . . , r − 1},

∣

∣pρ(xi) − pρ(xi+1)
∣

∣ ≤ δ i ∈ {1, . . . , r − 1}. (98)

From the properties of pρ (Lemma 2.5) it is not difficult to show that
I(δ′) is finite a.s. Further, by the point process convergence of fixed
time distributions and of the sequence µε (see Proposition 2.4), there
exists a set I(δ′, ε) = {yε

1, . . . , y
ε
r} of atoms of µε such that yε

i → xi,
µε[yε

i ] → ρ[xi], and P[Xε(1) = yε
i |ρ] → P[Z(1) = xi|ρ] as ε → 0 (see

[BČ04], Proposition 2.5). Since pε(y) = P[Xε(1) = y|ρ]/µε(y), for all ε
small enough and for all i ∈ {1, . . . , r}

|yε
i − xi| ≤ δ2 and |pε(y

ε
i ) − pρ(xi)| ≤ δ2. (99)

Using the regularity properties of pε and the last expression it is possible
for δ small enough to identify three (not necessary disjoint) subintervals
of [−K,K] that cover [−K,K] so that for all ε small enough pε should
be increasing on the first, concave on the second, and decreasing on the
third interval. Using (99) it is then easy to get uniform convergence
of pε to pρ on any of these three intervals and thus on [−K,K]. This
proves (95).

The uniform convergence (95) implies
∫ K

−K

pε(x) dx →

∫ K

−K

pρ(x) dx P-a.s. (100)

and this together with (93) gives the a.s. convergence of Lemma 5.1.
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It remains to verify the L1 convergence of the integral in (94). Note
that the function pε can become very large here. It is thus a priori

not clear if E
[ ∫ L

−L
pρ dx

]

is finite. To control this integral we estimate
supy∈[−L,L] pε(y).

From the well known bound

pε(y) = pε(0, y; 1) ≤
(

pε(0, 0; 1)pε(y, y; 1)
)1/2

(101)

it follows that it is sufficient to bound supy∈[−C,C] pε(y, y; 1). Using
Lemma 3.1 we get for all a ≥ 16L

P[pε(y, y; 1) ≥ a] ≤ P

[ 2

Vε(y, r(ε)−)
≥ a

]

, (102)

where r(ε) is defined by

r(ε) = inf{r : 4rVε(y, r) ≥ 1}. (103)

We recall that Vε(x, r) denotes the µε-measure of the closed ball B(x, r)
with radius r and centre x. Therefore,

P[pε(y, y; 1) ≥ a] ≤ P
[

r(ε) ≥ a/8
]

= P
[

Vε(y, a/8) ≤ 2/a
]

≤ P
[

Vε(0, a/8 − 2L) ≤ 2/a
]

.
(104)

For the last inequality we used the fact that

B(0, a/8 − 2L) ⊂ B(y, a/8) for all y ∈ [−L,L]. (105)

Expression (104) can be bounded using the same strategy as we used
in the proof of Lemma 5.2. Using the same notation as there, setting
b = a/8 − 2L,

P[Vε(b) ≤2/a] ≤ P

[

ε1/α

b/ε
∑

i=0

τi ≤ 2/a
]

≤ P
[

max
i≤b/ε

σi ≤ 2ε−1/αa−1
]

≤
[

Fσ(2ε
−1/αa−1)

]b/ε
≤ (1 − κ2−αεaα)b/ε ≤ e−caαb.

(106)

Therefore

P[pε(y, y; 1) ≥ a] ≤ c exp(−c′a1+α) (107)

for all large a, uniformly for all y ∈ [−L,L] and for ε small enough.
It follows from (101) and (107) that the family of random variables

supy∈[−L,L] pε(y) is uniformly integrable and therefore
∫ L

−L
pε dx is uni-

formly integrable. In view of (94) and the already proved a.s. conver-
gence this implies the L1 convergence of Lemma 5.1. ˜

Proof of (76) and (79). We want to show that the function Fε(u) :=
P[µε(Xε(1)) ≤ u|ρ] can be written as Cεu

1−α + fε(u)u
1−α, where fε is

small in the sense of (79).
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Recall that µε(iε) = ε1/ατ ε
i . We define τ̃ ε

i (u) = τ ε
i 1l{ε1/ατ ε

i ≤ u}
and τ̄ ε

i (u) = τ̃ ε
i (u) − Eτ̃ ε

i (u). It follows from (4) and [Fel71] Theo-
rem VIII.9.2 that for all m ∈ N

E[(τ̃ ε
i (u))m] =

α

m− α
(uε−1/α)m−α(1+ o(1)) as uε−1/α → ∞. (108)

This implies that

E[(τ̄ ε
i (u))m] = C(uε−1/α)m−α as uε−1/α → ∞. (109)

Using this notation we can write

uα−1Fε(u) = ε1/αuα−1

∞
∑

i=−∞

pε(iε)Eτ̃
ε
i (u) + ε1/αuα−1

∞
∑

i=−∞

pε(iε)τ̄
ε
i (u).

(110)
Applying (108) we get for the difference of the first term and Cε (see
(77))

∣

∣

∣

∣

ε1/αuα−1

∞
∑

i=−∞

pε(iε)Eτ̃
ε
i (u) −

α

1 − α

∫

pε(x) dx

∣

∣

∣

∣

→ 0 (111)

as ε → 0, uniformly for u ∈ (εη1, εη2), P-a.s. and in L1(P). Therefore,
the error that we make by replacing the first term of (110) by Cε can
be included into fε(u).

To bound the second term of (110) we use the following lemma that
is proved later in this section.

Lemma 5.3. For any finite interval I ⊂ R let

fu
ε (I) = ε1/αuα−1

∑

i:iε−1∈I

τ̄ ε
i (u),

fε(I) = sup
{∣

∣fu
ε (I)

∣

∣ : u ∈ (εη1, εη2)
}

.

(112)

Then

lim
ε→0

fε(I) = 0 P-a.s, in L1(P), and in L2(P). (113)

We can now control the second term of (110). We start with the
contribution of terms with iε ≥ K for some large K, the terms with
iε ≤ −K can be controlled in the same way. Fix δ > 0. For u ∈
(εη1, εη2) we get using estimate (86)

ε1/αuα−1
∑

i:iε≥K

pε(iε)τ̄
ε
i ≤

∞
∑

k=K

qε(k)fε([k, k + 1)). (114)

As we have already discussed, qε(k) depends only on ρ in interval [0, k)
and satisfies E(qε(k)) ≤ Cqk for some q < 1. Therefore

E

[

∞
∑

k=K

qε(k)fε([k, k + 1))
]

≤ CE[fε([0, 1))]
∞

∑

k=K

qk <∞. (115)
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Therefore, for all δ small and for a.e. ρ it is possible to choose constants
K(ρ) and L such that for all ε small

ε1/αuα−1
∑

i:iε≥K(ρ)

pε(iε)τ̄
ε
i ≤ δ and E

[

ε1/αuα−1
∑

i:iε≥L

pε(iε)τ̄
ε
i

]

≤ δ.

(116)
It remains to estimate the sum over |iε| < K.

sup
u∈(εη1 ,εη2 )

ε1/αuα−1
∑

i:|iε|<K

pε(iε)τ̄
ε
i ≤ fε((−K,K)) sup

x∈(−K,K)

pε(x). (117)

From uniform convergence of pε to pρ (see (95)) it follows that for all ε
small supx∈(−K,K) pε(x) ≤ supx∈(−K,K) pρ(x) + δ. Since fε((−K,K)) →
0 a.s., the left-hand side of (117) converges to 0 a.s. Taking expectation
in (117) and using the Cauchy-Schwarz inequality we get

E

[

sup
u∈(εη1 ,εη2)

ε1/αuα−1
∑

i:|iε|<L

pε(iε)τ̄
ε
i

]

≤ E
[

fε((−L,L))2
]1/2

E
[

( sup
x∈(−L,L)

pρ(x) + δ)2
]1/2

. (118)

The L1 convergence then follows from L2 convergence of fε(I) that we
proved in Lemma 5.3 and the fact that E

[

(supx∈(−L,L) pρ(x) + δ)2
]

is
finite by (107) and (101). ˜

Proof of Lemma 5.3. Without loss of generality we can take I = [0, 1].
Fix a > 0. Using a standard 2k-th moment method we get

P
[

fu
ε (I) > a

]

≤ a−2ku2k(α−1)ε2k/α
E

[(

ε−1

∑

i=0

τ̄ ε
i (u)

)2k]

= a−2ku2k(α−1)ε2k/α
∑

l1,...,lr
P

li=2k

c(l1, . . . , lr)
r

∏

j=1

ε−1

∑

ij=0

E
[

(τ̄ ε
ij
(u))lj

]

.

(119)

Since Eτ̄ ε
i = 0, the first sum runs over all collections of integers l1, . . . , lr

satisfying li ≥ 2 for all i = 1, . . . , r. Using (109) we get

P
[

fu
ε (I) > a

]

≤ a−2ku2k(α−1)ε2k/α
∑

l1,...,lr

C(l1, . . . , lr)
r

∏

i=1

ε−1(uε−1/α)`j−α

≤ Ca−2ku2kα

k
∑

r=1

u−rα. (120)

Since u → 0 as ε → 0 the largest contribution comes from the term
r = k. Therefore, for all ε small,

P
[

fu
ε (I) > a

]

≤ Ca−2kukα. (121)
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Let δ > 0 small. Define i1(ε) and i2(ε) by ij(ε) := max{i ∈ Z : εηj ≥
(1 + δ)i}, and ui := (1 + δ)i. Then

P

[

i2+1
⋃

i=i1

(

fui
ε (I) > a

)]

≤
i2+1
∑

i=i1

Ca−2kukα
i ≤ Ca−2kδ−1εkαη2 log(ε−1).

(122)
Using the definition (108) of τ̄ ε

j , and the observation that τ̃ ε
j (ui) ≤

τ̃ ε
j (u) < τ̃ ε

j (ui+1) for all for u ∈ [ui, ui+1) we obtain

fu
ε (I) = ε1/αuα−1

ε−1

∑

j=0

(

τ̃ ε
j (u)− E[τ̃ ε

0 (u)]
)

≤ fui+1

ε (I) + ε1/αuα−1ε−1
(

E[τ̃ ε
0 (ui+1)] − E[τ̃ ε

0 (u)]
)

≤ fui+1

ε (I) + cuα−1
[

u1−α
i+1 − u1−α

]

≤ fui+1

ε (I) + cδ.

(123)

Therefore,

P
[

sup{fu
ε (I) : u ∈ [εη1, εη2]} ≥ a + cδ

]

≤ Ca−2kδ−1εkαη2 log(ε−1).
(124)

The last bound is valid for all a > 0 and δ small. Therefore, the
L1 and L2 convergences follows easily. Taking k large enough, the
a.s. convergence can be proved using the Borel-Cantelli argument. ˜

6. Long time behaviour of function Π

In this section we prove Theorem 1.1(b). We want to show that

lim
t→∞

( tγ

g(t)

)−α

Π(t, t+ g(t)) = K2, (125)

for g(t) much larger than tγ. In the language of processes Xε it is
equivalent (see (29)) to show

lim
ε→0

h(ε)α

∫ ∞

0

P
[

µε(Xε(1)) ∈ du
]

exp
(

−
h(ε)

u

)

= K2, (126)

where

h(ε) := g(tε)/t
γ
ε = g(ε−1/αγ)ε1/α → ∞ as ε → 0. (127)

The event that Xε stays in one trap for an unusually long time is
determined by the event: “At time t = 1 the process Xε is in an
unusually deep trap.” Indeed, for any constant K

h(ε)α

∫ K

0

P
[

µε(Xε(1)) ∈ du
]

exp
(

−
h(ε)

u

)

≤ h(ε)α exp
(

−
h(ε)

K

)

→ 0 as ε → 0. (128)

To control the remaining part of the integral in (126) we need the
following lemma.
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Lemma 6.1. Let Uε(u) = P
[

µε(Xε(1)) ≥ u
]

. Then

Uε(u) = K(ε)u−α(1 + fε(u)) (129)

where for some ε0

lim
u→∞

sup
ε<ε0

∣

∣fε(u)
∣

∣ = 0. (130)

The function K(ε) converges as ε→ 0 to E[RZ ], where RZ is the range
of Z up to time t = 1 defined by

RZ = sup{Z(t) : t ≤ 1} − inf{Z(t) : t ≤ 1}. (131)

We can now finish the proof of Theorem 1.1(b). Integrating by parts
we get

h(ε)α

∫ ∞

K

P
[

µε(Xε(1)) ∈ du
]

exp
(

−
h(ε)

u

)

= h(ε)α
{

Uε(K)e−h(ε)/K +

∫ ∞

K

Uε(u)e
−h(ε)/uh(ε)

u2
du

}

.

(132)

The contribution of the first term in the braces becomes negligible as
h(ε) → ∞. We give the upper bound for the second term. Fix δ > 0
and choose K such that Uε(u) ≤ (1 + δ)u−α

E[RZ ] for all u ≥ K and
ε ≤ ε0. This is possible by Lemma 6.1. The contribution of the second
term in (132) is then bounded from above by

(1 + δ)h(ε)α

∫ ∞

K

E[RZ ]u−αe−h(ε)/uh(ε)

u2
du. (133)

Combining (128),(132) with the last expression and using the substi-
tution v = u/h(ε) we get

lim sup
ε→0

h(ε)α

∫ ∞

0

P
[

µε(Xε(1)) ∈ du
]

e−h(ε)/u

≤ (1 + δ)E[RZ]

∫ ∞

0

v−α−2e−1/v dv =: (1 + δ)K2 ∈ (0,∞). (134)

In the same way we get a corresponding lower bound. Since δ was
arbitrary the proof of Theorem 1.1(b) is finished. It remains to show
Lemma 6.1.

Proof of Lemma 6.1. We show that the probability that Xε hits a trap
with the depth larger than u during the time interval [0, 1] decreases as
u−α. IfXε hits such trap at a time T < 1, it has a very large probability
to be there also at time t = 1. Formally, let Iε(u) be the set of atoms
of µε with the weight larger than u, Iε(u) = {x : µε(x) ≥ u}. Let L be
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a large constant. We define

T = Tε(u) = inf
{

t ≥ 0 : Xε(t) ∈ Iε(u)
}

,

A = Aε(u) =
{

Tε(u) ≤ 1
}

,

B = Bε(u) =
{

|Xε(s)| ≤ L for all s ≤ 1 ∧ Tε(u)
}

,

C = Cε(u) =
{

Xε(1) = Xε(Tε(u))
}

.

(135)

Using these definitions we get

P[A] ≥ Uε(u) ≥ P [A ∩B ∩ C ]. (136)

We will show that it is possible to choose L = L(u) such that

P[A] = K(ε)u−α(1 + κε(u)), (137)

P[A ∩ Bc] ≤ u−αλε(u), (138)

P[A ∩B ∩ Cc] ≤ u−αηε(u), (139)

for some κε, λε, ηε satisfying the same relation (130) as fε. The lemma
follows then from (136)–(139).

We first introduce some additional notation. Let for all u > 0 Ûi

and Ūi, i ∈ Z, be two independent sequences of i.i.d. random vari-
ables independent of V and W , having the same distribution as µε(0)
conditioned on being larger, resp. smaller than u, that is

P[Ûi ≥ a] = P[µε(0) ≥ a|µε(0) ≥ u]

P[Ūi ≥ a] = P[µε(0) ≥ a|µε(0) < u]
(140)

Let Yi, i ∈ Z, be a sequence of i.i.d. random variables uniformly dis-
tributed on [0, 1] and let Iε(u) = {iε : Yi ≤ P[µε(0) ≥ u]}. We define
two random measures

ν̄u
ε =

∑

i:iε/∈Iε(u)

µε(iε)δiε +
∑

i:iε∈Iε(u)

Ūiδiε

ν̂u
ε =

∑

i:iε/∈Iε(u)

νu
ε (iε)δiε +

∑

i:iε∈Iε(u)

Ûiδiε.
(141)

The measure ν̄u
ε is therefore almost equal to the measure µε, only the

weights of large atoms are changed to be smaller than u. We then re-
insert large atoms to ν̂u

ε in the way that is independent of ρ. Let X̄u
ε and

X̂u
ε be processes defined as the time change of Brownian motion with

the speed measure ν̄u
ε , resp. ν̂u

ε . It is not difficult to verify that (ν̂u
ε , X̂

u
ε )

has the same distribution as (µε, Xε) for all u > 0. Further, for any
bounded interval J there is u0 such that if u > u0, then Iε(u) ∩ J = ∅.
Therefore ν̄u

ε converges to µε as u → ∞ vaguely and in the point process
sense for a.e. realisation of ρ. Therefore, as follows from Theorem 2.1
of [FIN02], X̄u

ε (t) converges to Xε(t) as u→ ∞ weakly and in the point
process sense.
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To show (137) we write

P[A] = P
[

{Xε(t) : t ≤ 1} ∩ Iε(u) 6= ∅
]

= P
[

{X̂u
ε (t) : t ≤ 1} ∩ Iε(u) 6= ∅

]

= P
[

{X̄u
ε (t) : t ≤ 1} ∩ Iε(u) 6= ∅

]

.

(142)

For the second equality we used the equality of the distributions of Xε

and X̂u
ε , and for the third equality we used the fact that before the

first hit of Iε(u) the processes X̂u
ε and X̄u

ε behave in the same way.
This is true since for any measurable G ⊂ R \ Iε(u) the corresponding
speed measures satisfy ν̂u

ε (G) = ν̄u
ε (G). Let R(X̄u

ε ) = maxt≤1 X̄
u
ε (t) −

mint≤1 X̄
u
ε (t). Since Iε(u) is independent of X̄u

ε ,

P[A] = E
[

1 −
(

1 − P[µε(0) ≥ u]
)1+R(X̄u

ε )/ε]
. (143)

By definition (27) of µε and by (4), P[µε(0) ≥ u] = (uε−1/α)−α(1 +
κ′ε(u)), where κ′ satisfies (130). Therefore,

P[A] = E
[

R(X̄u
ε )ε−1(uε−1/α)−α(1 + κ′ε(u)) +O(ε−1(uε−1/α)−2α)

]

= E[R(X̄u
ε )]u−α(1 + κε(u)).

(144)

In the last computation we used the fact that E[exp(λR(X̄u
ε ))] exists

for some λ > 0 independent of ε and u if ε is small and u large enough
as can be proved as in Lemma 3.2. Since X̄u

ε converges to Xε a.s. as
u → ∞ and Xε converges to Z a.s. as ε → 0, it is not difficult to show

lim
u→∞

E[R(X̄u
ε )] → E[R(Xε)] =: K(ε) and lim

ε→0
K(ε) = E[RZ ]. (145)

This proves (137).
To prove (138) we write (recall that B(a) = [−a, a])

P[A ∩Bc] =
∞

∑

i=0

P

[

sup
t≤1∧T

∣

∣Xε(t)
∣

∣ ∈ (2iL, 2i+1L] ∩ A
]

≤
∞

∑

i=0

P

[

sup
t≤1∧T

∣

∣Xε(t)
∣

∣ ∈ (2iL, 2i+1L] ∩
{

B(2i+1L) ∩ Iε(u) 6= ∅
}

]

=
∞

∑

i=0

P

[

sup
t≤1∧T

∣

∣X̂u
ε (t)

∣

∣ ∈ (2iL, 2i+1L] ∩
{

B(2i+1L) ∩ Iε(u) 6= ∅
}

]

.

(146)

Since ν̄u
ε (x) ≤ ν̂u

ε (x) for all x ∈ R,

P
[

sup
t≤1∧T

|X̂u
ε (t)| ≥ a

]

≤ P
[

sup
t≤1

|X̄u
ε (t)| ≥ a

]

. (147)
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Therefore, using also independence of Iε(u) and X̄u
ε ,

P[A ∩Bc] ≤
∞

∑

i=0

P
[

sup
t≤1

∣

∣X̄u
ε (t)

∣

∣ ≥ 2iL
]

P
[

B(2i+1L) ∩ Iε(u) 6= ∅
]

≤ Cu−α

∞
∑

i=0

e−c2iL2iL.

(148)

Here we used the fact that uniformly for all large u and small ε,
P[supt≤1 |X̄

u
ε (t)| ≥ a] decreases at least exponentially with a, and fur-

ther the fact that P[B(K) ∩ Iε(u) 6= ∅] is smaller than CKu−α for all
ε small enough. If we choose L = L(u) such that limu→∞ L(u) = ∞,
then the sum in the last display tends to 0 as u → ∞. This proves
(138).

To show (139) we first estimate Px

[

Xε(s) 6= x|ρ, µε[x] ≥ u
]

for s ≤ 1
and x ∈ [−L,L]. If µε[x] ≥ u, then it follows from the definition of pε

(33) and Lemma 2.5 that pε(x, y, t) ≤ u−1 for all y ∈ R and t ≥ 0. Let
K = b log u with b large. Then

Px

[

Xε(s) 6= x
∣

∣ρ, µε[x] ≥ u
]

= Px

[

|Xε(s)| > K
∣

∣ρ, µε[x] ≥ u
]

+

∫

[−K,K]\{x}

pε(x, y; s)µε(dy)

≤ Px

[

|Xε(s)| > K
∣

∣ρ, µε[x] ≥ u
]

+
{

u−1µε

(

B(K) \ {x}
)

∧ 1
}

, (149)

It can be shown using the same methods as in Lemma 3.2 that, uni-
formly for all x ∈ R,

Px

[

|Xε(s)| ≥ K
∣

∣µε[x] ≥ u
]

≤ Ce−cK ≤ Cu−cb. (150)

Using the two previous displays we obtain

P[A ∩B ∩ Cc] ≤ Eρ

[

∑

x∈εZ∩B(L)

1l{x ∈ Iu(ε)}P[Xε(Tε) = x|ρ]

×
{

u−1µε

(

B(K) \ {x}
)

∧ 1
}

]

+ Cu−cb (151)

≤ Eρ

[

∑

x∈εZ∩B(L)

1l{x ∈ Iu(ε)}
{

u−1µε

(

B(K) \ {x}
)

∧ 1
}

]

+ Cu−cb

Since {x ∈ Iu(ε)} is independent of µε(B(K) \ {x}), the last display is
bounded by

∑

x∈εZ∩B(L)

P[x ∈ Iε(u)]Eρ

[

u−1µε(B(K)) ∧ 1
]

≤ u−α
[

Cu−αK(u)L+ Cu−cb+α
]

. (152)

Here we used the fact that E[u−1µε(B(K)) ∧ 1] behaves like Ku−α as
can be verified easily. It is now possible to take b large enough and
L(u) → ∞ such that the expressions in the brackets in the last display
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tends to zero as u → ∞. This finishes the proof of (137)–(139) and
thus of Lemma 6.1. ˜

7. Long time behaviour of function R

We prove Theorem 1.2 in this section. We first rewrite the object of
our interest in the language of processes Xε. Using (28) we get

(f(t)

t

)αγ

P
[

X(t+ f(t)) = X(t)
]

= h(ε)αγ
P
[

Xε(1 + h(ε)) = Xε(1)
]

,

(153)
where in this section h = h(ε) := f(tε)/tε. From the assumptions of
the theorem it follows that limε→0 h(ε) = ∞.

7.1. Lower bound. To get the lower bound we consider the event “Xε

hits a trap deeper than h(ε)γ before time one”. Lemma 6.1 implies
that this event has probability of order h(ε)−αγ. We will show that
hitting such deep trap, the process has a non-negligible probability to
be there also at times 1 and 1 + h(ε). To prove such behaviour we
consider (similarly as in the proof of Lemma 6.1) following events. Let
u = u(ε) = h(ε)γ . For some large constants K and L we define

T = Tε = min
{

t ≥ 0;µε(Xε(t)) ≥ u(ε)
}

A = Aε = {Tε ≤ 1}

B = Bε = {|Xε(t)| ≤ L∀t ≤ 1}

C = Cε = {Xε(1) = Xε(Tε)}

D = Dε = {Xε(1 + h(ε)) = Xε(Tε)}

E = Eε = {µε[−L,L] ≤ Kh(ε)γ}

(154)

Using these definitions we get

h(ε)αγ
P
[

Xε

(

1 + h(ε)
)

= Xε(1)
]

≥ h(ε)αγ
P[A,B,C,D,E] (155)

Using the same methods as in the proof of (137)–(139) it can be
shown that it is possible to fix L(ε) large enough such that

lim
ε→0

h(ε)αγ
P[A,B,C ] > E[RZ ]/2. (156)

In particular (see (148)) L(ε) can be chosen to increase slower than
any positive power of ε−1 as ε → 0. Further, it is easy to see that
P[Ec] ≤ cLK−αh(ε)−αγ. Therefore we can choose K large such that
lim infε→0 h(ε)

αγ
P[A,B,C,E] > 0. To finish the proof of the lower

bound we should therefore show that

lim inf
ε→0

P[D|A,B,C,E] > 0. (157)

Since

P[D|A,B,C,E] = E
[

µε(Xε(T ))pε

(

Xε(T ), Xε(T ), h(ε)
)
∣

∣A,B,C,E, ρ
]

(158)
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we should find first estimate pε(x, x, h(ε)) from bellow. Let R ≥ L.
The Markov property and the Cauchy inequality imply that

pε(x, x; h) ≥

∫ R

−R

p2
ε(x, y; h/2)µε(dy)

≥
1

µε(B(R))

{

Px

[

|Xε(h/2)| ≤ R
∣

∣ρ
]}2

≥
1

µε(B(R))
Px[Gε(R,L)|ρ]2,

(159)

where Gε(R,L) is the event: “Before exit from [−R,R] the process Xε

spends in the set H := B(R) \ B(L) time larger than h(ε)/2 .”
Fix now R = R(ε) = h(ε)αγ. We use the following scaling argument

to bound (159). Let V̄ (x), x ∈ [−1, 1] be a Lévy process independent
of V that has the same distribution as V restricted to [−1, 1]. Define
V̄ε(x) by

V̄ε(x) =



















(R − L)1/αV̄ ((x− L)/(R − L)) for x ∈ [L,R]

(R − L)1/αV̄ ((x+ L)/(R − L)) for x ∈ [−R,−L]

0 for x ∈ [−L,L]

V̄ (R), resp. V̄ (−R) for x > R, x < −R.
(160)

Let ρ̄ε, ρ̄ be the Lebesgue-Stieltjes measures associated to V̄ε and V̄
and let µ̄ε be constructed from ρ̄ε in the same way (26), (27) as µε was
constructed from ρ. Then µ̄ε has the same distribution as the restriction
of µε to the set H. Let further X̄ε be defined as the time change of
Brownian motion using µε1l{Hc}+ µ̄ε1l{H} as the speed measure, and
let Ḡε be defined as Gε using process X̄ε. Using the scaling properties
of our model (32) it is not difficult to show that for all x ∈ [−L,L]
the probability Px[Ḡε(R,L)|ρ, ρ̄] equals to the probability of the event:
“Xε/R started at x/R spends in B(1) \ B(L/R) a time larger than 1/2
before hitting −1 or 1”, conditioned on the random environment being
equal to Sc0,R(µ̄ε) (see (50)). Since L and R can be chosen such that
L/R → 0, it can be proved using methods of [FIN02] or [BČ04] that
Sc0,R(ε) µε → ρ̄ as ε → 0 vaguely and in the point-process sense, ρ̄-a.s.
Using Theorem 2.1 of [FIN02] we get

lim
ε→0

Px[Ḡε(R,L)|ρ, ρ̄] = P0[ sup
s≤1/2

|Z(s)| ≤ 1|ρ̄] (161)

and therefore, ρ and ρ̄-a.s. and in L1(P),

lim
ε→0

hγ
Px[Ḡε(R,L)|ρ, ρ̄]2

µ̄ε(H) +Khγ
=

P0[sups≤1/2 |Z(s)| ≤ 1|ρ̄]2

ρ̄(B(1)) +K
. (162)
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We can now insert (159)–(162) into (158). Using the fact that A, B,
C , and E are independent of ρ̄ we get

lim inf
ε→0

E
[

µε(Xε(T ))pε

(

Xε(T ), Xε(T ), h
)
∣

∣A,B,C,E, ρ
]

≥ lim inf
ε→0

E

[

µε(Xε(T ))

µε(B(R))
PXε(T )[Gε(R,L)]2

∣

∣

∣

∣

A,B,C,E, ρ

]

≥ lim inf
ε→0

E

[

hγ

µ̄ε(B(H)) +Khγ
PXε(T )[Ḡε(R,L)]2

∣

∣

∣

∣

A,B,C,E, ρ, ρ̄

]

≥ lim inf
ε→0

E

[

P[sups≤1/2 |Z(s)| ≤ 1|ρ]2

ρ̄[−1, 1] +K

]

> 0.

(163)

This proves (156) and thus the lower bound of Theorem 1.2.

7.2. Upper bound. To prove the corresponding upper bound we use
Lemma 3.1. To be able to apply it we introduce some notation that is
mainly technical. Its purpose will be clarified later. Set

L = L(ε) = κ(α) log h(ε)

B = B(ε) = {sup
t≤1

|Xε(1)| ≤ L(ε)}

D = D(ε) = {µε[−3L, 3L] ≤ h(ε)(8L)−1}.

(164)

Lemma 3.2 implies that it is possible to fix κ(α) large enough such that

h(ε)αγ
P[B(ε)c] → 0 as ε → 0. (165)

Using the scaling properties (32) of the Lévy process V we get

h(ε)αγ
P
[

D(ε)c
]

≤ ch(ε)αγ
P
[

V (1) ≥ CL(ε)−1−1/αh(ε)
]

≤ ch(ε)α(γ−1)L(ε)1+α → 0 as ε → 0. (166)

Expressions (165), (166) imply that to finish the proof we should find
an upper bound for

h(ε)αγ
P
[

{Xε(1 + h(ε)) = Xε(1)}, B,D
]

= h(ε)αγ
E

[

1lD(ρ)
∑

x∈εZ

|x|≤L

P[Xε(1) = x,B|ρ]Px[Xε(h) = x|ρ]
]

. (167)

We first estimate the contribution of traps with µε(x) ≥ h(ε)γ to the
sum in (167). Using Lemma 6.1 with u = h(ε)γ we get

h(ε)αγ
E

[

1lD(ρ)
∑

x:µε(x)≥h(ε)γ

P[Xε(1) = x,B|ρ]Px[Xε(h) = x|ρ]
]

≤ h(ε)αγ
P[µε(Xε(1)) ≥ h(ε)γ] ≤ C <∞. (168)

We will to apply Lemma 3.1 to control the contribution of the re-
maining traps in (167). To avoid the problems with jumps of Vε that
is used in this lemma, we define Uε(x, r) := Vε(x, r) = µε(B(x, r)) for
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all r ∈ εN0, and by the linear interpolation for all other r ≥ 0. Note
that Uε satisfies (38) with δ = ε. The function pε thus satisfies upper
bound (47). Define now r(x, ε) by

4r(x, ε)Uε(x, r(x, ε)) = h(ε). (169)

Then

Px[Xε(h) = x|ρ] ≤
2µε(x)

Uε(x, r(x, ε))
=

8µε(x)r(x, ε)

h(ε)
. (170)

If D(ε) holds, then B(L) ⊂ B(x, r(x, ε)) for all x ∈ B(L). Indeed, the
last event holds if r(x, ε) ≥ 2L, that means 8LUε(x, 2L) ≤ h(ε), and
this is satisfied if D(ε) is true.

To estimate r(x, ε) we define Wε(x,R) by

Wε(x, r) =

{

Uε(x, r) − Uε(x, L) + µε[x] for r ≥ L

µε[x] for r < L.
(171)

Let R(x, ε) be given by

R(x, ε) = sup{s : 4sWε(x, s) ≤ h(ε)} (172)

Note that the distribution of R(x, ε) depends on ρ in B(L) only through
the value µε(x). From (171) it follows that Wε(x, r) ≤ Uε(x, r) for all
x and r, and therefore R(x, ε) ≥ r(x, ε).

For any a > 0 and for any K ∈ [0,∞) such that 4aK ≤ 1 the random
variable R satisfies

P
[

R(x, ε) ≥ ahαγ
∣

∣µε[x] = Khγ
]

= P
[

4ahαγ
(

Uε(x, ah
αγ) − Uε(L) +Khγ

)

≤ h
]

,

= P
[

Uε(ah
αγ − L) ≤ hγ((4a)−1 −K)

]

.

(173)

The above probability is 0 for all a ≥ (4K)−1. After a calculation
very similar to that one used to prove (106) we get that (173) can be
bounded for all ε small enough and for 4aK ≤ 1 by

P
[

R(x, ε) ≥ ahαγ
∣

∣µε[x] = Khγ
]

≤ C exp
{

− ca
(

(4a)−1 −K
)−α}

.
(174)

Therefore, there exists a function G(K) such that

lim sup
ε→0

E[R(x, ε)h−αγ|µε[x] = Khγ ] ≤ G(K) ≤ G(0) <∞. (175)

Taking the expectation of (170) over the random environment in the
exterior of [−L,L], using the fact that R(x, ε) depends on the restric-
tion ρin of ρ to [−L,L] only through µε(x), we get

lim sup
ε→0

Px

[

Xε(h) = x
∣

∣ρin, µε[x] = Khγ
]

≤
8Khγhαγ

E[R(x, ε)h−αγ|µε[x] = Khγ]

h
≤ CKG(K). (176)
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We can now estimate the contribution of traps shallower than hγ.
Inserting (176) into (167) this contribution can be bounded by

Chαγ
Eρin

[

1lD(ρ)

∫ hγ

0

P[µε(x) ∈ du ∩B|ρin]uh
−γG(0)

]

. (177)

Taking first u ≤ h1−2αγ we have

hαγ
Eρin

[

1lD(ρ)

∫ h1−2αγ

0

P[µε(x) ∈ du ∩B|ρin]uh
−γG(0)

]

≤ Chαγh1−2αγh−γG(0) ≤ C <∞. (178)

Finally, for u ∈ [h1−2αγ, hγ] we set i0(ε) = blog2(h
1−2αγ/hγ)c. Then,

using Lemma 6.1,

hαγ
E

[

1lD(ρ)

∫ hγ

h1−2αγ

P[µε(x) ∈ du ∩B|ρin]uh
−γG(uh−γ)

]

≤ hαγ

−1
∑

i=i0

P[µε[Xε(1)] ≥ 2ihγ ]2i+1G(2i)

≤ C

−1
∑

i=−∞

2−iα2iG(0) <∞.

(179)

This finishes the proof of (167) and thus of the upper bound of Theo-
rem 1.2.
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[KW82] S. Kotani and S. Watanabe, Krĕın’s spectral theory of strings and gen-

eralized diffusion processes, Functional analysis in Markov processes,
Lecture Notes in Math., vol. 923, Springer, Berlin, 1982, pp. 235–259.

[MB96] C. Monthus and J.-P. Bouchaud, Models of traps and glass phenomenol-

ogy, J. Phys. A 29 (1996), 3847–3869.
[RMB00] B. Rinn, P. Maass, and J.-P. Bouchaud, Multiple scaling regimes in

simple aging models, Phys. Rev. Lett 84 (2000), 5403–5406.
[RW00] L. C. G. Rogers and David Williams, Diffusions, Markov processes,

and martingales. Vol. 2, Cambridge Mathematical Library, Cambridge
University Press, Cambridge, 2000.

[Sto63] Charles Stone, Limit theorems for random walks, birth and death pro-

cesses, and diffusion processes, Illinois J. Math. 7 (1963), 638–660.


