
Institut fiir Angewandte 
Analysis und Stochastik 

im Forschungsverbund Berlin e.V. 

Approximation of the Boltzmann equation 
by discrete velocity models 

Wolfgang Wagner 

submitted: 2nd May 1994 

Institute of Applied Analysis 
and Stochastics 
MohrenstraBe 39 
D - 10117 Berlin 
Germany 

Preprint No. 96 
Berlin 1994 

1991 Mathematics Subject Classification. 60K35, 76P05, 82C40. 
Key words and phrases. Boltzmann equation, discrete velocity models, weak convergence, random 
mass fl.ow. 



Edited by 
Institut fiir Angewandte Analysis und Stochastik (IAAS) 
Mohrenstra:Be 39 
D - 1011 7 Berlin 
Germany 

Fax: + 49 30 2004975 
e-mail (X.400): c=de;a=d400;p=iaas-berlin;s=preprint 
e-mail (Internet): preprint@iaas-berlin.d400.de 



Approximation of the Boltzmann 
equation by discrete velocity models 
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April 25, 1994 

Abstract. Two convergence results related to the approximation of the 
Boltzmann equation by discrete velocity models are presented. First we con-
struct a sequence of deterministic discrete velocity models and prove conver-
gence (as the number of discrete velocities tends to infinity) of their solutions 
to the solution of a spatially homogeneous Boltzmann equation. Second we 
introduce a sequence of Markov jump processes (interpreted as random dis-
crete velocity models) and prove convergence (as the intensity of jumps tends 
to infinity) of these processes to the solution of a deterministic discrete ve-
locity model. 
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1. Introduction 
We consider the spatially homogeneous Boltzmann equation (cf. (6, p. 26], 

or (3, p. 392]) 

:t p(t, v) =In. dw fs, de B( v, w, e) [p(t, v*) p(t, w*) - p(t, v) p(t, w)] (1.1) 

with the initial condition 

p( 0, v) = Po ( v) . (1.2) 

The symbols dw and de denote the Lebesgue measure on the three-dimen-
sional Euclidean space R 3 and the uniform surface measure on the unit sphere 
5 2 , respectively. The function B is called the collision kernel. The objects 
v* and w* are defined as 

v* = v + e(e,w - v), w* = w + e(e,v -w), 

where v, w E R 3 , e E 5 2 , and (., . ) denotes the scalar product. They are 
interpreted as the post-collision velocities of two particles with the pre-
collision velocities v and w. Eq. (1.1 )-(1.2) describes the time evolution of a 
probability density function p( t, v) on the velocity space R 3 • 

The purpose of this paper is to study the problem of approximating the 
measures 

>...(t,dv) = p(t,v)dv, 

which correspond to the solution of the Boltzmann equation (Ll)-(1.2), by 
measures concentrated on a finite subset of the velocity space. 

The investigation will be carried out in the following more general setup. 
Let ( Z, r) be a locally compact separable metric space ( r denoting the met-
ric) and Bz denote the Borel-a-algebra. Let B(Z) be the Banach space of 
bounded Borel measurable functions on Z with ll'Pll = supzEZ jcp(z)I, and let 
C(Z) denote the subspace of bounded continuous functions. Furthermore, 
let M(Z) be the space of finite, positive measures on (Z, Bz). 

Let Q be a function on Z x Z x Bz x Bz with the properties 
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(1.4) 

and 

(1.5) 

We consider the equation 

! L <p(z) >.(t, dz) =LL {LL [<p(Zi) + <p(Z2 ) - <p(z1 ) - <p(z2 )] x 

Q(z1, z2, dz1, dz2)} A(t, dz1) A(t, dz2), A(O) = Ao, (1.6) 

where r.p E B( Z) and Ao E M (Z) . The solution A( t) is a function of the time 
variable t E [O, oo) taking values in M(.Z). 

First we note that Eq. (1.6) is a generalized weak form of the Boltzmann 
equation (1.1)-(1.2) (cf. [12], [11]). To see that, one considers Z = R 3 , and 
the collision kernel Q of the form 

(1.7) 

where 

and 8z denotes the Dirac measure concentrated in z. The integral with respect 
to Q on the right-hand side of Eq. (1.6) takes the form 

fs, ~ B( vi, v2, e) ['P( v;) + <p( v;) - <p( v1) - <p( v2)] de. 

After the substitution of the integration variables (vi,v2 ) by (v;,v;) and 
removing the test function r.p, one obtains Eq. (1.1)-(1.2) provided that the 
kernel B has the properties 

B(v1,v2,e) = B(v2,v1,e) = B(v;,v;,e). 

Next we consider Eq. (1.6) in the case Z = z(N), where 
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The solution _x(N)(t) is determined by its values _x(N)(t, {dN)}) =: p~N)(t), 
i = 1, ... , N . Considering the functions 

where ~r denotes the indicator function of a set r, shows that Eq. (1.6) is 
equivalent to the system of ordinary differential equations 

! p~l(t) = . f, ['Prn(eiNl) + 'Prn(efNl) - 'Prn(eiNl) - 'Prn(e}Nll] x (L9) 
i,3,k,l=l 

Q(N)( dN)' e)N>, { eiN)}' { ef N)}) p~N) ( t) p;N\ t) ' 

(1.10) 

Moreover, one easily realizes that the system (1.9)-(1.10) is equivalent to the 
system 

(1.11) 
N L { a(N)(k, l,i,j)p~N)(t)p~N)(t) - a(N)(i,j, k, l)p~N)(t)p;N)(t)}, 

j,k,l=l 

(N)( ) _ (N)({ (N)}) . _ Pi 0 - Ao ei , i - 1, · · . , N , (1.12) 

where 

a(N)(i,j, k, l) = (1.13) 

~ [ QCNl(dN)' e}Nl, {eiNl}, {dN)}) + Q(N)(e}Nl' dNl, {eiNl}, {elN)}) + 
Q(N)(dN)' e)N)' {dN)}, {elN)}) + Q(N)(e)N>, dN>, {e}N)}, {elN)} )] . 

The system (1.11)-(1.12) is called a discrete velocity model (in the spatially 
homogeneous case). It describes the time evolution of the weight functions 
p~N) ( t) ' which correspond to the "discrete velocities" eiN) ' i = 1, ... 'N. We 
refer to [10], [2] concerning more details about discrete velocity models. 
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In Section 2 we are concerned with the problem of approximating the 
solution .X( t) of the generalized Boltzmann equation (1.6) by measures of the 
form 

N 
A(N)(t) = 2:P~N\t) 8e(N), 

i=l i 

where 8 is the Dirac measure, and p~N)(t), i = 1, ... , N, is the solution 
to a discrete velocity model of the form (1.11 )-(1.13). We construct an 
appropriate sequence ( z(N), ).~N), Q(N)) and prove that 

lim sup g(.X(t), 'j(N)(t)) = 0, VT> 0, 
N-+oo 09~T 

where e is a metric, which is equivalent to weak convergence in the space 
M(Z). 

In Section 3 we study the problem of approximating the solution p~N)( t) , 
i = 1, ... , N, of a discrete velocity model (1.11)-(1.13) by a stochastic pro-
cess. We introduce a Markov jump process (g~N,-y\ t)) :

1 
, where r is a 

parameter governing the intensity of the jumps. The functions g~N,-y\t) are 
interpreted as random weight functions, which correspond to the discrete ve-
locities dN), i = 1, ... , N. A model of such type was introduced in [5] and 
called random discrete velocity model. We prove that 

where E denotes mathematical expectation. 

2. A convergence result for discrete velocity 
models 

Let {LilN)' ... , .LiW)} be a measurable partition of the space Z into dis-
joint cells, i.e. 

A ( N) E Bz A ( N) n A (_N) = r1I • • 1 N . _/. . u, , u, u 1 VJ, i, J = , ... , , i / J , 
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where 0 denotes the empty set, and 

N A(N) _ z 
ui=1 Ll.i - , VN=l,2, .... 

Let dN) E ~~N), i = 1, ... , N, and consider the space 

Z-(N) = {t(N) c(N)} 
':.1 '· • • >':.N ' (2.1) 

with the discrete topology. Define the transformation J(N) as 

N 
J(N>(µ) = E µ(~~N)) Ee(N>, µ E M(Z). 

i=l ' 
(2.2) 

We consider J(N)(µ) as a measure on z(N) as well as a measure on z denoting 
it with the same symbol. Define 

(2.3) 

and 

where Ao and Q are the initial value and the collision kernel, respectively, of 
the Boltzmann equation (1.6). 

On M(Z), we consider the bounded Lipschitz metric (cf. [4, p. 150]) 

where 

ll'PllL =max (sup lcp(a:)I, sup lcp(a:~ -)(y)I) (2.6) 
xEZ x,yEZ ,xf,y T X, Y 

and 

(cp, µ) = l cp(y) µ(dy), cp E B(Z), µ E M(Z). (2.7) 
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Theorem 2.1 Letp~N)(t), i = l, ... ,N, be the solution of the discrete ve-
locity model ( 1.11)-(1.13) J corresponding to z(N) , ~~N) , and Q(N) defined in 
{2.1)) {2.3)) {2.4)) and let ~(N)(t) be the measure-valued function defined as 

N 

~(N)(t) = LP~N\t) Ee(N>. 
i=l i 

Suppose 

lim max diam ( ~~N)) = 0, V compact K C Z, (2.8) 
N-+oo i: ~~N)nK:j:.0 

where diam(r) = SUPx,yEr r(x,y)' r c z. 
Let the kernel Q satisfy {1.3)-(1.5) and 

k k[cp(z1) + cp(z2)] Q(., ., dz1, dz2) E C(Z x Z)' Vcp E C(Z). (2.9) 

Then 

lim sup e(.A(t), ~(N)(t)) = 0, VT> 0, 
N-+0009~T 

where .A(t) is the solution of the Boltzmann equation {1.6). 

Remark 2.2 Consider the particular case {1. 7)) {1.8). Assumptions {1.3)-
(1.5) and {2.9) are fulfilled) if the function B(v1,v2 ,e) is continuous in 
( V1, V2) and satisfies 

B(v1,V2, e):::; Bmax(e)' Vv1,V2 E R 3
' Ve E 8 2 ' 

where fs2 Bmax( e) de < oo. Thus, a truncation of the collision kernel is 
necessary in most applications (e.g.) B(v1,v2 ,e) = l(e,v2 -v1)1, in the hard 
sphere case). 

To prepare the proof of Theorem 2.1, we describe the representation of 
the solution of Eq. (1.6) in form of Wild's sum (cf. (14], [8], [11], [1]). Using 
assumption (1.5), we introduce a kernel 

Qmax(zi, z2, ri, r2) = Q(z1, z2, ri, r2)+ (2.10) 
[CQ,max - Q(zi, z2, z, Z)] Ez1 (r1) Ez2 (r2)' Z1., Z2 E z' ri, r2 E Bz. 
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Furthermore, we define an operator Kmax : A1(.Z) x M(.Z)---+ M(.Z) as 

Kmax(µi, µ2)(r) = l l [Qmax(z1, Z2, r, .Z)+ (2.11) 

Q max ( Z1' Z2' .z' r)] µi ( dz1) µ2 ( dz2) ' µi, µ2 E M ( .z) ' r E B z . 

We note that, with the above notations, Eq. (1.6) takes the form 

d 
dt (cp, A(t)) = (cp, Kmax(A(t), A(t))) - 2 GQ,max Ao(.Z) (cp, A(t)), A(O) =Ao. 

It is easy to check that there is a unique solution of Eq. (1.6). This solution 
is represented in the form 

00 

A(t) = Le-cot (1 - e-co t)k-1 Vk' t E [O, 00)' (2.12) 
k=l 

where 

V1 = Ao' (2.13) 

and 

Co = 2 Gq,max Ao(.Z). (2.14) 

We assume Ao( .Z) > 0, to avoid trivialities. One easily shows by induction 
on k that 

vk(.Z) = Ao(Z), \/k = 1, 2, .... (2.15) 

The series (2.12) converges in the total variation norm. 
The Wild's sum representation (2.12)-(2.14) shows rather explicitly how 

the solution .X(t) depends on the objects .Z, Ao, and Q that determine 
Eq. (1.6). First we study stability of the solution with respect to these 
objects. 

Let ( _z(N)) be a sequence of subspaces of .Z endowed with the relative 
topology. Note that any measure µ on _z(N) has a natural extension fl, on .Z 
defined as 

µ,(r) = µ(r n .zCN>), r E Bz. 
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Let, for N = 1, 2, ... , >i~N) E M(zCN)) and Q(N) be a kernel having the 
properties (1.3), (1.4) with z replaced by z(N). Assume that (1.5) holds 
uniformly in N , namely 

Q(N)( zCN) z(N)) < c z1, z2, ' - Q,max' VN = 1, 2, .... (2.16) 

Let K~~ be defined in analogy with (2.11 ), and let k~~(µ~N), µ~N)) de-
note the extension of the measure K~~(µ~N>, µ~N)), where µ~N)' µ~N) E 
M(z(N)). Finally, let >i(N)(t) denote the solution of Eq. (1.6) corresponding 
to ( z(N)' A~N)' Q(N)) . 

Lemma 2.3 Suppose {2.16) and 

(2.17) 

for any sequences µlN), µ~N) E M(z(N)) and measures µ 1 , µ 2 E M(Z) such 
that 

(2.18) 

If 

. "(N) hm e( Ao , Ao) = 0 , 
N-+oo 

(2.19) 

then 

lim sup e(j(N)(t), A(t)) = 0, VT> 0, 
N-+oo 05t5T 

where A(t) is the solution of the Boltzmann equation {1.6). 

Proof. Comparing the Wild's sum representations (2.12)-(2.14) of A(t) and 
A(N)(t), respectively, one obtains 

00 

sup e(.XCN)(t),A(t)) ~I: sup sup 
05f5T k=l 05f5T ll'PllL9 

(2.20) 

I -cot (1 -c0 t)k-1 ( ) -c(N) t (1 -c(N) t)k-1 ( "(N)) I e - e cp, vk - e o - e o cp, vk , 
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where 

(N) _ ,(N) (N) __ 1 _ ~ (N) ( (N) (N) ) 
Z/1 - Ao ' l/k+l - (N) k L..J Kmax l/i 'llk+l-i ' 

Co i=l 
k ~ 1, (2.21) 

and 

C(N) - 2 C '(N)(z(N)) 
O - Q,max Ao · (2.22) 

The series on the right-hand side of (2.20) has a majorant uniformly in N. 
This follows from (2.22), (2.15), and the fact that 

lim A~N)(z(N)) = Ao(Z)' (2.23) 
N-+oo 

which is a consequence of (2.19). Thus, it is sufficient to prove 

lim siN) = 0, Vk = 1, 2, ... , 
N-+oo 

where siN) denotes the elements of the series on the right-hand side of (2.20). 
One obtains 

The second term on the right-hand side of (2.24) tends to zero as N ~ oo, 
since the sequence of functions e-c~N) t (1 - e-c~N) t)k-l is equicontinuous on 
[O, T] and tends to the function e-co t (1 - e-co t)k-l, for each t E [O, T], 
because of (2.22) and (2.23). Thus, it remains to show that 

lim e(vk vlN)) = 0 Vk = 1, 2, .... 
N-+oo ' ' 

(2.25) 

This is done by induction on k. Fork= 1, (2.25) follows directly from (2.19). 
Considering the definitions (2.13) and (2.21) of Vk+l and vl~l, respectively, 
as well as (2.11), (2.15) and (2.14), shows that 

( "(N)) < 1 ~ ( ( ) " (N) ( (N) (N) )) e llk+i, vk+1 _ -k L..J e Kmax vi, vk+1-i , Kmax vi , vk+1-i 
Co i=l 

{N) 
+ 11 - ~, .A~N>(z<N>). (2.26) 

Co 
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The second term on the right-hand side of (2.26) tends to zero as N -7 oo, 
because of (2.22) and (2.23). The first term tends to zero, because of the 
induction hypothesis and assumption (2.17), (2.18). D 

The next two lemmas prepare the application of Lemma 2.3 to the special 
sequence (z(N) ).~N), Q(N)) defined in (2.1 ), (2.3), (2.4). 

Lemma 2 .4 Let the kernel Q satisfy ( 1. 3)-(1. 5) and (2. 9). 
Then the operator Kmax defined in {2.11) is continuous with respect to 

weak convergence. 

Proof. One obtains from (2.11) and (2.10) that 

(cp, Kmax(µi, µ2)) = 
l l { l l[cp(z1) + cp(z2)] Qmax(zi, z2, dz1, dz2)} µ1(dz1) µ2(dz2) 

l l { l l[cp(zi) + cp(z2)] Q(z1, z2, dz1, dz2) + 
[CQ,max - Q(z1, z2, Z, Z)] [cp(z1) + cp(z2)J} µi(dzi) µ2(dz2), 

and the assertion follows. D 

Lemma 2.5 Suppose assumption {2.8) is fulfilled. 
Let µ(N), µ E M(Z) and limN--too e(µ(N), µ) = 0. 
Then 

where J(N) is defined in {2.2). 

Proof. The triangle inequality shows that it is sufficient to prove 

(2.27) 

Let KC Z be a compact set. Taking into account definitions (2.5)-(2. 7), we 
obtain 
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< 

< 

sup I L { f cp( z) J(N)(µ(N))( dz) - f cp( z) µ(N)( dz)} I 
II II lt:i.(N) lt:i.(N) 

'P L9 i:t:i.~N)nK:f:0 i i 

+ 11!1~1 I i:~(~K=0 { L\Nl cp(z) J(Nl(µ(Nl)(dz) - L\Nl cp(z) µ(N)( dz) }I 
i 

sup L J, <N> lcp(z) - cp(eiN))I µCN)(dz) 
ll'PllL9 i: ,t:i.~N)nK:f:0 .t:i.i 

+ L 2 µCN)( ~~N)) 
i:.t:i.(N)nK=0 

i 

(2.28) 

Assertion (2.27) follows now from (2.28), assumption (2.8), and the tightness 
of the sequence (µCN)) . D 
Proof of Theorem 2.1. In order to apply Lemma 2.3, we check conditions 
(2.16)-(2.19). Condition (2.16) follows directly from the definition (2.4) and 
assumption (1.5). Condition (2.19) is a particular case of Lemma 2.5, because 
of (2.3). Finally, we note that 

K (N) (µ(N) µ(N)) = j(N)(K (µ(N) µ(N))) 
max 1 ' 2 max 1 ' 2 ' 

where µiN), µ~N) E M(z(N)), because of (2.4). Thus, condition (2.17), (2.18) 
follows from Lemma 2.5 provided that 

. ( ( (N) (N)) ( )) 
N
hm e Kmax µ1 ,µ2 ,Kmax µ1,µ2 = 0, 
-.oo 

if 

This is a consequence of Lemma 2.4 and assumptions (1.5) and (2.9). D 

3. Random mass flow and discrete velocity 
models 

We introduce a Markov process Z(t) = (giN,-y)(t)):
1 

with the state space 
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[O, Cg,max]N, where Cg,max > 0, and the infinitesimal generator 

N 
A(<I>)(z) = L n<N,-r)(.z,i,j,k,l) [<I>(J(N,-r)(.z,i,j,k,l))- <I>(z)], (3.1) 

i,j,k,l=l 

where z = (gi, ... , 9N), r ~ 1, and <I> is a bounded measurable function on 
the state space. The mapping J(N,-r) is a jump transformation defined as 

[J(N,-y)(- . . k l)] - Q(N,-y)(- . . k l) ["'' ,,/, ,,/,. ,,/,. ] z, i, ), , m -9m + z, i, ), , 'f'k,m + <pl,m - <f'i,m - o/3,m , (3.2) 

where 

i:f:.m, ,,/ ... - 1 
o/i,i - ' i,m = l, ... ,N, (3.3) 

and Q(N,-r) is a function governing the weight transfer. We assume 

G(N,-y)(- .. k l) < { min(gi,gj), if i :/:- j, z,i,J,, _ .! . .f ._. 
2 9i '1 i - J' 

(3.4) 

where z = (g1 , ... , 9N) and i, j, k, l = 1, ... , N, so that the components of 
the process remain positive. Note that mass is preserved, i.e. 

i=l i=l 

The function D(N,-r), expressing the intensity of the jumps, is assumed to be 
measurable and bounded in z. 

The process Z(t) is a jump process, which models a random mass fl.ow. 
The waiting time between successive jumps has an exponential distribution. 
Each jump is characterized by random indices i, j, k, l. During the jump, a 
part of the weights 9i, 9i is transferred to 9k, 9l. 

Theorem 3.1 Let p~N) ( t) , i = 1, ... , N , t ~ 0 , be the solution to a discrete 
velocity model {1.11)-(1.13}. 

Let the parameters D(N,-y) and Q(N,-y) of the stochastic process Z(t) be 
related to the parameter Q(N) of the discrete velocity model via the condition 

fl(N,-r>( z, i, j, k, l)Q(N,-y)( z, i, j, k, l) = Q(N)( e~N)' e;N)' {eiN)}, {e}N)}) 9i 9i, 

Vz= (91, ... ,gN), Vi,j,k,l= l, ... ,N. (3.5) 
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Let the function Q(N,-r) satisfy {3.4} and 

G(N,-y)(- . . k l) C l Z, i, J, , :::=; g,max - , 
I 

v, 2:: 1' Vz, Vi,j,k,l= l, ... ,N. (3.6) 

If 

N 
Ji+~ E I: IP~N\o) - g~N,-r)(O)I = o, 

i=l 
(3.7) 

then 

Remark 3.2 There are considerable degrees of freedom in the choice of the 
parameters D(N,-y) and Q(N,-y) of the stochastic process Z(t). We mention as 
an example the functions 

G(N,-y)(- · · k l) = _!. 9i 9j z,i,J, , 
I 9i + 9; 

and 

Obviously, conditions {3.4}-(3.6} are fulfilled for the above functions. 

Proof of Theorem 3.1. We use the following martingale representation for 
Markov processes (cf., e.g., [4, Ch. 4, Prop. 1. 7]). Let {[> be a function from 
the domain 'D(A) of the generator A (i.e., an arbitrary bounded measurable 
function in our case). Then 

<I>(Z(t)) = cJ>(Z(O)) + l A( cJ>)(Z(s )) ds + M(t), (3.8) 

where M(t) is a martingale. Moreover, if {[> 2 E 'D(A), then 

E [ M ( t)] 2 = E l [ A(cJ>2) - 2 cJ> A( cJ>)] ( Z ( s)) ds . (3.9) 
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We will apply (3.8), (3.9) to the process Z( t) with the generator (3.1 ). 
Consider a function of the form 

N 

<I>(z) = L 9i VJi, z = (gi, .. ., 9N), (3.10) 
i=l 

where <p E RN is a fixed vector. Notice that 

<I>( J(N,-y)( z, i, j, k, l)) = <I>( z) + a<N,-y)(.z, i, j, k, l) [<pk + <pz - <pi - VJi] , (3.11) 

according to (3.2), (3.3). Thus, 

N 
A( <I> )(z) = L n<N,-y)(.z, i, j, k, l) a<N,-y\z, i, j, k, l) [<pk+ <pz - <fJi - VJi] 

i,j,k,l=l 
N 

= L Q(N)(eiN)' e)N>, {eiN>}, {dN)}) [<pk+ <pz - <{Ji - <{Jj] 9i 9i' (3.12) 
i,j,k,l=l 

according to assumption (3.5). It follows from (3.11) that 

<!> 2 ( J(N,-y)( z, i, j, k, l)) = <I> 2(z) + 2 <I>( z) Q(N,-y)( z, i, j, k, l) X 

[<pk+ <pz - <{Ji - VJi] + [G(N,-y)(.z, i, j, k, l)] 2 [<pk+ <pz - <{Ji - C,Oj] 2 

and, consequently, 

A( <I> 2 )(z) = 2 <I>(z) A( <I> )(z)+ (3.13) 
N 
~ D(N 'Y)(- . . k l) [G(N 'Y)(- . . k l)] 2 [ ] 2 L..J ' z, i,J, , ' z, i,J, , <pk+ <pz - <{Ji - VJi . 

i,j,k,l=l 

From (3.13), (3.5) and (3.6), we obtain the estimates 

IA( <I> 2
)( z) - 2 <I>( z) A( <I>)( z) I ~ 

N 
< 16 mµ IVJil L QCN>(eiN)' e;N)' {eiN>}, {efN)}) 9i 9i Q(N,-y)(z, i, j, k, l) 

' i,j,k,l=l 

< 16 mµ IVJil Cg,max ]:_ CQ(N),max (t9i) 
2 

' 
i ' i=l 
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and, using (3.9), 

Using the vectors cp~m) = 'if;m,i, m, i = 1, ... , N, where the symbols 'if;m,i are 
defined in (3.3), one obtains from (3.8), (3.10), and (3.12) 

t N 

9~'"'\t) = 9~'"')(0) +la .. L: ['if;m,k + 'if;m,l - 'if;m,i - 'if;m,j] X (3.15) 
i,3,k,l=l 

Q(N)(eiN)' e)N>, {eiN)}, {e~N)}) giN,"f)( s) g)N,"f)( s) ds +Mm( t). 

Comparing (3.15) with (1.9), one obtains the estimate 

Taking the sum with respect tom in (3.16), and applying Gronwall's inequal-
ity, one obtains 

i=l 
N N 

exp (8Cq(N),maxCg,maxN2 t) [L: IP~N)(O)- giN,"f)(O)I + 2: IMi(t)I]. 
i=l i=l 

After taking the supremum with respect to t E [O, T] and the mathematical 
expectation, the assertion of Theorem 3.1 follows from (3.14), (3. 7), and the 
martingale inequality. D 

4. Concluding remarks 
Theorem 2.1 provides a rather general solution to the problem of ap-

proximating the Boltzmann equation (1.6) by discrete velocity models. This 
result was possible, since we have neglected the properties of conservation of 
momentum and energy. These properties are fulfilled only approximately for 
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the discrete velocity model defined in (2.1)-(2.4). The difficulties connected 
with the "closure problem" for discrete velocity models were discussed in 
detail in [5]. We refer to [7] and [9] concerning the construction of discrete 
velocity models possessing conservation properties. 

Theorem 3.1 provides a simple stochastic process approximating the so-
lution to a discrete velocity model. This process can be applied for solving 
a discrete velocity model numerically. To this end, the exponentially dis-
tributed waiting time between the jumps should be approximated in an ap-
propriate way. Such a procedure was discussed in some detail in [13], where 
Bird's DSMC algorithm was treated. 

The application of the numerical algorithm based on Theorem 3.1 to 
the spatially inhomogeneous Boltzmann equation is straightforward, if one 
applies the usual technique of splitting the free flow and the collision simula-
tion. However, as far as numerical applications are concerned, conservation 
properties of the algorithm become essential. 
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