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ABSTRACT. We introduce the notion of the degree of ill-posedness of linear oper-
ators in operator equations between Hilbert spaces. For specific assumptions on
the noise this quantity can be computed explicitely. Next it is shown that the
degree of ill posedness as introduced explains the loss of accuracy when solving
inverse problems in Hilbert spaces for a variety of instances.

1. INTRODUCTION

We study the solution of operator equations Az = y under presence of noise, which
means we are given an operator A: X — Y, acting between Hilbert spaces and data

(1.1) ys = Az + €,

where 0 represents the noise level and d¢ the noise inherent in the data ys. Our goal
is to study the lack of accuracy when reconstructing the unknown solution z based
on data ys.

Ideally, if the noise is bounded ||£|| < 1 and the operator is boundedly invertible,
then we would be able to reconstruct the unknown solution z by & := A 'ys;, and
this would result in an error bound

lz — | = ||6A | <6)|AH Y — X||, i.e., of the orderd.

But in general, either when the noise is unbounded, in particular statistical, and/or
the operator does not have a bounded inverse, then there will be a lack in accuracy
when reconstructing =z based on data ys. The question arises, whether one can
describe this loss as dependent on the operator A and/or the type of noise £. This
leads to the notion of the degree of ill-posedness of the operator in the presence of
noise. The loss of accuracy will then be seen to depend on this degree of ill-posedness
and on some a priori smoothness assumption on the exact solution.

In this study we assume that the underlying operator A is compact and injective
and the noise is either bounded deterministic or centered Gaussian white noise, such
that for any functional @ € Y it holds

E[( a)" = [la]”

In this framework, an estimate for approximating z, based on observations ys is
given as an arbitrary (measurable) mapping, say Z into X. Its error at any problem
instance x € X is then given by

edet(x,:ﬁ,é) = sup ||z — z(ys)||
lél<1

in the deterministic case or
ez, &, 8) = (Ellz — &))"

for Gausssian white noise. The worst-case error over a class F' of problem instances
is given as

e*(F,z,0) := s1€11[; e*(z, z,9),



with e € {det, stat}. The best possible order of accuracy it defined my minimization
over all estimators, i.e.,
e*(F,8) :=infe*(F, z,0).

In the present context we are interested in the asymptotic behavior of e*(F,¢) as
0 — 0, when the class F' of problem instances is given by general source conditions
in the form

(1.2) A (R) = {z € X, z=p(A"Aw, |lv|| < R},

where ¢ is a function on the spectrum of the operator A*A. Further restrictions will
be imposed later on.

Previous approaches. There were various attempts to formalize the notion of
degree of ill-posedness. The first appearance of this notion probably dates back to

G. Wahba, Practical approrimate solutions to linear operator equations when the data are
noisy, STAM J. Numer. Anal., 14 (1977), pp. 651-667.

Later this question was discussed in some talk by

M. Nussbaum, Deterministische und stochastische Modellierung von Inversen Problemen,
WIAS 1994. This resulted in a joint study

M. Nussbaum and Sergei Pereverzev. The degree of ill-posedness in stochastic and deter-
ministic noise models, Preprint 509, WIAS, Berlin, 1999.

In a similar way this was explored in the context of Hilbert scales in

P. Mathé and S. V. Pereverzev, Optimal discretization of inverse problems in Hilbert
scales. Regqularization and self-reqularization of projection methods, SIAM J. Numer. Anal.
38(2001), pp. 1999-2021.

The distinction between the smoothness of the solution and the intrinsic lack of
invertibility of the operator became transparent. Within the context of classical
Hilbert scales, say H®, s € R, the latter is defined as

a:=sup{s, E[A ¢ < x}.

For operators acting along such scales, i.e. for some a > 0 it holds ||Az|[x1s =< ||z,
this quantity was proven to be a = —(a + 1/2), which can be interpreted as — step
size plus one half, the latter being the contribution due to white noise.

For variable Hilbert scales { Xy}, as introduced below, and deterministic noise this
was extended to (with @ and ¢ being functions)

o= inf{v,/), 1A Y — Xy < 1},

as elaborated in [5]. It could be seen, that this minimization problem has a solution
given by a(t) = 1/4/t. Below we shall also review this result.

In the present context of white noise the natural definition should read
a:=inf {9, EJAE|] <1}.
The following questions arise naturally.

— Can this definition be given a precise meaning?



— Does this relate to the lack of accuracy for operator equations under statis-
tical noise?

In Section 2 we shall provide a framework in which the above definition becomes
meaningful. Moreover, we shall calculate a, as a function of the underlying operator
A under both assumptions on the noise.

Then in Section 3 we shall see that for a variety of cases the degree of ill-posedness
is inherent in the loss of accuracy as this has been shown for classical Hilbert scales
in [3].

We close our investigations with some representative examples.

2. THE DEGREE OF ILL-POSEDNESS UNDER GENERAL SOURCE CONDITIONS

In contrast to the usual approach, where smoothness is given by (finite) differentia-
bility properties, we express smoothness in terms of the compact injective operator
A from (1.1). This approach is related to variable Hilbert scales, as introduced by
Hegland [2]. We briefly recall the basic concept.

2.1. Variable Hilbert scales. We shall assume, that the scale is generated by A* A.
The singular numbers of A*A are denoted by (si);.,, arranged in non-increasing
order. In particular a := s; = ||A*A]|.

Each function ¢ : (0,a] — [0,00) can be assigned a pre-Hilbert space as follows.

First let
F = {:C, T = Z(m,uj)uj, n < oo} ,
j=1
be the linear space of finite expansions in uy, us, ..., the eigenbasis of A*A. Given

@ we can endow F' with scalar product

o (1) (y, uy)
<Iay> = Y xayEF
? ; ©*(s;)
The completion of F' in this scalar product is denoted by X, such that A,(R)
from (1.2) is the ball of radius R in X,. It is easy to verify, that A,(R) C X is
relatively compact only, if lim;_,q ¢(¢) = 0, such that we assume ¢ is non-decreasing
and ¢(0+) = 0. We shall call such functions index (functions) throughout.

Definition 1. Let Z(0, a] denote the class of all functions ¢: (0,a] — [0, 00), which
are non-decreasing and limy o @(t) = 0. We agree to call functions from Z(0, a
index functions.

The collection {X,, ¢ € Z(0, a]} is called variable Hilbert scale. A detailed account
of such variable Hilbert scales can be found in [2, 10] and [5, 4]. We shall however not
use much of the theory developed towards numerical analysis under general source
conditions.



2.2. Bounded deterministic noise. Here we review one result from [5]. This is
for completeness, but also to see how calculations are carried out within the present
framework. In [5] the function

a:=inf{y, AV = Xy| <1}

was defined to be the degree of ill-posedness. But the operator A is not boundedly
invertible from Y into X, therefore X, cannot embed into X, thus ¢ cannot be
an index. Therefore we require that 1 is the adjoint of an index function, i.e.,
1/¢ € Z(0, a).

Moreover, it is important to notice that the index functions are only determined
on the spectrum of A*A, thus we identify index functions which coincide on the
spectrum of the operator A*A.

Definition 2. Let
(2.3) p := sup {d} € 7(0,a], [|A": Y = Xy < 1}

be the point-wise supremum on s;, j = 1,2,.... The function o = 1/p is called
degree of ill-posedness of equation (1.1) under bounded deterministic noise.

The degree of ill-posedness of the operator A under bounded deterministic noise is
calculated next.

Proposition 1. For a compact injective operator A and bounded noise it holds true
that

(2.4) p(t) = V1, 0<t<a.
Thus the degree of ill-posedness is t — 1/+/t.

Proof. Let 1 be any index function satisfying the restriction from (2.3). For an
arbitrary [|y|| < 1 we can argue as follows.

12> [[Ay|ff)y = [[p(A*A) A Ty||* = [[9* (A" A) (A" A) Tyl

Thus ||4?(A*A)(A*A)~Y|| < 1, which translates to 1?(t)/t < 1 and proves v/ to be
an upper bound. But is is easy to see that /¢ itself fulfills the restriction, so the
upper bound is attained and the proof is complete. O

Remark 1. Notice that in variable Hilbert scales this degree of ill-posedness is an
invariant. Once the scale fits to the operator the degree of ill-posedness no longer
depends on the operator. Therefore, the theory of reqularization of linear ill-posed
problems in variable Hilbert scales has nice geometric properties, see [5].

2.3. Gaussian white noise. Based on Proposition 1 there is good reason to mimic
the definition for white noise as above with the same modification as for deterministic
noise.

Definition 3. Let
(2.5) p=sup {y € T(0,a, EA'€|2, <1}.

The function o = 1/p is said to be the degree of ill-posedness for operator equa-
tions (1.1) under Gaussian white noise.



As we shall see next, this can be calculated explicitely. Recall that s;, j =1,2,...
denotes the decreasing sequence of singular numbers of A*A.

Theorem 1. The degree of ill-posedness for operator equations (1.1) under Gauss-
ian white noise s

1/2
(2.6) at) = (Z l/sk) .

Skzt

Let us denote W(t) := (3, -, 1/sk)71. This function is closely related to the har-
monic mean of the singular numbers of A*A. A more balanced variant of the degree
of ill-posedness can be given in terms of ¢;, j = 1,2,..., the sequence of singular

1/2
numbers of A as a(t) = (Ztizt 1/t2) :
Proof. We shall show that 1/a?(t) = ¥(t). To this end we rewrite for any index v
— * * — - d}Z Sj
BIA €, = trv(ara)(ara) ! = 3
j=1

Let us consider the family p, € Z(0,a] of piece-wise constant functions defined as

pi(t) == {0 U(sk), = s

else.

Plainly 3, pi(s;)/s; = 1. Note also that for any j it holds true that max{p;(s;),
k=1,2,...} = ¥(s;), such that p from (2.5) obeys

pZZSup{pZ, k:1,2,...}:\11.

Now suppose that for some k it holds true that p?(s;) > ¥(sz). By definition, for all

e > 0 we can find ¢, with ¢Z(sx) > p*(sx) — € and E|A7¢|[7 . < 1. But, because

1. is non-decreasing we deduce

J
This yields W(sg) > ¥2(si) > p*(s;) — €. Letting e — 0 allows to complete the
proof. O

In Section 4 we shall estimate the degree of ill-posedness for important special cases.

3. RELATION TO BEST POSSIBLE ACCURACY

Here we shall establish that the degree of ill-posedness as introduced above is in-
herent in the loss of accuracy when reconstructing the solution z from (1.1) under
noisy data ys;. It will be transparent that this loss is determined by both, the de-
gree of ill-posedness of the operator and the a priori smoothness ¢ € Z(0, a] of the
solution z € A,(R), see (1.2). Precisely, given the a priori smoothness ¢ and degree
of ill-posedness «a let © := ¢/a € Z(0, al.



3.1. Bounded deterministic noise. Again we review one result for deterministic
noise from [5]. An increasing function ¢ is said to obey a As—condition, if there is
1 < C < oo for which ¢(2t) < Cop(t), 0 <t < a.

In the present setup we have O(t) = v/tp(t), 0 < t < a. Theorem 1 from [5] asserts
the following.

Theorem 2. If the function t — ©*((©2)'(t) is concave, then

e (A,(R),8) < Rp(© '(§/R)), 0<6<aR.
If, in addition ¢ obeys a Ay condition then

e (A, (R),8) < Rp(© '(§/R)), 0<6<aR.

Remark 2. The concavity of the above composite function is crucial. However, this
is not restrictive, because in many cases this is fulfilled. As was established in [5] this
holds true if log(p) is concave, thus for all polynomial index functions, but also for
index functions of logarithmic type, ast — log " 1/t, at least if t is small enough.

We will not discuss topics as there are discretization, adaptation.... These are
interesting and important issues, but here our attention is towards best possible
accuracy, which is ideal but serves as a benchmark for more practical cases.

3.2. Gaussian white noise. Our analysis for Gaussian white noise will be based
on Pinsker’s seminal paper [9], where a general result was established, which allows
to draw conclusions for the present setup of general source conditions. We mention
that for some special cases a similar analysis was carried out in [6].

Upper bound: Regularization. It is well known that approximate solutions to (1.1)
require regularization. If the best possible accuracy shall be achieved, then the
regularization must be capable to take the a priori smoothness into account. The
systematic study of this issue goes back to [11]. In the context of general source
conditions this was extended in [5]. However, the easiest way to retain the best
possible accuracy is spectral cut—off (hard threshold). This is not always feasible
but for our purpose sufficient. We will not formally introduce the machinery of
regularization methods, but note the following. The original equation (1.1) can be
rewritten, using the singular value decomposition as

(3.7) Ys = Y /5 (@, u;)v; + 66,

which leads to an infinite system

(s, vj) = /5i(z, u;) + 0§, j=12,...
where the ; are i.i.d standard normal. As estimate z of z based on observations
Ys1,Ysz2, - - we shall use

n

Tn(ys) 1= Z %(ya, ).



where the choice of n = n(§) plays the role of a regularizing parameter. The upper
bound for such type of estimators is provided in

Proposition 2. Let o be the degree of ill-posedness of the operator equation (1.1).
For an indez function ¢ let

(3.8) o =28 oci<a

a(t)

Given 6 > 0 let

(3.9) n, :=max{n, ©O(t,)>d/R}.
Uniformly for x € A,(R) the estimator &, (ys) provides
(3.10) (Ellz — #..1%)"* < V2Rp(0 (5/R)).

Note that © has jumps, and we define the inverse by @ !(s) = inf {u, O(u) > s}.

Proof. 1t is easy to see that

Iz &a > = ) Kau))l®+ 6> [ v /1.
Thus we can bound
~ 2 -
Elz— & [P= ) [z,u)+82) 1/t
j=n.+1 Jj=1
<@ (tn) Y Wzouy) /02 (t;) + 6%/ (tn,)
J=n.+1

< R (ta) + 0% (L. ).
Therefore, if n, is chosen as in (3.9), then
Ella — &, < 2R26((07) ' (82/R2),
from which the proof can be completed. O

Remark 3. A refined analysis as carried out in [9], and using a more subtle reg-
ularization provides the exact constant, but is not of such a form, which is easy to
interpret.

Lower bounds: Reduction to regression. Again we start from (3.7) to obtain an infi-
nite system of equations. This set of equations is given a suitable form by considering

(311) y5’]:9]+6§], ]:1,2,,
which is the standard regression problem with independent (Gaussian) noise, having
variances 012- =6%/s;, 5=1,...,and 0; := (z,u;), j=1,2,....

This regression problem is only complete, after fixing assumptions on the unknown
6 := (01, 02,...). In terms of Fourier coefficients (z, u;) with respect to the eigenbasis



U1, Us, ... the assumption (1.2) rewrites as

oo 02
f € Bg := {(91,92,...), Z¢2(]S.)§R2}.
J

j=1

This is exactly the setup of the paper [9] by M. S. Pinsker. It will be convenient to
rephrase Pinsker’s results, who aimed at providing the exact asymptotics. Let a;
and o, j =1,2,... as above. Theorem 1 from [9] can be stated as follows.

Fact 1. There is ¢c; > 0 with the following property. If v = v(d) is such, that

(3.12) 2 1 (1—@")):}%2,

i p(sj)>v K I/tp(sj) (s]-

then the error of the best estimator can be bounded from above and below by
Rv > e (A,(R),8) > ¢ Rv.

Remark 4. The derivation of this statement from Pinsker’s Theorem 1 can be
found in [6]. Under additional assumptions Pinsker is even able to show, that

lims_,q e***(A,(R),d)/Rv () = 1.
Recall the definition of © from (3.8) and note that © is increasing and limp o O(¢) =
0.

In [5, Prop. 2] the lower bound for reconstruction in the general ill-posed problem for
bounded deterministic noise was proved under additional geometric assumptions. In
the statistical framework an analogous assumption will be made. In that paper the
asymptotic error behavior is described through a concave function. The respective
function in the present context turns out to be t — ©?((©2)71(¢)). For our proof to
work, slightly more is assumed. Namely, there is 0 < r < 1 for which

(3813) Q0721 +1)) < 20%(07)7M(1), 0 <t < O%a).

Remark 5. For concave functions (3.13) holds true with r = 0.

Now we are ready to state and prove the main result in this section.

Proposition 3. Suppose that (3.13) is fulfilled. Let t, be chosen from

(3.14) Ny 1= Sup {n, O(t,) > %}

as t, :=t,,. Then the error of the best estimator can be bounded from below by

(3.15) e (A, (R),8) > ciRy(t.).

First we provide some auxiliary estimate.
Lemma 1. Under assumption (3.13) we have for 0 < 2s < ¢*(a) that

() '(2s)) _ 7’

(3.16) LR () T




Proof. Because t — ©2((©%)71(t)) is increasing, the same holds true for the inverse,
such that the above inequality implies by a change of variables

2(1+7r1)0%((¢*) '(s) < ©%((¢%) '(29)),

() () _ 1
©2((¢%) '(25)) ~ 1+7>
Rewriting this in terms of a2, using © = ¢/a, we obtain

hence

5 s C2((@?) 1(25) _ ¥((9?) '(2s) _ 1
a?((¥?)*(s)) 2s ?((¢?)M(s)) — 1+
from which the assertion easily follows. O

Let us notice that (3.13) is equivalent to

Z s>p2(s;)>s l/S
(3.17) 2029 (5)20 17T >r?  ass—0,
2502(3]-)223 1/s;
as can be seen from the proof of Lemma 1. This representation is less intuitive but
useful for inspecting examples, below.

Proof of Theorem 3. Given ¢, let n, be from (3.14). We shall show, that for ¢, which
is obtained from the solution v from (3.12) via () = 2v, necessarily ¢t > ¢,. Indeed,
we can conclude, using ¢ := (2v)? and ¢ = ¢?(¢) intermediately, that

. g 1L (o v ), =
e s sa(zs;)» sj v(s;) <1 90(3i)> - Bu? s 4u>§(;j)>2" %
= O (@) - (67 (2)
O (CCD)
= 20%(D) (1 a?((¢?) (1)) ) '

Using Lemma 1 we end up with R? > r2§?/402(f) from which we easily deduce
t > t,. Using Fact 1 the proof can be completed. O

Comparing the upper and lower bound for the best possible accuracy we can state
the following result.

Theorem 3. Under assumption (3.13) the following estimates hold true.
(3.18) caRp(© ' (r§/2R) < (A, (R),6) < V2Rp(©7(5/R).
If the function t — @(©~'(t) obeys a Ay—condition then
e (A,(R), ) < Rp(©~'(§/R), as 0 — 0.
Remark 6. By its very construction, on the spectrum sy, Ss, ... it holds true that
a(s;) > 1/,/8; = Qaet(85). Therefore
p((p/aar) ' (55)) < p((p/a)7'(s), F=12,...,

such that under (3.13) and on the spectrum the best possible accuracy under statis-
tical noise is harder than under bounded deterministic noise. For severely ill-posed



problems, i.e., if a(t) < age(t), and if ¢ obeys a Ay—condition, then the rates coin-
cide. This was observed in previous studies, see e.g. [8].

4. EXAMPLES

It might be of interest to estimate the degree of ill-posedness and the related best
possible accuracy in important special cases. For these examples the results for
bounded deterministic noise are known, see [5], and will not be reviewed here.
Therefore we entail details for statistical noise, only.

Example 1. Let us assume that the singular numbers t; of the operator A asymptot-
2a+1
ically behave like t; < '57%. Then s; < j~2* hence W(t) <t 2a . The degree of ill-

posedness in this case asymptotically behaves like a(t) < (1/t)(@+1/2/(29) 0 <t < q.

Let us additionally assume that smoothness is given by ¢(t) = t*/?%, see for in-
stance [5]. In this case il is easy to estimate the quotient from (3.17) as follows.

2 2s>¢2(s;)s /5 o WA (# LG s < ©3(s;) < 25}
2pr(s;)>2s /S5 (1/(p?)1(25))(2at1)/2a
> (%) (28))' 2 # {5, 5 < pP(sy) < 28} > 1’

as s — 0.

Y TR

Thus Theorem 3 applies and we obtain e****(A,(R),d) < R(d/R)#r+at1/2.
In this particular case the analysis in [9] even yields that

Y
lim ¢ (4, (R), )/ (R(3/ B) #¥#+177) = 1,

H

Example 2. For severely ill-posed problems, i.e., when the singular numbers behave
like t; < e ™ for some k > 0, we obtain U(t) < kt, and the degree of ill-posedness
asymptotically behaves like a(t) < 1/y/kt, 0 < t < a. It is worthwhile to notice that

asymptotically this is the same as the degree of ill-posedness for bounded determin-
istic noise, cf. Proposition 1.

If for some p > 0 the a priori smoothness is (t) = log 1/# 1/t?, then we can bound
the enumerator from (3.17) by the last summand and the denominator by using
S b < BY/(b—1), b> 1 to obtain
g 1/8; K1/(26)(1/s)"

Al B 1)— >1—e",

Z¢2(s-)>2s 1/s; er(1/(25)(1/s)1 +1)
Again Theorem 3 applies and that the degree of ill-posedness correctly predicts the
asymptotic error e¥“*(A,(R),8) < Rlog /" 6%/ R2.

In the specific situation when one wants to recover the initial distribution in the
heat conduction problem from noisy data at time 7" > 0, then this problem re-
duces to a severely ill-posed, similar to the one from above. In this particular

I¥or sequences aj,b;,7 =1,2,... the symbol a; < b; means that there are constants 0 < ¢ <
C < oo for which ca; <b; < Caj, 7=1,2,....

10



case, which is not covered by [9], and when the a priori smoothness is given by
o(t) = (2T/ log(l/tz))ﬁ/Z, the authors in [1] can prove that

. . 9T B/2
lime (Ap(R),6)/(R (W) ) =1,

which again shows that the asymptotics abstained above is exact.

5. CONLUSION

In this study we have formally introduced the notion of the degree a of ill-posedness
for linear operator equation in Hilbert spaces. This definition extends previous ap-
proaches as found in the literature. In contrast to equations with bounded deter-
ministic noise this degree depends on spectral properties of the involved operator
by a quantity related to the harmonic mean of the singular numbers.

For ill-posed problems in variable Hilbert scales, i.e., when smoothness is measured
in terms of general source conditions by some index function ¢, it can be seen that the
best possible accuracy for reconstructing the unknown solution is determined by the
pair (a, ¢) through the function ©(¢) = ¢(t)/a(t). Under some additional restriction
the asymptotic error of reconstruction at noise level § behaves like § — p(©1(4)).
This extends previous study for bounded deterministic noise.
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