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Abstract

In this paper we study the asymptotic behaviour of solutions to the linear

evolution problem for clamped curved rods with the small thickness � under

minimal regularity assumptions on the geometry. In addition, non-constant

density of the curved rods is considered.

1 Introduction

The main task of this paper is to relax the regularity assumptions on the shape of the

curved elastic rods in the general asymptotic model and to derive this general model

from the linear evolution equation of three dimensional elasticity by asymptotic

technique.

We use the asymptotic approach presented by Aganovi�c and Tutek [1] for straight

rods, which was modi�ed by Jurak and Tamba�ca [6] and [7] for curved rods. Us-

ing the idea from Blouza and Le Dret [2], it was shown by Tiba and Vod�ak [15]

that we can admit in the \limit state � = 0" a unit speed curve with Lipschitzian

parametrization and that we can approximate this curve by a suitable sequence of

smooth curved rods depending on �, which preserves the explicit form of the constant

in the Korn inequality corresponding to the thickness of the domain. An analogous

strategy as in [15] enables us to generalize the result given by Tamba�ca [14].

The basic idea is rather simple and natural. If we denote by � > 0 the \thickness"

parameter speci�c to asymptotic methods, we also introduce another small param-

eter Æ = �
r (0 < r <

1
3
) associated to a regularization procedure applied to the

nonsmooth line of centroids. A careful examination of the convergence properties

of the arising smooth coeÆcients, and sharp estimates in the corresponding weak

formulation of the linear elasticity system (after scaling), allows to pass to the limit

� ! 0 and to obtain the asymptotic model. In the smooth case, this is similar to

the model of Tamba�ca [14].

Let us also mention other related works discussing asymptotic dynamic models:

Raoult [11] (for plates) and Li-ming [10] (for shells). Further, we refer the reader

to [15] for the detailed construction of the local frame in L1(0; l) and its smooth

approximation, and to [13] for a special approach to the dynamic model for curved

rods.

Finally, we give a brief outline of the paper. In Section 2, we introduce the basic

notations and notions that will be further needed. Section 3 contains auxiliary

propositions, which are used throughout the paper. Section 4 is devoted to the

formulation of the linear elasticity equation and its transformation. Section 5 deals

with the existence and uniqueness of the solution to the transformed equation and

basic estimates are derived. Section 6 gives us the basic overview about behaviour of

the displacements if �! 0 and about the qualitative properties of their limit state.

In Section 7 the passage to the limit �! 0 is performed and the main existence and

uniqueness result is proved.
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2 Basic notation

We denote by R3 the usual three dimensional Euclidean space with scalar product

(�; �) and norm j � j. By \ � " we shall denote the Cartesian product of two spaces

and by b�; �c any ordered pair. In the text the symbol jAj will also denote the

Lebesgue measure of some measurable set A, without danger of confusion. The

summation convention with respect to repeated indices will be also used, if not

otherwise explicitly stated.

Let S � R
2 be a bounded simply connected domain of class C1 satisfying the

\symmetry" conditionZ
S

x2 dx2dx3 =

Z
S

x3 dx2dx3 =

Z
S

x2x3 dx2dx3 = 0: (2.1)

We denote by 
 = (0; l) � S, 
� = (0; l) � �S open \cylinders" in R
3 , where l > 0

and � > 0 \small", are given.

Let C be a unit speed curve of length l in R
3 de�ned by its parametrization � :

[0; l]! R
3 , and let t, n, b denote its tangent, normal and binormal vectors. As we

shall assume less regularity for � as for instance in [6], [7] and [14], the local frame

t, n, b is not necessarily the Frenêt one. Alternative ways to construct local frames

under low regularity assumptions may be found in [13]. Let �� : [0; l] ! R
3 be a

smoothing of� such that it remains a unit speed curve (i.e. j�0

�
(y1)j = 1, 8y1 2 [0; l])

and t�, n�, b� be the associated local frame. The regularization parameter will be of

the form �
r, r 2 (0; 1

3
), and we just write ��, t�, n�, b� to simplify notation. More

details on the construction of the functions t, n, b and their regularizations can be

found in [15]. The most important properties of these regularizations are mentioned

in Proposition 3.1 and Corollary 3.2.

Further, we de�ne the auxiliary functions ��, ��, 
� (corresponding to the usual

notions of curvature and torsion) by

�� = (t0
�
;b�); �� = (t0

�
;n�); 
� = (b0

�
;n�):

To obtain these relations, we use the assumed orthonormality of the local basis t�,

n�, b� which gives the orthogonality properties (t�; t
0

�
) = 0, (n�;n

0

�
) = 0, (b�;b

0

�
) = 0,

that is, t0
�
may be expressed via n�, b�, and so on. We obtain the \laws of motion"

of the local frame

t0
�
= ��b� + ��n�;

n0
�
= ���t� � 
�b�; (2.2)

b0
�
= ���t� + 
�n�:

We introduce the mapping R�

R� : 
! 
�; R�(x1; x2; x3) = (x1; �x2; �x3); (2.3)
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and the mapping �P�

�P� : 
� ! R
3
; �P�(y) = ��(y1) + y2n�(y1) + y3b�(y1); (2.4)

(y1; y2; y3) 2 (0; l) � �S, which gives the parametrization of the curved rod e
� =
�P�(
�). Furthermore,

�d�(y) = det( �r�P�(y)) = 1� ��(y1)y2 � ��(y1)y3 for all y 2 
�: (2.5)

We can suppose that �d�(y) > 0 for all y 2 
� and for � \small" (see Corollary 3.2

in this paper or Corollary 3.3 in [15]). Then �P� : 
� ! e
� is a C1-di�eomorphism,

Ciarlet [3], Theorem 3.1-1. In the sequel, we shall write e@i = @

@eyi
, where ey =

(ey1; ey2; ey3) 2 e
�, �@i = @

@yi
, for y = (y1; y2; y3) 2 
�, @i =

@

@xi
, where x = (x1; x2; x3) 2


, @t = @

@t
and @tt = @

2

@t2
. Thus, in (2.5), �r = (�@1; �@2; �@3). In the case that a

function v depends only on t or x1 (or y1), we denote its �rst (second) derivation

by _v (�v) and v
0 (v00), respectively. Sometimes we use the notation d

dt
v instead of

_v. In an analogous way as above, we denote by eV a function de�ned on e
�, �V a

function de�ned on 
�, and V a function de�ned on 
. We suppose throughout this

subsection that all needed derivatives exist, which will later follow from Section 3.

The covariant basis at the point �P�(y), y 2 
�, of the curved rod is de�ned by

�gi;�(y) = �@i �P�(y), and (using (2.2)) these vectors are given by

�g1;�(y) = (1� y2��(y1)� y3��(y1))t�(y1) + y3
�(y1)n�(y1)� y2
�(y1)b�(y1);

�g2;�(y) = n�(y1); �g3;�(y) = b�(y1): (2.6)

The vectors �gj;� de�ned by the relations (�gi;�; �g
j;�) = Æ

ij, constitute the contravariant

basis of the curved rod at the point �P�(y). They have the form

�g1;�(y) =
t�(y1)
�d�(y)

; �g2;�(y) =
�y3
�(y1)t�(y1)

�d�(y)
+ n�(y1);

�g3;�(y) =
y2
�(y1)t�(y1)

�d�(y)
+ b�(y1): (2.7)

Further, we de�ne the covariant and contravariant metric tensors (�gij;�)
3
i;j=1 and

(�gij;�)3
i;j=1, where

�gij;� = (�gi;�; �gj;�); �g
ij;� = (�gi;�; �gj;�): (2.8)

After the substitution y = R�(x), we adopt the notation

g
ij;�(x) = �gij;�(R�(x)); gij;�(x) = �gij;�(R�(x)); gi;�(x) = �gi;�(R�(x)); (2.9)

gj;�(x) = �gj;�(R�(x)); d�(x) = �d�(R�(x)); (2.10)

where x 2 
.
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In an analogous way, we can derive the covariant basis at the point ( �P� Æ R�)(x),

x 2 
. Thus, oi;�(x) = @i( �P� ÆR�)(x), i = 1; 2; 3, and these vectors are given by

o1;�(x) = (1� �x2��(x1)� �x3��(x1))t�(x1) + �x3
�(x1)n�(x1)� �x2
�(x1)b�(x1);

o2;�(x) = �n�(x1); o3;�(x) = �b�(x1): (2.11)

The vectors oj;� de�ned by the relations (oi;�; o
j;�) = Æ

ij, constitute the contravariant

basis at the point ( �P� ÆR�)(x), x 2 
. They have the form

o1;�(x) =
t�(x1)

d�(x)
; o2;�(x) =

�x3
�(x1)t�(x1)
d�(x)

+
n�(x1)

�
;

o3;�(x) =
x2
�(x1)t�(x1)

d�(x)
+
b�(x1)

�
: (2.12)

We can de�ne the covariant and contravariant metric tensors (oij;�)
3
i;j=1 and

(oij;�)3
i;j=1, where

oij;� = (oi;�; oj;�); o
ij;� = (oi;�; oj;�): (2.13)

These tensors have the form

(oij;�)
3
i;j=1 =

0@ d
2
�
+ �

2
x
2
3


2
�
+ �

2
x
2
2


2
�

�
2
x3
� ��2x2
�

�
2
x3
� �

2 0

��2x2
� 0 �
2

1A (2.14)

and

(oij;�)3
i;j=1 =

0B@
1
d2�

�x3
�

d2�

x2
�

d2�

�x3
�

d2�

1
�2
+

x2
3

2�

d2�

�x2x3

2
�

d2�

x2
�

d2�

�x2x3

2
�

d2�

1
�2
+

x2
2

2�

d2�

1CA : (2.15)

Now, we can compute

o�(x) =
q
det(oij;�(x))

3
i;j=1 = �

2
d�(x): (2.16)

We use for constants the symbols C or Ci, for i 2 N0 = f0; 1; 2; : : :g. Constant

vectors will be denoted by C or Ci for i 2 N0 .

The symbols H1(
), H1
0 (
) and L

p(
), p 2 [1;1], respectively, denote the standard

Sobolev and Lebesgue spaces endowed with the norms k�k1;2 or k�kp. We will use the

same notation of the norms also for vector or tensor functions in the case that all their

components belong to the above mentioned Sobolev or Lebesgue spaces. H
�1(
)

and X 0 stand for the dual space to H1
0 (
) or X, respectively. The notation Cm(
),

with m 2 N0 , means the usual spaces of continuous functions whose derivatives

up to the order m are continuous in 
, and we denote by C1

0 (
) the space of all

functions which have derivatives of any order on 
 and whose supports are compact

subsets of 
. The symbols Lp(I;X), p 2 [1;1), L1(I;X) and C(I;X), where X is
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a Banach space and I is a bounded interval, stand for the Bochner spaces endowed

with the norms

kvkLp(I;X) =

�Z
I

kv(z)kp
X
dz

�1=p

; kvkL1(I;X) = ess sup
I

kv(z)kX

and

kvk
C(I;X) = max

z2I

kv(z)kX :

We say that vn * v in X or in Lp(I;X), p 2 (1;1), or in L2(0; l;H�1(S)), if

X0h ; vn � viX ! 0 for any  2 X
0
;Z

I

X0h (z); vn(z)� v(z)iX dz ! 0 for any  2 Lp0(I;X 0); p0 =
p

p� 1
;

and Z
l

0
H�1(S)hvn(x1)� v(x1);  (x1)iH1

0
(S) dx1 ! 0 for any  2 L2(0; l;H1

0(S));

respectively, where X0h�; �iX denotes the dual pairing of X 0 and X. Further, we

denote vn
�
* v in L1(I;X 0) ifZ

I

X0hvn � v;  iX dz ! 0 for any  2 L1(I;X):

In the case that X 0 = L
2(
)0 or X 0 = H

�1(
), we write without danger of confusion

vn
�
* v in L1(I; L2(
)) or L1(I;H1(
)) ifZ

I

Z



(vn � v) dxdz ! 0

for any  2 L1(I; L2(
)) or L1(I;H1
0(
)), respectively.

Let v 2 L1
loc
(0; T ) and ' 2 C

1

0 (0; T ). Then we denote v' =
R
T

0
v(t)'(t) dt.

The de�nitions of the domains e
�, 
� and 
 enable us to introduce the following

notation:

V (e
�) = feV 2 H
1(e
�) : eV j�P�(f0g��S) =

eV j�P�(flg��S) = 0g;

V (
) = fV 2 H1(
) : V j(f0g�S) = V j(flg�S) = 0g;
and further we introduce the space

Vt;n;b0 (0; l) = fbV;  c 2 H1
0 (0; l)

3 � L
2(0; l) : (V0

; t) = 0

and V� = � t + (V0
;b)n� (V0

;n)b 2 H1
0 (0; l)

3g: (2.17)
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3 Auxiliary propositions

Proposition 3.1 [15] Let � 2 W
1;1(0; l)3 be the parametrization of the unit speed

curve C. Then there exist vectors t, n and b, which belong to L1(0; l)3 and form

the local frame corresponding to the curve C, such that

jtj = jnj = jbj = 1; t?n?b a.e. in (0; l): (3.1)

In addition, there exist functions

f��g�2(0;1); ft�g�2(0;1); fn�g�2(0;1); fb�g�2(0;1) � C
1([0; l])3

such that

jt�j = jn�j = jb�j = 1; t�?n�?b� on [0; l] (3.2)

for all � 2 (0; 1),

t� ! t; n� ! n; b� ! b in measure in (0; l); (3.3)

for �! 0,

kt0
�
k1; kn0�k1; kb0�k1 � O(

1

�r
); kt00

�
k1; kn00�k1; kb00�k1 � O(

1

�2r
); (3.4)

and

k��k1; k��k1; k
�k1 � O(
1

�r
); k�0

�
k1; k� 0�k1; k
0�k1 � O(

1

�2r
); r 2 (0;

1

3
); (3.5)

where the functions ��, ��, 
� 2 C1([0; l]) are determined by (2:2).

Corollary 3.2 [15] There exist the constants Cj, j = 0; 1; 2, such that the function

d� de�ned by (2:5) and (2:10) satis�es 0 < C0 � d�(x) � C1 for all x 2 
, and the

function �d�
p
�io

ij;��j de�ned by (2:15), where �i, i = 1; 2; 3, are the components of

the unit outward normal for (0; l)�@S, satis�es 0 � d�(x)�
p
�i(x)oij;�(x)�j(x) � C2

for all x 2 (0; l)� @S and � 2 (0; 1). In addition,

d� ! 1 in C(
); (3.6)

�d�(x)

q
�i(x)oij;�(x)�j(x)! 1 in C((0; l)� @S); (3.7)

for �! 0.

Proposition 3.3 [15] Let the space Vt;n;b0 (0; l) be de�ned by (2:17). Then

 = �(V�; t) and V(x1) =

Z
x1

0

[�(V�;b)n+ (V�;n)b] dz1 (3.8)

for x1 2 [0; l], where

V(l) =

Z
l

0

[�(V�;b)n+ (V�;n)b] dx1 = 0; (3.9)

 2 L1(0; l), and Vt;n;b0 (0; l) is a nontrivial Hilbert space endowed with the norm

kbV;  ck2 = kVk21;2 + k k22 + kV�k21;2: (3.10)
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Proposition 3.4 [15] Let t�, n� and b� be the functions from Proposition 3:1 and

let the space Vt�;n�;b�0 (0; l) be de�ned by (2:17) using the functions t�, n�, b� instead

of t, n, b. Let, further, bV;  c 2 Vt;n;b0 (0; l) be an arbitrary but �xed couple. Then

there exist couples bV�;  �c 2 Vt�;n�;b�0 (0; l) generating the functions V�;� such that

fV�g�2(0;1); fV�;�g�2(0;1) � C
1

0 (0; l)3; f �g�2(0;1) � C
1

0 (0; l);

V� ! V; V�;� ! V� in H
1
0 (0; l)

3
; (3.11)

 � !  in measure in (0; l); (3.12)

for �! 0, and

kV00

�
k2 � O(

1

�r
); k 0

�
k2 � O(

1

�r
); r 2 (0;

1

3
): (3.13)

Proposition 3.5 [7] Let w 2 H
1(
). Then @i@jw 2 L

2(0; l;H�1(S)) for i, j =

1; 2; 3 except for i = j = 1. If, in addition, wjx1=0 = wjx1=l = 0, then @jwjx1=0 =

@jwjx1=l = 0, for j = 2; 3, in the sense of the space C([0; l];H�1(S)). Furthermore,

if v 2 L
2(0; l;L2(S)), @1v 2 L

2(0; l;H�1(S)) and vjx1=0 = vjx1=l = 0 in the sense of

the space C([0; l];H�1(S)), there is a constant C independent of v such that

kvkL2(0;l;L2(S)) � CkrvkL2(0;l;H�1(S)): (3.14)

Proposition 3.6 [7] Let fvng1n=1 � L
2(0; l;L2(S)), f@1vng1n=1 � L

2(0; l;H�1(S))

and let vnjx1=0 = vnjx1=l = 0, for all n 2 N , in the sense of the space

C([0; l];H�1(S)). Assume, in addition, that this sequence satis�es

@1vn * �; @jvn * 0; in L2(0; l;H�1(S)); j = 2; 3; (3.15)

where � 2 L
2(0; l;H�1(S)). Then � 2 L

2(0; l), and there exists a unique function

v 2 H1
0 (0; l) such that v0 = � and

vn * v in L2(0; l;L2(S)); (3.16)

vn ! v in C([0; l];H�1(S)): (3.17)

If the convergences in (3:15) are strong then the convergence (3:16) is also strong.

Proposition 3.7 Let ' 2 C
1

0 (0; T ). Let the sequence fvng1n=1 � L
p(0; T ;X), p 2

(1;1), or fvng1n=1 � L
1(0; T ;X 0), where X is a Banach space, be such that vn * v

in Lp(0; T ;X), p 2 (1;1), or vn
�
* v in L1(0; T ;X 0), respectively. Then vn

'
* v

'

in X or vn
'
* v

' in X 0, respectively.

P r o o f: We start with the case vn * v in Lp(0; T ;X), p 2 (1;1). To prove the

�rst part of the proposition, it is enough to show thatZ
T

0
X0h ;w(t)iX dt = X0h ;

Z
T

0

w(t) dtiX (3.18)
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for all  2 X
0, where w 2 L

p(0; T ;X), p 2 (1;1). Since w 2 L
p(0; T ;X), p 2

(1;1), then w is Bochner integrable and there exists a sequence of simple functions

fwmg1m=1 such that

lim
m!1

kwm(t)� w(t)kX = 0 (3.19)

for a.a. t 2 (0; T ) and

lim
m!1

Z
T

0

kwm(t)� w(t)kX dt = 0 (3.20)

see [9]. The functions wm, m = 1; 2; : : :, are simple and thus they can be expressed

by

wm(t) =

k(m)X
i=1

�Bi;m
(t)ci;m;

where ci;m 2 X and �Bi;m
(t) are the characteristic functions to the sets Bi;m � (0; T ),

m = 1; 2; : : : and i = 1; : : : ; k(m). Then we get

j
Z

T

0
X0h ;w(t)iX dt� X0h ;

Z
T

0

w(t) dtiX j � j
Z

T

0
X0h ;w(t)� wm(t)iX dtj

+j
Z

T

0
X0h ;wm(t)iX dt� X0h ;

Z
T

0

w(t) dtiX j � k kX0
Z

T

0

kwm(t)� w(t)kX dt

+j
Z

T

0
X0h ;

k(m)X
i=1

�Bi;m
(t)ci;miX dt� X0h ;

Z
T

0

w(t) dtiX j

= k kX0
Z

T

0

kwm(t)� w(t)kX dt

+j
Z

T

0

k(m)X
i=1

�Bi;m
(t)X0h ; ci;miX dt� X0h ;

Z
T

0

w(t) dtiX j

= k kX0
Z

T

0

kwm(t)� w(t)kX dt+ j
k(m)X
i=1

jBi;mjX0h ; ci;miX � X0h ;
Z

T

0

w(t) dtiX j

= k kX0
Z

T

0

kwm(t)� w(t)kX dt+ jX0h ;
k(m)X
i=1

jBi;mjci;miX � X0h ;
Z

T

0

w(t) dtiX j

= k kX0
Z

T

0

kwm(t)� w(t)kX dt+ jX0h ;
Z

T

0

wm(t)� w(t) dtiX j

� 2k kX0
Z

T

0

kwm(t)� w(t)kX dt! 0

for m! 0, as consequence of (3.20). Putting w(t) = v(t)'(t), we �nish the proof of

the �rst part of the proposition. The proof in the case that vn
�
* v in L1(0; T ;X 0)

proceeds in almost the same way. 2
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Proposition 3.8 Let ' 2 C
1

0 (0; T ) and v 2 L
p(0; T ;H1(
)), p 2 [1;1]. Then

v
' 2 H1(
) and @iv

' = @iv
'

, i = 1; 2; 3.

P r o o f: Using the Fubini theorem we derive thatZ



@i v
'
dx =

Z



@i 

Z
T

0

v(t)'(t) dtdx

=

Z
T

0

'(t)

Z



v(t)@i dxdt = �
Z

T

0

'(t)

Z



@iv(t) dxdt

= �
Z



 

Z
T

0

'(t)@iv(t) dtdx = �
Z



 @iv
'

dx

for all  2 C1

0 (
) and i = 1; 2; 3. 2

Proposition 3.9 Let ' 2 C
1

0 (0; T ) and v 2 L
p(0; T ;C([0; l];X)), for p 2 (1;1].

Then v' 2 C([0; l];X).

P r o o f: We know from the de�nition of Bochner spaces that

v(t) 2 C([0; l];X) for a.a. t 2 [0; T ];

and thus

lim
x1!bx1

kv(t; x1)� v(t; bx1)kX = 0 for a.a. t 2 (0; T ) (3.21)

and for some bx1 2 [0; l]. Then, using the Vitali theorem (see [9] and (3.21)), we �nd

that

lim
x1!bx1

kv(x1)
' � v(bx1)'kX = lim

x1!bx1

kv(x1)� v(bx1)'kX
� lim

x1!bx1

Z
T

0

'(t)kv(t; x1)� v(t; bx1)kX dt

=

Z
T

0

'(t) lim
x1!bx1

kv(t; x1)� v(t; bx1)kX dt = 0:

2

Every function V 2 H1(
)3 may be represented in the local frame generated by the

vectors t�, n�, b�. So,

V(x) = v1;�(x)t�(x1) + v2;�(x)n�(x1) + v3;�(x)b�(x1); (3.22)

where the components of the vector v� = (v1;�; v2;�; v3;�) 2 H1(
)3 are de�ned by

(V; t�) = v1;�; (V;n�) = v2;�; (V;b�) = v3;�: (3.23)

Using (2.2) together with (3.22), we get similar relations for the derivative @1 of V

having the form

(@1V(x); t�(x1)) = @1v1;�(x)� ��(x1)v3;�(x)� ��(x1)v2;�(x); (3.24)

9



(@1V(x);n�(x1)) = @1v2;�(x) + ��(x1)v1;�(x) + 
�(x1)v3;�(x); (3.25)

(@1V(x);b�(x1)) = @1v3;�(x) + ��(x1)v1;�(x)� 
�(x1)v2;�(x) (3.26)

for a.a. x 2 
. The following proposition shows that the relations (3.24){(3.26)

remain valid under weaker assumptions on the function V.

Proposition 3.10 [15] Let V 2 L2(
)3 and the vector function v� = (v1;�; v2;�; v3;�)

from (3:23) be such that @1v� 2 L2(0; l;H�1(S)3). Then the function V of the form

(3:22) is such that @1V 2 L
2(0; l;H�1(S)3) and ful�lls the relations (3:24){(3:26) in

the sense of the space L2(0; l;H�1(S)) for all � 2 (0; 1).

Proposition 3.11 [15] Let � � 0, � > 0 and

A
ijkl

�
= �g

ij;�
g
kl;� + �(gik;�gjl;� + g

il;�
g
jk;�):

Then there exists a constant C3 > 0 such that the estimate

3X
i;j=1

jtijj2 � C3A
ijkl

�
(x)tkltij (3.27)

holds for all x 2 
, all � 2 [0; 1] and all symmetric matrices (tij)
3
i;j=1, with the

constant C3 being independent of � and x.

Proposition 3.12 [15] There exist constant C4 > 0 independent of � such that

kVk1;2 �
C4

�
k!�(V)k2; 8V 2 V (
)3 and 8� 2 (0; 1): (3.28)

4 Weak formulation of the evolution equation for

the curved rods and its transformation

We consider e
� de�ned by mapping �P� ÆR� (see (2.3){(2.4)) for � 2 (0; 1) arbitrary

but �xed as a three-dimensional homogeneous and isotropic elastic body with the

Lam�e constants � � 0, � > 0 and with mass density e��. Let eF� be the body force andeG� the surface traction acting on the curved rod e
� such that eF� 2 L2(0; T ;L2(e
�)3)
and eG� 2 W

1;1(0; T ;L2(( �P� ÆR�)((0; l)� @S))3), for � 2 (0; 1). Let e
� be clamped

on both bases �P�(f0g � �S) and �P�(flg � �S). The equilibrium displacement eU� is

the (weak) solution of the equation

[V (e
�)3]0
he��@tt eU�(t); eViV (e
�)3

+

Z
e
�

eAijklekl(eU�(t))eij(eV) dey
=

Z
e
�

(eF�(t); eV) dey + Z
�P�ÆR�((0;l)�@S)

(eG�(t); eV) deS�dey1 (4.1)
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for all eV 2 V (e
�)3 and for almost all t 2 (0; T ), where eS� = (�P� ÆR�)((0; l)� @S),eAijkl = �Æ
ij
Æ
kl + �(ÆikÆjl + Æ

il
Æ
jk) and (eij(eV))3

i;j=1 stands for the symmetric part of

the gradient of the function eV. The solution eU� satis�es the initial stateeU�jt=0 = eQ0;�; e��@t eU�jt=0 = e�� eQ1;�: (4.2)

From (2.3){(2.4) and from the regularization of the local frame (see Proposition 3.1),

it follows that the mapping �P� Æ R� is the parametrization of the smooth three-

dimensional curved rod.

We transform now the equation (4.1). Denoting U� = eU�( �P� ÆR�), �� = e��( �P� ÆR�)

and V� = eV( �P� ÆR�), we get for arbitrary  2 C1

0 (0; T ) thatZ
T

0

 (t)[V (e
�)3]0
he��@tt eU�(t); eViV (e
�)3

dt = �
Z

T

0

@t (t)

Z
e
�

e��(@t eU�(t); eV) deydt
= �

Z
T

0

@t (t)

Z



��(@tU�(t);V�)�
2
d� dxdt

= �
2

Z
T

0

 (t)[V (
�)3]0h��d�@ttU�(t);V�iV (
�)3 dt;

and thus

[V (e
�)3]0
he��@tt eU�(t); eViV (e
�)3

= �
2
[V (
�)3]0h��d�@ttU�(t);V�iV (
�)3 (4.3)

for a.a. t 2 (0; T ). Analogously as in [15], we derive thatZ
e
�

eAijklekl(eU�(t))eij(eV) dey = �
2

Z



A
ijkl

�
!
�

kl
(U�(t))!

�

ij
(V�)d� dx; (4.4)

where

A
ijkl

�
= �g

ij;�
g
kl;� + �(gik;�gjl;� + g

il;�
g
jk;�); (4.5)Z

e
�

(eF�(t); eV) dey = �
2

Z



(F�(t);V�)d� dx; (4.6)

andZ
( �P�ÆR�)((0;l)�@S)

(eG�(t); eV) deS�dey1 = �
2

Z
(0;l)�@S

(G�(t);V�)d�
p
�io

ij;��jdSdx1: (4.7)

The symmetric tensor !�(V) has the form

!
�(V) =

1

�
�
�(V) + �

�(V); (4.8)

where the individual nonzero components of the symmetric tensors �� and �
� are

de�ned by

�
�

12(V) =
1

2
(@2V; g1;�); �

�

22(V) = (@2V;n�); �
�

33(V) = (@3V;b�); (4.9)
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�
�

13(V) =
1

2
(@3V; g1;�); �

�

23(V) =
1

2

�
(@2V;b�) + (@3V;n�)

�
; (4.10)

�
�

11(V) = (@1V; g1;�); �
�

12(V) =
1

2
(@1V;n�); �

�

13(V) =
1

2
(@1V;b�); (4.11)

where g1;� ! t in measure in 
 and n� ! n, b� ! b in measure in (0; l) for �! 0.

The other components of �� and �� are equal to zero.

It is easy to see that if eV 2 V (e
�)3, thenV� 2 V (
)3. DenotingQ0;� = eQ0;�( �P�ÆR�),

Q1;� = eQ1;�( �P� ÆR�), F� = eF�( �P� ÆR�) and G� = eG�( �P� ÆR�) we can rewrite the

model (4.1){(4.2) using (4.3){(4.7) as

[V (
)3]0h��d�@ttU�(t);ViV (
)3 +

Z



A
ijkl

�
!
�

kl
(U�(t))!

�

ij
(V�)d� dx

=

Z



(F�(t);V)d� dx+

Z
l

0

Z
@S

(G�(t);V)d�
p
�io

ij;��j dSdx1 (4.12)

for all V 2 V (
)3 and for almost all t 2 (0; T ), where the solution U� satis�es the

initial state

U�jt=0 = Q0;�; ��@tU�jt=0 = ��Q1;�: (4.13)

Assumptions

The following assumptions will be needed throughout the paper:

1. �� = �
2
�, where � 2 L1(
) and

0 < C5 � � � C6 a.e. in 
: (4.14)

2. F� = �
2F, F 2 L2(0; T ;L2(
)3), G� = �

3G, G 2 W 1;1(0; T ;L2(0; l;L2(@S)3)).

3. fQ0;�g�2(0;1) � V (
)3, fQ1;�g�2(0;1) � L
2(
)3,

1

�
k!�(Q0;�)k2 � C; 8� 2 (0; 1); (4.15)

where the constant C is independent of �, and

Q0;� * Q0 in V (
)
3
; Q1;� * Q1 in L

2(
)3 (4.16)

for �! 0, where Q0 2 H1
0 (0; l)

3 and Q1 2 L2(0; l)3.

After the substitution of the above assumptions to (4.12){(4.13) we get

[V (
)3]0h�d�@ttU�(t);ViV (
)3 +

Z



A
ijkl

�

1

�
!
�

kl
(U�(t))

1

�
!
�

ij
(V�)d� dx

=

Z



(F(t);V)d� dx+

Z
(0;l)

Z
@S

(G(t);V)d��
p
�io

ij;��j dSdx1 (4.17)

for all V 2 V (
)3 and for almost all t 2 (0; T ), and

U�jt=0 = Q0;�; �@tU�jt=0 = �Q1;�: (4.18)

The existence of the (weak) solution U� to the problem (4.17){(4.18) and basic

estimates are derived in the next section.
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5 On the existence of a unique weak solution to

(4.17){(4.18) and basic estimates

Now, we prove the existence and uniqueness of the weak solution to the problem

(4.17){(4.18) and the appropriate estimates.

Proposition 5.1 Under the assumptions of Section 4, there exists a unique weak

solution U� to the problem (4:17){(4:18) such that U� 2 L
1(0; T ;V (
)3), @tU� 2

L
1(0; T ;L2(
)3), �@ttU� 2 L

2(0; T ; [V (
)3]0), where the initial conditions in (4:18)

are ful�lled in the sense of the space C([0; T ];L2(
)3) or C([0; T ]; [V (
)3]0), respec-

tively. In addition, this solution satis�es for all � 2 (0; 1) the estimates

kp�@tU�k2L1(0;T ;L2(
)3) + k1
�
!(U�)k2L1(0;T ;L2(
)9) � C

�
kQ1;�k22

+k1
�
!(Q0;�)k2 + kFk2

L2(0;T ;L2(
)3) + kGk2
W 1;1(0;T ;L2(0;l;L2(@S)3))

�
(5.1)

and

k�@ttU�kL2(0;T ;[V (
)3]0) � C

�
kFkL2(0;T ;L2(
)3)

+kGkL2(0;T ;L2(0;l;L2(@S)3)) +
1

�2
k!�(U�)kL2(0;T ;L2(
)9)

�
; (5.2)

where the constant C is independent of �.

Before we start to prove Proposition 5.1, we construct a �nite dimensional approx-

imation of the weak solution to our problem using analogous arguments as in [4],

and [5], and we prove auxiliary lemmas, which enable us to prove Proposition 5.1.

Let � 2 (0; 1) be arbitrary but �xed. Since the space V (
) is a separable Hilbert

space with the scalar product ((�; �))�d�;
 de�ned by

((V;W ))�d�;
 =

Z



�V Wd� dx+

Z



�(rV;rW )d� dx;

we can select smooth functions Wk =Wk(x), k = 1; 2; : : : ; such that

fWkg1k=1 is a basis of V (
) (5.3)

and

fWkg1k=1 is an orthonormal basis of L2(
) (5.4)

in the sense of the scalar product (�; �)�d�;
 de�ned by

(V;W )�d�;
 =

Z



�V Wd� dx:

The proof that the above mentioned scalar products are well-de�ned follows from

Corollary 3.2 and (4.14).
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Now, we �x a positive integer m, and we write

U
m

�;j
(t; x) =

mX
k=1

d
m

�;k;j
(t)Wk(x); Q

m

0;�;j(x) =

mX
k=1

d
m

�;k;j
(0)Wk(x);

(5.5)

Q
m

1;�;j(x) =

mX
k=1

_dm
�;k;j

(0)Wk(x);

where j = 1; 2; 3, (t; x) 2 (0; T )� 
 and Um

�
= (Um

�;1; U
m

�;2; U
m

�;3). We intend to select

the coeÆcients dm
�;k;j

(t), j = 1; 2; 3, to satisfy

d
m

�;k;j
(0) =

Z



�Q0;�;jWkd� dx;
_dm
�;k;j

(0) =

Z



�Q1;�;jWkd� dx (5.6)

for j = 1; 2; 3, k = 1; : : : ; m. Using the vectors

W1
k
= (Wk; 0; 0); W

2
k
= (0;Wk; 0); W

3
k
= (0; 0;Wk);

we want to prove the existence of the unique solution to the system of equationsZ



�@ttU
m

�;bi
(t)Wkd� dx+

Z



A
ijkl

�

1

�
!
�

kl
(Um

�
(t))

1

�
!
�

ij
(W

bi

k
)d� dx

=

Z



F
bi
(t)Wkd� dx+

Z
(0;l)

Z
@S

G
bi
(t)Wkd��

p
�io

ij;��j dSdx1;
bi = 1; 2; 3; (5.7)

completed with the initial states

d
m

�;k;bi
(0) =

Z



�Q0;�;biWkd� dx;
_dm
�;k;bi

(0) =

Z



�Q1;�;biWkd� dx (5.8)

for j = 1; 2; 3, k = 1; : : : ; m.

Lemma 5.2 There exists a unique solution Um

�
2 W 2;2(0; T ;V (
)3) to the equation

(5:7) satisfying (5:8) for each m = 1; 2; : : : .

P r o o f: In the �rst step, we rewrite the equations in (5.7) as a system of ordinary

di�erential equations. We start with the second term. Let us take, for instance,

!
�

23(U
m

�
(t)). Then (using the summation convention except for �)

!
�

23(U
m

�
(t))

(4:8)�(4:11)
=

1

�
�
�

23(U
m

�
(t))

(4:10)
=

1

2�

�
(@2U

m

�
(t);b�) + (@3U

m

�
(t);n�)

�
(5:5)
=

1

2�

�
d
m

�;k;bj
(t)@2Wkb�;bj + d

m

�;k;bj
(t)@3Wkn�;bj

�
=

1

2�
d
m

�;k;bj
(t)(@2Wkb�;bj + @3Wkn�;bj) = d

m

�;k;bj
(t)B�

23;bj
(Wk);
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where we denote

B
�

23;bj
(Wk) =

1

2�
(@2Wkb�;bj + @3Wkn�;bj);

bj = 1; 2; 3:

We express analogously the other components of the symmetric tensor B�

bj
(Wk) =

(B�

ij;bj
(Wk))

3
i;j=1,

bj = 1; 2; 3, and thus we get that

!
�

ij
(Um

�
) = d

m

�;k;bj
(t)B�

ij;bj
(Wk); i; j = 1; 2; 3;

where

B
�

11;bj
(Wk) = @1Wk[g1;�]bj; for g1;� = ([g1;�]1; [g1;�]2; [g1;�]3);

B
�

12;bj
(Wk) =

1

2�
@2Wk[g1;�]bj +

1

2
@1Wkn�;bj; B

�

13;bj
(Wk) =

1

2�
@3Wk[g1;�]bj +

1

2
@1Wkb�;bj;

B
�

22;bj
(Wk) =

1

�
@2Wkn�;bj; B

�

33;bj
(Wk) =

1

�
@3Wkb�;bj

B
�

23;bj
(Wk) =

1

2�
(@2Wkb�;bj + @3Wkn�;bj);

bj = 1; 2; 3:

HenceZ



A
ijkl

�

1

�
!
�

kl
(Um

�
(t))

1

�
!
�

ij
(W

bi

k
)d� dx = d

m

�;k;bj
(t)

Z



A
ijkl

�

1

�
B
�

kl;bj
(Wk)

1

�
!
�

ij
(W

bi

k
)d� dx

= d
m

�;k;bj
(t)D�

bj
(B�

bj
(Wk); !

�(W
bi

k
)d�); (5.9)

where

D
�

bj
(B�

bj
(Wk); !

�(W
bi

k
)d�) =

Z



A
ijkl

�

1

�
B
�

kl;bj
(Wk)

1

�
!
�

ij
(W

bi

k
)d� dx;

bi = 1; 2; 3 and bj = 1; 2; 3. Further, we denote

f
bi

k
(t) =

Z



F
bi
(t)Wkd� dx; g

bi

k
(t) =

Z
l

0

Z
@S

G
bi
(t)Wkd��

p
�io

ij;��j dSdx1; (5.10)

for bi = 1; 2; 3.

Using the fact that the functions Wk, k = 1; 2; : : :, are orthonormal in the sense of

the scalar product (�; �)�d�;
, together with (5.5), (5.9){(5.10), we may rewrite the

equation (5.7) as a linear system of ODE's having the form

�dm
�;k;bi

(t) + d
m

�;k;bj
(t)D�

bj
(B�

bj
(Wk); !

�(W
bi

k
)d�) = f

bi

k
(t) + g

bi

k
(t); (5.11)

for t 2 (0; T ), with the initial state

d
m

�;k;bi
(0) =

Z



�Q0;�;biWkd� dx;
_dm
�;k;bi

(0) =

Z



�Q1;�;bi;Wkd� dx (5.12)

for bi = 1; 2; 3, k = 1; : : : ; m. Owing to standard ODE theory there exist unique

functions dm
�;k;bi

(t) 2 W
2;2(0; T ), bi = 1; 2; 3 and k = 1; : : :m, that satisfy (5.12) and

solve (5.11) for almost all t 2 (0; T ). 2
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Lemma 5.3 Under the assumptions of Section 4, the solution to the problem (5:7){

(5:8) satis�es the estimates

kp�@tUm

�
k2
L1(0;T ;L2(
)3) + k1

�
!(Um

�
)k2
L1(0;T ;L2(
)9) � C

�
kQm

1;�k22

+k1
�
!(Qm

0;�)k2 + kFk2
L2(0;T ;L2(
)3) + kGk2

W 1;1(0;T ;L2(0;l;L2(@S)3))

�
(5.13)

and

k�@ttUm

�
kL2(0;T ;[V (
)3]0) + k�d�@ttUm

�
kL2(0;T ;[V (
)3 ]0) � C

�
kFkL2(0;T ;L2(
)3)

+kGkL2(0;T ;L2(0;l;L2(@S)3)) +
1

�2
k!�(Um

�
)kL2(0;T ;L2(
)9)

�
; (5.14)

where the constant C is independent of �.

P r o o f: We multiply equation (5.7) by _dm
�;k;i

(t), bi = 1; 2; 3, sum k = 1; : : : ; m and

recall (5.5) to discover (we do not use the summation convention for index bi here)
that Z




�@ttU
m

�;bi
(t)@tU

m

�;bi
(t)d� dx+

Z



A
ijkl

�

1

�
!
�

kl
(Um

�
(t))

1

�
!
�

ij
(@t bUm;bi

�
(t))d� dx

=

Z



F
bi
(t)@tU

m

�;bi
(t)d� dx+

Z
l

0

Z
@S

G
bi
(t)@tU

m

�;bi
(t)d��

p
�io

ij;��j dSdx1;
bi = 1; 2; 3;

(5.15)

where bUm;1
�

= (Um

�;1; 0; 0);
bUm;2
�

= (0; Um

�;2; 0);
bUm;3
�

= (0; 0; Um

�;3):

We observe thatZ



�@ttU
m

�;bi
(t)@tU

m

�;bi
(t)d� dx =

d

dt
(
1

2
k
p
�d�@tU

m

�;bi
(t)k22); bi = 1; 2; 3; (5.16)

3X
bi=1

Z



A
ijkl

�

1

�
!
�

kl
(Um

�
(t))

1

�
!
�

ij
(@t bUm;bi

�
(t))d� dx

=

Z



A
ijkl

�

1

�
!
�

kl
(Um

�
(t))

1

�
!
�

ij
(@tU

m

�
(t))d� dx

=
d

dt

� 1

2�2

Z



A
ijkl

�
!
�

kl
(Um

�
(t))!�

ij
(Um

�
(t))d� dx

�
(5.17)

for a.a t 2 (0; T ), because the tensor (Aijkl
�

)3
i;j;k;l=1 is symmetric. Summingbi = 1; 2; 3

in (5.15) and using (5.16){(5.17), we get the equality

d

dt

�1
2
k
p
�d�@tU

m

�
(t)k22 +

1

2�2

Z



A
ijkl

�
!
�

kl
(Um

�
(t))!�

ij
(Um

�
(t))d� dx

�
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=

Z



(F(t); @tU
m

�
(t))d� dx+

Z
l

0

Z
@S

(G(t); @tU
m

�
(t))d��

p
�io

ij;��j dSdx1: (5.18)

Integrating (5.18) over the interval [0; t], t 2 (0; T ), yields, together with (5.5) and

(5.8),
1

2
k
p
�d�@tU

m

�
(t)k22 +

1

2�2

Z



A
ijkl

�
!
�

kl
(Um

�
(t))!�

ij
(Um

�
(t))d� dx

=
1

2
k
p
�d�Q

m

1;�k22+
1

2�2

Z



A
ijkl

�
!
�

kl
(Qm

0;�)!
�

ij
(Qm

0;�)d� dx+

Z
t

0

Z



(F(s); @tU
m

�
(s))d� dxds

+

Z
t

0

Z
l

0

Z
@S

(G(s); @tU
m

�
(s))d��

p
�io

ij;��j dSdx1ds (5.19)

for all t 2 [0; T ]. Further, we can estimate the third and fourth term on the right-

hand side, using Corollary 3.2 and the Young inequality jabj � a
2
=2 + b

2
=2, by���Z t

0

Z



(F(s); @tU
m

�
(s))d� dxds

��� � C1

Z
t

0

Z



1

C7

jF(s)jC7j@tUm

�
(s)j dxds

� C1

2C2
7

Z
t

0

kF(s)k22 ds+
C1C

2
7

2

Z
t

0

k@tUm

�
(s)k22 ds

=
C1

2C2
7

kFk2
L2(0;T ;L2(
)3) + T

C1C
2
7

2
k@tU�

m(t)k2
L1(0;T ;L2(
)3); (5.20)

and ���Z t

0

Z
l

0

Z
@S

(G(s); @tU
m

�
(s))d��

p
�io

ij;��j dSdx1ds

���
=
���Z t

0

Z
l

0

Z
@S

@t(G(s);Um

�
(s))d��

p
�io

ij;��j dSdx1ds

�
Z

t

0

Z
l

0

Z
@S

(@tG(s);Um

�
(s))d��

p
�io

ij;��j dSdx1ds

���
=
���Z l

0

Z
@S

(G(t);Um

�
(t))d��

p
�io

ij;��j dSdx1

�
Z

l

0

Z
@S

(G(0);Qm

0;�)d��
p
�io

ij;��j dSdx1

�
Z

t

0

Z
l

0

Z
@S

(@tG(s);Um

�
(s))d��

p
�io

ij;��j dSdx1ds

���
� C2

2C2
8

kGk2
L1(0;T ;L2(0;l;L2(@S)3)) +

C2C
2
8

2
kUm

�
kL1(0;T ;L2(0;l;L2(@S)3))

+
C2

2C2
9

kG(0)k2
L2(0;l;L2(@S)3) +

C2C
2
9

2
kQm

0;�kL2(0;l;L2(@S)3)

+kUm

�
kL1(0;T ;L2(0;l;L2(@S)3))

Z
t

0

k@tG(s)d��
p
�io

ij;��jkL2(0;l;L2(@S)3) ds
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� C2

2C2
8

kGk2
L1(0;T ;L2(0;l;L2(@S)3)) +

C2C
2
8

2
kUm

�
kL1(0;T ;L2(0;l;L2(@S)3))

+
C2

2C2
9

kG(0)k2
L2(0;l;L2(@S)3) +

C2C
2
9

2
kQm

0;�kL2(0;l;L2(@S)3)

+
C2C

2
10

2
kUm

�
k2
L1(0;T ;L2(0;l;L2(@S)3)) +

C2

2C2
10

k@tGk2L1(0;T ;L2(0;l;L2(@S)3)): (5.21)

Let the constant C11 comes from the embbeding

W
1;1(0; T ;L2(0; l;L2(@S)3)) ,! C([0; T ];L2(0; l;L2(@S)3))

and the constant C12 from

H
1(S) ,! L

2(@S):

Then we deduce from (5.18){(5.21) using Corollary 3.2 and (4.14) that

C0

2
kp�@tUm

�
k2
L1(0;T ;L2(
)3) � T

C1C
2
7

2
k@tUm

�
k2
L1(0;T ;L2(
)3)+�

ess sup
(0;T )

1

2�2

Z



A
ijkl

�
!
�

kl
(Um

�
(t))!�

ij
(Um

�
(t))d� dx

�C2C
2
12

2
(C2

8 + C
2
10)kUm

�
k2
L1(0;T ;H1(
)3)

�
� C1C6

2
kQm

1;�k22 +
C2C

2
9C

2
12

2
kQm

0;�k21;2

+
C1

2�2

Z



A
ijkl

�
!
�

kl
(Qm

0;�)!
�

ij
(Qm

0;�) dx+
C1

2C2
7

kFk2
L2(0;T ;L2(
)3)

+C2(
C

2
11

2C2
8

+
C

2
11

2C2
9

+
1

2C2
10

)kGk2
W 1;1(0;T ;L2(0;l;L2(@S)3)); (5.22)

where the constants Cj, j = 0; : : : ; 12, do not depend on �. From (4.14), it follows

that

T
C1C

2
7

2
k@tUm

�
k2
L1(0;T ;L2(
)3) � T

C1C
2
7

2C5

kp�@tUm

�
k2
L1(0;T ;L2(
)3): (5.23)

Further, the estimates (3.27) and (3.28) together with Corollary 3.2 provide

ess sup
(0;T )

1

2�2

Z



A
ijkl

�
!
�

kl
(Um

�
(t))!�

ij
(Um

�
(t))d� dx

� C0

2�2C3

k!�(Um

�
)k2
L1(0;T ;L2(
)9); (5.24)

C2C
2
12

2
(C2

8 + C
2
10)kUm

�
k2
L1(0;T ;H1(
)3)

� C2C
2
4C

2
12

2�2
(C2

8 + C
2
10)k!�(Um

�
)k2
L1(0;T ;L2(
)9) (5.25)
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and
C2C

2
9C

2
12

2
kQm

0;�k21;2 �
C2C

2
4C

2
9C

2
12

2�2
k!�(Qm

0;�)k2L2(
)9 (5.26)

In addition, the estimate

k(Aijkl
�

)3
i;j;k;l=1kC(
) � C13 (5.27)

holds with the constant C13 being independent of � as a consequence of the relations

(2.9), (3.5) and (4.5). Hence

C1

2�2

Z



A
ijkl

�
!
�

kl
(Qm

0;�)!
�

ij
(Qm

0;�) dx �
C1C13

2�2
k!�(Qm

0;�)k2L2(
)9 : (5.28)

The substitution of the inequalities (5.23){(5.28) to (5.22) leads to the estimate�
C0

2
� T

C1C
2
7

2C5

�
kp�@tUm

�
k2
L1(0;T ;L2(
)3)

+
C0 � C2C3C

2
4C

2
12(C

2
8 + C

2
10)

2�2C3

k!�(Um

�
)k2
L1(0;T ;L2(
)9)

� C1C6

2
kQm

1;�k22 +
C1C13 + C2C

2
4C

2
9C

2
12

2�2
k!�(Qm

0;�)k22

+
C1

2C2
7

kFk2
L2(0;T ;L2(
)3) + C2(

C
2
11

2C2
8

+
C

2
11

2C2
9

+
1

2C2
10

)kGk2
W 1;1(0;T ;L2(0;l;L2(@S)3)): (5.29)

Putting now

C7 =

r
C0C5

2TC1

; C10 = C8; C8 =

s
C0

4C2C3C
2
4C

2
8C

2
12

;

we conclude (5.13).

It remains to show (5.14). We �x any V 2 V (
) such that kV k1;2 � 1. The

function V

d�
belongs to V (
) for � suÆciently small as well, which is a consequence

of Proposition 3.1, Corollary 3.2 and the de�nitions (2.5), (2.10) of the function d�.

In addition, k V
d�
k1;2 � C14, where the constant C14 is independent of � (see (2.5),

(2.10) and (3.5)). We can decompose this function as a sum

V

d�
= V

�

1 + V
�

2 ;

where V �

1 2 spanfWkgmk=1,Z



�V
�

2Wkd� dx +

Z



�(rV �

2 ;rWk)d� dx = 0; k = 1; : : : ; m:

We can derive from Corollary 3.2 and (4.14) the estimate

kV k21;2 �
1

C1C6

Z



[�(V 2 + jrV j2)d�] dx =
1

C1C6

Z



�[(V �

1 )
2 + (V �

2 )
2 + 2V �

1 V
�

2 ]d� dx
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+
1

C1C6

Z



�[jrV �

1 j2 + jrV �

2 j2 + 2(rV �

1 ;rV �

2 )]d� dx �
C0C5

C1C6

kV �

1 k1;2;

and thus kV �

1 k1;2 � C15 =
C14C1C6

C0C5

, where C15 is independent of �. Then (5.5) and

(5.7) imply, after the substitution Wk = V
�

1 ,

V (
)0h�@ttUm

�;bi
(t); V iV (
) =

Z



�@ttU
m

�;bi
(t)
V

d�
d� dx =

Z



�@ttU
m

�;bi
(t)V �

1 d� dx

=

Z



F
bi
(t)V �

1 d� dx +

Z
l

0

Z
@S

G
bi
(t)V �

1 d��

p
�io

ij;��j dSdx1

�
Z



A
ijkl

�

1

�
!
�

kl
(Um

�
(t))

1

�
!
�

ij
(
V

bi;�

1

d�
)d� dx; (5.30)

bi = 1; 2; 3, where

V
1;�
1 = (V �

1 ; 0; 0); V
2;�
1 = (0; V �

1 ; 0); V
3;�
1 = (0; 0; V �

1 ):

Since (5.27) and the estimate kV �

1 k1;2 � C15 imply thatZ



A
ijkl

�

1

�
!
�

kl
(Um

�
(t))

1

�
!
�

ij
(V

bi;�

1 )d� dx �
C

�2
k!�(Um

�
(t))k2; for a.a. t 2 (0; T );

where the constant C is independent of �, we get the estimate

j
3X

bi=1

V (
)0h�@ttUm

�;bi
(t); V iV (
)j � C

�
kF(t)k2

+kG(t)kL2(0;l;L2(@S)3) +
1

�2
k!�(Um

�
(t))k2

�
; for a.a. t 2 (0; T ); (5.31)

where the constant C is independent of �. Taking the function V instead of V

d�
, and

using the same procedure as above for the term �d�@ttU
m

�
, we derive (5.14). 2

P r o o f of Proposition 5.1: Using (4.14), (5.3){(5.6), we can easily derive that

Qm

0;� ! Q0;� in V (
)
3
; �Qm

1;� ! �Q1;� in L
2(
)3: (5.32)

From the estimates (3.28) and (5.13), it follows (passing to a subsequence if neces-

sary) that

Um

�

�
* U� in L

1(0; T ;H1(
)3); (5.33)

@tU
m

�

�
* @tU� in L

1(0; T ;L2(
)3); (5.34)

�@tU
m

�

�
* �@tU� in L

1(0; T ;L2(
)3); (5.35)

�@ttU
m

�
*W� in L

2(0; T ;H�1(
)3) (5.36)

�d�@ttU
m

�
* cW� in L

2(0; T ;H�1(
)3) (5.37)
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for m ! 1. It remains to show that W� = �@ttU� and cW� = �d�@ttU�. From

(5.35), it follows that

�@ttU
m

�
* �@ttU�; �d�@ttU

m

�
* �d�@ttU�; in W

�1;2(0; T ;L2(
)3)

for m ! 1, which leads to the desired conclusion. The estimates (5.1){(5.2) im-

mediately follow from (5.13){(5.14) and (5.32){(5.37). Using the standard theorems

about compact imbeddings in Bochner's spaces, see [12] together with (5.33){(5.34)

and (5.35){(5.36), we can deduce that

Um

�
! U� in C

1([0; T ];L2(
)3)

and

�@tU
m

�
! �@tU� in C([0; T ]; [V (
)

3]0)

form!1. The uniqueness of the solution follows from the linearity of the equation

(4.17) and the estimate (5.1). 2

Corollary 5.4 Under the assumptions of Proposition 5:1, there exists a sequence

f�ng1n=1 � (0; 1) such that �n ! 0 and

U�n

�
* U in L1(0; T ;H1(
)3); (5.38)

@tU�n

�
* @tU in L1(0; T ;L2(
)3); (5.39)

1

�n
!
�n(U�n)

�
* � in L1(0; T ;L2(
)9) (5.40)

for �n ! 0.

P r o o f: The proof follows immediately from the estimate (5.1). 2

Corollary 5.5 Let ' 2 C1

0 (0; T ) and the assumptions of Proposition 5:1 be ful�lled.

Then

U�n

'

* U
'

in H1(
)3; (5.41)

@tU�n

'

* @tU
'

in L2(
)3; (5.42)

1

�n
!
�n(U�n

'

) =
1

�n
!�n(U�n)

'

* �
'

in L2(
)9; (5.43)

for �n ! 0.

P r o o f: The proof is a consequence of (5.38){(5.40) and Proposition 3.7. 2
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6 Qualitative properties of the limit displacement

Proposition 6.1 Suppose that f�ng1n=1 � (0; 1) and �n ! 0. Let, in addition, a

sequence fU�n
g1
n=1 � L

1(0; T ;V (
)3) be such that

U�n

�
* U in L1(0; T ;H1(
)3); (6.1)

1

�n
!
�n(U�n

)
�
* � in L1(0; T ;L2(
)9); (6.2)

for �n ! 0. Then the couple bU; �c 2 L
1(0; T ;Vt;n;b0 (0; l)) (in the sense @jU = 0,

j = 2; 3), where the function � is such that

1

2�n

�
(@2U�n

;b�n)� (@3U�n
;n�n)

�
�
* � (6.3)

in L1(0; T ;L2(
)) for �n ! 0. In addition, the couple bU; �c generates a function

U� 2 L1(0; T ;H1
0(0; l)

3) which together with the function U satis�es the relations

(@1U; t) = 0 a.e. in (0; T )� (0; l); (6.4)

(@1U�; t) = @3�12 � @2�13 in L
1(0; T ;L2(0; l;H�1(S))); (6.5)

(@1U�;n) = �@3�11 a.e. in (0; T )� (0; l); (6.6)

(@1U�;b) = @2�11 a.e. in (0; T )� (0; l): (6.7)

Remark 6.2 Since 1
�n
!�n(U�n)

'

= 1
�n
!
�n(U�n

'

) (see (4.8){(4.11)), we can use

(5.41), (5.43) and Proposition 7.2 from [15] to derive the existence of the pair

bU'

; �'c 2 Vt;n;b0 (0; l) (in the sense @jU
'

= 0, j = 2; 3) for arbitrary ' 2 C1

0 (0; T ),

where the function �' is such that

1

2�n

�
(@2U�n

'

;b�n)� (@3U�n

'

;n�n)
�
* �' (6.8)

in L
2(
) for �n ! 0 and for arbitrary ' 2 C

1

0 (0; T ). In addition, the couple

bU'

; �'c generates the function U�;' 2 H
1
0 (0; l)

3 which together with the function

U
'

satis�es the relations

(@1U
'

; t) = 0 a.e. in (0; l); (6.9)

(@1U�;'; t) = @3�12 � @2�13
'

in L2(0; l;H�1(S)); (6.10)

(@1U�;';n) = �@3�11
'

a.e. in (0; l); (6.11)

(@1U�;';b) = @2�11
'

a.e. in (0; l); (6.12)

for arbitrary ' 2 C
1

0 (0; T ). If the sequence f 1
�n
!
�n(U�n

'

)g1
n=1 converges strongly

in L
2(
)9, then the convergence of the sequence fU�n

'g1
n=1 is strong as well for

arbitrary ' 2 C1

0 (0; T ).
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Remark 6.3 From Remark 6.2, it follows that to prove Proposition 6.1 we must

check that

�'(x1) = �
'

(x1) and U�;'(x1) = U�

'

(x1) (6.13)

for all ' 2 C
1

0 (0; T ) and for a.a. x1 2 (0; l).

The proof of Proposition 6.1 is decomposed into the following lemmas and corollaries.

Lemma 6.4 Under the assumptions in Proposition 6:1 the following convergences

hold true:
1

�q
�
�(U�)! 0 in L1(0; T ;L2(
)9); q 2 [0; 1); (6.14)�

1

�2
�
�(U�) +

1

�
�
�(U�)

�
�
* � in L1(0; T ;L2(
)9): (6.15)

P r o o f: We can observe that the �{weak convergences (6.1) and (6.2) together

with (4.8){(4.11) imply the boundedness of the set of the tensors f1
�
!
�(U�)g�2(0;1)

and f��(U�)g�2(0;1) in L
1(0; T ;L2(
)9). Using these facts, we can easily deduce

(6.14). (6.15) immediately follows from (6.2) and (4.8). 2

Corollary 6.5 Under hypotheses (6:1){(6:2) we have:

1

�q
(@2U�; g1;�)! 0; (@2U; t) = 0; (6.16)

1

�q
(@3U�; g1;�)! 0; (@3U; t) = 0; (6.17)

1

�q
(@1U�; g1;�)! 0; (@1U; t) = 0; (6.18)

1

�q

�
1

�
(@2U�; g1;�) + (@1U�;n�)

�
! 0; (6.19)

1

�q

�
1

�
(@3U�; g1;�) + (@1U�;b�)

�
! 0; (6.20)

in L1(0; T ;L2(
)) for q 2 [0; 1) and �! 0,

@j
1

�q

�
1

�
(@2U�; g1;�) + (@1U�;n�)

�
! 0; j = 2; 3; (6.21)

@j
1

�q

�
1

�
(@3U�; g1;�) + (@1U�;b�)

�
! 0; j = 2; 3; (6.22)

in L1(0; T ;L2(0; l;H�1(S))) for �! 0 and q 2 [0; 1),

1

�q1
(@2U�;n�)! 0; (@2U;n) = 0; (6.23)
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1

�q1
(@3U�;b�)! 0; (@3U;b) = 0; (6.24)

1

�q1

�
(@2U�;b�) + (@3U�;n�)

�
! 0; (@2U;b) + (@3U;n) = 0; (6.25)

in L1(0; T ;L2(
)) for q1 2 [0; 2) and �! 0, and

1

�q2
(@jU�; t�)! 0 in L1(0; T ;L2(
)); j = 2; 3; (6.26)

1

�q2
(@1U�; t�)! 0 in L1(0; T ;L2(
)); (6.27)

for q2 2 [0; 1� r), r 2 (0; 1
3
), and �! 0.

P r o o f: We can easily derive from (6.14){(6.15) and (4.8){(4.11) the convergences

(6.16){(6.20) and (6.23){(6.25). It remains to prove the associated equalities. Since

from Corollary 7.4 in [15] it follows that

0 = (@2U
'

; t) = (@2U; t)
'

in 
; 8' 2 C1

0 (0; T );

we get (@2U; t) = 0 a.e. in (0; T ) � 
. The convergence (6.21) follows from the

estimate

k@j
1

�q

�
1

�
(@2U�(t); g1;�) + (@1U�(t);n�)

�
kL2(0;l;H�1(S))

=

 Z
l

0

j sup
 2H1

0
(S);k k1;2�1

h@j
1

�q

�
1

�
(@2U�(t); g1;�) + (@1U�(t);n�)

�
;  ij2 dx1

! 1

2

� k 1
�q

�
1

�
(@2U�(t); g1;�) + (@1U�(t);n�)

�
k2; for a.a. t 2 (0; T );

and from (6.19). The convergence (6.22) can be obtained analogously from (6.20).

Further, we can derive from (2.6) that

(@jU�; t�) = (@jU�; g1;�) + ���x2(@jU�; t�) + ���x3(@jU�; t�)

��
�x3(@jU�;n�) + �
�x2(@jU�;b�); j = 2; 3; in (0; T )� 
:

Hence, and from (3.5), we get the estimate

(1� C�
1�r)k(@jU�; t�)kL1(0;T ;L2(
)) � k(@jU�; g1;�)kL1(0;T ;L2(
))

+C�1�r(k(@jU�;n�)kL1(0;T ;L2(
)) + k(@jU�;b�)kL1(0;T ;L2(
)));

which together with (6.1), (6.16){(6.17) and the fact that r 2 (0; 1
3
) lead to (6.26).

The convergence (6.27) can be proved analogously, and we omit its proof. 2

Lemma 6.6 Under the assumptions of Proposition 6:1, we have that U 2
L
1(0; T ;H1

0(0; l)
3) (in the sense @jU = 0, j = 2; 3) and satis�es the relation (6:4).
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P r o o f: We know from (6.1) that U 2 L1(0; T ;V (
)3), and from Remark 6.2 and

(2.17) that U
' 2 H

1
0 (0; l)

3 for all ' 2 C
1

0 (0; T ). Let us suppose that there exist

two points bxj2; xj3c 2 S, j = 1; 2, such that for x1 2 Ix1 � (0; l) and t 2 It � (0; T ),

where jIx1j 6= 0 and jItj 6= 0,

U(t; x1; x
1
2; x

1
3) 6= U(t; x1; x

2
2; x

2
3):

Then

0 = U(x1; x
1
2; x

1
3)
' �U(x1; x

2
2; x

2
3)
'

=

Z
T

0

(U(t; x1; x
1
2; x

1
3)�U(t; x1; x

2
2; x

2
3))'(t) dt

for all ' 2 C
1

0 (0; T ) and for a.a. x1 2 Ix1 , which implies that

U(t; x1; x
1
2; x

1
3) = U(t; x1; x

2
2; x

2
3)

for a.a. t 2 It and x1 2 Ix1, a contradiction. (6.4) can be derived from the relation

(6.27) for q2 = 0. 2

In the following lemmas and corollaries, we construct the function � from Propo-

sition 6.1, we show that bU; �c 2 L
1(0; T ;Vt;n;b0 (0; l)3), and we derive the equa-

tions (6.5){(6.7). But �rst we introduce the following notation. Let the functions

U� 2 L
1(0; T ;V (
)3), � 2 (0; 1), be the functions from Proposition 6:1. We de�ne

auxiliary functions ��, � 2 (0; 1), by the relation

�� =
1

2�

�
(@2U�;b�)� (@3U�;n�)

�
: (6.28)

Further, we de�ne the vector functions u�;� = (u�
�;1; u

�

�;2; u
�

�;3) by

u
�

�;1 = ���; u��;2 = �1

�
(@3U�; g1;�); u

�

�;3 =
1

�
(@2U�; g1;�); (6.29)

and the vector functions U�;�, � 2 (0; 1), by

U�;� = ���t� �
1

�
(@3U�; g1;�)n� +

1

�
(@2U�; g1;�)b�: (6.30)

Lemma 6.7 We have

@j�� ! 0 in L1(0; T ;L2(0; l;H�1(S))); j = 2; 3; (6.31)

for � ! 0, and ��(t)jx1=0 = ��(t)jx1=l = 0 for all � 2 (0; 1) and for almost all

t 2 (0; T ) in the sense of the space C([0; l];H�1(S)).

P r o o f: Since U�(t) 2 V (
)3 for almost all t 2 (0; T ), then Proposition 3.5

and (6.28) together with the fact that n�, b� 2 C
1([0; l])3 imply that ��(t)jx1=0 =

��(t)jx1=l = 0 for all � 2 (0; 1) and for almost all t 2 (0; T ) in the sense of the space

C([0; l];H�1(S)).
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Further, we can express the functions @2��(t) for almost all t 2 (0; T ) in this way:

@2��(t) =
1

2�

�
@2(@2U�(t);b�)� @2(@3U�(t);n�)

�
=

1

2�

�
@2(@2U�(t);b�) + @2(@3U�(t);n�)

�
� 1

�
@3(@2U�(t);n�)

in L2(0; l;H�1(S)) (see Proposition 3.5). Since the estimate

k@jv(t)kL2(0;l;H�1(S)) =
 Z

l

0

sup
 2H

1

0
(S);k k1;2�1

j
Z
S

v(t)@j dx2dx3j2 dx1

! 1

2

� kv(t)k2

holds for almost all t 2 (0; T ) and j = 2; 3, we can apply (6.23){(6.25) for q1 = 1,

v(t) = 1
2�
(@2U�(t);b�) + (@3U�(t);n�), v(t) = 1

�
(@2U�(t);n�), and we obtain the

convergence (6.31) for j = 2. The proof of the convergence (6.31) for j = 3 proceeds

in almost the same way. 2

Lemma 6.8 Let the assumptions of Proposition 6:1 be ful�lled. Then

(@1U�;�; t�)
�
* @3�12 � @2�13 in L

1(0; T ;L2(0; l;H�1(S))); (6.32)

(@1U�;�;b�)
�
* @2�11 in L1(0; T ;L2(0; l;H�1(S))); (6.33)

(@1U�;�;n�)
�
* �@3�11 in L1(0; T ;L2(0; l;H�1(S))); (6.34)

and thus

@1U�;�

�
* (@3�12 � @2�13)t� @3�11n + @2�11b (6.35)

in L1(0; T ;L2(0; l;H�1(S)3)) for �! 0.

P r o o f: From (6.15) and (4.8){(4.11), it follows that

1

�2
@3�

�

12(U�) +
1

�
@3�

�

12(U�)�
1

�2
@2�

�

13(U�)�
1

�
@2�

�

13(U�)
�
* @3�12 � @2�13 (6.36)

and
@j�

�

11(U�)

�

�
* @j�11; j = 2; 3; (6.37)

in L1(0; T ;L2(0; l;H�1(S))) for �! 0. Thus to prove (6.32){(6.34) it is enough to

check that

(@1U�;�; t�)�
� 1
�2
@3�

�

12(U�) +
1

�
@3�

�

12(U�)

� 1

�2
@2�

�

13(U�)�
1

�
@2�

�

13(U�)
�
! 0 in L1(0; T ;L2(
)); (6.38)

(@1U�;�;b�)�
@2�

�

11(U�)

�
! 0 in L1(0; T ;L2(
)); (6.39)

(@1U�;�;n�) +
@3�

�

11(U�)

�
! 0 in L1(0; T ;L2(
)): (6.40)
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First, we �nd expressions for the terms (@1U�;�; t�), (@1U�;�;n�) and (@1U�;�;b�).

Using the de�nition (4.8){(4.11) of the tensors �� and ��, we can derive analogously

as in [15] Lemma 7.7 that

1

�2
@3�

�

12(U�) +
1

�
@3�

�

12(U�)�
1

�2
@2�

�

13(U�)�
1

�
@2�

�

13(U�)

=
1

2�

�
@1(@3U�;n�)� @1(@2U�;b�)

�
+
1

�

 
��(@3U�; t�)� ��(@2U�; t�) + 
�

�
(@3U�;b�) + (@2U�;n�)

�!
in L1(0; T ;H�1(
)). By rewriting the above mentioned expression in such a way

that it involves the terms 1
�
��(@3U�; g1;�) and

1
�
��(@2U�; g1;�) instead of

1
�
��(@3U�; t�)

and 1
�
��(@2U�; t�), we conclude that

1

�2
@3�

�

12(U�) +
1

�
@3�

�

12(U�)�
1

�2
@2�

�

13(U�)�
1

�
@2�

�

13(U�)

=

�
�@1�� +

1

�
��(@3U�; g1;�)�

1

�
��(@2U�; g1;�)

�
+
�
(�2

�
x2 + ����x3)(@3U�; t�)� (����x2 + �

2
�
x3)(@2U�; t�)

�
+
�
(��
�x2 +


�

�
)(@3U�;b�) + (��
�x3 +


�

�
)(@2U�;n�)

�
�
�
��
�x3(@3U�;n�) + ��
�x2(@2U�;b�)

�
(6.41)

in L1(0; T ;H�1(
)). In addition, since all terms except @1�� belong to the space

L
1(0; T ;L2(0; l;H�1(S))), then @1�� 2 L

1(0; T ;L2(0; l;H�1(S))), as well. From

(6.30), (6.41), it follows that

(@1U�;�; t�) =

�
1

�2
@3�

�

12(U�) +
1

�
@3�

�

12(U�)�
1

�2
@2�

�

13(U�)�
1

�
@2�

�

13(U�)

�
�
�
(�2

�
x2 + ����x3)(@3U�; t�)� (����x2 + �

2
�
x3)(@2U�; t�)

�
�
�
(��
�x2 +


�

�
)(@3U�;b�) + (��
�x3 +


�

�
)(@2U�;n�)

�
+
�
��
�x3(@3U�;n�) + ��
�x2(@2U�b�)

�
(6.42)

in L1(0; T ;L2(0; l;H�1(S))). We can use the same procedure as in [15] Lemma 7.7

for the derivation of the relations

(@1U�;�;b�) =

�
@2�

�

11(U�)

�
+
��

�

�
(@2U�;b�) + (@3U�;n�)

2

��

+
�

�
1

�
(@3U�; g1;�) + (@1U�;b�)

�
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�
�
(���

�
+ �

2
�
x2 + ����x3 � 


0

�
x3 + 


2
�
x2)(@2U�;n�)

�
�
�
(� 0

�
x2 + �

0

�
x3 + ��
�x3 � ��
�x2)(@2U�; t�)

�
�
�
(����x2 + �

2
�
x3 + 


2
�
x3 + 


0

�
x2)(@2U�;b�)� ��(@1U�; t�)

�
(6.43)

in L1(0; T ;L2(0; l;H�1(S))), and

(@1U�;�;n�) =

�
�@3�

�

11(U�)

�
+
��

�

�
(@2U�;b�) + (@3U�;n�)

2

��

+
�

�
1

�
(@2U�; g1;�) + (@1U�;n�)

�
+
�
(���

�
+ �

2
�
x3 + ����x2 + 


0

�
x2 + 


2
�
x3)(@3U�;b�)

�
+
�
(� 0

�
x2 + �

0

�
x3 + ��
�x3 � ��
�x2)(@3U�; t�)

�
+
�
(����x3 + �

2
�
x2 + 


2
�
x2 � 


0

�
x3)(@3U�;n�)� ��(@1U�; t�)

�
(6.44)

in L1(0; T ;L2(0; l;H�1(S))).

Now, we check the convergence (6.38). The convergences (6.39){(6.40) can be proved

analogously. From (6.42) and the facts that U� 2 L
1(0; T ;V (
)3), ��, ��, 
� 2

C
1([0; l]), g1;� 2 C1(
)3, t�, n�, b� 2 C1([0; l])3, it follows that the di�erence

(@1U�;�; t�)�
� 1
�2
@3�

�

12(U�) +
1

�
@3�

�

12(U�)�
1

�2
@2�

�

13(U�)�
1

�
@2�

�

13(U�)
�

is well-de�ned in L1(0; T ;L2(
)) for all � 2 (0; 1) and satis�es for r 2 (0; 1
3
) and for

a.a. t 2 (0; T ) the estimate

k(@1U�;�(t); t�)� (
1

�2
@3�

�

12(U�(t)) +
1

�
@3�

�

12(U�(t))

� 1

�2
@2�

�

13(U�(t))�
1

�
@2�

�

13(U�(t)))k2
(6:42)

� k(�2
�
x2 + ����x3)(@3U�(t); t�)k2

+k(����x2 + �
2
�
x3)(@2U�(t); t�)k2 + k(��
�x2 +


�

�
)(@3U�(t);b�)k2

+k(��
�x3 +

�

�
)(@2U�(t);n�)k2 + k��
�x3(@3U�(t);n�)k2

+k��
�x2(@2U�(t);b�)k2
(3:5)

� C

� 1

�2r
k(@3U�(t); t�)k2 +

1

�2r
k(@2U�(t); t�)k2

+
1

�1+r
k(@3U�(t);b�)k2 +

1

�1+r
k(@2U�(t);n�)k2 +

1

�2r
k(@3U�(t);n�)k2

+
1

�2r
k(@2U�(t);b�)k2

�
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= C(t; �) +
1

�2r

�
k@3U�(t);n�k2 + k@2U�(t);b�k2

�
; (6.45)

where C(t; �) ! 0 in L1(0; T ) for � ! 0 as a consequence of (6.23){(6.24), (6.26).

It remains to study the behaviour of the terms

1

�2r
k(@3U�(t);n�)k2;

1

�2r
k(@2U�(t);b�)k2; r 2 (0;

1

3
):

The estimate

k 1

�2r
(@3U�(t);n�)k2 + k 1

�2r
(@2U�(t);b�)k2

� k 1

�2r
((@3U�(t);n�) + (@2U�(t);b�))k2 + k 1

�2r
((@3U�(t);n�)� (@2U�(t);b�))k2

(6:28)
= C1(t; �) + 2�1�2rk��(t)k2

(3:14); Lemma 6.7
� C1(t; �) + C�

1�2r

3X
j=1

k@j��(t)kL2(0;l;H�1(S))

(6:31)
=

2X
j=1

Cj(t; �) + C�
1�2rk@1��(t)kL2(0;l;H�1(S))

(6:41);(3:5)

�
2X
j=1

Cj(t; �) +
C

�2r

�
k1
�
@3�

�

12(U�(t)) + @3�
�

12(U�(t))kL2(0;l;H�1(S))

+k1
�
@2�

�

13(U�(t)) + @2�
�

13(U�(t))kL2(0;l;H�1(S))
�

+
C

�3r

�
k(@3U�(t); g1;�)k2 + k(@2U�(t); g1;�)k2

�
+C�1�4r

�
k(@3U�(t); t�)k2 + k(@2U�(t); t�)k2

�
+
C

�3r

�
k(@3U�(t);b�)k2 + k(@2U�(t);n�)k2

�
+C�1�2r

�
k 1

�2r
(@2U�(t);b�)k2 + k 1

�2r
(@3U�(t);n�)k2

�
=

6X
j=1

Cj(t; �) + C�
1�2r

�
k 1

�2r
(@2U�(t);b�)k2 + k 1

�2r
(@3U�(t);n�)k2

�
;

for a.a. t 2 (0; T ), leads to the estimate

k 1

�2r
(@3U�(t);n�)k2 + k 1

�2r
(@2U�(t);b�)k2 � C

6X
j=1

Cj(t; �)

for � 2 (0; 1), where C1(t; �) ! 0 in L1(0; T ) (see (6.25)), C2(t; �) ! 0 in L1(0; T )

as a consequence of (6.31), C3(t; �) ! 0 in L
1(0; T ) (see (6.21){(6.22)), because

r 2 (0; 1
3
), C4(t; �) ! 0 and C6(t; �) ! 0 in L1(0; T ) as a result of (6.16){(6.17),
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(6.23){(6.24) and the fact that r 2 (0; 1
3
), C5(t; �)! 0 in L1(0; T ) as a consequence

of (6.26), because 4r � 1 < 1� r for r 2 (0; 1
3
). Hence, we can conclude that

1

�2r

�
k(@3U�;n�)kL1(0;T ;L2(
)) + k(@2U�;b�)kL1(0;T ;L2(
))

�
! 0 (6.46)

for r 2 (0; 1
3
), which together with (6.45) imply (6.38) and thus (using (6.36)) (6.32).

Now, it remains to prove (6.35). Since

@1U�;� = (@1U�;�; t�)t� + (@1U�;�;n�)n� + (@1U�;�;b�)b�;

it is enough to show that

(@1U�;�; t�)t�
�
* (@3�12 � @2�13)t in L

1(0; T ;L2(0; l;H�1(S)3)); (6.47)

(@1U�;�;n�)n�
�
* �@3�11n in L1(0; T ;L2(0; l;H�1(S)3)); (6.48)

(@1U�;�;b�)b�
�
* @2�11n in L1(0; T ;L2(0; l;H�1(S)3)); (6.49)

for �! 0. We only check (6.47). The convergences (6.48) and (6.49) can be proved

in almost the same way. Since t is a bounded function depending only on x1, then

(6.32) yields

(@1U�;�; t�)t
�
* (@3�12 � @2�13)t in L

1(0; T ;L2(0; l;H�1(S)3)):

It remains to show that

(@1U�;�; t�)t� � (@1U�;�; t�)t
�
* 0 in L1(0; T ;L2(0; l;H�1(S)3))

for �! 0, which follows from the estimate����Z T

0

Z



(@1U�;�(t); t�)(t� � t)'(t) dxdt

����
� C

Z
T

0

�Z
l

0

jt�(x1)� t(x1)j2k'(t; x1)k21;2;S dx1
� 1

2

dt! 0; (6.50)

for � ! 0 and for arbitrary but �xed function ' 2 L
p(0; T ;L2(0; l;H1

0(S))), p > 1,

because jt�j = jtj = 1, 8� 2 (0; 1), t� ! t in measure in (0; l) and the term

(@1U�;�; t�)t� � (@1U�;�; t�)t is bounded in L1(0; T ;L2(0; l;H�1(S)3)). 2

To derive the equations (6.5){(6.7), we must describe more precisely the limit state

of the functions U�;� for � ! 0. This will be done in the following lemma and

corollary.

Lemma 6.9 Let the assumptions of Proposition 6:1 be ful�lled. Then

@jU�;�

�
* 0 in L1(0; T ;L2(0; l;H�1(S)3)); j = 2; 3; (6.51)

and U�;�(t)jx1=0 = U�;�(t)jx1=l = 0 for almost all t 2 (0; T ) in the sense of the space

C([0; l];H�1(S)3).
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P r o o f: Since ��(t)jx1=0 = ��(t)jx1=l = 0 for all � 2 (0; 1) and a.a. t 2 (0; T )

in the sense of the space C([0; l];H�1(S)3) (see Lemma 6.7), U�(t) 2 V (
)3 for

a.a. t 2 (0; T ) and since the functions g1;�, t�, n�, b� belong to C1(
)3, we can

use the de�nition (6.30) of the function U�;�, and applying Proposition 3.5, we get

that U�;�(t)jx1=0 = U�;�(t)jx1=l = 0 for a.a. t 2 (0; T ) in the sense of the space

C([0; l];H�1(S)3).

It remains to show (6.51). Using the de�nition (6.30) of the function U�;�, we obtain

the identity

@jU�;� = �@j��t� � @j
1

�
(@3U�; g1;�)n� + @j

1

�
(@2U�; g1;�)b�

= �@j��t� + @j(@1U�;b�)n� � @j(@1U�;n�)b�

�@j
�1
�
(@3U�; g1;�) + (@1U�;b�)

�
n� + @j

�1
�
(@2U�; g1;�) + (@1U�;n�)

�
b� (6.52)

in L
1(0; T ;L2(0; l;H�1(S)3)), j = 2; 3. From (6.21), (6.22), (6.31) and from the

fact that the functions t�, n�, b� are bounded in L1(0; l)3, it follows that

@j��t� ! 0 in L1(0; T ;L2(0; l;H�1(S)3)); (6.53)

@j

�1
�
(@3U�; g1;�) + (@1U�;b�)

�
n� ! 0 in L1(0; T ;L2(0; l;H�1(S)3)); (6.54)

@j

�1
�
(@2U�; g1;�) + (@1U�;n�)

�
b� ! 0 in L1(0; T ;L2(0; l;H�1(S)3)); (6.55)

for �! 0 and j = 2; 3. We can see from (6.52) that it remains to prove that

@j(@1U�;b�)n�
�
* 0 in L1(0; T ;L2(0; l;H�1(S)3)); (6.56)

@j(@1U�;n�)b�
�
* 0 in L1(0; T ;L2(0; l;H�1(S)3)); (6.57)

for � ! 0 and j = 2; 3. From the convergence (6.1), it follows that (@1U�;n)
�
*

(@1U;n) in L
1(0; T ;L2(
)); because n is a bounded function. Further, we have the

estimate ����Z T

0

Z



(@1U�(t); (n� � n))'(t) dxdt

����
� C

Z
T

0

�Z
l

0

jn�(x1)� n(x1)j2k'(t; x1)k22;S dx1
� 1

2

dt! 0;

where ' 2 L
p(0; T ;L2(
)), p > 1, is arbitrary but �xed and n� ! n in measure in

(0; l) for �! 0. Hence we can deduce that

(@1U�;n�)
�
* (@1U;n) in L

1(0; T ;L2(
))

(compare with (6.50)). The proof that

(@1U�;n�)b�
�
* (@1U;n)b in L1(0; T ;L2(
)3)
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is almost the same as the proof that

(@1U�;�; t�)t�
�
* (@3�12 � @2�13)t in L

1(0; T ;L2(0; l;H�1(S)3));

because we take only ' 2 L
p(0; T ;L2(
)) instead of ' 2 L

p(0; T ;L2(0; l;H�1(S))),

p > 1, in the estimate (6.50) modi�ed for the functions (@1U�;n�)b�. The analogous

result can be obtained for (@1U�;b�)n�. Hence we get that

@j(@1U�;n�)b�
�
* @j(@1U;n)b in L1(0; T ;L2(0; l;H�1(S)3)); j = 2; 3;

@j(@1U�;b�)n�
�
* @j(@1U;b)n in L1(0; T ;L2(0; l;H�1(S)3)); j = 2; 3:

In Lemma 6.6 we have proved that the function U depends only on x1, and hence

@j(@1U;n)b = 0; @j(@1U;b)n = 0; in (0; T )� (0; l); j = 2; 3:

Thus we have proved (6.56) and (6.57). 2

Corollary 6.10 Let the assumptions of Proposition 6:1 be ful�lled. Then

@iU�;�

�
* @iU� in L

1(0; T ;L2(0; l;H�1(S)3)); i = 1; 2; 3; (6.58)

U�;�

�
* U� in L

1(0; T ;L2(
)3); (6.59)

for �! 0, and U� 2 L
1(0; T ;H1

0(0; l)
3), where

U�(t; x1) =

Z
x1

0

[(@3�12(t; z1; x2; x3)� @2�13(t; z1; x2; x3))t(z1)

�@3�11(t; z1; x2; x3)n(z1) + @2�11(t; z1; x2; x3)b(z1)] dz1 (6.60)

for (t; x1; x2; x3) 2 (0; T )� 
. In addition,

��
�
* � = (U�; t) in L

1(0; T ;L2(
)) (6.61)

for �! 0 and � 2 L1((0; T )� (0; l)).

P r o o f: Lemmas 6.8 and 6.9 enable us to use Proposition 3.5 to prove (6.58){(6.59).

Proposition 3.7 and 3.8 provide

U�;�

'

* U�

' Remark 6:2
= U�;';

@jU�;�

'

= @jU�;�

'

* @jU�

'

= @jU�

'

;

in L
2(
) for j = 1; 2; 3, which together with Proposition 3.6 and 3.9 give U�

' 2
H

1
0 (0; l)

3 for all ' 2 C
1

0 (0; T ). We leave it to the reader to prove that then

U� 2 L
1(0; T ;H1(0; l)3). From compact imbbeding, it follows that the function

U� belongs to L
1(0; T ;C([0; l])3), which together with the limit

0 = lim
x1!0;l

Z
T

0

U�(t; x1)'(t) dt =

Z
T

0

lim
x1!0;l

U�(t; x1)'(t) dt

for all ' 2 C
1

0 (0; T ), yields thatU� 2 L1(0; T ;H1
0(0; l)). From (6.30), it follows that

�� = �(U�;�; t�). Then (6.61) easily follows from (6.59) and from the convergence

in measure in (0; l) of the functions t�. 2
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Lemma 6.11 Let the assumptions of Proposition 6:1 be ful�lled. Let the func-

tion U be determined by (6:1) and the function � by (6:61). Then bU; �c 2
L
1(0; T ;Vt;n;b0 (0; l)).

P r o o f: To prove that bU; �c 2 L
1(0; T ;Vt;n;b0 (0; l)), it is enough to check that

U = bU, where

bU(t; x1) =

Z
x1

0

[�(U�(t);b)n+ (U�(t);n)b] dz1; x1 2 [0; l]; t 2 (0; T );

(see Proposition 3.3). We de�ne the function bU� by

bU�(t; x1; x2; x3) =

Z
x1

0

[�(U�;�(t; z1; x2; x3);b�(z1))n�(z1)

+(U�;�(t; z1; x2; x3);n�(z1))b�(z1)] dz1; (6.62)

for (t; x1; x2; x3) 2 (0; T ) � 
. The de�nition (6.30) of the function U�;� together

with (6.62), enables us to express the function bU� by

bU� = �
Z

x1

0

�
1

�
(@2U�; g1;�)n� +

1

�
(@3U�; g1;�)b�

�
dz1; (6.63)

where we omit to write the points (t; z1; x2; x3) and (t; z1) in the right-hand side to

simplify the notation. Using (6.63), we can deduce that

U� =

Z
x1

0

@1U� dz1 =

Z
x1

0

[(@1U�; t�)t� + (@1U�;n�)n� + (@1U�;b�)b�] dz1

= bU� +

Z
x1

0

"
(@1U�; t�)t� +

�1
�
(@2U�; g1;�) + (@1U�;n�)

�
n�

+
�1
�
(@3U�; g1;�) + (@1U�;b�)

�
b�

#
dz1: (6.64)

As a result of (6.64) and (6.19){(6.20), (6.27), we get

@1
bU� � @1U� ! 0 in L1(0; T ;L2(
)3)

and bU� �U� ! 0 in L1(0; T ;C([0; l];L2(S)3))

for �! 0. Since U�

�
* U in L1(0; T ;H1(
)3) and U 2 L

1(0; T ;H1
0(0; l)

3), we can

conclude that U = bU a.e. in (0; T )� (0; l), and thus

U(t; x1) =

Z
x1

0

[�(U�(t);b)n+ (U�(t);n)b] dz1; x1 2 [0; l];

and

U(t; l) =

Z
l

0

[�(U�(t);b)n+ (U�(t);n)b] dx1 = 0

for almost all t 2 (0; T ). Hence, and from Proposition 3.3, we get that bU; �c 2
L
1(0; T ;Vt;n;b0 (0; l)). 2
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Corollary 6.12 Let the function U� be de�ned by (6:60). Then the function U�

satis�es the equations (6:5){(6:7).

P r o o f: The proof immediately follows from (6.60). 2

7 The main result

In this section, we pass from the three-dimensional model to the asymptotic model,

and our main result is stated and proved.

Let us mention for the reader's convenience that we have proved in Corollary 5.4

that

U�n

�
* U in L1(0; T ;H1(
)3); @tU�

�
* @tU in L1(0; T ;L2(
)3); (7.1)

1

�n
!
�n(U�n

)
�
* � in L1(0; T ;L2(
)9); (7.2)

for �n ! 0, where U 2 L1(0; T ;H1
0(0; l)

3) according to Proposition 6.1.

To �nd the form of the tensor �, we must obtain the corresponding equations for its

components.

Proposition 7.1 Let the tensor � be the limit determined by (7:2). Then it satis�es

the equation Z



A
ijkl

0 �kl(t)�
0
ij
(V) dx = 0 (7.3)

for all V 2 L2(0; l;H1(S)3) and for a.a. t 2 (0; T ), where the tensor �0(V) is de�ned

by

�
0(V) =

0B@ 0
(@2V;t)

2

(@3V;t)

2
(@2V;t)

2
(@2V;n)

(@2V;b)+(@3V;n)

2
(@3V;t)

2

(@2V;b)+(@3V;n)

2
(@3V;b):

1CA : (7.4)

P r o o f: In the proof, we will use � instead of �n to simplify the notation. Multiplying

(4.17) by �2 and using an arbitrary function ' 2 C
1

0 (0; T ) as a test function, we

get, after integration by parts, the equation

��2
Z



�(@tU�

_'
;V)d� dx+

Z



A
ijkl

�

1

�
!
�

kl
(U�

'

)�!�
ij
(V)d� dx

= �
2

Z



(F
'

;V)d� dx+ �
2

Z
l

0

Z
@S

(G
'

;V)d��
p
�jo

ij;��j dSdx1; 8V 2 V (
)3: (7.5)

Letting �! 0, we want to pass from the above equation to the equationZ



A
ijkl

0 �kl
'

�
0
ij
(V) dx = 0; 8V 2 V (
)3; (7.6)
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where the tensor �0(V) is de�ned by (7.5). To prove that it is enough to show

analogously as in [15] Proposition 8.1 that ��(V) + ��
�(V) ! �

0(V) in L2(
)9 for

�! 0.

Using the de�nition (see (2.9) and (4.5)) of the tensor (Aijkl
�

)3
i;j;k;l=1, we can easily

check that

A
ijkl

�
! A

ijkl

0 in C(
); where A
ijkl

0 = �Æ
ij
Æ
kl + �(ÆikÆjl + Æ

il
Æ
jk) (7.7)

for i; j; k; l = 1; 2; 3. The rest of the proof follows from density of the space V (
)3

in L2(0; l;H1(S)3) and from (7.4) and (7.6), because the equation (7.6) is ful�lled

for all ' 2 C
1

0 (0; T ) andZ
T

0

'(t)

Z



A
ijkl

0 �kl(t)�
0
ij
(V) dxdt =

Z



A
ijkl

0 �kl
'

�
0
ij
(V) dx = 0

2

Now, we introduce the following notation:

�
H

22 = �22 +
1

2

�

�+ �
�11; �

H

33 = �33 +
1

2

�

�+ �
�11; �

H

23 = �23: (7.8)

Corollary 7.2 We haveZ
S

�12(t; x1) dx2dx3 =

Z
S

�13(t; x1) dx2dx3 =

Z
S

�12(t; x1)x2 dx2dx3

=

Z
S

�13(t; x1)x3 dx2dx3 =

Z
S

[�12(t; x1)x3 + �13(t; x1)x2] dx2dx3 = 0; (7.9)Z
S

�
H

23(t; x1) dx2dx3 =

Z
S

�
H

23(t; x1)x2 dx2dx3 =

Z
S

�
H

23(t; x1)x3 dx2dx3 = 0; (7.10)Z
S

(�H22(t; x1) + �
H

33(t; x1)) dx2dx3 =

Z
S

(�H22(t; x1) + �
H

33(t; x1))x2 dx2dx3

=

Z
S

(�H22(t; x1) + �
H

33(t; x1))x3 dx2dx3 = 0; (7.11)

for a.a. (t; x1) 2 (0; T )� (0; l).

P r o o f: Let v 2 L
2(0; l) be an arbitrary, but �xed function, and let V = vt.

Testing equation (7.3) with the functions Vx2, Vx3, Vx
2
2=2, Vx

2
3=2 and Vx2x3, we

can derive (7.9).

Let us take now some arbitrary function V 2 L
2(0; l;H1(S)3) such that (V; t) =

(V;b) = 0. Then we can derive from (7.3) and (7.4) thatZ



[(�(�11(t) + �22(t) + �33(t)) + 2��22(t))(@2V;n)
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+2��23(t)(@3V;n)] dx = 0; (7.12)

for a.a. t 2 (0; T ). Analogously we �nd for arbitrary functions V 2 L2(0; l;H1(S)3),

which satisfy (V; t) = (V;n) = 0, thatZ



[(�(�11(t) + �22(t) + �33(t)) + 2��33(t))(@3V;b)

+2��23(t)(@2V;b)] dx = 0: (7.13)

After substitution of (7.8), we can transform (7.12) and (7.13) asZ



[(�(�H22(t) + �
H

33(t)) + 2��H22(t))(@2V;n) + 2��H23(t)(@3V;n)] dx = 0 (7.14)

and Z



[(�(�H22(t) + �
H

33(t)) + 2��H33(t))(@3V;b) + 2��H23(t)(@2V;b)] dx = 0; (7.15)

respectively, for a.a. t 2 (0; T ). Taking Vx3, Vx
2
3=2 and Vx22=2, where V = vn

or V = vb, as test functions in (7.14) and (7.15), respectively, yields (7.10). In an

analogous way, we substitute the functions Vx2, Vx3, Vx
2
2=2, Vx2x3 and Vx2x3,

Vx23=2, where V = vn orV = vb, to (7.14) and (7.15), respectively, to derive (7.11).

2

If we de�ne the vector ��� 2 L
1(0; T ;L2(
)2) by ��� = b�12; �13c, then the equation

(7.3), after putting V = 't, ' 2 L
2(0; l;H1(S)), and (6.5) can be rewritten in the

form Z



(���(t);r23')2 dx = 0; 8' 2 L2(0; l;H1(S)); (7.16)Z



(���(t); rot23 )2 dx =

Z



(U0

�
(t); t) dx; 8 2 H1

0 (
); (7.17)

for a.a. t 2 (0; T ), where we have denoted r23' = b@2'; @3'c, rot23 =

b�@3 ; @2 c, and where (�; �)2 means the scalar product in the usual two dimen-

sional Euclidean space R2 .

Lemma 7.3 Let S be a simply connected domain, and let @S 2 C
1. Then the

system (7:16), (7:17) has unique solution in L1(0; T ;L2(
)2), given by

��� = b�12; �13c = �1

2
(U0

�
; t)b@2p� x3; @3p+ x2c; (7.18)

where the function p 2 H1(S) is the unique solution to the Neumann problemZ
S

[(@2p� x3)@2r + (@3p+ x2)@3r] dx2dx3 = 0;

Z
S

p dx2dx3 = 0; (7.19)

for all r 2 H1(S).
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P r o o f: The proof is analogous as that of Lemma 8.3 in [15], and we omit it.

2

Now, we derive the asymptotic model. First we introduce some constants:

Ix2
2
=

Z
S

x
2
2 dx2dx3; Ix23

=

Z
S

x
2
3 dx2dx3; (7.20)

E = �
3�+ 2�

�+ �
; K =

Z
S

[(@2p� x3)
2 + (@3p+ x2)

2] dx2dx3; (7.21)

where p 2 H1(S) is the unique solution to the Neumann problem (7.19).

Lemma 7.4 Let fU�n
g1
n=1, �n ! 0, be a subsequence of the weak solutions to

the problem (4:17){(4:18) satisfying (5:1), (7:1){(7:2). Then the limit bU; �c 2
L
1(0; T ;Vt;n;b0 (0; l)) obtained in Proposition 6:1 generates a function U� which sat-

is�es the equation

�
Z

l

0

��(@tU
_'
;V) dx1 +

Z
l

0

E[Ix2
2
(@1U�

'

;b)(V0

�
;b) + Ix2

3
(@1U�

'

;n)(V0

�
;n)] dx1

+

Z
l

0

�K(@1U�

'

; t)(V0

�
; t) dx1 =

Z
l

0

(�FF+G
'

;V) dx1 (7.22)

for all functions V� 2 H
1
0(0; l)

3 generated by an arbitrary couple bV;  c 2 Vt;n;b0 (0; l)

(see (2:17)) and for all ' 2 C
1

0 (0; T ), where �FF+G(t; x1) =
R
S
F(t; x1) dx2dx3 +R

@S
G(t; x1) dS and ��(x1) =

R
S
�(x1) dx2dx3, (t; x1) 2 (0; T )� (0; l).

P r o o f: In the proof, we will use � instead of �n to simplify the notation. Let

bV;  c be an arbitrary couple from the space Vt;n;b0 (0; l). Proposition 3.4 enables us

to approximate the couple bV;  c with couples bV�;  �c 2 Vt�;n�;b�0 (0; l) satisfying

V� 2 C1

0 (0; l)3 and  � 2 C1

0 (0; l). We de�ne the functions W� 2 C1(
)3 by

W�(x1; x2; x3) = �
�
(V0

�
(x1);n�(x1))x2 + (V0

�
(x1);b�(x1))x3

�
t�(x1)

�x3 �(x1)n�(x1) + x2 �(x1)b�(x1) (7.23)

for (x1; x2; x3) 2 
.

Let us de�ne the function bV� bybV� = V� + �W� 2 C1(
)3 \ V (
)3: (7.24)

Denoting B� = (Bij

�
)3
i;j=1, where B

ij

�
= 0 except for i = j = 1 and

B
11
�

= �
2
�
(��x2 + ��x3)(x2(V

0

�
;n�)

0 + x3(V
0

�
;b�)

0 � ��x3 � + ��x2 �)

+
�x3(@1W�;n�)� 
�x2(@1W�;b�)
�
; (7.25)
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we deduce analogously as in [15] Lemma 8.4 that

!
�(bV�) = ��(V�;�) + B�; (7.26)

where

�11(V�;�) = �(V0

�;�
;n�)x3 + (V0

�;�
;b�)x2; (7.27)

�12(V�;�) = �21(V�;�) =
x3

2
(V0

�;�
; t�); (7.28)

�13(V�;�) = �31(V�;�) = �x2
2
(V0

�;�
; t�) (7.29)

and

�ij(V�;�) = 0; i; j = 2; 3: (7.30)

Since we know that t� ! t, n� ! n, b� ! b in measure in (0; l), we can use (3.11)

to prove that

�ij(V�;�)! �ij(V�) in L
2(
); i; j = 1; 2; 3: (7.31)

Moreover, using (3.4){(3.5), (3.11), (3.13) and (7.23) we can easily check that

kB�k2 = kB11
�
k2 � C�

2(1�r)
; r 2 (0;

1

3
); (7.32)

and bV� ! V in H1(
)3 (7.33)

for �! 0.

These convergences and estimates, together with (3.6){(3.7), (7.1){(7.2) and (7.7),

enable us to pass to the limit in the equation (since bV� 2 C1(
)3 \ V (
)3)

�
Z



�(@tU�

_'
; bV�)d� dx+

Z



A
ijkl

�

1

�
!
�

kl
(U�

'

)
1

�
!
�

ij
(bV�)d� dx =

Z



(F
'

; bV�)d� dx

+

Z
l

0

Z
@S

(G
'

; bV�)d��
p
�jo

ij;��j dSdx1

and to establish that

�
Z

l

0

��(@tU
_'
;V) dx1 +

Z



A
ijkl

0 �kl
'

�ij(V�) dx =

Z



(F
'

;V) dx

+

Z
l

0

Z
@S

(G
'

;V) dSdx1 (7.34)

for all bV;  c 2 Vt;n;b0 (0; l), which generate the functions V� (see (2.17)).

From (6.6) and (6.7), it follows the existence of the function Q0 2 L1(0; T ;L2(0; l))

such that

�11 = Q0 + (@1U�;b)x2 � (@1U
0

�
;n)x3 in (0; T )� 
: (7.35)
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By the form of the tensor (A
ijkl

0 )3
i;j;k;l=1 (see (7.7)), we have after the substitution

(7.27){(7.30) to (7.34) Z



A
ijkl

0 �kl
'

�ij(V�) dx =Z



[�(�11
'

+�22
'

+�33
'

)+2��11
'

]�11(V�) dx+

Z



[4�(�12
'

�12(V�)+�13
'

�13(V�))] dx:

Hence, using (7.27){(7.29), we can writeZ



A
ijkl

0 �kl
'

�ij(V�) dx = I1;' + I2;'; (7.36)

where

I1;' =
Z



[�(�11
'

+ �22
'

+ �33
'

) + 2��11
'

][(V0

�
;b)x2 � (V0

�
;n)x3] dx;

I2;' = 2�

Z



[�12
'

(V0

�
; t)x3 � �13

'

(V0

�
; t)x2] dx:

Using (7.8), we �nd that

�(�11
'

+ �22
'

+ �33
'

) + 2��11
'

= (�+ 2�� �
2

�+ �
)�11

'

+ �(�H22
'

+ �
H

33

'

):

Hence, using (7.21), we can rewrite the integral I1;' in the form

I1;' =
Z



[E�11
'

+ �(�H22
'

+ �
H

33

'

)][(V0

�
;b)x2 � (V0

�
;n)x3] dx (7.37)

for all ' 2 C
1

0 (0; T ). The terms involving function �H22

'

+ �H33

'

disappear from

(7.37) because of (7.11), and the dependence of the terms (V0

�
;b) and (V0

�
;n) only

on x1. After the substitution (7.35) to (7.37), we can conclude, using (2.1) and

(7.20){(7.21), that

I1;' =
Z

l

0

E[Ix2
2
(@1U�

'

;b)(V0

�
;b) + Ix2

3
(@1U�

'

;n)(V0

�
;n)] dx1: (7.38)

After the substitution ��� = b�12; �13c from (7.17) to I2;', we obtain

I2;' =
Z



� (�(@2p� x3)x3 + (@3p+ x2)x2) (@1U�

'

; t)(V0

�
; t) dx; (7.39)

where p is the unique solution to the Neumann problem (7.19) and it is easy to

verify from (7.39) (using (7.21) and (7.19) with the test function r = p) that

I2;'
(7:19)
=

Z



�(�@2px3 + x
2
3 + @3px2 + x

2
2)(@1U�

'

; t)(V0

�
; t) dx

+

Z
l

0

(@1U�
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; t)(V0

�
; t)

Z
S

�[(@2p)
2 � @2px3 + (@3p)

2 + @3px2] dx2dx3dx1

=

Z
l

0

�K(@1U�

'

; t)(V0

�
; t) dx1: (7.40)

Thus after adding (7.38) to (7.40) we obtain (7.22). 2
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Lemma 7.5 It holds Q0 = �
H

22 = �
H

23 = �
H

33 = 0 in (0; T )� 
.

P r o o f: In the proof, we will write � instead of �n to simplify the notation. Let us

de�ne

��;' =

Z



A
ijkl

�

�
1

�
!
�

kl
(U�

'

)� �kl
'

��
1

�
!
�

ij
(U�

'

)� �ij
'

�
d� dx

for all ' 2 C
1

0 (0; T ).

According to Proposition 3.11, there exists a constant C > 0 independent of � and

' such that 



1�!�(U�

'

)� �
'





2
2

� C��;' (7.41)

for all ' 2 C
1

0 (0; T ). Equation (4.17) implies that

��;' =

Z



(F
'

;U�

'

)d� dx +

Z
l

0

Z
@S

(G
'

;U�

'

)d��
p
�io

ij;��j dSdx1+

Z



A
ijkl

�

��
�kl

' � 1

�
!
�

kl
(U�

'

)

�
�ij

' � �kl
'1

�
!
�

ij
(U�

'

)

�
d� dx+

Z



�(@tU�

_'
;U�

'

)d� dx:

As a result of (7.1){(7.2) and (7.7), we obtain the convergence of the sequence ��;',

i.e.

�' = lim
�!0

��;' =

Z
l

0

(�FF+G
'

;U
'

) dx1 �
Z



A
ijkl

0 �kl
'

�ij
'

dx

+

Z
l

0

��(@tU
_'
;U

'

) dx1: (7.42)

Using (7.7) leads after substitution of (7.8) to the identity (see [15], Lemma 8.5, for

a detailed proof)Z



A
ijkl

0 �kl
'

�ij
'

dx =

Z



[E(�11
'

)2 + 4�((�12
'

)2 + (�13
'

)2)

+�(�H22
'

+ �
H

33

'

)2 + 2�((�H22
'

)2 + (�H33
'

)2 + 2(�H23
'

)2)] dx: (7.43)

The expressions for �11, �12 and �13, i.e (7.35) and (7.18), imply (together with (7.22)

and (2.1)) after substitution to (7.43) thatZ



A
ijkl

0 �kl
'

�ij
'

dx =

Z



"
E(�11

'

)2 + 4�((�12
'

)2 + (�13
'

)2) + �(�H22
'

+ �
H

33

'

)2

+2�((�H22
'

)2+(�H33
'

)2+2(�H23
'

)2)

#
dx =

Z



"
E

�
Q0

'

+(@1U�

'

;b)x2�(@1U�

'

;n)x3

�2
+4�

�
�1

2
(@1U�

'

; t)(@2p� x3)
�2

+ 4�
�
�1

2
(@1U�

'

; t)(@3p+ x2)
�2

+ �(�H22
'

+ �
H

33

'

)2
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+2�((�H22
'

)2 + (�H33
'

)2 + 2(�H23
'

)2)

#
dx

(7:22);(2:1)
=

Z
l

0

[(�FF+G
'

;U
'

) + E(Q0

'

)2] dx1

Z
l

0

��(@tU
_'
;U

'

) dx1 +

Z



h
�(�H22

'

+ �
H

33

'

)2 + 2�
�
(�H22

'

)2 + (�H33
'

)2 + 2(�H23
'

)2
�i

dx;

and substituting to (7.42) leads to

�' = �
Z



"
E(Q0

'

)2

jSj + �(�H22
'

+ �
H

33

'

)2 + 2�
�
(�H22

'

)2 + (�H33
'

)2 + 2(�H23
'

)2
�#

dx

for all ' 2 C1

0 (0; T ). The sequence ��;' for all ' 2 C1

0 (0; T ) consists of non-negative

numbers by (7.41) and �' = 0 for all ' 2 C1

0 (0; T ). Hence Q0 = �
H

22 = �
H

23 = �
H

33 = 0

in (0; T )� 
. 2

Since we have denoted ��� = b�12; �13c, we obtain from Lemma 7.5 that

�11
(7:35)
= (@1U�;b)x2 � (@1U�;n)x3;

�12
(7:18)
= �21 = �1

2
(@1U�; t)(@2p� x3);

�13
(7:18)
= �31 = �1

2
(@1U�; t)(@3p+ x2); (7.44)

�22
(7:8)
= �1

2

�

�+ �

�
(@1U�;b)x2 � (@1U�;n)x3

�
;

�23 = �32 = 0;

�33
(7:8)
= �1

2

�

�+ �

�
(@1U�;b)x2 � (@1U�;n)x3

�
:

Lemma 7.6 Let the function U be determined by (7:1) and the functions Q0 and

Q1 by (4:16). Then Ujt=0 = Q0 and ��@tUjt=0 = ��Q1 in the sense of the space

C([0; T ];L2(
)3) or C([0; T ]; [Vt;n;b0 (0; l)]0), respectively.

P r o o f: The �rst initial condition follows easily from (4.16), (4.18) and (7.1).

Let bV;  c 2 Vt;n;b0 (0; l) be an arbitrary but �xed pair. Proposition 3.4 enables us

to approximate this pair by a couple of smooth functions bV�;  �c 2 Vt�;n�;b�0 (0; l)

satisfying (3.11){(3.13). Analogously as in the proof of Lemma 7.4, we establish the

functions bV� (see (7.24)) which satisfy (7.33).

Let ' 2 C1

0 (0; T ) be an arbitrary but �xed function. Taking 'bV� as a test function

in (4.17), and using (7.26){(7.30), leads to the equation

�
Z

T

0

_'(t)

Z



�(@tU�(t); bV�)d� dxdt +

Z
T

0

'(t)

Z



A
ijkl
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!
�

kl
(U�(t))�ij(bV�)d� dxdt
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+

Z
T

0

'(t)
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A
ijkl

�

1

�
!
�

kl
(U�(t))

1

�
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ij

�
d� dxdt =

Z
T

0

'(t)

Z



(F(t); bV�)d� dxdt

+

Z
T

0

'(t)

Z
l

0

Z
@S

(G(t); bV�)d��
p
�jo

ij;��j dSdx1dt: (7.45)

From (5.1) and (5.2), it follows that
R


�(@tU�(t); bV�)d� dx 2 C([0; T ]) for all � 2

(0; 1). The equation (7.45) yields that the function
R


�(@tU�(t); bV�)d� dx belongs

to W 1;1(0; T ), which enables us to rewrite the equation (7:45) as

d

dt

Z



�(@tU�(t); bV�)d� dx +
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A
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�

kl
(U�(t))�ij(bV�)d� dx

+

Z



A
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!
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�
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(F(t); bV�)d� dx

+

Z
l

0

Z
@S

(G(t); bV�)d��
p
�jo

ij;��j dSdx1; for a.a. t 2 (0; T ): (7.46)

Integrating the equation (7.46) on the interval [0; t], and using (4.18) and Proposi-

tion 5.1, we get Z



�(@tU�(t); bV�)d� dx�
Z



�(Q1;�;
bV�)d� dx

= �
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0

Z
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0

Z
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(G(s); bV�)d��
p
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ij;��j dSdx1ds: (7.47)

Further, we have that

k
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�

0
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(F(s); bV�d� �V) dxdskC([0;T ]) � CkFkL2(0;T ;L2(
)3)(kbV� �Vk2

+kbV�k2kd� � 1k
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Z
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p
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� Ck1
�
!
�(U�)kL1(0;T ;L2(
)9)

1

�
kB�k2

(7:2);(7:32)! 0

for �! 0. Since

j
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(3:6);(7:8);(7:31)

! 0

for �! 0 and a.a. t 2 (0; T ), we get (using the estimate above) that
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which implies that
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(U�(s))�ij(bV�)d� dxds converges pointwisely for

all t 2 [0; T ], and that the term
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A
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�
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(U�(s))�ij(bV�)d� dxds is moreover

bounded in L1(0; T ). Passing from the pointwise convergence to the convergence

in measure, we obtain that
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A
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in W 1;p(0; T ); p 2 [1;1), and, from compact imbedding,
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A
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in C([0; T ]). We have proved that the terms on the the right-hand side of the

equation (7.47) converge strongly in C([0; T ]) for �! 0, which implies that the left-

hand side must also converge in C([0; T ]) and we get from the second convergence

in (7.1), from (7.33) and (4.16) thatZ



�(@tU�(t)�Q1;�;
bV�)d� dx!

Z
l

0

��(@tU(t)�Q1;V) dx1 in C([0; T ]): (7.48)

The rest of the proof is obvious. 2

We have proved that the asymptotic dynamic model for the curved rod has the form:

�
Z

T

0

_'(t)

Z
l

0

��(@tU(t);V) dx1dt+

Z
T

0

'(t)

Z
l

0

E[Ix2
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(@1U�(t);b)(V
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�
;b)

+Ix2
3
(@1U�(t);n)(V
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;n)] dx1dt+
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'(t)

Z
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�K(@1U�(t); t)(V
0

�
; t) dx1dt
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=

Z
T

0

'(t)

Z
l

0

(�FF+G(t);V) dx1dt (7.49)

for all functions V� 2 H
1
0 (0; l)

3 generated by an arbitrary couple bV;  c 2
Vt;n;b0 (0; l). The function U, which together with the function � generate the func-

tion U� (see(2.17)), satis�es the initial state

Ujt=0 = Q0 and ��@tUjt=0 = ��Q1 (7.50)

in the sense of the space C([0; T ];L2(0; l)3) and C([0; T ]; [Vt;n;b0 (0; l)]0), respectively.

Lemma 7.7 There exists the unique solution to the equation (7:49) satisfying

(7:50).

P r o o f: Suppose that there exist two solutions bUj; �jc 2 L
1(0; T ;Vt;n;b0 (0; l))

and @tUj 2 L
1(0; T ;L2(0; l)3), j = 1; 2. Let us denote bU = U1 � U2 and b� =

�1 � �2. Then the couple bbU; b�c 2 L
1(0; T ;Vt;n;b0 (0; l)) generates the functionbU� 2 L1(0; T ;H1

0(0; l)
3) (see (2.17)), @t bU 2 L

1(0; T ;L2(0; l)3),

�
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_'(t)

Z
l
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��(@t bU(t);V) dx1dt+
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;b)

+Ix2
3
(@1 bU�(t);n)(V

0

�
;n) + �K(@1 bU�(t); t)(V

0

�
; t)] dx1dt = 0 (7.51)

and the function bU satis�es the initial state

bUjt=0 = 0 and ��@t bUjt=0 = 0 (7.52)

in the sense of the space C([0; T ];L2(0; l)3) and C([0; T ]; [Vt;n;b0 (0; l)]0), respectively.

From the equation (7.51), it follows that the term
R
l

0
��(@t bU(t);V) dxdt 2 W 1;1(0; T )

for all but �xed V 2 H
1
0 (0; l)

3 such that the couple bV;  c 2 Vt;n;b0 (0; l). This fact

enables us to rewrite (7.51) as

d
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; t) dx1 = 0: (7.53)

Integrating on the interval [0; t] and using (7.52), we getZ
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for all t 2 [0; T ]. Since bbU(t); b�(t)c 2 Vt;n;b0 (0; l) for a.a. t 2 (0; T ), we can use this

couple as a test function in (7.54), and we get thatZ
l

0

��(@t bU(t); bU(t)) dx1 +
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for all t 2 [0; T ].

We immediately see thatZ
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��(@t bU(t); bU(t)) dx1 =

Z
l

0

@t(
��jbU(t)j2

2
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Since bU 2 W 1;1(0; T ;L2(0; l)3), we have for arbitrary but �xed ' 2 C1

0 (0; T ),Z
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We change analogously the integral and the derivative @t in (7.57){(7.59), and thus

we can rewrite the equation (7.55) as
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+
d

dt

Z
l

0

EIx2
3

2
(

Z
t

0

(@1 bU�(s);n) ds)
2
dx1

+
d

dt

Z
l

0

�K

2
(

Z
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for all t 2 [0; T ]. From the assumptions on the functions bU and bU� it follows that the

functions bU and
R
�

0
@1
bU 2 C([0; T ];L2(0; l)3), which enables us to integrate (7.61)

on the interval [0; t], and we get from (7.52) thatZ
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for all t 2 [0; T ]. Hence bU � 0 as a consequence of the non-negativity of all terms

in (7.62) and (4.14). Further, (7.62) yields thatZ
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for a.a (t; x1) 2 (0; T ) � (0; l). Since U� 2 H
1
0 (0; l) then also U� � 0 and � =

�(U�; t) = 0, a contradiction. 2

The proof of the main theorem of this article is now complete and we can state it:

Theorem 7.8 Let the function � be the parametrization of a unit speed curve

such that � 2 W
1;1(0; l)3. Let, further, F 2 L

2(0; T ;L2(
)3), G 2
W

1;1(0; T ;L2(0; l;L2(@S)3)) and �FF+G be de�ned as in Lemma 7:4. Then, there

is a unique pair hU; �i 2 L
1(0; T ;Vt;n;b0 (0; l)) such that @tU 2 L

1(0; T ;L2(0; l)3)

and satisfying the problem (7:49){(7:50). Moreover, the constant extension to


 = (0; l)�S of hU; �i may be approximated by the solutions U� 2 L1(0; T ;V (
)3)\
W

1;1(0; T ;L2(
)3) of the problem (4:17){(4:18) as follows:

U = lim
�!0

U� weakly in L1(0; T ;H1(
)3);

@tU = lim
�!0

@tU� weakly in L1(0; T ;L2(
)3);

� = lim
�!0

1

2�

�
(@2U�;b�)� (@3U�;n�)

�
weakly in L1(0; T ;L2(
)):

46



References

[1] Aganovi�c I., Tutek Z.: A justi�cation of the one-dimensional linear model of

elastic beam, Math. Methods Appl. Sci. 8 (1986), No. 4, 502-515.

[2] Blouza A., Le Dret H.: Existence and uniqueness for the linear Koiter model

for shells with little regularity , Quart. Appl. Math., 57 1999, No.2, pp. 317-337.

[3] Ciarlet P. G.: Mathematical Elasticity Volume III: Theory of shells, Studies in

Mathematics and Its Applications 29, North-Holland Publishing Co., Amster-

dam 2000.

[4] Dautray R., Lions J. L.: Mathematical Analysis and Numerical Methods for

Science and Technology, Vol. 5, Evolution Problems I , Springer 1992.

[5] Evans L. C.: Partial di�erential equations. Graduate Studies in Mathematics,

19. American Mathematical Society, Providence, RI, 1998.

[6] Jurak M., Tamba�ca J.: Derivation and justi�cation of a curved rod model ,

Math. Models and Methods Appl. Sci., 9 (1999), No. 7, pp. 991-1016.

[7] Jurak M., Tamba�ca J.: Linear curved rod model. General curve, Math. Models

and Methods Appl. Sci., 11 (2001), No. 7, pp. 1237-1252.

[8] Ignat A., Sprekels J., Tiba D.: A model of a general elastic curved rod , Math.

Meth. Appl. Sci.,25 (2002), No. 10, 835-854.

[9] Kufner A., John O., Fu�c��k S.: Function spaces. Monographs and Textbooks on

Mechanics of Solids and Fluids; Mechanics: Analysis. Noordho� International

Publishing, Leyden; Academia, Prague, 1977.

[10] Li-ming X.: Asymptotic analysis of dynamic problems for linear elastic shells-

justi�cation of equations for dynamic membrane shells, Asymptotic Anal. 17,

121{134 (1998).

[11] Raoult A.: Construction d'un mod�ele d'�evolution de plaques avec terme d'inerte

de roation, Ann. Mat. Pura Appl. (4) 139 (1985), 361{400.

[12] Simon J.: Compact sets in the space Lp(0; T ;B), Ann. Mat. Pura Appl. (4) 146

(1987), 65{96.

[13] Sprekels J., Tiba D.: An approximation method for curved rods, Nonlinear

Partial Di�erential Equation and their Applications, ed. by N. Kenmochi, M.

Otani and S. Zheng, Gakuto Intern. Ser. Math. Sci. Appl. Vol. 20 (2004), 305-

314.

[14] Tamba�ca J.: Justi�cation of the dynamic model of curved rods. Asymptot. Anal.

31, no. 1, 43{68 (2002).

47



[15] Tiba D., Vod�ak R.: A general asymptotic model for C1 curved rods, WIAS-

Preprint No. 942, Berlin (2004).

48


