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Abstract

In this paper we study the asymptotic behaviour of solutions to the linear
evolution problem for clamped curved rods with the small thickness € under
minimal regularity assumptions on the geometry. In addition, non-constant
density of the curved rods is considered.

1 Introduction

The main task of this paper is to relax the regularity assumptions on the shape of the
curved elastic rods in the general asymptotic model and to derive this general model
from the linear evolution equation of three dimensional elasticity by asymptotic
technique.

We use the asymptotic approach presented by Aganovi¢ and Tutek [1] for straight
rods, which was modified by Jurak and Tambaca [6] and [7] for curved rods. Us-
ing the idea from Blouza and Le Dret [2], it was shown by Tiba and Vodak [15]
that we can admit in the “limit state ¢ = 0” a unit speed curve with Lipschitzian
parametrization and that we can approximate this curve by a suitable sequence of
smooth curved rods depending on €, which preserves the explicit form of the constant
in the Korn inequality corresponding to the thickness of the domain. An analogous
strategy as in [15] enables us to generalize the result given by Tambaca [14].

The basic idea is rather simple and natural. If we denote by € > 0 the “thickness”
parameter specific to asymptotic methods, we also introduce another small param-
eter d =€ (0 < r < %) associated to a regularization procedure applied to the
nonsmooth line of centroids. A careful examination of the convergence properties
of the arising smooth coefficients, and sharp estimates in the corresponding weak
formulation of the linear elasticity system (after scaling), allows to pass to the limit
€ — 0 and to obtain the asymptotic model. In the smooth case, this is similar to

the model of Tambaca [14].

Let us also mention other related works discussing asymptotic dynamic models:
Raoult [11] (for plates) and Li-ming [10] (for shells). Further, we refer the reader
to [15] for the detailed construction of the local frame in L>(0,[) and its smooth
approximation, and to [13] for a special approach to the dynamic model for curved
rods.

Finally, we give a brief outline of the paper. In Section 2, we introduce the basic
notations and notions that will be further needed. Section 3 contains auxiliary
propositions, which are used throughout the paper. Section 4 is devoted to the
formulation of the linear elasticity equation and its transformation. Section 5 deals
with the existence and uniqueness of the solution to the transformed equation and
basic estimates are derived. Section 6 gives us the basic overview about behaviour of
the displacements if ¢ — 0 and about the qualitative properties of their limit state.
In Section 7 the passage to the limit € — 0 is performed and the main existence and
uniqueness result is proved.



2 Basic notation

We denote by R? the usual three dimensional Euclidean space with scalar product
(+,-) and norm |- |. By “ x” we shall denote the Cartesian product of two spaces
and by |-,-| any ordered pair. In the text the symbol |A| will also denote the
Lebesgue measure of some measurable set A, without danger of confusion. The
summation convention with respect to repeated indices will be also used, if not
otherwise explicitly stated.

Let S C R? be a bounded simply connected domain of class C! satisfying the
“symmetry” condition

/1172 dxzdxg = / T3 d.’l?gdil?g = / Tol3 dxzd.’l?g =0. (21)
S S S

We denote by Q = (0,1) x S, Q. = (0,1) x €S open “cylinders” in R®, where [ > 0
and € > 0 “small”, are given.

Let C be a unit speed curve of length [ in R3 defined by its parametrization ® :
[0,1] = R3, and let t, n, b denote its tangent, normal and binormal vectors. As we
shall assume less regularity for ® as for instance in [6], [7] and [14], the local frame
t, n, b is not necessarily the Frenét one. Alternative ways to construct local frames
under low regularity assumptions may be found in [13]. Let ®. : [0,{] — R? be a
smoothing of ® such that it remains a unit speed curve (i.e. |®.(y;)| =1, Vy; € [0,1])
and t., n., b, be the associated local frame. The regularization parameter will be of
the form €", r € (0, %), and we just write ®,, t., n., b, to simplify notation. More
details on the construction of the functions t, n, b and their regularizations can be
found in [15]. The most important properties of these regularizations are mentioned
in Proposition 3.1 and Corollary 3.2.

Further, we define the auxiliary functions a., (., 7. (corresponding to the usual
notions of curvature and torsion) by

a. = (t.,be), B = (t.,n.), 7. = (b, n.).

To obtain these relations, we use the assumed orthonormality of the local basis t.,
n., b, which gives the orthogonality properties (t.,t’) =0, (n.,n’) =0, (b, bl) =0,

€

that is, t. may be expressed via n, b, and so on. We obtain the “laws of motion”
of the local frame
t. = acb, + fen,,

n,e = _ﬁete - erbe; (22)
bl = —a.t. + y.n..

We introduce the mapping R,

R.:Q — Q. Rz, 22, 23) = (21, €22, €3), (2.3)



and the mapping P,
]-_)e . Qe — R37 Pe(y) = ‘ﬁe(yl) + y2n6(y1) + y3be(y1)7 (24)

(1,92, y3) € (0,1) x €S, which gives the parametrization of the curved rod Q. =
P. (). Furthermore,

de(y) = det(VP(y)) = 1 — Bc(y1)y2 — ae(y1)ys for all y € Q.. (2.5)

We can suppose that d(y) > 0 for all y € Q. and for ¢ “small” (see Corollary 3.2
in this paper or Corollary 3.3 in [15]). Then P, : Q. — Q. is a C'- diffeornorphism
Ciarlet [3], Theorem 3 1-1. In the sequel, we shall Write 0; = a )

(ylayZayS) € Qea 81 3 ) for Y= (ylayZayS) € Qea 81 Where T = (xl,xZaxS) €

Q, 0, = 5 and 9y = g;. Thus, in (2.5), V = (61,(92,63). In the case that a

function v depends only on ¢ or z; (or y;), we denote its first (second) derivation
d

by 9 (9) and v (v"), respectively. Sometimes we use the notation v instead of

v. In an analogous way as above, we denote by V a function defined on QE, V a
function defined on €2, and V' a function defined on 2. We suppose throughout this
subsection that all needed derivatives exist, which will later follow from Section 3.

where y =

The covariant basis at the point P.(y), ¥y € €., of the curved rod is defined by
g:.(y) = 0;P.(y), and (using (2.2)) these vectors are given by

gl,e(y) = (1 - y2ﬂe(y1) - y3a£(yl))te(y1) + ys%(yl)ne(yl) - yﬂe(yl)be(yl),

82,(¥) = ne(¥1), 83.(y) = be(m1). (2.6)

The vectors g7 defined by the relations (g;., 8/°) = 6%, constitute the contravariant
basis of the curved rod at the point P.(y). They have the form

_1le tey _2.¢ _yVEytey
g () = S, gregy) = I | (),
(¥) de(y)
€ tE
ge(y) = LYWW Ly, ) (2.7
de(y)
Further, we define the covariant and contravariant metric tensors (gj.);;—; and
(97992, where
gij,e — (gi,ea gj,e)a g” “ (gZ 6) g ) (28)
After the substitution y = R.(z), we adopt the notation
g7 () = 57 (Re(2)), gije(2) = Gije(Re(2)), 8ie(2) = Bie(Re(2)), (2.9)
g”(z) = 8" (Re(z)), de(z) = de(Re(2)), (2.10)
where z € Q).



In an analogous way, we can derive the covariant basis at the point (P, o R.)(z),

z € Q. Thus, o;(z) = 0;(P. o R¢)(z), i = 1,2, 3, and these vectors are given by
01,6(7) = (1 — €x28:(71) — ex30e(z1))te(21) + €T37e(T1)ne(T1) — €T2Ye(T1)be(21),

03(z) = en (1), 03¢(z) = ebe(z1). (2.11)

The vectors o’ defined by the relations (o; ¢, 07) = §*, constitute the contravariant

basis at the point (P.oR¢)(z), z € 2. They have the form

01’6(.73) _ tE(fUl), 02,5(1,) _ _xS'YE(xl)te(xl) 1 ne(xl)

d£($) de(x) € ’
3,6 TyYe(z1)te(71) | be(z1)
’ = . 2.12
0¥ (a) = " : (2.12)
We can define the covariant and contravariant metric tensors (o4)7;—; and
(0"€)3;_,, where ) o
0ije = (04¢,05¢), 07° = (0", 0”°). (2.13)
These tensors have the form
d? + 3y + Exiv? Ex3y. —€2Ta.
(0ije)ijr = | €T37e e 0 (2.14)
— €229, 0 €2
and
1 —I3%e I2Ye
d? d? d?
.. 2.2 2
= | e S+ =l | (2.15)
T27Ye —zaw37? 1 + z%’Ysz
2 2 2T e

Now, we can compute

0u(z) = \/det(oij,e(:z:))?’jzl — &d, (). (2.16)

We use for constants the symbols C' or C;, for i € Ny = {0,1,2,...}. Constant
vectors will be denoted by C or C; for i € .

The symbols H'(Q2), Hi (2) and LP(Q), p € [1, oo, respectively, denote the standard
Sobolev and Lebesgue spaces endowed with the norms ||-||; 2 or ||-||,. We will use the
same notation of the norms also for vector or tensor functions in the case that all their
components belong to the above mentioned Sobolev or Lebesgue spaces. H ()
and X’ stand for the dual space to H}(Q) or X, respectively. The notation C™(Q),
with m € Ny, means the usual spaces of continuous functions whose derivatives
up to the order m are continuous in Q, and we denote by C$°(Q) the space of all
functions which have derivatives of any order on 2 and whose supports are compact

subsets of Q. The symbols L*(I; X), p € [1,00), L>(I; X) and C(I; X), where X is



a Banach space and [ is a bounded interval, stand for the Bochner spaces endowed
with the norms

/p
llr = ([ I ) lolimg = esssup o)
and
ol = maxllo(@)lx.
We say that v, — v in X or in L?(I; X), p € (1,00), or in L2(0,1; H~'(S)), if

x (¥, v, —v)x — 0 for any ¢ € X',

/X'<¢(Z),vn(z) —v(2))x dz — 0 for any o € LF'(I,X"), p' = et
I _

and

l
/ H*1(5)</Un(x1) - v(xl)aw("zl)>Hé(S) dz; — 0 for any ¢ S LQ(Oala H&(S))a
0

respectively, where x/(-,-)x denotes the dual pairing of X’ and X. Further, we
denote v, — v in L>(I, X") if

/X:(vn —v,¢)x dz — 0 for any ¢ € L*(I, X).
I

In the case that X' = L?(Q)' or X' = H '(Q), we write without danger of confusion
vy — v in L=(I,L*(Q)) or L=(I, H(Q)) if

/I/Q(un — ) dadz — 0

for any o € L'(I, L*(Q)) or L>(I, H;(£2)), respectively.
Let v € L}, (0,T) and ¢ € C5°(0,T). Then we denote v¥ = fOTv(t)(p(t) dt.

The definitions of the domains ﬁﬁ, Q. and ) enable us to introduce the following
notation:

V(Q) ={V € H'(Q) : Vp.qoyxes) = V
V(Q)={VeH(Q):V

and further we introduce the space

P.({l}xes) = 0},

(03x8) = Vlqyxs) = 0},

VEmP(0,1) = {|V, 9] € HE(0,1)* x L(0,1): (V',t) =0

and V, = —¢t + (V',b)n — (V/,n)b € H}(0,1)3}. (2.17)



3 Auxiliary propositions

Proposition 3.1 [15] Let ® € W1>(0,1)® be the parametrization of the unit speed
curve C. Then there exist vectors t, n and b, which belong to L>(0,1)® and form
the local frame corresponding to the curve C, such that

|t| = |n| =|b| =1, tLnlb a.e. in (0,]). (3.1)
In addition, there exist functions

{®}ec01) {betec0)s {neteco,1)s {Petecon) € C([0,1])°

such that
lte| = In| = [b| =1, t.Ln.Lb, on [0,] (3.2)
for all e € (0,1),
te »> t, n. > n, b, — b in measure in (0,1), (3.3)
for e — 0,
1 1
Ielloo, [nclloos WIPElloo ~ O(Z), [I6elloo, IInelloo, [bello ~ O(57), (3.4)
and
1 , , , 1 1
lawelloo, f1Belloos I7elloo ~ OCZ)s Mletelloo, 1Belloos [17elloo ~ O(551), ™ € (0, 3), (3.5)

where the functions a, Be, v. € C*([0,1]) are determined by (2.2).

Corollary 3.2 [15] There ezist the constants C;, j =0,1,2, such that the function
d. defined by (2.5) and (2.10) satisfies 0 < Cy < d.(z) < Cy for all z € Q, and the
function edc\/v;01¢v; defined by (2.15), where v;, i = 1, 2 3, are the components of

the unit outward normal for (0,1) x S, satisfies 0 < d(z)e\/vi(z)o"<(z)v;(z) < Cy
for all z € (0,1) x S and € € (0,1). In addition,
d. —1in C(Q), (3.6)
ede(x)\/Vi(x)oij’ﬁ(x)uj(x) — 1in C((0,1) x 8S), (3.7)
for e — 0.

Proposition 3.3 [15] Let the space V™" (0,1) be defined by (2.17). Then
b= —(V.,t) and V(z:) = /zl[—(v*, bn+ (V.mblds  (3.8)
0
for z1 € [0,1], where
V(1) = /l[—(v*, b)n + (V.,n)b] dz; =0, (3.9)
0

¥ e L>(0,1), and VE™P(0,1) is a nontrivial Hilbert space endowed with the norm
IV, 112 = IVIE L + 103 + [[VllE o (3.10)



Proposition 3.4 [15] Let t., n. and b, be the functions from Proposition 3.1 and
let the space ng’"f’bf(o, [) be defined by (2.17) using the functions t., n., b, instead
of t, n, b. Let, further, |V, | € Vg’"’b(O,l) be an arbitrary but fixed couple. Then
there exist couples |V, ¢ | € ng’nf’bf(o, l) generating the functions V. such that

{Videen)s {Veeteen) € C52(0,1)%, {tetee(on) € C5°(0,1),
V.-V, V.. — V,in Hj(0,1)% (3.11)
e — 1 in measure in (0,1), (3.12)

for e — 0, and

L. (3.13)

1 1
V||s ~ O(= s ~ O(= 0
IVella ~O(2)s Igellz ~ O(2), r € (0,5

Proposition 3.5 7] Let w € H*(Q). Then 8;0;w € L*(0,1; H '(S)) for i, j =
1,2,3 except for i = j = 1. If, in addition, w|,—9 = W|z,= = 0, then Jjw|z =0 =
Ojwl|g,—1 = 0, for j = 2,3, in the sense of the space C([0,1]; H™*(S)). Furthermore,
if v € L2(0,1; L*(S)), 61v € L2(0,1; H7'(S)) and v|s,—0 = v|s,—1 = 0 in the sense of
the space C([0,1]; H7'(S)), there is a constant C independent of v such that

vllz2022(5)) < ClIVUlL2(0,15-1(5))- (3.14)

Proposition 3.6 [7] Let {v,}>>, C L*(0,1; L*(S)), {6ivan}>, C L2(0,1; H71(S))
and let vylp—0 = Unley=t = 0, for all n € N, in the sense of the space
C([0,1]; H1(S)). Assume, in addition, that this sequence satisfies

O1vn — &, Ojv, — 0, in L2(0,;; H'(S)), j =2,3, (3.15)

where £ € L2(0,1; H7'(S)). Then £ € L*(0,1), and there exists a unique function
v € H}(0,1) such that v' = € and

v, — v in L*(0,1; L*(9)), (3.16)
v, — v in C([0,1]; H~1(S)). (3.17)

If the convergences in (3.15) are strong then the convergence (3.16) is also strong.

Proposition 3.7 Let ¢ € C§°(0,T). Let the sequence {v,}5°>, C LP(0,T;X), p €
(1,00), or {v,}2, C L*(0,T; X"), where X is a Banach space, be such that v, — v
in LP(0,T; X), p € (1,00), or v, — v in L>®(0,T; X"), respectively. Then T,¥ — T¥
in X orv,? =% in X', respectively.

P r oo f: We start with the case v, — v in L?(0,T; X), p € (1,00). To prove the
first part of the proposition, it is enough to show that

/0 o (0, w() x dt = (1, / (3.18)

7



for all ¢p € X', where w € LP(0,T;X), p € (1,00). Since w € LP(0,T;X), p €
(1,00), then w is Bochner integrable and there exists a sequence of simple functions
{wm }S_; such that

lim ||wn(t) —w(t)[|x =0 (3.19)
m—»00
for a.a. ¢t € (0,T) and
T
lim |wm(t) — w(t)||x dt =0 (3.20)
m—r00
see [9]. The functions w,,, m = 1,2,..., are simple and thus they can be expressed

by

k(m)
= Z XBim (1)Cim
i=1

where ¢;, € X and x3, ,, (t) are the characteristic functions to the sets B;, C (0,T),
m=1,2,...and i =1,...,k(m). Then we get

[ ey dt— o, [ w) anxi <1 [ - wno) al

T
4 / oy wm () x dt — 0 (8, / {) dt)x| < |[¥]x / () — w(E)x dt
T m T
" /0 X,<¢,;><Bi,m(t)c,~,m>x S—y /0 w(t) dt)x|
T
= I9llx / () — w(E)x dt

T
+|/ Zme (8 Cim) x dt—wp,/o w(t) dt)x|

T k(m) T
— Il / lm(t) — w(®) 15 dt+ |3 [Bim| (85, cim)x — (85, / w(t) dt)x|
=1

k(m)

T T
= Il / lm(t) — w(®)1x dt+ [ (%, S [Bimleim)x — (8, / w(t) dt)y]
=1

T

= 9l / lm(®) — w(®)]lx de+ x5, / win(t) — w(t) di)x|

0

T
< 2yl / lwm(®) — w(t)]x dt -0

for m — 0, as consequence of (3.20). Putting w(t) = v(¢t)p(t), we finish the proof of

the first part of the proposition. The proof in the case that v, — v in L*®(0,T; X")
proceeds in almost the same way. O



Proposition 3.8 Let ¢ € C°(0,T) and v € LP(0,T; HY(Q2)), p € [1,00]. Then
7% € HY(Q) and 8;5¢ = 8v*, i =1,2,3.

P r o o f: Using the Fubini theorem we derive that

/a«pw dx—/a«p/ ) dtdz

:/Tgo(t)/ o(£)0) dadt = /()Tgo(t)/ﬂaiv(t)w dodt
/ / ) dtdz = —/sz%“” dz

for all v € C§°(Q) and ¢ = 1,2, 3. O

Proposition 3.9 Let ¢ € C5°(0,T) and v € LP(0,T;C([0,1]; X)), for p € (1, 00].
Then v¥ € C(]0,1]; X).

P r o o f: We know from the definition of Bochner spaces that
v(t) € C([0,1]; X) for a.a. t € [0,T],

and thus
lim ||v(t,z1) —v(t,Z1)||x =0 for a.a. t € (0,7) (3.21)

$1~>$1

and for some Z; € [0,1]. Then, using the Vitali theorem (see [9] and (3.21)), we find
that

lim [[o(z1)” — v(&) ]lx = lim |jv(z1) — v(&)"]|x
1T T1—T1

T
< lim [ o@)|v(t, z1) — v(t,71)]x dt

- / o(t) lim [[o(t, 1) — v(t,3)|x dt = 0.

:cl—)zl

O

Every function V € H'(Q)? may be represented in the local frame generated by the
vectors t, n., b.. So,

V(z) = vy (x)t(z1) + vo()nc(21) + v3e(z)be(21), (3.22)
where the components of the vector v, = (vy, va,, vs.) € H'(Q)? are defined by
(Va te) = U1,e (Va ne) = V2, (V7 be) = U3e- (323)

Using (2.2) together with (3.22), we get similar relations for the derivative 9; of V
having the form

(O1V(2),te(71)) = 0101,6(2) — @e(T1)v3,e(T) — Be(z1)v26(2), (3.24)

9



(01 V(z),n(z1)) = O1v2c(x) + Be(m1)v1,e(x) + Ye(T1)V3,(T), (3.25)
(01V(z), be(z1)) = 0103,6(T) + e (1) v1,e() — Ve(T1)v2,6(T) (3.26)

for a.a. z € Q. The following proposition shows that the relations (3.24)—(3.26)
remain valid under weaker assumptions on the function V.

Proposition 3.10 [15] Let V € L*(Q)® and the vector function v, = (v, Va.e, V3 ¢)
from (3.23) be such that 8,v. € L?(0,1; H(S)3). Then the function V of the form
(3.22) is such that 6,V € L*(0,1; H~'(S)?) and fulfills the relations (3.24)—(3.26) in
the sense of the space L*(0,1; H(S)) for all € € (0,1).

Proposition 3.11 [15] Let A >0, > 0 and
Az]kl )\gz] €kl 4 u(gik,egjl R4 + gzl eg]k 6).
Then there exists a constant C3 > 0 such that the estimate
3
Z |tii|* < C3ATH (@)t (3.27)
ij=1

holds for all x € Q, all € € [0,1] and all symmetric matrices (tij)?,jzl, with the
constant C3 being independent of € and x.

Proposition 3.12 [15] There exist constant Cy > 0 independent of € such that

V2 < %||wﬁ(V)||2, YV € V(Q)? and Ve € (0,1). (3.28)

4 Weak formulation of the evolution equation for
the curved rods and its transformation

We consider €0, defined by mapping P, o R, (see (2.3)-(2.4)) for € € (0, 1) arbitrary
but fixed as a three-dimensional homogeneous and isotropic elastic body with the
Lamé constants A > 0, 4 > 0 and with mass density p.. Let F, be the body force and
G. the surface traction acting on the curved rod Q. such that F. € L*(0,T; L%(Q.)?)

and G, € WEH0, T; L2((P. o R.)((0,1) x 85))?), for € € (0,1). Let €, be clamped
on both bases P.({0} x €S) and P.({l} x €S). The equilibrium displacement U, is
the (weak) solution of the equation

vy (P0uU(t), V) gy + /~ AM ey (Ue(t))ei; (V) dy
Q.

— /~ (F.(t), V) dy + / (G.(t), V) dS.dy; (4.1)
e P.oR((0,1)x8S)

10



for all V € V(Q,)? and for almost all ¢ € (0,T), where S, = (P, o R.)((0,1) x 85),

Al = \§U M 4 (5757 4 5”5”“) and (e;; (V))?,j:1 stands for the symmetric part of

the gradient of the function V. The solution U, satisfies the initial state
Ue|t:0 = QO,E) ﬁeatUe|t:0 = ﬁte,e- (42)

From (2.3)—(2.4) and from the regularization of the local frame (see Proposition 3.1),
it follows that the mapping P, o R, is the parametrization of the smooth three-
dimensional curved rod.

We transform now the equation (4.1). Denoting U, = U (P,oR.), p. = p.(P. o R.)
and V., = V(P o R,), we get for arbitrary ¢ € C3°(0,T) that

/ SO POT0), Vv dt = [ 000 [ 700.0),9) g

__ / " () / p(8/U.(1), V.)Ed, dadt

/ ¢ Ped 0, U, ( ) VE>V(QE)3 dt,
and thus

[V(ﬁE)S]I <ﬁeattfj—e (t), V>V(§€)3 = 62 [V(QE)S]’ <ped68ttUe(t); V6>V(Q€)3 (43)

for a.a. ¢ € (0,T). Analogously as in [15], we derive that

/ﬁ AiMle (T (1))ess (V) dif = ¢ / A (U () (Vde da,  (4.4)

where -
A?kl )\gz] €kl 4 ﬂ(ng eg]l R4 + gzl eg]k 6) (45)
[ (F.(1), V) djj = ¢ / (F.(1), V), dz, (4.6)
€ Q
and
/ (G.(0), V) dS.dj = ¢ / (G.(t), V.)d.\/vioFer;dSday. (4.7)
(P.oR.)((0,1)xdS) (0,1)x3S

The symmetric tensor w®(V) has the form
1
w (V) = EQG(V) + k°(V), (4.8)

where the individual nonzero components of the symmetric tensors 0 and k¢ are

defined by
1
GEZ(V) = 5(82\[7 gl,ﬁ): QSQ(V) = (82V7 IIE), 9;3(V) = (83V’ bﬁ)’ (4'9)

11



Ua(V) = 5 05V, 81, 055(V) = 5 (@V,b) +(35V,m)),  (410)

1 1
k11 (V) = 01V, 81e), 612(V) = 5(81V, o), w35(V) = 5(61V,be),  (4.11)

where g; . — t in measure in 2 and n. — n, b, — b in measure in (0,[) for e — 0.
The other components of #¢ and ¢ are equal to zero.

It is easy to see that ifV e V(ﬁ )3, then V, € V(€)3. Denoting Qo = Qo .(P.oR.),
Qi =Q (P.oR,), F, = —F (P.oR,) and G, = G, (P, o R,) we can rewrite the
model (4.1)— (4 2) using (4.3)—(4.7) as

oy (0B Un(), Vv + / ATHGE (U, () (Vo) d, de

/(F V)d. d:l:—l—/ / (t), V)de/vi0%cv; dSdxy (4.12)
as

for all V € V()3 and for almost all ¢ € (0,T), where the solution U, satisfies the
initial state

Ucli=o = Qo,e; PO Ucli=o = peQu,e. (4.13)
Assumptions
The following assumptions will be needed throughout the paper:
1. p. = e2p, where p € L>(Q) and

0<Cs <p<Cgae. in . (4.14)
2. F. =éF, F € L*0,T; L*(N)*), G, = G, G € WH(0,T; L*(0,1; L*(85)3)).

3 {Qucbecton) © VIV, {Quebeetony © L2OP,
%wa(QO,E)Hg < C Ve e (0,1), (4.15)

where the constant C' is independent of €, and

Qo — Qo in V()?, Qi — Q in L*(Q)? (4.16)
for € — 0, where Qg € H}(0,1)® and Q, € L?(0,1)3.

After the substitution of the above assumptions to (4.12)—(4.13) we get

VoA OULE), Viviay + [ AP Wi (U0) 1y (Ve do

/(F V)d. d:l:—l—/ / V)de\/v;0%¢v; dSdx, (4.17)
0,) Jas
for all V € V()2 and for almost all ¢ € (0,7), and
Ucli=o = Qo,e; pO:Ucli=0 = pQue. (4.18)

The existence of the (weak) solution U, to the problem (4.17)—(4.18) and basic
estimates are derived in the next section.
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5 On the existence of a unique weak solution to
(4.17)—(4.18) and basic estimates

Now, we prove the existence and uniqueness of the weak solution to the problem
(4.17)—(4.18) and the appropriate estimates.

Proposition 5.1 Under the assumptions of Section 4, there exists a unique weak
solution U, to the problem (4.17)—(4.18) such that U, € L>(0,T;V(Q2)3), 6,U, €
L>(0,T; L3(2)3), pduU, € L2(0,T;[V(R)3]"), where the initial conditions in (4.18)
are fulfilled in the sense of the space C([0,T]; L*>(Q)3) or C([0,T]; [V (R2)3]"), respec-
tively. In addition, this solution satisfies for all € € (0,1) the estimates

1
VAU w0 sy + |20 (U orizmqayey < € (11 Quell

1
+=w(Qull + IFIZ sz + G s orizoumsosyy)  (5:1)

and
10Ul 20wy < C(IFl o)

1
HIG 20502 0,522(08)%) + 6—2||w€(Ue)||L2(0,T;L2(9>9>)7 (5-2)

where the constant C' is independent of e.

Before we start to prove Proposition 5.1, we construct a finite dimensional approx-
imation of the weak solution to our problem using analogous arguments as in [4],
and [5], and we prove auxiliary lemmas, which enable us to prove Proposition 5.1.

Let € € (0,1) be arbitrary but fixed. Since the space V(2) is a separable Hilbert
space with the scalar product ((-,-)),4. o defined by

(VW) pacr = / VW, do + / o(VV, VW), da,
Q Q

we can select smooth functions Wi, = Wi(z), k = 1,2,..., such that
{Wi 1}, is a basis of V() (5.3)
and
{Wy}2, is an orthonormal basis of L?(£2) (5.4)

in the sense of the scalar product (-, +),4. o defined by

(ViW)pa. 0 = / pVWd, dz.
)

The proof that the above mentioned scalar products are well-defined follows from
Corollary 3.2 and (4.14).

13



Now, we fix a positive integer m, and we write

Umt$ Zdﬁk] Wk nge_y dek]
(5.5)

m
Ql,e,] Z de k,]

where j = 1,2,3, (t,z) € (0,T) x Q and U? = (U7}, U, Uy). We intend to select

the coefﬁc1ents dznk]( ), 7 =1,2,3, to satisfy

4,0) = [ pQuesWid. da, d74;(0) = [ p@uoWededo (56)
Q Q
for j=1,2,3, k=1,...,m. Using the vectors
W; = (W;,0,0), Wi = (0, W;,0), W3 = (0,0, W),

we want to prove the existence of the unique solution to the system of equations

o1 1 -~
| oot OWd. da + [ AP (UP(0) iy (Wi, da
Q € €
= / F(t)Wid, dz —l—/ G5 (t)Wideer/vio<v; dSday, i =1,2,3, (5.7)
Q

completed with the initial states

d7,+(0) = /Q Qo ;Wide dz, d7(0) = /Q pQ, Wid. dz (5.8)

forj=1,2,3,k=1,....,m

Lemma 5.2 There ezists a unique solution U™ € W22(0,T;V(2)3) to the equation
(5.7) satisfying (5.8) for each m =1,2,... .

P r oo f: In the first step, we rewrite the equations in (5.7) as a system of ordinary
differential equations. We start with the second term. Let us take, for instance,
ws3(U™(¢)). Then (using the summation convention except for ¢)

wia(UP(0) O Zog (Um(0)

(4.10) 1

% ((32U2"(t), b.) + (8;U™(t), nﬁ))

(5.5) 1 m
2 §<dek ()02 Wib 5 + dT, +(t) s Win, )

23]

1 m €
= ide’k;j\(t)(agwkbe,’]? + 83Wkn63) = de, ( )B (Wk)
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where we denote

~

By (W) = 6(82kae,3+ 93Win, 5), j=1,2,3.

23,1(

We express analogously the other components of the symmetric tensor B;E(Wk) =

(Bt -(Wi))3 -1, 7 =1,2,3, and thus we get that

5,3

wG(U™) = dm () BE(W), 6,5 = 1,2,3,

where

B;l,j(Wk) - 8IVVk[gl E]/?) for 81,e = ([gl,e]la [gl,e]Za [g1,£]3)a

. 1 . 1 1
BIZ,/j\(Wk) = %&Wk[gl 6] + 281Wkn BIS,/j\(Wk) = %83Wk[g1,e]3’ + 581ka ~

€3’ €3’

€ 1 € 1
B, ~(Wy) = ~0aWin,; By, -(Wi) = —0sWib 5

€77
€ ]‘ -~
BZS](Wk) 6(82ka63 + 83Wkn63), ] = 1, 2, 3.
Hence
i 1 ~ 1 1 ~
[ AT (0) iy (Wa, da = s (0) [ A (W) (W do
= d" (t)DS(B(Wi), w' (WL)d.), (5.9)
where

€ € € “ i 1 € 1 € “
D(BWe), ' (Wid) = | AP (W) cuy (Wi,

i= 1,2,3 and /f: 1,2, 3. Further, we denote
0 -~ l
fit) = / E(&)Wid, do, gi(t) = / Go(t)Wid.er/vi070; dSda1,  (5.10)
Q 0 oS

fori=1,2,3.

Using the fact that the functions Wy, k£ = 1,2,..., are orthonormal in the sense of
the scalar product (-, -),4.,0, together with (5.5), (5.9)—(5.10), we may rewrite the
equation (5.7) as a linear system of ODE’s having the form

d™ (t) + d, (£ DS(BE(Wi), w (Wh)de) = fi(t) + gi(t), (5.11)

for t € (0,T), with the initial state
dr +(0) = / pQy ;Wide dz, d7 (0) = / pQy o7, Wid, dz (5.12)
Q Q

for i = 1,2,3, k = 1,...,m. Owing to standard ODE theory there exist unique
functions d™ -(t) € W“(O T),i=1,2,3 and k = 1,...m, that satisfy (5.12) and

solve (5.11) for almost all ¢t € (0, 7). O

15



Lemma 5.3 Under the assumptions of Section 4, the solution to the problem (5.7)—
(5.8) satisfies the estimates

m 1 m
VAU w020y + < (U)o sy < O (IQEIE
1 m
+||EW(Q0,6)||2 + 172075022y + ||G||%Vlﬂ(0,T;L2(0,l;L2(8S)3))) (5.13)
and
PO U || L20,m5v 21y + ||0deOs UL || 20,m5v (0)37) < C<||F||L2(0,T;L2(Q)3)
1 € m
HGlorzoszossy + 510 U |eoreee), (5.14)

where the constant C is independent of €.

P r o o f: We multiply equation (5.7) by de,”( ),/z'\: 1,2,3,sum k=1,...,m and
recall (5.5) to discover (we do not use the summation convention for index i here)
that

o1 1 ~ =
/ PO UTS(L)OU(t)d, da + /Q A?klzw;l(UZ’l(t))zwfj(atUT”(t))de dx

:/ ()BtU ()d d:L'—i—/ G;(t BtUm dcer/ V0%V, dS'd:L'l, =1,2,3,
Q oS

(5.15)
where
Um1 (Urn,0,0), Um2 (0,U7,0), Um3 (0,0,U7%).
We observe that
d 1 ~
| o000, e = SGIVAAUZOR). T=123 (510

Z / AT (U7 (1)< (00T (0)d, do

.. 1
= [ AP (U 0) 1 (00T (0)d, da

= 4 (5 [ A9 n Uz O (U7 (0)d, ds) (5.17)

dt \ 2¢2

for a.at € (0,T), because the tensor (A¥*)3., ,_, is symmetric. Summingi = 1,2,3
in (5.15) and using (5.16)—(5.17), we get the equality

S (GNP + o [ AT (U )t (U2 0, do)
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= /(F() o, U™ (t))d. dIL'—l—/ / ), 0. UT (t))deer/v;00cv; dSdzy.  (5.18)
Q as

Integrating (5.18) over the interval [0,¢], t € (0,7), yields, together with (5.5) and
(5.8),

1
—||\/pd o, U™(t)|15 + /A”kl (UL (1)wi;(UE(t))de dz
— S IVPAQLIE 5 [ AP (QR )G (QRd, da / [ (), 007 (s))d deds
/ // ), 0:UT(8))dcer/vi09¢y; dSdz1ds (5.19)
s

for all ¢t € [0,T]. Further, we can estimate the third and fourth term on the right-
hand side, using Corollary 3.2 and the Young inequality |ab| < a?/2 + b%/2, by

‘// ), 8,U™(s))d, d:z:ds‘ <01/ /—|F §)|C+|0,U™(5)| dads

< o [ IR a5+ S [ oz as

Cl Clc
202“ ||L2 oz T 1 !

10U ™ () 7 (0,202 (5.20)
and

| / / /a (G(s),07( ))deer/vi07v; dSdaids|

:‘/0 /0 /asat(G(s),Ugn(s))dee\/u,-owauj dSdz,ds

_/Ot /Ol /as(atG(s),UZ”(s))dee\/l/ioT"fl/j dexlds‘
= | [ [ @@, dsia,
-/ /85 ), Q. )decy/vioTv; dSdoy

/ / /a (a6 U™ (5))doer /i, de:vlds‘

C,C2

< 2C2||G||L°° (0,T5L2(0,1;L2(9S)3)) 5 2| UP | o (0,520,522 (09)%))

Cy C,C2
202||G( )||L2 (0,1;L2(88)3 )+ 9 == ||Qoe||L2 (0,;L2(85)3)

HUZ || oo 0,020,522 (85)3 / 10:G €\ V055 || 120 1302 (85)
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C eXe
202||G||L°° (0,T512(0,5L2(98)) T SUP | oo 0,200 1:22(05)%)

2 2 m
+ 2 ||G(O) ||%2(0,Z;L2(BS)3) + : ||Q0,e||L2(0,l;L2(8S)3)
2C’9 2

CyC? m 5
+ 5 ol LSH4 (0,T;L2(0,;12(85)3)) T 202 ||8tG||%1(0,T;L2(0,Z;L2(65)3))' (5.21)
10

Let the constant C'; comes from the embbeding
W0, T; L*(0,1; L*(9S)%)) < C([0,T]; L*(0,1; L*(8S)%))

and the constant Cis from
H'(S) — L*(99).

Then we deduce from (5.18)—(5.21) using Corollary 3.2 and (4.14) that

C1C2
2

Co m m
7||\/58tU6 1T z200) = T 10U |20 (0,752 )2y +

1
(ess sup 55 | ATHGE (U () s, (U™ (8))d, da
(0,T) 4€

0106 020202

C,C?
- QT3 + ———= Q¢

7 2(CE + CR) U B sy ) <

C 2 m € m 1
+262 /S;A]klwkl(QO,e)wij(QO,e) dr + Q—C?HFH%z(O’T;Lz(Q)S)

C’]?1 C’]?1 1 2
+02(2082 + 202 + 2C120)||G||W1a1(O,T;LZ(O,Z;LZ(as)?’))7 (5.22)

where the constants C;, j = 0,...,12, do not depend on e. From (4.14), it follows
that

ele:

m C\C7 m
10U e o,7:12(0p3) < T 2057 1v/PO U |2 0,512 ()2 - (5.23)
Further, the estimates (3.27) and (3.28) together with Corollary 3.2 provide

ess sup —

SUP 3¢ J ANy (U (0)wi; (U7 (8)de do

Co 1 crpmm
2¢2C; |w(Ug )“%W(O,T;LZ(Q)Q)’ (5.24)

0,02 N
9 2(Ch + Ch)|IU? ||%°°(0,T;H1(Q)3)

_ GOic,
- 2¢2?

>

(082 + 0120)||wE(UZL)||%°°(0,T;L2(Q)9) (5.25)
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and c 0202
2 m
SR g2, <

In addition, the estimate

sz 10 Q) 12y (5.26)

| (Aijkl)?,j,k,lzlnc(ﬁ) <Ci3 (5.27)

holds with the constant C'i3 being independent of € as a consequence of the relations
(2.9), (3.5) and (4.5). Hence

Gy

2¢2

Al]kl If:l(QOe) z](QOe) dz <

c,C /o~
;EISH (QF)IZ0ye- (5.28)

The substitution of the inequalities (5.23)—(5.28) to (5.22) leads to the estimate

Co ,..CiC2 .
(5~ T ) VAU e o s
Cy — C,C3C2C%,(C2 + C2) .
+ 2:261’5 s L |we (U7 )”%W(U,T;L?(Q)Q)
_ac C1Cy3 + CoC2C2C%,, .
: 6||Q I+ TR AT 2 Q) |3

2¢2
ciy C? 1
1 2 11 2
+2_C,? ||F||L2(0,T;L2( ) ) + 02(202 + 203 20]?0)||G||W171(O,T;LZ(O,Z;L2(85)3))' (529)

0005 C’0
Cr, = Cio=0Cg, Cg =
"~ \orc, VT VB VB \/4020304%0&%0122,

we conclude (5.13).

It remains to show (5.14). We fix any V € V(Q) such that ||[V];2 < 1. The
function d—VE belongs to V() for € sufficiently small as well, which is a consequence
of Proposition 3.1, Corollary 3.2 and the definitions (2.5), (2.10) of the function d..
In addition, ||d—VE||1,2 < Ch4, where the constant Cy4 is independent of € (see (2.5),
(2.10) and (3.5)). We can decompose this function as a sum

Vv
d_:‘/16+‘/26’

Putting now

where V¢ € span{W;},,
/ PVEWid, dz + / p(VVE, VWi )de dz =0, k=1,...,m
Q Q

We can derive from Corollary 3.2 and (4.14) the estimate

1
C1Cs

(V2 + [VVA)d,] do = / PIVEY? + (VE)? + 2ViVild, do
Q Q

1
VIR, > ——
IVIE: > 5o
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CoCs

VVE? + |[VVS P+ 2(VVE, VVHd, dz > Vely o,
o AV + IV + 2(9VE VYl do > Vil
and thus ||V |12 < Ci5 = %, where Ci5 is independent of €. Then (5.5) and

(5.7) imply, after the substitution W}, = V,

Vv
viay (POU(0, Vivie) = [ p0uU(0) 5 d. do = [ poUTOVyd, do
k) Q b € Q b

l
N / E(t)Vid, dz + / Go(t)Videer/vioev; dSdz,
Q 0 JoS

i 1 € m 1 € Vi,ﬁ
- [ AP (U ) 1 () (5.50)

~

, =1, 2,3, where
Viye = (V1,0,0), V%E = (0, V7, 0), Vi”e = (0,0, V).
Since (5.27) and the estimate ||V ]|12 < Ci5 imply that

1 1 - C
/Q A?’“’szl(U?(t));af-(V’l’ﬁ)dE dz < < [Jw (UL (t))|l2, for aa. t € (0,T),

ij 6_

where the constant C' is independent of ¢, we get the estimate

3
> viay (00uU7(0), Vv < CIF(0)»
i=1
1
+G ()| L2(0,L2(88)2) + §||w6(UZ”(t))||2>, for a.a. ¢t € (0,7), (5.31)

where the constant C' is independent of €. Taking the function V instead of dz, and
using the same procedure as above for the term pd.0;; U™, we derive (5.14). O

P r o o f of Proposition 5.1: Using (4.14), (5.3)—(5.6), we can easily derive that

Q. — Qo in V(Q)*, pQT, — pQu,c in L*(0)°. (5.32)

From the estimates (3.28) and (5.13), it follows (passing to a subsequence if neces-
sary) that
U™ 5 U, in L>(0,T; H(Q)%),

(5.33)

0, U™ = 9,U, in L™=(0,T; L*(Q)?), (5.34)
p8, U™ = p, U, in L=(0,T; L*(Q)*), (5.35)
pd U™ —~ W in L*(0,T; H™*(Q)*) (5.36)
pd 8, U™ = W, in L2(0, T; H'(Q)?) (5.37)
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for m — oo. It remains to show that W, = pd;;U, and V/\\fE = pd.0;U,. From
(5.35), it follows that

p0 U — p0yU,, pd.0;U" — pd.0,U,, in Wﬁl’z(O,T; L2(Q)3)

for m — oo, which leads to the desired conclusion. The estimates (5.1)—(5.2) im-
mediately follow from (5.13)—(5.14) and (5.32)—(5.37). Using the standard theorems
about compact imbeddings in Bochner’s spaces, see [12] together with (5.33)—(5.34)
and (5.35)—(5.36), we can deduce that

U™ — U, in C=([0,T7]; L*(Q)*)

and
p8; U™ — pd, U, in C([0,T]; [V(2)*])
for m — oo. The uniqueness of the solution follows from the linearity of the equation

(4.17) and the estimate (5.1). O

Corollary 5.4 Under the assumptions of Proposition 5.1, there exists a sequence
{e.}2, C (0,1) such that €, — 0 and

U, = U in L™(0,T; H(Q)%), (5.38)
8, U., = 8,U in L™(0,T; L*(Q)*), (5.39)
Lo (UL) 5 ¢ in L0, T; L3(Q)°) (5.40)
for €, — 0. "
P r o o f: The proof follows immediately from the estimate (5.1). a

Corollary 5.5 Let p € C$°(0,T) and the assumptions of Proposition 5.1 be fulfilled.
Then

U.,” —~TU" in H(Q)?, (5.41)
0,U..” = 8,U" in L*(Q)?, (5.42)
;wﬁn(uj) - ;WS” T in L2(Q) (5.43)
for €, — 0.
P r o o f: The proof is a consequence of (5.38)—(5.40) and Proposition 3.7. O
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6 Qualitative properties of the limit displacement

Proposition 6.1 Suppose that {€,}5>, C (0,1) and €, — 0. Let, in addition, a
sequence {U,, }>°, C L>=(0,T;V(Q)3) be such that

U, = U in L™(0,T; H(Q)%), (6.1)

iwfn(UEn) 5 ¢in L°(0,T; LA(Q)?), (6.2)

for €, — 0. Then the couple |U,$| € L>(0,T;Vy™"(0,1)) (in the sense 8;U = 0,

j = 2,3), where the function ¢ is such that
1
€n

((aQU%, b..) - (8,U.., nen)> g (6.3)

in L>(0,T; L*(Q)) for €, — 0. In addition, the couple |U, | generates a function
U, € L*>(0,T; H}(0,1)3) which together with the function U satisfies the relations

(01U,t) =0 a.e. in (0,T) x (0,1), (6.4)

(81U*, t) = 83(12 — 82(13 m LOO(O, T, LQ(O, l, H_I(S))), (65)
(81U*,Il) = —83C11 a.e. in (O,T) X (0,[), (66)
(81U*,b) = 82(11 a.e. in (O,T) X (O,Z) (67)

Remark 6.2 Since }wfn(Uen)w = }wE”(U—en‘p) (see (4.8)—(4.11)), we can use
(5.41), (5.43) and Proposition 7.2 from [15] to derive the existence of the pair
1T?, 6,] € Vi™P(0,1) (in the sense 8;U° =0, j = 2,3) for arbitrary ¢ € C5°(0,T),
where the function ¢, is such that

(@07 b))~ (0.7 n.) = 6, (6.8)

2€,
in L?(Q) for ¢, — 0 and for arbitrary ¢ € C§°(0,7). In addition, the couple
| U, ¢,] generates the function U, € H{(0,1)® which together with the function

U” satisfies the relations

(8,U%,t) =0 a.e. in (0,1), (6.9)

(81U*7(p, t) = 83(12 — 62(13(p in LZ(O, l, Hﬁl(S)), (610)
(81U*’(p, 1’1) = —63C11lp a.e. in (0,[), (611)
(81U*7(p,b) = 62(1190 a.e. in (O,Z), (612)

for arbitrary ¢ € C§°(0,T). If the sequence {éwfn (U.,”)}2, converges strongly

in L?(€2)° then the convergence of the sequence {U,,~}>°, is strong as well for
arbitrary ¢ € C§°(0, 7).
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Remark 6.3 From Remark 6.2, it follows that to prove Proposition 6.1 we must
check that B L
¢o(z1) = ¢ (1) and U, ,(z1) = U, (1) (6.13)

for all ¢ € C3°(0,T) and for a.a. z; € (0,1).

The proof of Proposition 6.1 is decomposed into the following lemmas and corollaries.

Lemma 6.4 Under the assumptions in Proposition 6.1 the following convergences
hold true:

Eiqeﬁ(Ue) — 04n L>=(0,T; L*(Q)?), ¢ €0,1), (6.14)
<61296(U6) + %ﬁE(U6)> 5 ¢ in L0, T; L2 (). (6.15)

P r oo f: We can observe that the *—weak convergences (6.1) and (6.2) together
with (4.8)—(4.11) imply the boundedness of the set of the tensors {fw®(Ue)}ec(o,)
and {k°(Uc)}eeo,) in L®(0,T; L?(2)°). Using these facts, we can easily deduce
(6.14). (6.15) immediately follows from (6.2) and (4.8). 0

Corollary 6.5 Under hypotheses (6.1)—(6.2) we have:

1
6_q(62U£a gl,e) — Oa (82Uat) - 0) (616)
1
6_q(63U£a gl,e) — Oa (83Uat) - 0) (617)
1
6_q(61U£a gl,e) — Oa (81Uat) - 0) (618)
1 /1
_q <E(82UE, gl,ﬁ) =+ (81U6, IIE)> — 0, (619)
1 /1
_q <E(83UE, gl,ﬁ) =+ (81U6, b5)> — 0, (620)

in L>=(0,T; L*(Q)) for ¢ € [0,1) and € — 0,

0y (%(azue,gl,e) + (81U6,n6)> 0, j=2,3 (6.21)
aje—lq G(ague,gl,e) 4 (81U6,b6)> 0, j=2,3 (6.22)

in L>°(0,T; L*(0,1; H7(S))) for ¢ — 0 and q € [0,1),
E%(aQUG, n) — 0, (%U,n) =0, (6.23)
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1
~(8U.,b,) = 0, (8,U,b) =0, (6.24)

1
1
l ((82UE, b.) + (8;U., n6)> 50, (BU,b) + (8,U,n) =0,  (6.25)

€11

in L>(0,T; L*(Q)) for ¢ € [0,2) and € — 0, and

1
— (09U, t) = 0 in L=(0,T; L*(Q)), j=2,3, (6.26)
€ 2
1
— (01U, t) — 0 in L=(0, T; L*(Q)), (6.27)
€ 2

for o €[0,1 =), 7€ (0,3), and e — 0.

P r oo f: We can easily derive from (6.14)—(6.15) and (4.8)—(4.11) the convergences
(6.16)—(6.20) and (6.23)—(6.25). It remains to prove the associated equalities. Since
from Corollary 7.4 in [15] it follows that

0= (82ﬁ‘pat) = (82Uat)sa in Qa VQD € CSO(O,T),

we get (0oU,t) = 0 a.e. in (0,7) x Q. The convergence (6.21) follows from the
estimate

1 /1
||6jg <E(62Ue(t)a g1e) + (01U(2), ne)) | z20,5:2-1(5))

= (/ | sup <6Ji <1(62U6(t)a gl,f) + (61U6(t)’ nE)) a¢>|2 d:l?1>
0 yeHL( €

q
S)llwll2<1 €

1 /1
< ||g (E((%Ue(t),gl,e) + (61U6(t),n6)> |2, for a.a. t € (0,7T),

and from (6.19). The convergence (6.22) can be obtained analogously from (6.20).

Further, we can derive from (2.6) that
(8era te) - (8jU£a gl,e) + 6/861‘2(8er) te) + EaexS(aera te)

—€7e23(0;Ug, n) + €v.22(0;Uc, be), 7 =2,3, in (0,T) x Q.

Hence, and from (3.5), we get the estimate

(1= CeNI(0Ue, te)ll L o,ri2q)) < 11(05Ue, 81,6)

| Lo (0,7;22(0))

+Ce (18U, )| L o,r22()) + 1(8;Uc, be) L 0.1:22(0) )

which together with (6.1), (6.16)—(6.17) and the fact that 7 € (0, 1) lead to (6.26).
The convergence (6.27) can be proved analogously, and we omit its proof. O

Lemma 6.6 Under the assumptions of Proposition 6.1, we have that U €
L>(0,T; Hy(0,1)%) (in the sense 8;U = 0, j = 2,3) and satisfies the relation (6.4).
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P roof: We know from (6.1) that U € L>°(0,T; V(Q)*), and from Remark 6.2 and
(2.17) that U” € H}(0,1)® for all ¢ € C°(0,T). Let us suppose that there exist
two points Lx2,:z:3j € S, j=1,2, such that for z; € I, C (0,{) and t € I, C (0,T),
where |I,| # 0 and |I;| # 0,

U(t, 1, x%, x%) # U(t, zy, x%, xg)

Then

0 = U(zy, 3, x%)p — U(zy, 72, x%)p
- /T(U(t, o, 2b, ) — Ut 21, 73 22)o(t) db
0
for all ¢ € C3°(0,T) and for a.a. z; € I,,, which implies that
U(t, z1, x5, 23) = U(t, 1, x5, 23)

for a.a. t € I; and z; € I, a contradiction. (6.4) can be derived from the relation
(6.27) for g = 0. O

In the following lemmas and corollaries, we construct the function ¢ from Propo-
sition 6.1, we show that |U,¢| € L>(0,T;VE™(0,1)%), and we derive the equa-
tions (6.5)—(6.7). But first we introduce the following notation. Let the functions
U, € L>=(0,T;V(Q)*), € € (0,1), be the functions from Proposition 6.1. We define
auxiliary functions ¢, € € (0,1), by the relation

6.= o ((B2U..b) — (05U, m.)). (6.25)

1 — € € €
Further, we define the vector functions u, . = (ug,us 5, ug 3) by

1 1
= —¢E, Ui’Q = —E(agUE, gl,e)a Ui’3 = E(agUe, gl,ﬁ)’ (629)

and the vector functions U, € € (0,1), by

)

1 1
U* e = —(ﬁﬁte — 2(83U6, gl,e)ne =+ 2(82UE, gl’e)bﬁ. (630)

Lemma 6.7 We have
8;¢. — 0 in L>(0,T; L*(0,1; H~'(S))), j = 2,3, (6.31)

for ¢ = 0, and ¢(t)|sy—0 = G(t)|e;=1 = 0 for all € € (0,1) and for almost all
t € (0,T) in the sense of the space C([0,1]; H~(S)).

P roo f: Since Uft) € V()3 for almost all ¢ € (0,7), then Proposition 3.5
and (6.28) together with the fact that n., b, € C*([0,1])® imply that ¢.(t)|s,—0 =

®e(t)|zy=1 = 0 for all € € (0,1) and for almost all ¢ € (0,T") in the sense of the space
C([O Il H(5)).
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Further, we can express the functions ds¢.(t) for almost all ¢ € (0,7) in this way:
1
a2¢e(t) = 2_6 (82(82U6(t)7 be) - a2(83Ue(t)7 ne))

= o (8:(8:U.(0),b) + BB U.(1), ) ~ ~05(&U.(0), m.)

in L?(0,1; H '(S)) (see Proposition 3.5). Since the estimate

I
os@lrosaoy = ([ swp | [0 deadesf do ) < o0
0 YeH(S)I9ll1,2<1

holds for almost all ¢ € (0,7) and j = 2,3, we can apply (6.23)—(6.25) for ¢; = 1,
v(t) = =(8U(t),be) + (85U(¢),n.), v(t) = 1(8,Uc(¢),n.), and we obtain the
convergence (6.31) for j = 2. The proof of the convergence (6.31) for j = 3 proceeds
in almost the same way. O

=

Lemma 6.8 Let the assumptions of Proposition 6.1 be fulfilled. Then

(81U* € ) N 83(12 — 82(13 mn LOO(O T L2(0, l, H™ (S))), (632)
(01U, (, be) = 85C1; in L®(0,T; L*(0,1; H1(S))), (6.33)
(01U, ., ) = —83¢1 in L=(0,T; L*(0,1; H(S))), (6.34)
and thus
U e = (03C12 — 02C13)t — 93Cun + 9211b (6.35)

in L>°(0,T; L*(0,1; H(S)?)) for € — 0.
P roo f: From (6.15) and (4.8)—(4.11), it follows that
1. 1. . 1. 1. . \
205012(Ue) + —05k15(Ue) — 5 02013(Ue) — —8arii(Ue) = 03C12 — 021z (6.36)

and

9T « e i g, (6.37)
€

in L>°(0,T; L?(0,1; H~'(S))) for € — 0. Thus to prove (6.32)—(6.34) it is enough to
check that . .
(B 8) — (506055(U) + —Bsri,(U))

1 € 1 € : oo
—50055(U.) - 282513(U6)> 5 0in L=(0,T; L2(Q)), (6.38)
8y, (U, .
(U, b, — 209 o4 reeo, 7 12(@), (6.39)
€
(U, n) + 21U o4 o 7, 12(0)). (6.40)

€
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First, we find expressions for the terms (6,U.,,t.), (0;U..,n.) and (6,U,,b.).
Using the definition (4.8)—(4.11) of the tensors #° and «, we can derive analogously
as in [15] Lemma 7.7 that

1 1 1 1
6_2839;2(U6) + 283"3;2(U6) - 6_2829;3(U6) - 282’%;3(U6)
1
= (813U, n) - :(8:U,, b))
1
+- (ﬁﬁ(ague, t) — @ (83U, t) + (33U, be) + (85U, n6)>>
in L>(0,T; H '(Q)). By rewriting the above mentioned expression in such a way

that it involves the terms %ﬁe(ag,UE, g1 ) and %O{E(agUe, g1 ) instead of %56(83U6, t.)
and %ae(@Ue,tE), we conclude that

1 € 1 € 1 € 1 €
6_283912(Ue) + 283"512(Ue) - 6_282913(Ue) - 282"513(Ue)

1 1
- <_81¢6 + Eﬂe(&iUea gl,e) - Ea6(82U6) gl,e)>

+ ((552-’1?2 + aeﬂexS)(aliUea te) - (aﬁgex? + azx3)(82U6a tE))

+ (B2 + L)(85U., bo) + (cerews + 22)(3:Us, o))
- (5676x3(63Uea ne) + ae’YexZ(aZUe, be)) (641)

in L>(0,T; H '(Q)). In addition, since all terms except 8;¢. belong to the space
L>(0,T; L?(0,1; H7'(S))), then 8¢, € L>(0,T;L?*(0,l; H'(S))), as well. From
(6.30), (6.41), it follows that

1 1 1 1
(00Ut = 5050 + L0 (U) — 5005,(U.) — L0y (0)

— (8222 + auBzs) (U, ) = (acbizs + aZ2s) (82U, )

~ ((Bores + 2) (05U, o) + (acras + 2)(8: U, o))
+ (5676$3(83U67 ne) + ae7ex2(82Uebe)> (642)

in L>(0,T; L?(0,1; H~'(S))). We can use the same procedure as in [15] Lemma 7.7
for the derivation of the relations

By (V) | o <(a2UE,bE) + (85U, ne)>>

€ € 2

(81U*,67 be) — (

1
+f)/e <2(83Ue; gl,e) + (aer; be))
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- (( B+ 82, + afs — v;xsﬂz@xazue,nf))

— ((ﬁémz + alzs + Beyers — acyer2) (0, U, t6)>
—((@eBers + 0225 + 9205 +7/m) (U, b) — AU, t))  (6.43)
in L*°(0,T; L?(0,1; H~'(S))), and
035, (Ue) BE <((92U6, b.) + (65U, n6)>>
2

€ €

(61U*,6a ne) — <

1
+76 <2(82UE) gl,e) + (61Uea ne)>
—l—((—%—l—oﬁx—i— Beza + . ?23)(03U,, b
c cT3 + 0 fBey + Vw2 + v.w3)(5Ue, be)
+((/Bé$2 + a’gx3 + /66761.3 - a676$2)(83U6; te))

+((@eBers + 8222 + 720> — 7/2) (U, n) — c(BUc t))  (6.44)
in L*°(0,T; L?(0,1; H71(9))).

Now, we check the convergence (6.38). The convergences (6.39)—(6.40) can be proved
analogously. From (6.42) and the facts that U. € L>(0,T; V(Q)?), ae, B, e €
C>([0,1]), g1e € C=(R)3, te, n., b, € C>([0,1])3, it follows that the difference

1 € 1 € 1 € 1 €
(01U ) — (58:055(U.) + ~0srin(UL) — 8:855(U,) — ~0ariy(UL))

is well-defined in L>(0,T’; L*(£2)) for all € € (0,1) and satisfies for r € (0, 1) and for
a.a. t € (0,T) the estimate

(B U.(0),8) — (5005a(U(8)) + - Osia(U.(0)

1, .. 1, . (6.42) )
— 2005 (Ue(t)) — —02k35(Ue(t)))ll2 < [[(Bezz + aeBews) (05 U(t), te) |2
H|(eeBema + 0fws) (02U (t), te) |2 + [ (Bevewa + )(33U (£), be)l2

+ll(aevees + )(32U (), o)z + [|Bevews (3sUe (1), ne) |

(35 /1 1
Hlayez2(8:Uc(t), be)ll2 < C(g“(@sUe(t),te)Hﬁ;H(é‘te(t),te)Hz

e @UE), b + 5 @ U0, mll + 5 1(E5U(), m)

TS ICAO bo)l)
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1
=Cte)+ (||33Ue(t), 02 + |62 U(2), bellz), (6.45)

where C(t,e) — 0 in L>°(0,T) for ¢ — 0 as a consequence of (6.23)—(6.24), (6.26).
It remains to study the behaviour of the terms

1 1 1
2 [1(83U(0), ne)ll2, 5 [[(82U(2), be)ll2, € (0, 5).

The estimate

||—(83 (), )|z + IIG%(aaUe(t),be)llz
< IIE%((asUe(t), n.) + (0.Uc(t),bo))ll2 + IIG%((asUe(t), n.) — (0.Uc(t), be))ll2

29 Ot €) + 262 || 6o (2) |2

(3.14), Lemma 6.7 . 3
< Ci(t, €) + C 2 3 110;0e(t) | 22045115
j=1
2
(6.31)

=7 " Cilt,€) + CE |00 ()| 20,m-1(5))

Jj=1

641

2

c .1, . .
ZCJ (t,¢€) 67<||283912(Ue(t)) + 83’<512(Ue(t))||L2(0,l;H‘1(S))
j=1

80055 (Uelt) + Daris (U0 20205 )
+5 (16500, 8.1 + 13000, 21,01
O (|BU(1), )2 + 1(22U(0), 1))
+%(||(83U6(t),b6)||2 + [1(0.U(t), ne)llz)

() L L
06 (| (030.(0), b o + [ (B5U.(0), m)l)

6

= >G5, + O (|5 (BU), b + 5 (B5U0), m) ),

j=1
for a.a. ¢t € (0,7), leads to the estimate

||—(<93 ()ne)||2+||—(3z (1),b ||z<CZCte

for € € (0,1), where Cy(t,e) — 0 in L>°(0,T) (see (6.25)), Ca(t,e) — 0 in L>°(0,T)
as a consequence of (6.31), Cs3(t,e) — 0 in L*°(0,T) (see (6.21)—(6.22)), because
r € (0,3), Ca(t,e) — 0 and Cg(t,€) — 0 in L>(0,T) as a result of (6.16)—(6.17),
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(6.23)—(6.24) and the fact that r € (0, 3), C5(t,€) — 0 in L*°(0,T) as a consequence
of (6.26), because 47 — 1 < 1 —r for 7 € (0, 5). Hence, we can conclude that

1
o <||((93Ue, n.)||z=(0.rL2(0) + ||(82Ue, be)||L°°(0,T;L2(Q))> — 0 (6.46)

for r € (0, ), which together with (6.45) imply (6.38) and thus (using (6.36)) (6.32).
Now, it remains to prove (6.35). Since
8].U*,E - (81U*,£a te)te + (81U*,6) ne)ne + (61U*,6a be)bea

it is enough to show that

(81U*7£, te)te A (83(]_2 — 82(]_3)13 in LOO(O, T, LZ(O, l, Hﬁl(S)S)), (647)
(01U, ., n)n, = —83¢n in L>(0,T; L*(0,1; H™'(S)%)), (6.48)
(01U, e, bo)b, = 8y¢yin in L*®(0,T; L*(0,1; H1(S)?)), (6.49)

for € — 0. We only check (6.47). The convergences (6.48) and (6.49) can be proved
in almost the same way. Since t is a bounded function depending only on z;, then
(6.32) yields

(01U, ¢, t)t = (85C12 — OaCi3)t in L=(0, T; L2(0,1; H1(S)?)).
It remains to show that
(01U, e, t)te — (8, U, (, t)t — 0 in L°(0, T; L2(0,1; H *(5)*))

for € — 0, which follows from the estimate

/OT /Q (81U, (1), t) (te — £)o(t) d:z:dt‘

T 1 1
< C/ (/ [te(z1) — t(x1)|2||g0(t, :1:1)”%,2’5 d:l:1> dt — 0, (6.50)
0 0

for ¢ — 0 and for arbitrary but fixed function ¢ € LP(0,T; L?(0,1; H3(S))), p > 1,
because |t = [t| = 1, Ve € (0,1), t¢ — t in measure in (0,{) and the term
(01U, te)te — (01U, , to)t is bounded in L*(0,T; L*(0,1; H~*(S)3)). 0

To derive the equations (6.5)—(6.7), we must describe more precisely the limit state
of the functions U, for ¢ — 0. This will be done in the following lemma and
corollary.

Lemma 6.9 Let the assumptions of Proposition 6.1 be fulfilled. Then
0; U, = 0 in L=(0,T; L*(0,1; H *(S)*)), j = 2,3, (6.51)

U, ((t)|z;=1 = 0 for almost allt € (0,T) in the sense of the space
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Proof: Since ¢ (t)]s;=0 = ¢c(t)|s;—1 = 0 for all € € (0,1) and a.a. ¢t € (0,7)
in the sense of the space C([0,1]; H'(S)?) (see Lemma 6.7), U(t) € V(2)° for

a.a. t € (0,T) and since the functions gy, t, n., b, belong to C*(2)3, we can
use the definition (6.30) of the function U, ., and applying Proposition 3.5, we get
that U, (t)]sy=0 = Us(t)|s,=1 = 0 for a.a. ¢t € (0,7") in the sense of the space
C([0,1]; HH(S)*).

It remains to show (6.51). Using the definition (6.30) of the function U, ., we obtain
the identity

1 1
8jU*,e — _8]¢ete - 8]2(83Ue; gl,e)ne + 8];(82U67 gl,e)be

= _6j¢ete + 8]' (81U6, bﬁ)nﬁ — 6]'(81U£, ne)be

in L*>(0,T; L3(0,1; H(S)%)), 7 = 2,3. From (6.21), (6.22), (6.31) and from the

1 1
—9, <2(83U6, g1c) + (U, b)) )n. +; (E(aQUU g1+ (@U, )b, (6.52)
fact that the functions t., n., b, are bounded in L>(0,1)3, it follows that

0;¢cte — 0 in L=(0,T; L*(0,1; H 1(5)?)), (6.53)
8; (%(&;UE, g1.) + (.U, b£)>n£ — 0in L™(0,T; L*(0,1; H *(S)%),  (6.54)

1
8 (=(0:Ue g1,) + (B1U.m) ) be = 0 in L=(0,75 L(0,1; H™(S)*)),  (6.55)
€
for e — 0 and j = 2,3. We can see from (6.52) that it remains to prove that
9;(0,U, b )n, = 0 in L>=(0,T; L*(0,1; H™'(S)?)), (6.56)

9;(61 U, n.)b, = 0 in L>(0,T; L*(0,1; H *(S)?)), (6.57)

*

for ¢ - 0 and j = 2,3. From the convergence (6.1), it follows that (8,U.,n) —
(61U, n) in L*>(0,T; L?(f2)), because n is a bounded function. Further, we have the
estimate

1
’ 2
< C/ </ Inc(z1) — n(z1) et 21)[13 dm1> dt — 0,
o \Jo

where ¢ € LP(0,T; L*()), p > 1, is arbitrary but fixed and n, — n in measure in
(0,1) for ¢ — 0. Hence we can deduce that

(0, U, n.) > (8,U,n) in L*(0,T; L*(Q))
(compare with (6.50)). The proof that
(0,U,,n )b, = (8,U,n)b in L>(0,T; L*(Q)?)
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is almost the same as the proof that
(01U, t)be = (83Cia — 8aCas)t in L2(0, T L*(0,1; H(S)?)),

because we take only ¢ € LP(0,T; L?(€2)) instead of ¢ € LP(0,T; L?(0,1; H7'(S5))),
p > 1, in the estimate (6.50) modified for the functions (0, U, n.)b,. The analogous
result can be obtained for (8; U, b.)n.. Hence we get that

9;(6,U,, n)b, = 9;(8,U,n)b in L=(0,T; L*(0,1; H *(S)*)), j = 2,3,
9;(6,U,, bo)n, = 9;(8,U,b)n in L=(0,T; L*(0,1; H *(S)*)), j = 2,3.
In Lemma 6.6 we have proved that the function U depends only on z;, and hence
0;(61U,n)b =0, 9;(6,U,b)n=0, in (0,7) x (0,1), j =2,3.
Thus we have proved (6.56) and (6.57). O
Corollary 6.10 Let the assumptions of Proposition 6.1 be fulfilled. Then
OU, . > 8;U, in L=(0,T; L*(0,1; H *(S)*)), i =1,2,3, (6.58)
U, = U, in L=(0,T; L*(Q)%), (6.59)
for e =0, and U, € L*(0,T; H}(0,1)?), where

U, (t,z,) = /ml[(asCu(t, 21, T, 3) — 02Ci3(t, 21, T2, 3))t(21)
0

—03C11(t, 21, T2, T3)n(21) + 02C11(t, 21, T2, T3)b(21)] dzy (6.60)
for (t,z1,x9,23) € (0,T) x Q. In addition,
¢ = ¢ = (U,,t) in L=(0,T; L*(Q2)) (6.61)

for e = 0 and ¢ € L>=((0,T) x (0,1)).

P roof: Lemmas 6.8 and 6.9 enable us to use Proposition 3.5 to prove (6.58)—(6.59).
Proposition 3.7 and 3.8 provide

% Remark 6.2

U, —T, U.,,
0 @ P =
8]-U*,E = 8]'U*’5 — a]U* = 8JU* .

in L*(Q) for j = 1,2, 3, which together with Proposition 3.6 and 3.9 give U,” ¢
H}(0,1)% for all ¢ € C§°(0,T). We leave it to the reader to prove that then
U, € L*>(0,T;H'(0,1)3). From compact imbbeding, it follows that the function
U, belongs to L>=(0,T;C([0,1])?), which together with the limit

T T
0= lim | U.(t,z)o(t) di = / lim U.(t, 21)0(t) dt
0

z1—0,l 0 z1—0,l

for all p € C§°(0,T), yields that U, € L>(0,T; H}(0,1)). From (6.30), it follows that
¢e = —(U,, t.). Then (6.61) easily follows from (6.59) and from the convergence
in measure in (0,[) of the functions t.. O
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Lemma 6.11 Let the assumptions of Proposition 6.1 be fulfilled. Let the func-
tion U be determined by (6.1) and the function ¢ by (6.61). Then |U,¢| €
L=(0,T; Vg™(0,1)).

P ro o f: To prove that |U,¢| € L>(0,T; VE™P(0,1)), it is enough to check that
U = U, where

U(t,z,) = /Ozl[—(U*(t),b)n—i- (Us(t),n)b] dz1, z1 € 10,1], t € (0,T),

(see Proposition 3.3). We define the function U, by

A~

UE(ta T, T2, :I"3) = / [_(U*,E(ta 21,2, :I/‘S)a be(zl))ne(zl)
0

+(U (t 21, T2, .’Eg) ( )) (251)] le, (662)
for (t,z1,zq,z3) € (0,7) x Q. The definition (6.30) of the function U, . together
with (6.62), enables us to express the function U, by

A~

®1 1 1
Ue = —/ |:E(82U6) gl,ﬁ)nf 2(83U6a g1 6)b5:| dZ]_, (663)
0

where we omit to write the points (¢, 21, Z2, z3) and (¢, z;) in the right-hand side to
simplify the notation. Using (6.63), we can deduce that

1 1
Ue = / aer dzl = / [(8IUE; te)te + (8IUE; ne)ne + (alUE; be)be] dzl
0 0
~ 1 1
— Ue + / [(aer; te)te + (E(aZUe; gl,e) + (81Ue; ne)>ne
0

1
+(- (U, 81.) + (01U, b)) be | dan. (6.64)

As a result of (6.64) and (6.19)—(6.20), (6.27), we get
8, U, — 8, U, — 0 in L>(0,T; L*()*)

and R
U, — U, — 0in L*(0,T;C([0,]; LZ(S)?’))

for € — 0. Since U, > U in L>(0,T; H'(Q)?) and U € L>(0,T; H}(0,1)%), we can
conclude that U = U a.e. in (0,7) x (0,[), and thus

U(t,z,) = /Ozl[—(U*(t),b)n—i- (U.(t),n)b] dz1, = € [0,1],

and
U(t,l) = /0 [—(U.(t),b)n + (Uy(t),n)b] dz; =0

for almost all ¢ € (0,7). Hence, and from Proposition 3.3, we get that |U,¢| €
L0, T; VE™P(0,1)). O
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Corollary 6.12 Let the function U, be defined by (6.60). Then the function U,
satisfies the equations (6.5)—(6.7).

P r o o f: The proof immediately follows from (6.60). O

7 The main result

In this section, we pass from the three-dimensional model to the asymptotic model,
and our main result is stated and proved.

Let us mention for the reader’s convenience that we have proved in Corollary 5.4
that

U, > Uin L*(0,T; H'(Q)?), 8,U. > 8,U in L>(0,T; L*(Q)3), (7.1)
1 .
—w™(U,,) = Cin L>(0,T; L*()?), (7.2)
€n

for €, — 0, where U € L>(0,T; H}(0,1)*) according to Proposition 6.1.

To find the form of the tensor ¢, we must obtain the corresponding equations for its
components.

Proposition 7.1 Let the tensor ¢ be the limit determined by (7.2). Then it satisfies
the equation

/ AFHCa(6)05(V) dz =0 (7.3)
Q

for allV € L*(0,1; H'(S)?) and for a.a. t € (0,T), where the tensor 0°(V) is defined
by

0 (32V t) (83V,t)
2
(V) =| &b (5,V,n) SRVbEE Y (7.4)
(a3v7t) (

8 V,b)+(83V,n
: 2V.b)HBV0) (5, D).

P roof: In the proof, we will use € instead of ¢,, to simplify the notation. Multiplying
(4.17) by €* and using an arbitrary function ¢ € C§°(0,T) as a test function, we
get, after integration by parts, the equation

. A | .
_ 2 /Q p(8,U0.°, V)d, dz + /Q A?klgw,i,(Uf)ewfj(V)de dz

!
= ez/(F‘P,V)alE dz + 62/ (G”, V)deer/vjoii<v; dSdzy, YV € V(Q). (7.5)
Q o Jas

Letting ¢ — 0, we want to pass from the above equation to the equation
/ AFM G 0%(V) dz =0, VYV € V(Q)3, (7.6)
Q
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where the tensor 6°(V) is defined by (7.5). To prove that it is enough to show
analogously as in [15] Proposition 8.1 that 0¢(V) + ex¢(V) — 0°(V) in L*(Q)? for
€ — 0.

Using the definition (see (2.9) and (4.5)) of the tensor (A¥*)?.,  ,_,, we can easily
check that

AUy AUR i ©(Q)), where AT = X\§UGH 1 (6767 + 5767F) (7.7)

for i,7,k,1 = 1,2,3. The rest of the proof follows from density of the space V()3
in L2(0,1; H'(S)?®) and from (7.4) and (7.6), because the equation (7.6) is fulfilled
for all ¢ € C§°(0,T) and

T
/ () / AT Cu(8)03(V) dedt = / AN 0% (V) dz =0
0 Q Q

d
Now, we introduce the following notation:
1 A 1 A
H H H
Z s = (3. 7.8
Gz =Gz + 2 ﬂCn, (33 = Gz + 2 ﬂCn, Co3 = Co3 (7.8)

Corollary 7.2 We have

/C12(t,$1) dzadzs :/Cls(t, -’L'1) drodzs = /Clz(t,xl)xz dzodzs
S S S

= /5C13(t,$1)-’153 dzadzs = /S[Cu(t,ﬂ?l)l's + Cls(t,xl)lé] dzadzs = 0, (7-9)
/Cﬁ(t,xl) dzodrs = / o (t, T1)z2 dTodrs = / CE(t, z))zs drodzs =0, (7.10)
s s s
/S(Cg(t,xl) + (3(t, 21)) dzadas = /S(Cg(taxl) + (a3 (t, 1))z dzadas
= / (Coa(t, x1) + G5t 1)) x5 daadas = 0, (7.11)
s
for a.a. (t,z1) € (0,T) x (0,1).

Proof: Let v € L?0,]) be an arbitrary, but fixed function, and let V = vt.
Testing equation (7.3) with the functions Vi, Vs, Vz2/2, Vz2/2 and V,x3, we
can derive (7.9).

Let us take now some arbitrary function V. € L?(0,l; H'(S)?) such that (V,t) =
(V,b) = 0. Then we can derive from (7.3) and (7.4) that

/Q[()\(Cu(t) + Caa(t) + C33(t)) + 2u22(t))(0:V, n)
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for a.a. t € (0,7"). Analogously we find for arbitrary functions V € L?(0,1; H'(S)3),
which satisfy (V,t) = (V,n) = 0, that

/Q (G () + Caa(8) + Can(6)) + 201Cs(£))(85V, b)

After substitution of (7.8), we can transform (7.12) and (7.13) as

/[()\(Cg(t) + (a3 (1) + 2uC5(£)) (82 V, 1) + 2u(ii(£)(05V, )] dz =0 (7.14)
Q
and
/[()\(Cg(t) + (a3 (1)) + 2uC3i (1)) (85V, b) 4+ 2u(ii(£) (8. V,b)] dz = 0, (7.15)
Q
respectively, for a.a. ¢t € (0,7). Taking Vzz, Vz2/2 and Vz3/2, where V = vn
or V = vb, as test functions in (7.14) and (7.15), respectively, yields (7.10). In an
analogous way, we substitute the functions Vz,, V3, Vx§/2, Vzoxs and Vzoxs,

Vz2/2, where V.= vn or V = vb, to (7.14) and (7.15), respectively, to derive (7.11).
(|

If we define the vector n € L>(0,T; L*(Q)?) by n = |(i2, i3], then the equation
(7.3), after putting V = ¢t, ¢ € L*(0,1; H*(S)), and (6.5) can be rewritten in the
form

/ (1(), Vasp)s dz = 0, Vo € L2(0,1; H'(S), (7.16)

/Q (1(2), rotay®)s do — / (UL(0), 4)9 de, Vo € HL (%), (7.17)

for a.a. t € (0,7), where we have denoted Vaozp = |0, 03¢], rotozyy =
| =039, 029 |, and where (-,-)2 means the scalar product in the usual two dimen-
sional Euclidean space R2.

Lemma 7.3 Let S be a simply connected domain, and let S € C'. Then the
system (7.16), (7.17) has unique solution in L*>°(0,T; L?()?), given by

n =[G Gs) = —%(UQ, t)[O2p — 73, 03p + T2, (7.18)
where the function p € H'(S) is the unique solution to the Neumann problem
/S[(agp — 23)0or + (O3p + 2)03r| dzxodzs = 0, /Sp dzodzs = 0, (7.19)
for all T € H'(S).
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P r o o f: The proof is analogous as that of Lemma 8.3 in [15], and we omit it.

Ol
Now, we derive the asymptotic model. First we introduce some constants:
I3 _/:1:2 drodxs, 1,2 _/x§ drodzs, (7.20)
S
3)\ 2
FE = toH K / 82[) — .’Eg (83[) + IEQ)Q] d$2d.’l73, (721)

where p € H*(S) is the unique solution to the Neumann problem (7.19).

Lemma 7.4 Let {U. },, €, — 0, be a subsequence of the weak solutions to
the problem (4.17)—(4.18) satisfying (5.1), (7.1)=(7.2). Then the limit |U,¢| €
L>(0,T; vg’“"’(o, [)) obtained in Proposition 6.1 generates a function U, which sat-
isfies the equation

l . l
_ / p(0,U7, V) dxy + / E[1z(0,U.",b)(V.,b) + L,2(8,U,”, n)(V,,n)] dx,
0 0

l l
+/ pK (8,07 t)(V.,t) dxlz/(FHG“a,V) dz, (7.22)
0 0

for all functions V. € Hy(0,1)* generated by an arbitrary couple 'V, ¢y] € Vt’n’b(O, l)
(see (2.17)) and for all go e C§(0, T) where Fp q(t, ;) = [ F(t,z1) dzodzs +
[o5 G(t, 1) dS and p(z1) = [ p(1) drades, (¢, 1) € (0 T) x (0,1).

P r o o f: In the proof, we will use € instead of ¢, to simplify the notation. Let

|V, 4] be an arbitrary couple from the space V&™®(0,1). Proposition 3.4 enables us

to approximate the couple |V, 4| with couples |V, 9| € ng’nf’bE(OJ) satisfying
V. € C5(0,1)% and 9. € C3°(0,1). We define the functions W, € C*(Q2)* by

W(z1, T2, 73) = — ((Vé(-’ﬂl), n.(z))zy + (V(z1), be(xl))$3>te($1)

—z3Yc(z1)ne (1) + 29 (z1)be(z1) (7.23)
for (iL‘l,CEg,iEg) e Q.

Let us define the function V, by
V.=V, +eW, € C*(Q)° NV (Q)°. (7.24)
Denoting B, = (B¥)?

?i—1, where B¥ = 0 except for i = j =1 and

Bgll - 62 ((ﬂexZ + aexS)(xZ(V:ga ne)l + $3(V’ ) Bexiiwe + o IEZ'IpE)
g (W, 1) — Yoz (BT W, b6)>, (7.25)
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we deduce analogously as in [15] Lemma 8.4 that

w (V.) = €X(V,.) + B., (7.26)

where
T11(Vie) = —(Vionozs + (Vi ., be)zs, (7.27)

T
Tia(Ved) = Tar (Vi) = 5 (Vi b, (7.28)
T
T13(Vie) = Ta1(Vie) = _?Z(V;,Utﬁ) (7.29)
and

Tij(Vie) =0, 4,5 =2,3. (7.30)

Since we know that t, — t, n. — n, b, — b in measure in (0,[), we can use (3.11)
to prove that
Tii(Vie) = Ti(V.) in L2(Q), 4,5 =1,2,3. (7.31)

Moreover, using (3.4)—(3.5), (3.11), (3.13) and (7.23) we can easily check that

1

I1Bclla = 1Bl < C477), v € (0, 3) (7.32)

and R
V. — Vin H'(Q)? (7.33)

for e — 0.

These convergences and estimates, together with (3.6)—(3.7), (7.1)—(7.2) and (7.7),
enable us to pass to the limit in the equation (since V., € C*(Q)3 NV (N2)?)

b o~ o1 — . 1 ~ —p o~
— / p(8,U0.°,V,)d, dz + / AR e () -w5(Ve)de dz = / (F*,V.)d, dz
Q Q € € Q

!
+//(a‘p,VE)dee vjoihey; dSdzy
o Jos

and to establish that

l pA . o —
— / p(0,U°, V) dzy + / ATF G T35 (V,) de = / (F*,V) dz
0 Q Q

+ /0 | /6 (@, V) dsda, (7.34)

for all |V, € VE™P(0,1), which generate the functions V, (see (2.17)).

From (6.6) and (6.7), it follows the existence of the function Q, € L>(0,T; L*(0,1))
such that
Cu = QO + (81U*, b).’Eg — (81U;, Il).’L'3 in (O,T) x Q. (735)
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By the form of the tensor (Aéjkl)?’j’k’lzl (see (7.7)), we have after the substitution
(7.27)—(7.30) to (7.34)

/nAéjkl@SaTij(V*) dx =
/Q A" +Con” +Cas” ) +2uC 1T (V) de+ /Q [4p(Ca” T12(V.) +Crs’ Y13(V.))] da.
Hence, using (7.27)—(7.29), we can write
/ AT (VL) de = Thy + Toy, (7.36)
where '

Il,so = /Q[)\(E‘/’ + ESO + ESO) + 2:“690][(‘/—:«, b).’l?g - (Vfw n)$3] d.’l?,

T, = 2 / G’ (V! t)zs — G’ (V' t) )] da
Q

Using (7.8), we find that
2

A+

Hence, using (7.21), we can rewrite the integral Z; , in the form

MG” + 8" +G”) + 2u60” = (A 20— 370"+ NG+,
Lo = [ 1BG" + A + (Ve b)aa — (Vim)asl do (737
Q
for all ¢ € C§°(0,7). The terms involving function g_g‘a + C_:gsa disappear from
(7.37) because of (7.11), and the dependence of the terms (V),b) and (V,,n) only
on z1. After the substitution (7.35) to (7.37), we can conclude, using (2.1) and
(7.20)—(7.21), that
I
T, - / Ell3(3:0.%,b)(V.,b) + L2(0,T.%, n)(V., )] da:. (7.38)
0
After the substitution 9 = |(i2, (13| from (7.17) to Z ,,, we obtain

IZ,go = / 2 (—(8217 - -’Iz's)xs + (8310 + 5E2)$2) (alﬁ*w, t)(V;, t) de, (7-39)
Q

where p is the unique solution to the Neumann problem (7.19) and it is easy to
verify from (7.39) (using (7.21) and (7.19) with the test function r = p) that

Ty 2 / (—0ypzs + T2 + O3pzs + 22) (0,0, 7, ) (V' t) dz
Q

1
—I—/ (81U*¢, t)(V.,t) / p[(02p)? — Oapxs + (83p)? + Bspzs] drodrsdr,
0 s

l
_ / WK (B0 6)(V! t) day. (7.40)
0

Thus after adding (7.38) to (7.40) we obtain (7.22). O
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Lemma 7.5 It holds Qo = C& =CE =CE =0in (0,T) x Q.

P r o o f: In the proof, we will write € instead of ¢, to simplify the notation. Let us

define ) .
Ay /QAlel <6 (T, ) Cul ) <6w1](ﬁ‘p) _CT_]?) d. dz

for all ¢ € C§°(0, 7).

According to Proposition 3.11, there exists a constant C' > 0 independent of ¢ and

@ such that
2

< CA., (7.41)

2
for all ¢ € C§°(0,T). Equation (4.17) implies that

Acyp= / (F*,0.%)d, dz + / (G*,U.")d.e\/vioi<v; dSdz,+
oS

/Aijkl ((Cl - 1Wkl( )) ng —Ckl - l]( )) d, al:z:—l—/p(m"b,ﬁf)dE dz.
0 € 0

As a result of (7.1)—(7.2) and (7.7), we obtain the convergence of the sequence A,
Le.

(T -

€

l
: —— ikl
A, =limA., = / (Fric ,U") dzy — / APMG Gy da
e—0 0 Q

l .
+/ 58,07, T%) du;. (7.42)
0

Using (7.7) leads after substitution of (7.8) to the identity (see [15], Lemma 8.5, for
a detailed proof)

/Q AMGI T d = / B@Y + (@) + (@)
AR+ CED? + 2u((CB)? + () +2(¢)?)] da (7.43)

The expressions for (j1, (12 and (13, i.e (7.35) and (7.18), imply (together with (7.22)
and (2.1)) after substitution to (7.43) that

/Agjkl@saajw dx:/
Q Q

+2u(()? +(§")2+2<7f§‘”>2>] dz = /

B +4u((G2)? + (Cs)?) + M + CB)?

R - 2
E(Qow + (31U*‘p, b)zy — (81U*(p, n)x3>

1~ 2 ER N cH
+4u(—§(81U*‘p, t)(Oap — xs)) + 4#(—5(81U*(P, t)(0sp + fL‘2)> + M B+
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l
— — — 7.22),(2.1 = P — —
(G + @+ 2B | da T2 [ [(Frr” )+ 2@ oy
0

l ; “H ~H cE & &
/ (8,07, T%) dz, +/ NGB+ +ou (7 + @+ 2 )] do,
0 Q

and substituting to (7.42) leads to

e |
Q

for all ¢ € C§°(0,T). The sequence A, , for all ¢ € C§°(0,T") consists of non-negative
numbers by (7.41) and A, = 0 for all ¢ € C§°(0,T). Hence Qo = (3 = (5 =5 =0
in (0,7) x Q. O

- ¥
E(ij)z FXGE A+ 2 (7 + @7+ 2(@”)2)] da

Since we have denoted n = [(i2, (13|, we obtain from Lemma 7.5 that
7.35
(11 ( = : (0U,, b)zy — (6,U,, n)zs,

_ 1
Gz 729 a1 = —5(81U*’ £)(02p — 23),

7. 1
C13 ( :18) C31 - —5(6]_U*,t)(83p + xZ)) (744)
e 1 A _
G2 = 2)\+M((31U*,b)$2 (81U*,n):1:3>,
C23 = <.32 = 07
G @ 2 (UL by, — (U, n)as)
3 PPEETAS

Lemma 7.6 Let the function U be determined by (7.1) and the functions Qo and
Q; by (4.16). Then Ul;—g = Qo and po;U|—o = pQy in the sense of the space
C([0,T7; L2(Q)®) or C([0, T); [VE™P(0,1)]"), respectively.

P r o o f: The first initial condition follows easily from (4.16), (4.18) and (7.1).
Let |V,9]| € Vg’n’b(O, [) be an arbitrary but fixed pair. Proposition 3.4 enables us
to approximate this pair by a couple of smooth functions |V, ¢.| € ng’nf’bf(o, )
satisfying (3.11)—(3.13). Analogously as in the proof of Lemma 7.4, we establish the
functions V, (see (7.24)) which satisfy (7.33).

Let ¢ € C§°(0,T) be an arbitrary but fixed function. Taking ©V. as a test function
in (4.17), and using (7.26)—(7.30), leads to the equation

T T
~ a1 ~
_ / (1) / o(OUL(1), V.)d. dzdi + / o(t) / AL e (U (0T (V.)d. dudt
0 Q 0 Q €
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+/0T¢(t)/9‘4wl () B, ot = /OTso(ﬂ [0, V0a. dwa
/ / /8 . ,Vo)deer/vjoli<v; dSdz,dt. (7.45)

From (5.1) and (5.2), it follows that [, p(8;U.(t), V.)d. dz € C([0,T]) for all ¢ €

(0,1). The equation (7.45) yields that the function [, p(8,U(t), V.)d. dz belongs
to W1>(0,T), which enables us to rewrite the equation (7.45) as

d

~ o] ~
& | p00.0),¥ )4, da + /Q AT (U(0) (V) d

1 1. ~
/ AT (U.0) LB, do = [ (B(0),V.)d, do

Q

/ / E)dee\/u]-o"j’fuj dSdz,, for a.a. t € (0,7). (7.46)
as

Integrating the equation (7.46) on the interval [0, ¢], and using (4.18) and Proposi-
tion 5.1, we get

/Q p(8,U(t), V)d, dz — / p(Que, Vo)d, dz

¢ .
— / / A?’“’—w,@,(Ue(s))T (V)d, dzds — / / A”’“’ )) BYd, dzdt

/ / ¢)de d:cds—i—/ / / E)deey/l/jo"j’ﬁuj dSdzids. (7.47)
oS
Further, we have that
1] [ #.V.d. =) dodslloqumy < ClFllamasn 1V Vi

N (3.6),(7.33)
+[Vellzllde = 1llcm) —0

||/ / / V deer/vjoiicv; — V)] dSdzids||cqom)
os
< Cl|G| 20,12 (98)3 (||V V| 22(0,4522(85)3)
HIVellz2z2 05y lldee v/ vi07<v; — 1] (O1)%85))
< |Gl z2 208y (Ve = Vinzopm sy

-~ i.E (3.7),(7.33)
—|—||Ve||L2(0,l;H1(S))||de€\/ Vjo vy — 1||C(W)) - 0,

' kil . L
1] A iUs)) B, dadtlcomy
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32)

1, 1 (7.2),(7.
SCH;‘U (Ue)||L°°(0,T;L2(Q)9)E||Be||2 = 0

for € = 0. Since

- ~ ii
|| AP U0 T (Ve do— [ AFGu0T(V) da

1 . & i ijkl
<Cllzw (Uo)llz=omzz @) 1TVl (A3 1m0 = (AT™)E 5 k01l ooy

1, .
HO| =0 (Uo) e orszz@) I T(Ve)llallde = Lllem)

1 . ~ (3.6),(7.8),(7.31)
HC| w0 (Ue)lz=,riz2@n) [T (Ve) = T(V)[l: - =0

for ¢ — 0 and a.a. ¢t € (0,7T), we get (using the estimate above) that

o] ~ ..
— / A?klzw,ﬁcl(UE(s))TU(Ve)de dz — — / ATH ()T (V) dz in L°(0,T),
Q Q

which implies that [} [, AiMLye (U (5))Ti;(Ve)d. deds converges pointwisely for
all ¢ € [0,T], and that the term [ [, AiMLye (U (5))Ti;(Ve)d, dzds is moreover
bounded in L*>(0,7"). Passing from the pointwise convergence to the convergence
in measure, we obtain that

t . ~ t g
- / / AT e (U(5))Yi;(V)de deds — — / / AT ()Y (V) dzds
0 Ja € 0 Ja
in W'?(0,T), p € [1,00), and, from compact imbedding,

t 1 ~ ¢ g
— / / A?klzwzl(UE(s))TZ—j(Vﬁ)de drds — — / / ATH ()T (V) dzds
0 Q 0 Q

in C([0,7]). We have proved that the terms on the the right-hand side of the
equation (7.47) converge strongly in C([0,T]) for ¢ — 0, which implies that the left-

hand side must also converge in C([0,7]) and we get from the second convergence
in (7.1), from (7.33) and (4.16) that

/Q p(B,U(t) — Que, Vo)d. dz — /0 p(8,U(t) — Q1, V) dzy in C([0,T)). (7.48)

The rest of the proof is obvious. O

We have proved that the asymptotic dynamic model for the curved rod has the form:

- /0 (1) /0 HOU(), V) davdt + /0 o(1) /0 E[L3(0,U. (), b)(V', b)

+1,2(01U.(t), n)(V,, n)] dz:dt + /T o(t) /l pK(01U(t),t)(V.,t) dzdt
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= [ olt) [ (Feico). V) do (7.49)

for all functions V, € H{(0,1)® generated by an arbitrary couple |V,v¢]| €
VE™P(0,1). The function U, which together with the function ¢ generate the func-
tion U, (see(2.17)), satisfies the initial state

U|t:0 = Qp and patU|t:0 = pQq (7.50)

in the sense of the space C([0,T]; L2(0,1)?) and C([0, T]; [VE™P(0,1)]'), respectively.

Lemma 7.7 There ezists the unique solution to the equation (7.49) satisfying
(7.50).

P r o o f: Suppose that there exist two solutions |Uj;, ¢;| € L>(0,T;Ve™"(0,1))
and 0,U; € L>*(0,T;L?*(0,1)*), 7 = 1,2. Let us denote U=U,-U,and ¢ =
¢1 — ¢o. Then the couple |U,¢| € L>(0,T; VE™P(0,1)) generates the function
U, € L=(0,T; H}(0,1)%) (see (2.17)), 8,U € L>=(0, T; L2(0,1)?),

- /0 (1) /0 H(O0(1), V) dadt + /0 o(1) /0 E[L3(0,0. (), b)(V', b)

+1,2(0,0,(t),n) (V2 n) + pK (8, U, (¢), £) (V. t)] dzidt = 0 (7.51)
and the function U satisfies the initial state
Uly—o = 0 and $8,U],—g = 0 (7.52)

in the sense of the space C([0,T7; L2(0,1)*) and C([0, T]; [Ve™"(0,1)]'), respectively.

From the equation (7.51), it follows that the term fol p(8,0(t), V) dzdt € Wh(0,T)

for all but fixed V € HL(0,1)® such that the couple |V, 1| € V&™P(0,1). This fact
enables us to rewrite (7.51) as

d I N l N N
= [ 600@), V) doy + / E[L3(0,0.(),b)(V., b) + Lz (9T, (&), n)(V., n)] das
0 0

+/l pK (0,0, (), t)(V.,t) doy = 0. (7.53)

Integrating on the interval [0, ¢] and using (7.52), we get

/0 p(8,U(t), V) dzy + /0 /0 E[L3(8,U.(s),b)(V.,b) + Ls(8,U.(s),n)(V’,n)

A~

+uK(8,0,(s),t)(V2, t)] dzyds = 0 (7.54)
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for all t € [0,T]. Since |U(t), d(t)] € VE™P(0,1) for a.a. t € (0,T), we can use this
couple as a test function in (7.54), and we get that

/0 5(8,0(t), U(t)) dzy + /0 t /0 E[L,3(8,U,(s),b)(8,U,(t),b)

+1,2(010,(s),0) (8, U.(t), n) + pK (8,U,(s), £)(0,U.(t), t)] dzrds =0 (7.55)
for all ¢ € [0, T7.
We immediately see that

/ 5(0,0(1), 0()) dar = /at ﬁU2()| ) day, (7.56)

/ / EL;3(8,U.(s),b)(0,U.(t),b) dz1ds

VET » LN
_ /0 oy /0 (0.0, (s), b) ds)? das, (7.57)

t 1
/ / Els(8,0.(s),n)(0,0.(t), n) dayds
0 0

! E[zz t N
- /0 3at(/0 (0,U,(s),n) ds)? dz;, (7.58)
/t /l MK(alﬁ*(S), t)(alﬁ*(t), t) dz,ds

—/ﬁﬁy/@m@mw#wy (7.59)

Since U € W1*(0,T; L*(0,1)3), we have for arbitrary but fixed ¢ € C5°(0,T),

/OTgo(t)/Olat(ﬁﬁ( ) dzydt = // U )|2)dtdx1
// dtd /0 go(t)/0 wdmdt,

which implies that
l ST 2
plU()] / AU
0, dr dxy. 7.60
/0 (C ) dn =g o (7.60)

We change analogously the integral and the derivative 0; in (7.57)—(7.59), and thus
we can rewrite the equation (7.55) as

d ['p|U®))? d ['EL: [t .
— ——d — | —= 0,U,(s),b) ds)? d
g [ 2 dm G [ @00.60,b) s d




—l—i Bl (/t(alﬁ*(s) n) ds)? dz;
dt J, 2 “J, ’

d [‘uK

dt J, 2

for allt € [0,T]. From the assumptions on the functions U and U, it follows that the

functions U and IN 8,U € C([0,T); L2(0,1)%), which enables us to integrate (7.61)
on the interval [0, ], and we get from (7.52) that

! Vﬁ t 2 lE[zz t ~
/”| (t) d:z:1+/ 2(/ (3, 0.(s),b) ds)? dz,
0 2 0 2 0

—i—/ol E;zg (/Ot(alﬁ*(s),n) ds)? dz, + /0’ %(/Ot(alﬁ*(s),t) ds)? dz, =0 (7.62)

+ ( /0 (0,0.(5), ) ds)? de, = 0 (7.61)

for all ¢ € [0,T]. Hence U = 0 as a consequence of the non-negativity of all terms
in (7.62) and (4.14). Further, (7.62) yields that

/Ot 8,U, (s, ;) ds = /Ot(alﬁ*(S,-’IJ1),t(xl))t(xl)

A~ A~

+(01U,(s, 1), n(z1))n(z1) + (81 Ux(s,21), b(z1))b(z1) ds =0
for all ¢ € [0, T] and for arbitrary but fixed z; € (0,1). Then

1 t+h R
81U*(t,x1) = ’ILILI})%/ . 81U*(s,x1) ds
t—

1 t+h R t—h N
= Ilzlir(l)ﬁ </0 01U, (s,z1) ds —/0 01U, (s, z1) ds) =0

for a.a (t,z;) € (0,T) x (0,1). Since U, € H}(0,l) then also U, = 0 and ¢ =
—(U,,t) = 0, a contradiction. O

The proof of the main theorem of this article is now complete and we can state it:

Theorem 7.8 Let the function ® be the parametrization of a unit speed curve
such that ® € Wh°(0,1)3. Let, further, F € L?(0,T;L*(Q)3), G €
W0, T; L*(0,1; L?(8S)?)) and Fp,g be defined as in Lemma 7.4. Then, there
is a unique pair (U,¢) € L®(0,T;Ve™P(0,1)) such that 8,U € L>®(0,T; L*(0,1)3)
and satisfying the problem (7.49)—(7.50). Moreover, the constant extension to
Q= (0,1)xS of (U, ) may be approzximated by the solutions U, € L>(0,T;V(Q)*)N
Whee(0,T; L?(2)3) of the problem (4.17)—(4.18) as follows:

U = lim U, weakly in L>(0, T} HY(Q)?),
€—
o,U = lin& 0, U, weakly in L°(0,T; L*(Q)%),
€—

6 = lim — ((azUE, b.) — (8, UL, n6)> weakly in L=(0,T; L2(2)).

e—0 2¢
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