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Abstract

The work introduces a model for reciprocal connections in neural fields by

a nonlocal feedback mechanism, while the neural field exhibits nonlocal inter-

actions and intra-areal transmission delays. We study the speed of traveling

fronts with respect to the transmission delay, the spatial feedback range and

the feedback delay for general axonal and feedback connectivity kernels. In

addition, we find a novel shape of traveling fronts due to the applied feedback

and criteria for its occurence are derived.

In recent years, propagating activity in spatially extended systems has been found
experimentally in neural systems [20, 17, 4, 31, 35], in chemistry and biology [25,
24, 21]. In particular traveling fronts have attracted much interest in theory [26, 28,
8, 27, 24] partly due to experimental findings [33, 12, 15]. Several studies dealing
with these phenomena treat the examined system by partial differential equations,
which account for short-range spatial interactions. However, neural systems might
exhibit long-range interactions by their underlying spatial structure [1]. This struc-
ture originates from dendritic arborizations of neurons and from spread of axonal
connections. Hence, realistic models of neural activity have to treat nonlocal inter-
actions by integrating kernels. These kernels reflect the underlying connectivity in
neural tissue. However, connectivity kernels are known only for few functional areas
as the visual cortex [22], the cerebellum [29] or the prefrontal cortex [23]. Thus,
modeling of traveling phenomena in general neural systems necessitates the treat-
ment for more general kernel types. We mention previous studies on the stability
of neural fields for general homogeneous kernels [2, 14, 5]. The present work follows
this idea in order to gain a classification scheme for traveling fronts. This letter
is similar to previous studies considering general kernels [8, 28] or general synaptic
responses [9], but contrasts to these studies by considering constant nonlocal feed-
back delay. The latter has been found experimentally in reciprocal-connected neural
areas [32, 7] and plays a decisive role in neural information processing [30]. We shall
show how the front speed depends on both additional delays and how the typical
front shape changes by the feedback delay.

The conduction-based model [34, 13, 19] assumes neural populations coupled on a
microscopic spatial level by chemical synapses. That is population ensembles rep-
resent a coarse-grained spatial field. In addition, the neural activity is expressed by
dendritic currents and firing rates averaged over an ensemble entity. This assump-
tion neglects single-spike activity and temporal coding of neurons, i.e. the neural
firing times are uncorrelated [16]. Thus the model considers time-averaged spiking
activity, i.e. coarse-grained temporal activity. By virtue of its mesoscopic spatial
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Figure 1: Sketch of intra-areal axonal connections and nonlocal feedback connec-
tions.

scale, such neural activity is recorded in neurophysiological experiments as local field
potentials(e.g. [11]). In mathematical terms, the neural field is assumed being con-
tinous in space and time. The dendritic current V at location x at time t represents
the linear delayed response of chemical synapses subject to incoming pulse activity.
In turn, this pulse activity originates at a spatial location y by conversion from
dendritic currents V (y, t− α(x, y)). Here α(x, y) represents the delay time between
origin and termination of the pulse. The present work treats two types of delay
(Fig. 1). One type considers pulse activity propagating along axonal connections
in the field and terminating at chemical synapses. This work focus to intracortical
fields, which exhibit the same transmission speed v for both excitatory and inhibiory
connections. Hence, the transmission delay is α(x, y) = |x−y|/v. Further a nonlocal
feedback loop is present with α(x, y) = τ , which terminates at either excitatory or
inhibitory chemical synapses. We point out that both transmission and feedback
delay are assumed homogeneous, i.e. the corresponding connectivity between two
locations depends on their spatial distance only.

The model assumes a single time scale in the synaptic delay, which is set to unity
by an appropriate time scaling. Hence, the dendritic current obeys

∂

∂t
V (x, t) = −V (x, t) + a(x, t) + f(x, t) (1)

a(x, t) =

∫ ∞

−∞

A(x − y)S(V (y, t − |x − y|/v)) dy

f(x, t) =

∫ ∞

−∞

F (x− y)S(V (y, t − τ )) dy.

The functions a(x, t) and f(x, t) represent the synaptic input by axonal and feedback
connections, respectively. The corresponding connectivity functions A(x) and F (x)
are introduced as probability density functions of connections, i.e.

∫ ∞

−∞
A(x)dx =

κ < ∞,
∫ ∞

−∞
F (x)dx = µ < ∞. Here, the constants κ and µ represent the synaptic
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strength of axonal and nonlocal feedback contributions, respectively. The axonal
transmission speed v and the constant feedback delay τ introduce two more time
scales to the system, in addition to the synaptic delay. The conversion from dendritic
currents to pulse rates is given by the transfer function S. It reflects the statistical
properties of firing thresholds and active processes in action potential generation [3,
13, 16] and exhibits a sigmoidal shape. In the following, we assume the same firing
thresholds V0 for all neurons function. Thus the transfer function is chosen to
the Heaviside step function S(V ) = Θ(V − V0) and the system becomes binary.
Few simple calculations on (1) show the existence of two stationary constant states
Vmax = κ + µ and Vmin = 0.

Now, a transformation to the moving frame V (x, t) = V (x − ct) = V (z) with the
front speed c simplifies the analysis. Boundary conditions V (z → −∞) = Vmax >
V0, V (z → ∞) = Vmin < V0 and V (0) = V0 guarantee the traveling front solutions.
In addition, the condition −v < c < v guarantees physically reasonable solutions
consistent to previous findings [6, 28, 18]. Assuming V (z) > V0 ∀ z < 0 and
V (z) ≤ V0 ∀ z ≥ 0 Eq. (1) yields

−c
∂

∂z
V (z) + V (z) = h(z) (2)

with

h(z) =

∫ δz

−∞

A(z − z′)dz′ +

∫ −cτ

−∞

F (z − z′)dz′ (3)

and δ = c/(c − v) ∀ z ≥ 0, δ = c/(c + v) ∀ z < 0.

Now, we examine the dependance of the front speed c from various parameters. In
case of c > 0, solving Eq. (2) by partial integration yields divergent solutions for
z → ∞. However, to obtain finite solutions the sum of divergent terms g need to
vanish. Following the same path of calculations in case of c < 0, we find divergent
solutions for z → −∞. Thus non-divergent solutions V (z) stipulate g = 0 with

g = κ/2 + L[F (u + |c|τ )](0)− V0

∓ L[A(u)](
1

|c|
∓

1

v
) ∓ eτL[F (u + |c|τ )](

1

|c|
), (4)

which defines the threshold V0 subject to the parameters. Here and in the following,
L[·] denotes the Laplace transform and the upper (lower) sign represents the case
c ≥ 0 (c < 0). As shall be seen in the subsequent paragraph, Eq. (4) defines the
resulting front speed for fixed threshold V0.

In a first analysis step, we neglect the feedback F = 0. Utilizing the relations
(∂g/∂v) dv = −g′ dc and g′ = ∂g/∂c, we find the relation dc/dv = −(∂g/∂v)/g′.
It turns out, that ∂g/∂v = L[uA(u)](w)/v2 and g′ = −L[uA(u)](w)/c2 with w =
1/|c| ∓ 1/v. This leads to dc/dv = c2/v2 for all kernels A. That is the front
speed monotonically increases with increasing transmission speed for all axonal ker-
nels. Additionally, for v → ∞, the front speed c saturates to c0 with V0 − κ/2 =
∓ L[A](1/|c0|).
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Figure 2: The front speed plotted with respect to the transmission speed for various
feedback strengths for the kernels (5). The parameters are set to ae = 2.0, ai =
2.0, V0 = 0.1, τ = 0.01, σ = 0.8 and r = 2.0.

In order to study the case F 6= 0 in some detail, the analysis focus to the family of
exponential kernels

A(z) =
ae

2
e−|z| −

air

2
e−r|z| , F (z) =

µ

2σ
e−|z|/σ, (5)

where σ gives the spatial feedback range, ae and ai are excitatory and inhibitory
weights and r abbreviates the ratio of excitatory and inhibitory spatial ranges
(cf. [18]). For instance, in case of ae = ai, r < 1 and r > 1 corresponds to lo-
cal excitation-lateral inhibition and local inhibition-lateral excitation, respectively.
With these definitions Eq. (4) recasts to

g =
ae

2

v − |c|

v − |c| + v|c|
−

ai

2

v − |c|

v − |c| + rv|c|

+
µ

2

σ

σ + |c|
e−|c|τ/σ − V0. (6)

We find dc/dv = c2/(v2 + bµ) with b = b(|c|, v, σ, τ, ae, ai). Figure 2 shows the
relation of c and v for excitatory and inhibitory feedback, which is similar to re-
sults in previous studies for vanishing feedback loops (cf. [28, 9]). Further, the
figure indicates a monotonic increase(decrease) of the front speed by increased exci-
tatory(inhibitory) feedback. In order to examine this relation in some more detail,
we focus to dc/dµ = −(∂g/∂µ)/g′. First let us take a look at the sign of g′. We find
for ai = 0 and v � |c|

µc = ae

[

1 + |c|

σ + |c|
(τ +

σ

σ + |c|
)e−|c|τ/σ

]−1
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Figure 3: Sketch of the relation between µ and g′.
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Figure 4: The front speed c with respect to the feedback range σ and the feedback
delay τ for the kernels (5). Other parameters are ae = 2.0, ai = 0.0, V0 = 0.1 and
µ = 7.81 .

for g′ = 0. It turns out, that excitatory fields with ae > 0 yield µc > 0 and Eq. (6)
gives ∂g/∂µ ≥ 0 for µ ≥ 0. In addition, it is g′ < 0 for µ > µc which leads to
dc/dµ > 0 for µ > µc. That is, increasing excitatory feedback in excitatory fields
increases the front speed. In case of 0 < µ < µc, it is g′ > 0 and dc/dµ < 0,
i.e. increasing excitatory feedback may also reveal decreasing front speeds. Figure 3
summarizes the results and confirms Fig. 2. Inhibitory fields with ae < 0 yield µc < 0
and the resulting relations can be derived in a similar way by Fig. 3. With these
results, it is straightforward to find the relation of the front speed to the feedback
delay and the feedback range. It is dc/dτ = µ · a/g′ and dc/dσ = −µ · b/g′ with
a(c, σ, τ ) > 0 and b(c, σ, τ ) > 0. Figure 4 illustrates these relations for parameters
with g ′ < 0. Interestingly, it is also dσ/dτ = a/b > 0 for constant c. That is
increased feedback delay times demand an increased feedback range for constant
front speeds. The level lines in Fig. (4) confirms this result.
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Finally, we focus to the shape of the traveling front and find for general kernels

V (z) =

∫ δz

−∞

A(z − u)du +

∫ −cτ

−∞

F (z − u)du

+

∫ z

0

((1 − δ)A((1 − δ)u) + F (u + cτ )) e(z−u)/cdu

∓ ez/c

(

L[A(u)](
1

|c|
∓

1

v
) + eτL[F (u + |c|τ )](

1

|c|
)

)

(7)

Typical traveling fronts exhibit a single inflection point and approach horizontal
asymptotics for |z| → ∞. However, a close look at Eq. (2) indicate a sign change of
dV/dz due to nonlocal feedback, i.e. local extrema of V (z) may exist. Considering
Eqs. (2), (7) the sufficient condition for local extrema reads

L[A(u)](
1

|c|
∓

1

v
) + eτL[F (u + |c|τ )](

1

|c|
)

= ±

∫ ze

0

((1 − δ)A((1− δ)u) + F (u + |c|τ )) e−u/cdu

. (8)

That is the typical shape of the traveling front is changed if Eq. (8) shows real roots
ze. In addition, the type of extrema is given by the sign of

∂2V

∂z2
|z=ze

=
(1 − δ)

c
A(ze(1 − δ)) +

1

c
F (ze + cτ ). (9)

Now recall the implicit condition ∂V/∂z < 0 at z = 0. This condition constraints the
set of possible local extrema. For ze > 0 Eq. (8) needs an even number of solutions
with both positive and negative signs of ∂2V/∂z2 at z = ze. In contrast, ze < 0
facilitates an arbitrary number of extrema with at least one maximum. Figure 5
shows the novel shape by plotting V (z) from Eq. (7) for appropriate parameters.
Here, inhibitory feedback results to a local minimum and maximum, while excitatory
feedback does show the typical shape with a steeper front. Assessing these analytical
solutions numerically by inserting them to Eq. (2) reveals good accordance (not
shown).

A further sufficient criterion for the occurence of local extrema is the existence of a
horizontal inflection point, from which both a local minimum and local maximum
grows by changing parameters. According to Eq. (9), the corresponding condition
reads

v

v + c
A(

vz

v + c
) = −F (z + cτ ) (10)

It turns out that excitatory fields, i.e. A > 0, exhibit local extrema only in case
of inhibitory feedback with F < 0, while A < 0 faciliates extrema for F > 0 only.
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Figure 5: The traveling front for excitatory, vanishing and inhibitory nonlinear
feedback for the kernels (5). Parameters are ae = 2.0, ai = 1.0, r = 2.0, V0 =
0.1, τ = 0.1, σ = 0.1, v = 10.28 and c ≈ 3.9 for all applied values of µ.

In other words no local extrema occur in excitatory (inhibitory) fields subject to
excitatory(inhibitory) feedback.

The previous sections showed the existence of traveling fronts, while no informa-
tion is gained about its temporal stability towards small deviations. This prob-
lem has been attacked recently by considering Evans functions of nonlocal neural
fields [36, 10]. Though this stability analysis of the proposed model might yield
novel interesting results, it would exceed the major aim of this letter and we refer
the reader to future work.

Summarizing, the present letter introduces nonlinear feedback to neural fields and
investigates its influence to the speed of traveling fronts and its shape for general
connectivity kernels. The novel front shape emerges due to nonlocal feedback of con-
trary sign of interaction to the field, i.e. in case of excitatory feedback in inhibitory
fields and vice versa.
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