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Abstract. The work contains the comparison of speeds and attenuations of P1-, S-, and P2-waves
in poroelastic materials obtained within Biot’s model and simple mixture model.

1 Introduction

Linear acoustic waves in saturated poroelastic materials are usually described by the model
proposed by Biot in 1956 ([5], [18]). Numerous books on this subject concern primarily bulk
waves ([7], [3], [19]).

This model is characterized by the following features:
– it is a linear mixture theory with two components – skeleton (solid) and fluid. The

difference of their velocities describes diffusion,
– interactions of components are threefold: through the diffusion (permeability of the

skeleton), through a coupling of partial stresses by volume changes of components, and
through a relative acceleration usually prescribed to an influence of tortuosity.

Governing equations of the Biot’s model in a chosen inertial frame of reference have the
following form

ρS
0

∂vS

∂t
= λS grad tr eS + 2µS div eS + Q grad ε + π

(
vF − vS

)
− ρ12

(
∂vF

∂t
− ∂vS

∂t

)
, (1)

ρF
0

∂vF

∂t
= κρF

0 grad ε + Q grad tr eS − π
(
vF − vS

)
+ ρ12

(
∂vF

∂t
− ∂vS

∂t

)
,

where
∂eS

∂t
= sym grad vS,

∂ε

∂t
= div vF , ε :=

ρF
0 − ρF

ρF
0

≡ tr eS − ζ

n0

, (2)

and eS denotes the macroscopical Almansi-Hamel deformation tensor of the skeleton,
its trace, tr eS, is the volume change (small deformations!) of the skeleton, ε is the
volume change of the fluid and this is related to the increment of fluid content, ζ,
by the relation (2)3. ρS

0 , ρF
0 are constant initial mass densities connected to the true mass

densities ρSR
0 , ρFR

0 in the following way

ρS
0 = (1− n0) ρSR

0 , ρF
0 = n0ρ

FR
0 , (3)

where n0 is the initial porosity. vS,vF are macroscopic velocities of both components,
i.e. vF −vS is the seepage velocity. The material parameters λS, µS, κ, Q, π, ρ12 are constant
and depend in a parametric way on the initial porosity n0.

We use further the Biot’s equations with all contributions of accelerations on the left
hand side. Then it is convenient to introduce the notation

ρ11 = ρS
0 − ρ12, ρ22 = ρF

0 − ρ12, r =
ρF

0

ρS
0

. (4)

The original Biot’s model does not contain any information on changes of porosity.
However, such a relation can be derived by means of gedankenexperiments proposed by
Biot and Willis [6]. It has the following form

n = n0

(
1 + δ tr eS + γζ

)
, (5)

where δ, γ are material parameters, specified by macro- and microcompressibilities.
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The literature on Biot’s model is far from being unique in relation to the notation and
this creates a lot of confusion. The above material parameters which we shall use further
in this work are characteristic for the formulation of a two-component mixture. Usually in
soil mechanics use is being made of the total bulk stress T = T S +T F , and the fluid partial
stress is related solely to the pore pressure p. Namely T F = −n0p1.

For this reason the material parameters are introduced, for instance, in the following
way [16]

K := λS +
2

3
µS + ρF

0 κ + 2Q, G := µS, (6)

C :=
1

n0

(
Q + ρF

0 κ
)
, M :=

ρF
0 κ

n2
0

.

Let us return to the set (1). The parameter ρ12 describing the contribution of the relative
acceleration is usually related to the tortuosity of the porous material. For example, in
the works [4], [12] the following approximate relation between this parameter, the porosity
n0, and the tortuosity parameter a ∈ [1,∞), is proposed

ρ12 = ρF
0 (1− a) , a =

1

2

(
1

n0

+ 1
)

. (7)

In spite of its popularity, the Biot’s model possesses a number of weak points which are
ignored by the Biot’s community. We mention here the three most important weaknesses.
First of all, the contribution of relative accelerations violates the principle of material objec-
tivity. Secondly, the coupling of partial stresses violates the second law of thermodynamics.
Thirdly, the added mass effect which is identified with the influence of tortuosity yields an
unnatural reduction of attenuation of acoustic waves.

The lack of material objectivity of the model (1) is immediately visible. The change
of the reference frame to a noninertial system (a time dependent change of observer) is
described by the relation

x∗ = O (t) x + c (t) , OT = O−1, (8)

where O, c are arbitrary. This transformation performed in Biot’s equations yields constitu-
tive contributions in these equations following from the presence of the relative acceleration.
They are additional to the usual centrifugal, Coriolis, Euler and translational accelerations
which are characteristic for the continuum mechanics in noninertial frames (e.g. I-Shih Liu
[15]). The problem has been investigated in the paper [20].

The question arises if one could overcome this difficulty by assuming that the nonob-
jectivity follows from the linearization of some objective nonlinear equations. If this was
the case, one would have to describe porous materials by Biot’s equations solely in inertial
reference systems and a time dependent change of reference would require an addition of
classical acceleration terms and ignoring contributions from the relative acceleration. Such
a procedure is indeed possible. One can define an objective relative acceleration which con-
tains some nonlinear contributions similar to those appearing in objective time derivatives
of, say, Jaumann, Oldroyd, or Truesdell. Then it can be shown [28] that a nonlinear poroe-
lastic two-component model with the contribution of this objective acceleration yields the
Biot’s added mass term by linearization.

Let us mention in passing that the lack of relative accelerations in a model does not
mean that the influence of tortuosity is neglected. Certainly, the permeability of the material
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described by the parameter π in our notation contains an influence of the morphology of
the porous materials and this includes an influence of tortuosity.

The second flaw of the Biot’s model, the violation of the second law by the coupling of
partial stresses, has been extensively discussed in the work [23]. It has been shown that,
as in the case of classical mixtures of fluids, such a coupling may appear solely in models
in which a list of constitutive variables contains gradients of fundamental fields. In the
theory of mixture of fluids, it was a dependence on gradients of mass densities. In the
case of porous materials, it is sufficient to introduce, for example, a dependence on the
gradient of porosity. Otherwise, the second law of thermodynamics reduces the model to
the so-called simple mixture model in which the coupling between partial stresses must
vanish: Q = 0. However, one can also show [27] that the extension on the gradient of
porosity yields very small contributions in the linear model. Consequently, the Biot’s model
in its linear form quoted above can be considered to be an acceptable approximation of the
thermodynamically admissible model.

However, nonlinear extensions of the Biot’s model describing such phenomena as di-
latancy, swelling, coupling of shearing with expansion, fluidization, plastic deformations
cannot be based on ad hoc terms in the above equations as it is done sometimes in the lite-
rature. When we start the analysis of such nonlinear problems with the simplest poroelastic
model we can construct a simple mixture model without added mass effects and coupling
of partial stresses but with an additional balance equation for porosity [24], [21], [26]. Li-
nearization of such a model yields equations (1) with Q = 0, ρ12 = 0 and with the balance
equation of porosity. The latter can be formally solved and yields viscous effects related to
relaxation properties of porosity. In soil mechanics, one can usually neglect them (i.e one
can assume the limit τ → ∞, where τ is the relaxation time of porosity) and then this
formal solution is identical with (5). It was demonstrated in a series of works (for review
see e.g. [22], [25]) that such a model yields the behavior of bulk waves which is in a good
qualitative agreement with observations. Simultaneously, the technical complexity of the
simple mixture model is much less than this of Biot’s model what provides the possibili-
ty of an investigation of such problems as surface waves for various boundaries and their
parameter analysis in the whole range of frequencies (e.g. [10], [1]).

In this work, we present some results of comparison of the Biot’s model and of the simple
mixture model of poroelastic materials in application to the analysis of acoustic bulk waves.

2 Propagation of fronts of acoustic waves in Biot’s model

We begin the analysis of the system (1) by proving its hyperbolicity. To this aim we consider
the propagation of the front S of the weak discontinuity wave, i.e. of a singular surface on
which [[

vS
]]

= 0,
[[
vF

]]
= 0, (9)

where [[. . .]] denotes the jump of the quantity. On such a surface the accelerations may be
discontinuous and we call their jumps the amplitudes of discontinuity

aS :=

[[
∂vS

∂t

]]
, aF :=

[[
∂vF

∂t

]]
. (10)

Then the following compatibility conditions hold

[[
grad vS

]]
= −1

c
aS ⊗ n,

[[
grad vF

]]
= −1

c
aF ⊗ n, (11)
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[[
grad eS

]]
= −1

c

[[
∂eS

∂t

]]
⊗ n, [[ grad ε]] = −1

c

[[
∂ε

∂t

]]
n,

where c is the speed of propagation of the surface S and n its unit normal vector. The
latter gives, of course, the direction of propagation of the wave.

Bearing (2) in mind we obtain immediately

[[
grad eS

]]
=

1

2c2

(
aS ⊗ n + n⊗ aS

)
⊗ n, (12)

[[ grad ε]] =
1

c2
aS · nn.

We evaluate the jump of field equations (1) on the surface S. We obtain easily
[
ρ11c

21− λSn⊗ n− µS (1 + n⊗ n)
]
aS +

[
ρ12c

21−Qn⊗ n
]
aF = 0,

[
ρ12c

21−Qn⊗ n
]
aS +

[
ρ22c

21− κρF
0 n⊗ n

]
aF = 0. (13)

We say that the system (1) is hyperbolic if the eigenvalues c of the above eigenvalue

problem are real and the corresponding eigenvectors
[
aS,aF

]
linearly independent. We

check these conditions.
It is convenient to separate the transversal and longitudinal parts of the problem (13).

The transversal part follows if we take the scalar product of the equations with a vector
n⊥ perpendicular to n. We obtain

(
ρ11c

2 − µS
)
aS
⊥ + ρ12c

2aF
⊥ = 0, ρ12a

S
⊥ + ρ22a

F
⊥ = 0, (14)

aS
⊥ := aS · n⊥, aF

⊥ := aF · n⊥.

Hence we have for the speed of the front

c2 =
ρ22

ρ11ρ22 − ρ2
12

µS. (15)

As ρ22 > 0, µS > 0, the first condition for hyperbolicity of the set (1) follows

a− r (1− a) > 0. (16)

This condition is obviously fulfilled because a is not smaller than 1.
The speed of propagation (15) describes the shear wave. It is not influenced by the

coupling parameter Q. It is easy to see that in the particular case without the influence
of tortuosity a = 1 (simple mixture model) this relation reduces to the classical formula

c =
√

µS/ρS
0 . In this case, according to (14)2, the amplitude in the fluid aF

⊥ is zero, i.e. the
shear wave is carried solely by the skeleton.

We proceed to the longitudinal part. To this aim, we take the scalar product of the
relations (13) with the vector n. It follows

[
ρ11c

2 −
(
λS + 2µS

)]
aS · n +

[
ρ12c

2 −Q
]
aF · n = 0, (17)

[
ρ12c

2 −Q
]
aS · n +

[
ρ22c

2 − κρF
0

]
aF · n = 0,

and the dispersion relation is as follows

r
[
(1− r (1− a)) c2 − c2

P1

] [
ac2 − c2

P2

]
−

[
r (1− a) c2 − Q

ρS
0

]2

= 0, (18)
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where

c2
P1 :=

λS + 2µS

ρS
0

, c2
P2 := κ. (19)

The eigenvalues of this problem have the form

c2 =
1

2r [a− r (1− a)]

[
A±

√
B

]
, (20)

where

A := rac2
P1 + [1− r (1− a)] rc2

P2 − 2
Q

ρS
0

r (1− a) , (21)

B := A2 − 4r [a− r (1− a)]

[
c2
P1c

2
P2r −

Q2

ρS2
0

]
.

It can be easily shown that under the condition (16) B > 0 for all a ≥ 1, Q ≥ 0. However,
c2 defined by (20) is positive solely if the additional condition on Q is satisfied

Q ≤ ρS
0

√
rcP1cP2 ≡

√
ρF

0 κ (λS + 2µS). (22)

This is the second condition for hyperbolicity of Biot’s equations.
In the particular case a = 1, Q = 0 we have c equal to either cP1 or cP2 which means

that the set is unconditionally hyperbolic.
The two solutions for c2 define two longitudinal modes of propagation, P1 and P2. The

P2-mode, called the Biot’s wave or the slow wave in the theory of porous materials, is
also known as the second sound and it appears in all two-component systems described
by hyperbolic field equations. For instance, it is known in the theory of binary mixtures of
fluids in which it is applied to describe dynamical properties of liquid helium as discovered
by L. Tisza in 1938 [17]. For porous materials, it has been discovered by Ya. Frenkel in
1944 [11].

3 Monochromatic acoustic waves

The above analysis yields solely the propagation properties of the wave front S. In order
to analyze the attenuation we investigate monochromatic waves. We shall see that speeds
of fronts follow in the limit of frequency ω →∞.

We seek solutions of equations (1) which have the form of the following monochromatic
waves

vS = V SE , vF = V FE , eS = ESE , ε = EFE , (23)

E := exp [i (k · x− ωt)] ,

where V S, V F , ES, EF are constant amplitudes, k is the wave vector, ω real frequency.
Substitution of this ansatz in field equations yields the following compatibility conditions

[
ρ11ω

21−λSk ⊗ k − µS
(
k21 + k ⊗ k

)
+ iπω1

]
V S+

+
[
ρ12ω

21−Qk ⊗ k − iπω1
]
V F = 0, (24)

[
ρ12ω

21−Qk ⊗ k − iπω1
]
V S +

[
ρ22ω

21− κρF
0 k ⊗ k + iπω1

]
V F = 0.
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As usual, the problem of existence of such waves reduces to the eigenvalue problem with the
eigenvector

[
V S,V F

]
. We split again the problem into two parts: in the direction k⊥ per-

pendicular to k (transversal modes) and in the direction of the wave vector k (longitudinal
modes).

For transversal modes (monochromatic shear waves) we have

[
ρ11ω

2 − µSk2 + iπω
]
V S
⊥ +

[
ρ12ω

2 − iπω
]
V F
⊥ = 0, k2 = k · k,

[
ρ12ω

2 − iπω
]
V S
⊥ +

[
ρ22ω

2 + iπω
]
V F
⊥ = 0, (25)

V S
⊥ = V S · k⊥, V F

⊥ = V nF · k⊥.

The solution of the dispersion relation follows in this case in the following form

(
ω

k

)2

=
ωra + i π

ρS
0

ωr [a− r (1− a)] + i π
ρS
0

(1 + r)
c2
S, c2

S =
µS

ρS
0

. (26)

Consequently, neither the phase speed ω/ Re k nor the attenuation Im k of monochromatic
shear waves is dependent on the coupling coefficient Q.

In the two limits of frequencies we have then the following solutions

ω → 0 : lim
ω→0

(
ω

Re k

)2

=
µS

ρS
0 + ρF

0

, lim
ω→0

( Im k) = 0,

ω →∞ : lim
ω→∞

(
ω

Re k

)2

=
ρ22

ρ11ρ22 − ρ2
12

µS, (27)

lim
ω→∞ ( Im k) =

π

2
√

ρS
0 µS

1

a2

√
a

a− r (1− a)
.

The first result checks with the results of the classical one-component model commonly
used in soil mechanics. The speed in the second one is identical with this of formula (15).
Hence the propagation of the front of shear waves is identical with the propagation of
monochromatic waves of infinite frequency. The attenuation in this limit is finite.

For longitudinal modes we obtain the dispersion relation

ω

{
[1− r (1− a)]

(
ω

k

)2

− c2
P1

} {
a

(
ω

k

)2

− c2
P2

}
+

+
1

r
i
π

ρS
0

(
ω

k

)2
{

(1 + r)
(

ω

k

)2

− rc2
P2 − c2

P1 − 2
Q

ρS
0

}
− (28)

−1

r
ω

{
r (1− a)

(
ω

k

)2

− Q

ρS
0

}2

= 0.

Let us check again two limits of frequencies: ω → 0, and ω →∞.
In the first case we obtain

ω → 0 : c0 := lim
ω→0

(
ω

Re k

)
,

c2
0

{
(1 + r) c2

0 − rc2
P2 − c2

P1 + 2
Q

ρS
0

}
= 0, lim

ω→0
( Im k) = 0. (29)
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Obviously, we obtain two real solutions of this equation

lim
ω→0

(
ω

Re k

)2
∣∣∣∣∣
1

: = c2
oP1 =

c2
P1 + rc2

P2 + 2 Q
ρS
0

1 + r
≡

λS + 2µS + ρF
0 κ + 2 Q

ρS
0

ρS
0 + ρF

0

, (30)

lim
ω→0

(
ω

Re k

)2
∣∣∣∣∣
2

: = c2
oP2 = 0.

These are squares of speeds of propagation of two longitudinal modes in the limit of zero
frequency. Clearly, the second mode, P2-wave, does not propagate in this limit. Both limits
are independent of tortuosity. The result (30) checks with the relation for the speed of
longitudinal waves used in the classical one-component model of soil mechanics provided
Q = 0.

In the second case we have

ω →∞ : c∞ := lim
ω→∞

(
ω

Re k

)
,

r
{
[1− r (1− a)] c2

∞ − c2
P1

} {
ac2
∞ − c2

P2

}
−

{
r (1− a) c2

∞ −
Q

ρS
0

}2

= 0. (31)

This coincides with the relation (18), i.e. speeds in the limit ω → ∞ are identical with
speeds of fronts.

Simultaneously, we obtain the following attenuation in the limit of infinite frequencies

lim
ω→∞ ( Im k) =

πΓ1

2ρS
0 rΓ2

, (32)

Γ1 = c∞

[
1 + r − 1

c2∞

(
c2
P1 + rc2

P2 + 2
Q

ρS
0

)]
,

Γ2 = c2
P1

(
a− c2

P2

c2∞

)
+ c2

P2

(
1− r (1− a)− c2

P1

c2∞

)
+ 2

Q

ρS
0

(
1− a− Q

rρS
0 c2∞

)
.

Hence both limits of attenuation for the P1-wave and P2-wave are finite.
We proceed to the presentation of a numerical result in the whole range of frequencies

ω ∈ [0,∞). We use the following numerical data

cP1 = 2500
m

s
, cP2 = 1000

m

s
, cS = 1500

m

s
,

ρS
0 = 2500

kg

m3
, r = 0.1, π = 108 kg

m3s
, (33)

Q = 0.8 GPa, n0 = 0.4, a = 1.75.

Speeds cP1, cP2, cS, the mass density ρS
0 (i.e. ρSR

0 = 4167 kg
m3 for the porosity n0 = 0.4)

and the fraction r = ρF
0 /ρS

0 possess values typical for many granular materials under a
confining pressure of a few atmospheres and saturated by water. In units standard for soil
mechanics the permeability π corresponds to app. 0.1 Darcy. The coupling coefficient Q has
been estimated by means of the Gassmann relation (e.g. [27]). The tortuosity coefficient
a = 1.75 follows from Berryman formula (7)2.

Transversal waves described by the relation (26) are characterized by the following
distribution of speeds and attenuation in function of frequency (Fig. 1). The solid lines
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correspond to the solution of Biot’s model and the dashed lines to the solution of the
simple mixture model.

It is clear that the qualitative behavior of the speed of propagation is the same in both
models. It is a few percent smaller in Biot’s model than this in the simple mixture model in
the range of high frequencies. A large quantitative difference between these models appears
for the attenuation. In the range of higher frequencies it is much smaller in the Biot’s model,
i.e. tortuosity decreases the dissipation of shear waves.

Fig. 1. Speed of propagation and attenuation of monochromatic S-waves for two values of the
tortuosity coefficient a : 1.75 (Biot), 1.00 (simple mixture)

The latter property is illustrated in Fig. 2 where we plot the attenuation of the front
of shear waves, i.e. lim

ω→∞ Im k, as a function of the tortuosity coefficient a. This behavior of

attenuation indicates that damping of waves created by the tortuosity, which is connected
in the macroscopic model to the relative velocity of components, is not related to scattering
of waves on the microstructure. It is rather related to the decrease of the macroscopic
diffusion velocity in comparison with the difference of velocities on the microscopic level
due to the curvature of channels and volume averaging. Fluctuations are related solely to
this averaging and not to temporal deviation from time averages (lack of ergodicity!).

Fig. 2. Attenuation of the front of
shear waves in function of the tortu-
osity coefficient a
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We proceed to longitudinal waves. The solid lines on the following figures correspond
again to Biot’s model, the dashed lines to the simple mixture model. In order to show
separately the influence of tortuosity a and of the coupling Q we plot as well the solutions
with a = 1 (dashed dotted lines) and the solutions with Q = 0 (dashed double dotted lines).

Even though similar again the quantitative differences are much more substantial for
P1-waves (Fig. 3). This is primarily an influence of the coupling through partial stresses
described by the parameter Q. The simple mixture model (Q = 0, a = 1) as well as Biot’s
model with Q = 0 yield speeds of these waves different only a few percent (lower curves
in the left diagram). The coupling Q shifts the curves to higher values and reduces the
difference caused by the tortuosity. This result does not seem to be very realistic because
the real differences between low frequency and high frequency speeds were measured in soils
to be rather as big as indicated by the simple mixture model. This may be an indication
that Gassmann relations give much too big values of the coupling parameter Q with respect
to these indeed appearing in real granular materials.

Both the tortuosity a and the coupling Q reduce the attenuation quite considerably as
indicated in the right figure.

Fig. 3. Speed of propagation and attenuation of monochromatic P1-waves for various coupling
parameters Q and tortuosity coefficients a

Fig. 4. Speed of propagation and attenuation of monochromatic P2-waves for various coupling
parameters Q and tortuosity coefficients a
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In spite of some claims in the literature the tortuosity a does not influence the existence
of the slow (P2-) wave (Fig. 4). Speeds of this wave are again qualitatively similar in Biot’s
model and in the simple mixture model. The maximum differences appear in the range
of high frequencies and reach some 35 percent. The same concerns the attenuation even
though quantitative differences are not so big (app. 8 percent).

4 Conclusions

The analysis presented in this work yields the following conclusions.
1◦ We have demonstrated on properties of acoustic waves that relative accelerations and

coupling through partial stresses in the Biot’s model have a quantitative but not qualitative
influence on results. We have compared results for Biot’s model with these for the simple
mixture model in which the tortuosity a = 1 and the coupling parameter Q = 0. We have
proven that both models are hyperbolic provided the parameter Q satisfies a condition
bounding this parameter from above. In particular, both models predict the existence of the
P2-wave. Speeds and attenuations of monochromatic P1-, P2- and S-waves are qualitatively
the same but there are quantitative discrepancies.

2◦ Tortuosity introduced to the model through the relative acceleration yields dissipation
solely due to the modification of the relative motion. Namely if we assume the permeability
coefficient π = 0 the dissipation in isothermal processes without relaxation of porosity
vanishes. This is due to the fact that tortuosity, in contrast to porosity, is not introduced
as a field described by its own field equation. It explains of a rather unexpected behavior of
attenuation of monochromatic waves within the Biot’s model. Inspection of figures shown
in this work makes clear that the presence of tortuosity a 6= 1 yields a smaller attenuation
rather than bigger as it would be in the case of a dissipative field. A dependence of the
permeability π on tortuosity would eliminate this paradoxon. Then the added mass effect
could be left out in the model as it is done in the simple mixture model.

3◦ We have demonstrated that a rather moderate value of the parameter Q suggested by
the classical Gassmann relation for granular materials leads to an unreasonable increment
of speeds of propagation and reduction of attenuation. In addition, the speed of propagation
of monochromatic P1-waves becomes very flat as a function of frequency. This contradicts
observations in soil mechanics and geotechnics and indicates that the Gassmann relations
predict too big values of this parameter.

References

1. B. Albers, K. Wilmanski; Monochromatic Surface Waves on Impermeable Boundaries in Two-
component Poroelastic Media, Cont. Mech. Thermodyn. (submitted) (2004).

2. B. Albers, K. Wilmanski; On Modeling Acoustic Waves in Saturated Poroelastic Media, Jour.
Engn. Mech. (submitted); see also: WIAS-Preprint #874 (2003).

3. J. F. Allard; Propagation of Sound in Porous Media. Modelling Sound Absorbing Materials
(Elsevier, Essex 1993).

4. J. G. Berryman; Confirmation of Biot’s Theory, Appl. Phys. Lett., 37, 382-384 (1980).

5. M. A. Biot; Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I.
Low-Frequency Range, JASA, 28, 168-178 (1956).



11

6. M. A. Biot, D. G. Willis; The Elastic Coefficients of the Theory of Consolidation, J. Appl.
Mech., 24, 594-601 (1957).

7. T. Bourbie, O. Coussy, B. Zinszner; Acoustics of Porous Media (Edition Technip, Paris 1987).
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