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1. Introduction 

In 1977 Figotin and Pastur [FP1,FP2] introduced a class of simplified and exactly solvable 
models for mean-field spin-glasses, in which the random interaction Jij between two spins was of 

the form Jii = :E:=l ~f~f, with ~f, i E IN,µ E {1, ... ,p} a family of independent, identically 
distributed random variables, taking, in the simplest case, the values + 1 and -1 with equal prob-
ability. While these at first did not receive much attention, the same model was reintroduced in 
1983 by Hopfield [Ho] as a model for autoassociative memory. The interpretation of a disordered 
spin-system in the context of neuroscience initiated the continuing wave of interest of the physics 
community in the field of "neural networks". An important new ingredient in Hopfield's version of 
the model was, however, the interpretation of the vectors ~µ, µ = 1, ... , p as a family of 'patterns' 
to be memorized and the fact that the parameter p, the number of stored patterns, is allowed to 
depend on the size of the system, N. In an important paper, Amit, Gutfreund and Sompolinski 
[AGS], using the replica method for a heuristic analysis of the thermodynamic properties of the 
model, discovered crucial changes in the behaviour of the model depending on the speed with which 
p( N) grows to infinity. In particular, they pointed out that there should be a transition to a truly 
spin-glass like behaviour (interpreted as 'failure of the memory'), if p(N) grows faster than a.cN, 
with a.c ~ 0.14. Overall, it appeared that, using the speed of growth as a model-parameter, the 
Hopfield model yields an interesting class of models intermediating between ferromagnets and spin-
glasses. Over the last few years, a fairly good mathematical understanding of the thermodynamic 
properties of this model has been developed, albeit under more restrictive conditions on the growth 
of p(N) [K,ST,BG1,BG2,BGP1,PST]. 

From the point of view of spin systems, the Hopfield model is a mean field model and thus 
plagued with the typical pathologies of all such models, in particular the non-convexity of ther-
modynamic functions or the impossibility of implementing the DLR scheme to define the infinite 
volume Gibbs measures, etc. To overcome these pathologies and to give a natural interpretation of 
mean field models in terms of limits of 'standard' models of statistical mechanics, Kac [Ka] proposed 
a model with long, but finite, range interactions, known as the Kac model. Taking the infinite vol-
ume limit for such a model first, and then considering the limit as the range of interactions tends to 
infinity while appropriately rescaling the interaction strength, one then recovers mean field theory. 
The most precise and complete form of this asymptotic relation was later proven by Lebowitz and 
Penrose [LP]. They showed that the rate function for the total mean magnetization in the Kac 
model converges, in the limit of infinite interaction range, to the convex hull of the corresponding 
rate function in the Curie-Weiss model. Such results were later recovered for more complicated 
mean field models, such as the Curie-Weiss-Potts model (see e.g. [KS] for a recent survey). 

Nothing is more natural than to consider the same question in the context of the Hopfield 
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model; in fact, the first to introduce and study the Kac-version of the Hopfield model were Figotin 
and Pastur [FP3]. They proved, assuming that the number of stored patterns is bounded, the 
convergence of the free energy of the Kac-version to that of the mean-field .Hopfield model (and 
hence to that of the Curie-Weiss model). The main purpose of the present paper is to extend this 
result in two ways: First, we want to allow the number of patterns to be an unbounded function 
of the interaction range, and second, we want to prove the convergence on the level of the rate 
functions. For an exposition of both the theory of large deviations and mean field models, we refer 
in particular to the book by Ellis [E]. 

To do this, we are of course confronted with the problem of proving a large deviation principle 
(LDP) for the Hopfield model itself. In the case where the number of patterns is bounded, this is not 
a problem as the existence of an LDP is essentially covered by the classical Gartner-Ellis theorem 
[Gae,E,DS). In explicit form this can be found in [vH] and in mathematically rigorous form in [Co]. 
As soon as the number of pattern is an unbounded function of the system size, however, standard 
theorems do not apply anymore, and up to now no LDP was available in this case. An important 
task of the present paper is therefore to establish a large deviation principle for the Hopfield model 
with unbounded number of patterns. Before entering into the precise formulation of our results, let 
us mention one curious fact. We will actually be able to prove directly a large definition principle 
for the Hopfield model only under the condition that the number of patterns grows more slowly 
that the logarithm of the system size. By relating the Hopfield model to its Kac-version, it will, 
however, be possible to extend this result to much more rapidly growing number of patterns, in the 
sense that at least the convex hull of the rate function still exists in this case. This fact was, for us 
at least, quite surprising. 

Beyond the large deviation results for the mean magnetization, there are a lot of interesting 
questions to be answered concerning in particular the Gibbs states of the Kac-version of the Hopfield 
model. Even in the case of the standard Kac model, there are fairly interesting problems related 
to this, as can be seen in the recent paper by Cassandra et al. [COP]. In the case of the Hopfield 
model, this promises to shed light on various aspects of the properties of spin-glass type models. 
An investigation of these questions is under way and results will be published elsewhere [BGP3]. 
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We will refer to the Kac version of the Hopfield model as the FHKP-model. Let us now give 
a precise definition of this model. Since the results we are aiming for in the present paper will be 
independent of the dimension of the underlying lattice, to simplify notations we will work here in 
dimension one. For the same reason, we will work only with free boundary conditions.1 We denote 
by A the set of integers A= {-N, -N + 1, ... , N} and by SA = {-1, l}A the space of functions 

1 Note, however, that the dimensionality will be important for the properties of the Gibbs states of the model 

and that more general boundary conditions will have to be considered to study them. 
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a: A--+ {-1, 1}. We call a a spin configuration on A. We shall write S = {-1, l}z for the space of 
infinite sequences equipped with the product topology of discrete topology on {-1, 1}. We denote 
by BA and B the corresponding Borel sigma algebras. We will define a random Hamiltonian function 
on the spaces SA as follows. Let (f2, F, JP) be an abstract probability space. Let ~ =· {~fheZ,µEIN 
be a two-parameter family of independent, identically distributed random variables on this space 

such that JP(~r = 1) = JP(~r = -1) = l· The Hamiltonian with free boundary conditions on SA 
is then given by 

1 lW"(I') 
HA[w](a) = -2 L L ~f[w]~j[w]J..,,(i - j)aiO'j 

(i,j)EAXA µ=1 

(1.1) 

where J..,,(i - j) = j-J (7li - ii), and 

J(x) = { 1, if lxl ~.1 
0, otherwise 

(1.2) 

(Note that other choices for the function J(x) are possible. They must satisfy the conditions 
J( x) ~ 0, J dxJ( x) = 2, and must decay rapidly to zero on a scale of order unity. For example, 
the original choice of Kac was J(x) = e-lxl. For us, the choice of the characteristic function is 
particularly convenient). 

We see that the spins in this Hamiltonian interact over a distance ,-1 , and we will obtain 
results for the limit when 1' tends to zero. Note that in the FKHP-model we have denoted the 
number of patterns by M, rather then p. We reserve the name p = p(N) for the number of patterns 
as a function of the system-size and M = M(T) as the number of patterns as a function of the 

parameter 1'. We are interested in the case where M(T) j oo, as 1' l 0. We will set a( 1') = 1' M(T ). 

The finite volume Gibbs measure for our model is defined by assigning to each a E SA the 
mass 

1 g [w](a) = e-.BHA,"[w](u) 
A,,8,1' Z [w] A,/3,1' 

(1.3) 

where ZA,13,..,,[w] is a normalizing factor usually called partition function. We will drop the explicit 
w dependence of various random variables when no confusion may arise. For any subset fl. C ZZ, 
we define the M-dimensional vector of 'overlaps' m6 [w](a) whose components are 

m~[w](a) = 
1
!

1 
L ~rlw]ai, µ = 1, ... , M 
iE£i 

(1.4) 

The main object we will study in this paper are the distributions of mA(a) under the Gibbs measure, 
Le. 

QA,13,..,,[w](m) = YA,,8,..,,( {mA[w](a) = m}) (1.5) 

QA,13,..,,[w] defines a random probability measure on (JRlW"h), B(JRlW"b))). For fixed 1' > 0, this 
sequence of probability measures satisfies a large deviation principle in the sense that for instance 
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the limit2 

(1.6) 

exists almost surely by the subadditive ergodic theorem and is independent of the random parameter 
w. Moreover, Ft3,,.(m) is a convex function of its argument. We will be interested in the limiting 
behaviour of Ft3,-r as; l 0. Since the domain of this function depends on; via M(;), it is natural to 
consider restrictions to finite dimensional cylinders. Thus, let IC IN be a finite set and denote by 
IT1 : IRM ~ IR1, for any M such that IC {1, ... , M}, the orthogonal projector on the components 
m'-', withµ E J, of a vector m E IRM. We set, form E IR1 , 

(1.7) 

which enjoy the same properties as Ff3,-r itself, and which potentially converge to a limit as; l 0. 

The Lebowitz-Penrose theory relates the limit of these quantities to the analogous ones in the 
corresponding mean-field model, i.e. in our case the standard Hopfield model. Recall that this 
model is defined by the Hamiltonian in the volume A= {1, ... , N} 

1 p(N) 
Hfopf[w](a) = - 2N L L ~f[w]~j[w]awi 

(i,j)EAxA µ=1 

(1.8) 

We denote by gJ:,';ff[w] the corresponding Gibbs measure, and by Q~~$1 [w] the induced distribution 

of the overlap parameters m~[w](a) = J, L:f:1 ~f[w]ai. We also write 

(1.9) 

provided this limit exists. Note that, contrary to the case of the Kac-model, there are no simple 
arguments that prove existence and non-randomness of the limit, and even if it exists, we cannot 
expect it to be a convex function at low temperature, i.e. if {3 > 1. In fact, our results on the 
FHKP-model will turn out to be extremely useful in order to obtain some partial information on 
these questions. Let us define the convex functions c:opf,l, which, if F'f/opf,l exists, are the convex .J 

hulls of these functions. Recall that the convex hull, Conv f, of a function f, is the largest convex 
function that is pointwise smaller than or equal to f. We set 

(1.10) 

Notice that the functions c:opf,l depend on the asymptotic behaviour of the function p(N). Our 
first result concerns the existence of the functions c:opf,l. 

2 We comment below on the equivalence of this definition with the conventional one in our case. We find this 

formulation particularly convenient for our purposes. 
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Theorem 1: Suppose that p(N) is such that limNiooP(N) = +oo and limNioo p(N~nN = 0. 

Then, 

(i} For almost all w, c:opf,I(m) defined through (1.10} exists for any finite set IC IN and is 

independent of w, e, and the function p(N). 

(ii} If, moreover, limNioo 2p;;n = 0, then, almost surely, F!J0 pf,I(m) defined through {1.9} exists 

and is independent of p( N). 

Remark: We will give an explicit expression for the function c: opf ,I ( m) in terms of a variational 
formula in Section 3. The independence of this function on the precise behaviour of p(N) is certainly 
quite surprising and indeed crucial for proving the theorem under such weak conditions on p(N). 

In fact, we will be able to give an elementary proof only of the statement (ii), while (i) will then 
follow by passing to the Kac-version of the model. 

For the FHKP-model, we obtain the Lebowitz-Penrose theorem: 

Theorem 2: Assume that M('y) satisfieslim,,!oM('y) = +oo andlim.,,!o;lln;IM('y) = 0. 
Then, for any f3, and any finite subset I, for almost all w, 

(1.11) 

Let us make a short comment on our definitions of the rate functions through limits over balls 
of radius f. Since all the measures we are considering here have actually compact support, the 
families of measures are in particular exponentially tight. Thus to prove a strong LDP it is enough 
to prove a weak one. By appropriately covering closed sets with balls of radius e, respectively fitting 
such balls into open sets, one can easily proof the weak LDP with rate functions given as defined 
above, provided they exist. Also, of course, one can easily obtain the corresponding level-2 LDP 
by standard arguments. We refrain from entering into these technicalities. 

A remark is in order concerning the condition lim-y !O ; I ln; IM (;) = 0. One should expect that 
the two theorems hold in fact under the weaker hypothesis lim.,,!o ;M(;) = 0, resp. limNioo p(:) = 
0. It is indeed possible to prove uniform bounds on the rate functions under these weaker hypothesis 
that suffice, for instance, to control the limiting induced measures in the ordinary Hopfield model, 
as has been done in [BGPl]. We comment below at which point our stronger conditions are crucially 
needed and which estimate would have to be improved, if we wanted to avoid it. 

Some less complete results may in fact be proven easily under the weaker hypothesis ; M(;) ! 0. 

In particular, the free energy FA,J3,,,[w] = -(3-1 ln ZA,J3,,,[w] satisfies 
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Proposition 1.1: Assume that lim-y!o1'M("Y) = 0. Then, for allmost all w, 

(1.12) 

with Fffw = infxEJR ( ~2 
- {3-1 ln cosh{3x) the free energy of the Curie-Weiss model. 

It should be noted that for {3 > 1 the rate function for the Hopfield model will not be convex 
and therefore, that of the FHKP-model will contain a 'flat' horizontal piece. In fact it is known 
[BGPl] and also follows quite easily from the estimates we will give in Section 3 that Ff!opf,I(m) 
takes on its absolute minimum for vectors iii which have only one non-zero component of values 
±a({3), where a(f3) is the maximal solution of the equation x = tanh{3x. Obviously, these are the 
extremal points of the convex polytop described by the equation 

(1.13) 

and it is therefore this polytop on which the limiting rate function of the FHKP-model takes on its 
mimimum value. This information will not be enough to obtain the complete characterization of 
the Gibbs states, just as in the Hopfield model the mere knowledge of the convex hull of the rate 
function would not suffice. While we have not been able to prove existence of the rate function itself 
in the Hopfield model if p(N) ~ 11~1:, it is possible to get lower bounds that suffice to determine 
the Gibbs states [BGPl]. This information will be necessary again for the analysis of the states in 
the FHKP-model. 

The remainder of this paper is organized as follows. In Section 2 we construct a block-spin 
approximation for the Kac-Hamiltonian and give a probabilistic estimate on the error term. As an 
almost immediate application, we also prove Proposition 1.1. Section 3 is devoted to results on the 
Hopfield model itself. We prove an exponential estimate on the deviation of the rate function from 
its mean value and prove statement (ii) of Theorem 1. In Section 4 we combine all these results to 
prove Theorem 2 and statement (i) of Theorem 1. 

6 



2. A block-spin approximation 

The main step in the analysis of Kac-type models is always to exhibit the dominant part of 
the Hamiltonian as an effective model on local spin averages ('block-spins') and to show that the 
remainder gives no contribution to the leading asymptotic behaviour of QA,{3,-y when 1 tends to 
zero. The purpose of the present section is to do this in the case of the FHKP-model. 

We introduce a new scale l( 'Y ), with the property l( 'Y) j oo, as 'Y l 0. Further conditions on l( 'Y) 
will be imposed later. We partition the volume A into blocks A(x ), x Er:::: {-L, -L + 1, ... , L}, 
oflength l('Y): A= U~=-LA(x) where (2L+l)l('Y) = 2N +1 (Here we assume that (2N +1)/l(7)is 
an integer; thus, in principle, we must choose lN( 'Y) depending on N in such a way that this is true 
while lN('Y) converges to l('Y) as N j oo. To simplify our notation, we shall not make this explicit). 

This allows us to write 

where (~i, ~;) = L:~i) ~f ~j. Now for i E A(x) and j E A(y) we write 

J-y(i - j) = J-y(l('Y)(x - y)) + (J-y(i - j) - J-y(l(1)(x - y))) 

= l(~)J-,1(-,)(x -y) + b.J-,(i,j) 

Using this, we decompose HA into 

where 

and 

Using that 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

L (€;,€;)u;u; = !) ( L ~fai) ( L ~ja;) = l(·y)2 !) m~(x)(u)m~(y)(u) (2.6) 
iEA(m) µ=1 iEA(:z:) jEA(y) µ=1 
j€A(11) 

we can write HX as 

1 lW'(-y) 

HX(a) = -2l(1) L J-yl("Y)(x - y) L m~(x)(a)m~(y)(a) (2.7) 
(x,y)erxr µ=1 
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Eq. (2.7) makes explicit that HX depends on u only through the block-variables mA(:z:)(a) and thus 
has the desired form. We will now show that the remainder l:iHA(a) is asymptotically negligible. 

The decomposition given here was already used by Figotin and Pastur [FG3]. They also 
showed, under the assumption that M(r) ~ M < oo, that l!:iHA(a)I ~ const.(l(r)MN, uniformly 
in u and uniformly in l, which implies that l:iH is negligible if l(r) is chosen such that rl(r) l 0. 
In order to obtain results for M( r) that tend to infinity with optimal conditions on the allowed 
speed of growth, we will have to improve on this bound; this will require in particular to replace 

the uniform bound in l by an almost sure one. Precisely, we show that: 

Lemma 2.1: For all f > 0 

An immediate consequence of this estimate is the 

Corollary 2.2: There exists a subset n,. C n of probability one, such that for all w E n,., 

(2.9) 

Proof: If we choose f in lemma 2.1 as f = 4V'2rl( 'Y) (log 2 + !fcC~] + o) for some o > 0, we get 

(2.10) 

from which 2.9 follows by the first Borel-Cantelli Lemma. 0 

Proof of Lemma 2 .1: In order to estimate l:iH A ( u), we notice first that 

J,.( i - j) - l( { )-l J,.z(,.) ( X - y) = ~ { JI{li-jl~'1'-1} JI{l:z:-yl>('1'Z('1'))-1} - JI{li-jl>'1'-1} JI{l:z:-yl~('1'Z('1'))-1}} 
(2.11) 

Moreover, 

and 

JI{li-31>'1'- 1 }JI{l:z:-11l~('1'l('1'))- 1 } = JI{li-31>'1'- 1 }JI{('1'Z('1'))-1 ~lx-11l>('1'Z('1'))- 1 -l} 

We now write l:iHA(a) = i [!:11 HA(u) - !:12 HA(u)] with 
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(2.13) 

(2.14) 



and 

(2.15) 

We only present the estimate of ~1 HA(a), ~2 HA(a) can be treated in exactly the same way. We 
have: 

Let us set 

and 

L-[("Yl("Y ))- 1 J-1 

~1 HA( a)= - L 
x=-L iEA(m) 

jEA(m+[(-yl('T ))- l ]+1) 

iEA(m) 
; EA(m +[(.., l('T ))-1 J+l) 

M(-y) 

f(x) = L f"'(x) 
µ=1 

lI{li-il~-y- 1 }( li, l; )aia; (2.16) 

(2.17) 

(2.18) 

Since L = [(;l(T))-1] n+r with 0::; r < [(;l(;))-1] for some positive integer n, where [x] denotes 
the integer part of x, we can rewrite (2.16) as 

L-[(-yl(-y))-1J-1 [("Yl("Y))- 1 ]Cn-1) 

L f(x) = L f(x) 
x=-L x= -[(-yl(-y))-1 Jn 

-[("Yl(-y))- 1 ]n-1 

+ L J(x)+ 
x=-L 

L-[ (-yl(-y))- 1 ]-1 
(2.19) 

L J(x) 
x= [("Yl( "( n-1 J( n-1 )+1 

Let us consider the first sum in (2.19) first. In order to take into account of the independence of 
(li, l;) and (l~, lj) when i f:. i' and j f:. j' we first decompose the first sum :Ex in (2.19) in the 
following way: 

[bl("Y))-
1 
]Cn-1) . [n/2J-1 [l/(-yl(-y))J-1 ( [ l ] ) L J(x) = L L 1 Z-( ) 2k + s 

x=-[("Yl(-y))-1 Jn k=-[n/2J s=O i i 

[(n+l)/2J-2 [l/(-yl(-y))J-1 ( [ l ] ) 
+ L L 1 -z- (2k+1)+s 

k=-[(n+l)/2J s=O i ( i) 

(2.20) 

The important point to observe here is that each of the two terms in (2.20) is now a sum of 
independent random variables. Let us denote these two terms by S1 and S2 , respectively. We have 

[ 1 i fl 
IP ::fA 2N + 12181 12'.: 8 

[

M(-y) [n/2J-1 [l/(-yl(-y)))-1 ] 

~ 222
N+1JP L L L fµ ([ /( )] 2k + s) 2'.: ~;-1 (2N + 1) 

µ=1 k=-[n/2J s=O i i 

(2.21) 
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where the probability on the right-hand side is in fact independent of the chosen spin configuration 
a. Using the exponential Markov inequality together with the independence, we get that 

(2.22) 

Thus we have to estimate the Laplace-transform of j1(0). We write 

(2.23) 

Notice that all the lf with i E A(O) are independent of thee} with j E A([l/(1l(1))] + 1), and 
that, Conditioned On these latter Variables, the Variables el l:;;eA([l/(-yl(-y))J+l) e} are independent. If 

li-il<-r- 1 

we denote by IEi the expectation w.r.t. et, this allows us to write 

(2.24) 

where we have used that ln co~h x ~ tx2 • Using the Holder-inequality on the last line, we arrive at 

(2.25) 

Now 

l ( )2) l 2) 1 1 
IE exp 2l( 1' )t2 L e} ~ IE exp 2l( 1 )t2 L e} 

; E A([l/_bl( 1_!l)+1) (EA((l /('YI( -y))] +1) ) 
11 -Jl<-r 1 (2.26) 

< 1 - Ji - t 2l(r) 2 

where we have used the Khintchine inequality and the fact that IA([l/(1l(1'))] + 1)1 ~ l(1). Since 
for 0 ~ x ~ 1/2, 1/~ ~ ex, for t 2 ~ 21(~)2 , we can replace (2.26) by the more convenient 
bound 

(2.27) 

10 



Therefore, choosing t = v'i!("Y) in (2.22), we obtain 

(2.28) 

By the same procedure, one obtains exactly the same bound for S2 • It remains to consider the two 
last sums in (2.19). Obviously, they are much smaller than S1 or S2 and can be treated in the same 
manner. Finally, 1:::,.2 HA is decomposed in the same way, so that we end up with eight terms all of 
which satisfy bounds like (2.28). Putting these together concludes the proof of Lemma 2.1. O 

To understand the need for Corollary 2.2, let us anticipate that we may be able to treat H 0 

further provided ~;)) l 0. Then, if only 1M(T) l 0, we can choose e.g. l(T) = ~to achieve 

that ~;)) l 0 while at the same time 1 ~,o-)I l 0, a.s. by Corollary 2.2. If, on the other hand, we 

had only the uniform bound 7l(T)M('Y)N on l::,.H, then we would have to demand 1[M('Y)]2 l 0, 

which is a much stronger, and quite unnatural, restriction on the number of patterns. 

Thus the Hamiltonian of the FHKP-model is asymptotically equivalent to a block-spin Hamil-

tonian if 7M(1) l 0. But it is more or less clear that the bounds in Lemma 2.1 cannot be substan-

tially improved, and that therefore, once this condition is no longer satisfied, such an approximation 
breaks down. This sheds doubt on whether in such situations (which would also include real spin-

glasses ), mean field models can be seen as limits of ordinary models with diverging interaction 

range! 

As a simple first application of Corollary 2.1, let us give at this point a short proof of Proposition 
1.1. 

Proof of Proposition 1.1: By Corollary 2.2, it will be enough if we can compute the behaviour 
of 

(2.29) 

Using that J:r:y = J,.z("Y)(x - y) is a positive definite quadratic form, it follows that 

(2.30) 
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where z[1t ( m) = L:uESi 11{2_ 1 L:~= 1 ui=m} e~Zi-m
2 

is the restricted partition function of the Curie-
Weiss model with volume land Wz = {-1, -1+2/l, .... 1-2/l, 1} denotes the set of possible values 

of mz(u) = t L:!=i ui. This yields 

1 - 1 cw 
liminf 2N In ZA,~,..,[w] ~ sup -l( ) In Zz{'Y),~(m) 

AjZ +1 mEWic·d i 
(2.31) 

On the other hand, using the fact that 

(2.32) 

(2.33) 

so that z [w] < 2-(2N+l) "' II e~iZb) L::~~> ( m~C11 >(u))2 
A,~,-y - L..J 

uES1i. zEr 

= II 2-Z('Y) L li"Z('Y) L::~~) ( m~(11)(u)) 2 (2.34) 
zEr uES1i.(z) 

= II zff..,>.~ [wz] 
::t:Er 

But this implies that 

Ii 1 - ( ] 1 Hopf ( ] m sup N In ZA,~,.., w ~ JE-1( ) In Zz( ) r.i w 
AiZ 2 + 1 i 'Y ,,.., 

(2.35) 

where we have used the strong law of large numbers to replace the spatial average over r by the 
expectation over~· If now l(i) is chosen such that ~;v l 0, while l(i) j oo, by a result of Koch 
[K], the right-hand side of (2.35) converges, as i l O, to the negative of the free energy of the 
Curie-Weiss model, as does, obviously, the right hand side of (2.31) (see [E]). This proves that 

-{3-1 lim lim N 
1 In ZA r.i 'V[w] = FfW .., ! 00 Ai z 2 + 1 ,,.., II ,.., 

(2.36) 

Corollary 2.2 on the other hand implies immediately that for any sequence in tending to zero as 
n j oo, 

(2.37) 

for almost all w (namely for those in the set nnEJNn..,J, from which one obtains (1.12) for the 
subsequence in· There remains in principle the possibility that (2.37) holds with probability one 
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for any given sequence, while it fails with probability one for some (random) sequence. However, 
this is excluded by the following 

Lemma 2.3: 

lim sup sup sup sup 2N
1 

1 IHA,-y[w](a)- HA,1/n[w](a)I = 0 
njoo !-5'Y5 ~ wEO A uESA + (2.38) 

Proof: To prove (2.38), notice that 

l M('Y) M(l/n) 

~ 2 L L lf[w]lj[w]J..,(i - j)aiO"j - L lf[w]lj[w]J1/n(i - j)aiO"j 
(i,j)EAXA µ=1 µ=1 

(2.39) 

~ (2N + 1) [IM(l/(n + 1) - M(l/n)I + M(l/n)n ( ~ - n~l) + M(~/n)] 

The coefficients of N in all three terms vanishe, as N j oo under our assumptions on M(-y) which 
proves (2.38) and the Lemma. 0 

Combining Lemma 2.3 with (2.37) and (2.36) gives immediately Proposition 1.1. 0 
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3. Large deviation results for the Hopfield model 

In this chapter we provide the large deviation results for the standard Hopfield model that will 
be needed to obtain the analogous ones for the FHKP-model. At a later stage, this will in turn 
allow us to improve the results for the Hopfield model itself. There are two results that will be 
given here. The first is a result on the self-averaging properties of the large deviation rate function 
under the assumption p(;) l 0, as IN j oo. The second is a large deviation theorem for the Hopfield 

model under the strong assumption assumption p( N) < 1~ 1:. 
3.1 Self averaging of the rate function 

We will begin with the self-averaging properties of the large deviation rate function. Let 
us make a few remarks on the questions of self-averaging in general. The central role played by 
'self-averaging' properties in disordered systems has particularly been emphasized by Pastur and 
Shcherbina in their work on the Sherrington-Kirkpatrick model [PS]. Shcherbina and Tirozzi [ST], 
and Pastur et al [PST] have recently performed the same analysis for the Hopfield model. Basically, 
they prove two types of results: 

(i) The free energy, FJf,{J'1[w] as well as its derivatives, such as the Gibbsian mean of m~(a) are 
self-averaging for all choices of p(N) in the sense that their variance behaves like N- 1 • 

(ii) If the so-called 'Edwards-Anderson' parameter qN[w] = "Jv 2:~1 (ai)~.,a,[w], where (·)N,,8 de-
notes expectation w.r.t. the Gibbs measure of the Hopfield model, has variance of order 1/ N, 
then a certain set of 'mean-field equations', that can be formally derived using the so-called 
'replica-trick' (see [AGS2]), are exact. 

As we will see later, here we are in need of self-averaging results on the rate functions. While 
it is fairly easy to prove results on level of the variances for fixed argument, along the same lines 
as in the above cited papers, such estimates would not be sharp enough for our purposes, since 
we will require results that hold uniformly in the arguments. Thus, we must extend the variance 
estimate to exponential estimates. Such an estimate is provided by the following Lemma. Let us 
introduce, form E JRP(N)' the functions 

(3.1) 

These are the non-normalized versions of the rate function that differ from the corresponding 
normalized functions F:J,';J',~[w](m) by the free energy. We remark at this point that we will be 
interested in this quantity only for very small p (in fact in such p that tend to zero with N). 
In this case, we need only to consider m with, e.g., llmll 2 ~ 2. For, F:J,';J',~[w](m) can only be 
different from +oo if there exists a a E SN such that N-1 l:i ~iai ~ m. But this implies that 
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llmll~ ~ :Eµ :Ei,j ai e~~i a; ~ llBll, where Bis the random matrix with elements Bi; = :Eµ er;_;. 
It has been proven for instance in [ST ,BGl]) that with probability larger than 1 - e-Ni/sr, llBll ~ 

1 +2rJPfN. 

Lemma 3 .1: There exists a constant c > 0, such that for all m E JRP( N) such that 11mlI2 ~ 2 

and for all z > 0, 

IP [lfrHopf[w](m) - IEFHopf[w](m)I > z] ~ e-cNz2 /(pp(N)) N,f',p N,f',p (3.2) 

Proof: For technical reasons that will become clear later, we will consider instead of .FJ:.°J'.![w](m) a 
slightly modified quantity in which the characteristic function lillmA-mll~~P is replaced by a smooth 
version of this function. We let Xp,o( x) be a sequence of infinitely differentiable functions satisfying: 

(1) Xp,o(x) ~ 0, 

(2) I x~.6Cx) I < s-1 
Xp,6(x) - ' 

(4) Xp,o(x) = 0 if lxl > p + 6. 

Let us now define 

(3.3) 

and 

(3.4) 

We now introduce the decreasing sequence of sigma-algebras :Fk that are generated by the random 
variables {~f}f:~ and the corresponding martingale difference sequence 

(3.5) 

Notice that we have the identity 

N 

fN(m) - JEfN(m) = L f);)(m) (3.6) 
k=l 

Let us recall that this construction was first introduced by V.V. Yurinskii [Yu] and employed in 
the context of spin-glasses and the Hopfield model by Pastur, Shcherbina and Tirozzi [PS,ST]. 
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Our aim is to use an exponential Markov inequality for Martingales. This requires in particular 
bounds on the conditional Laplace transforms of the martingale differences. Namely, we clearly 
have that 

IP [ ~ J1;'l(m) ;:::: Nz] ::; 2 j~Lz e-l•INz 1E exp { t ~ J1;'l(m)} 
(3.7) 

= 2 }~1 e-ltlNz IE [IE [ ... IE [ etJ~>(m) IF2] etJ;:>(m) IF3] ... etif.,N>(m) IF N+i] 

Therefore, i/we can show that, for some function £(k)(t), ln IE [ eti1">(m) j.rk+l] ~ £(k)(t), uniformly 

in Fk+i, then we obtain that 

To bound the conditional Laplace transforms, we introduce 

and 

H}:)(a) = -2~ L L ere'jaiaj 
µ •• ~·~,. 

R';>(a) = -~LL ere~aiak 
µ i~la 

We also define the p( N)-dimensional vectors 

Naturally, we set 

z}:)(m, u) = 2~ L e-f3fl/;>(u,u)Xp,6 (llm';)(a, u) - mllO 
uESN 

and finally 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

Since for the remainder of the proof, mas well as N will be fixed values, to simplify our notations 
we will write simply fk(u) = JY;)(m, u). With these notations, we have that 

(3.15) 

16 



Now, 

f '( ) C' ( 1 ~ ~ tµtµ 2 X~10 (11mN(a,u)- mil~)~ ( µ ( ) _ µ) tµ ) 
k u = "k,u N L.J L.J C:.i C:.kaiO"k + {3N (jjm (a u) - mjj2) L.J mN a, u - -m C:.kak 

µ i::j:k Xp,6 N ' 2 µ 

(3.16) 

where ek,u denotes the expectation w.r.t. the probability measure 

1 --z-(k-)(-_-)Xp,o(llmN(a, u) - mll~)e-.8HN(u,u)da 
N m,u 

(3.17) 

We rewrite the first term in the form 

~ LLtft~aiak = Lm~(a,u)t~ak -1; 
µ i¢k µ 

= Lm.µe~ak + L (m~(a,u)- m.µ)t~ak -1; (3.18) 

µ µ 

Thus 

From this it follows that 

lfHu)I ~ Lmµt~ + ek,u L(m~(a,u)- mµ)t~ak (1 + .a1o) +ft (3.20) 
µ µ 

We observe that the first term in this bound is a random variable depending only on the t~. On 
the other hand, to bound the second term we can use that, under ek,u, 

µ µ (3.21) 

Defining the random variable Xk = L:µ mµt~, we have therefore the bound 

lf~(u)I ~ ( 1 + .a1o) ( jp(p + o) + p/N) + IXkl (3.22) 

uniformly on Fk+l, where the Fk \Fk+i-measurable random variable Xk satisfies the bounds 

IP [IXkl :'.:: z] :::; exp {- 2 1i~ll~ } 
17 
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which can be proven easily by using, for instance, the exponential Markov inequality together with 
2 

the fact that ln cosh x s ~ . 
From (3.15) it follows immediately that JC:>(m) satisfies virtually the same bound as fHu), 

i.e. 

Since, on the other hand 

we can now use the following 

Lemma 3.2: Let X be a random variable such that 

(i) JEX= 0 
2 

{ii) For all z 2:'.: 1, lP[IXI > z] Se-~. 
~ Then there exists a constant C > 1 such that IEetX s e 2 

(3.24) 

(3.25) 

Proof: Notice first that the information on X in the assumptions of the Lemma are completely 
symmetric, so that it suffices to prove a bound on the Laplace transform IEetX for t 2:'.: 0. We 

distinguish the cases t 2:'.: 1 and t < 1. For t 2:'.: 1 we have 

for some constant Ci. Fort< 1 we use 

IEe'x :=:; 1 + ~ (IE[X2:n:x<o] + 1E[X2e'x :n:x;:o:ol) 

:=:; exp [ t; (IE[X2:n:x <OJ+ IE[X 2ex :n:x;:o:ol)] 

(3.26) 

(3.27) 

where in the last line we have estimated the second term in the argument of the exponential by its 
value for t = 1. Using the bounds (ii), it is easy to see that the expectations in the second line of 
(3.27) are bounded by universal numerical constants, so that we see that there exists a universal 
constant C s.t. 

x ~ JEet s e 2 for all t 2:'.: 0 (3.28) 
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By some simple rescaling this lemma yields that 

(3.29) 

for some positive constant c. Choosing 8 = l/N and inserting this bound in (3.8) we get easily 
(3.2). 0 

From Lemma 3.1 we can now derive the following important result: 

Proposition 3.3: Assume that limNjoo p{Ntn N = 0. Let WN,p be the set 

WN,p = {m E IRPl'v'µ mµ E {-1, -1+2/N, .. ., 1- 2/N, 1} n llmll2 ~ 2} 

Then, for almost all w, 

Proof: First of all, 

IF::1,f 1p(N)[w](m) - lEF:,1,{;p(N)[w](m)I ~ l.F:,1,{;p(N)[w](m) - lEF:,1,{;p(N)[w](m)I 

+ IFff.lfl[w] - lEFff,lfl[w]I 

(3.30) 

(3.31) 

(3.32) 

where Fff.lf 1 = - 131zv ln zf:.11 is the free energy of the Hopfield model. It has been shown in [BG 1] 
that, under the hypothesis of the proposition, 

lim lpHopl[w] - lEFHopl[w]I = 0 NTO N,{3 N,{3 (3.33) 

for allmost all w. On the other hand, by Lemma 3.1, 

IP[. ewsup l.F:,1,{;p(N)[w](m) - lEF:,1,{;p(N)[w](m)I > z] 
m N,p(N) 

< L IP [l.F:,1,{1p(N)[w](m) -1EF:,1,{1p(N)[w](m)j > z] 
mEWN,p(N) 

(3.34) 

~ Np(N)e-Ncz2 = e-N(cz2 -p(N)lnN/N) 

Since by our assumptions on p(N) for any z > 0, this bound is exponentially small in N for N 
sufficiently large, the proposition follows from the first Borel-Cantelli Lemma. O 
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3.2 Two variational formulae for the rate function 

We now turn to the second result on the Hopfield model, which is a large deviation principle 
under a very strong condition on p(N), namely that p(N) < 11~1:. This makes use of of a very nice 
t,echnique introduced first by Grensing and Kiihn [GK] and later used by Koch and Piasko [KP] 
and Gayrard [G] to compute the free energy and to construct the Gibbs states of the model in this 
regime. 

Let us denote by I C IN a finite set; we will always assume that N is so large that I C 

{1, ... ,p(N)} (we exclude the trivial case p(N) bounded). We denote by 111 the orthogonal pro-
jection from IRp(N) to IR1 . Let us introduce, form E [-1, 1]1, the quantities 

(3.35) 

We introduce the family of vectors e-y E { -1, 1 }P, for 'Y = 1, 2, ... , 2P which represent a 
complete enumeration of all vectors in JRP whose components take only the values ±1. We set 

V-y = { i E A I ~r = e~' v µ = 1, ... 'p} (3.36) 

The V-y are of course random quantities depending on the ~f, however, their volumes lv-rl almost 
deterministic in the sense that there exist a subset 0 C n of probability one, and functions C N 

tending to zero as N j oo, such that for all but a finite number of indices N 

(3.37) 

provided that p(N) satisfies the assumption of Lemma 3.4. A proof of this fact can be found in [G] 
(Proposition 4.1). Let us remark further that the vectors e-y have the property that 

(3.38) 

where 8 here is the Kronecker symbol. Let us denote a-y(a) = 1 ,,~ 1 L:iEv'T ai. We then have 

2" 

m~(a) = 2-p L e~a-y(a) =mp( a( a))) (3.39) 
-r=l 

L · 2p(N) ln N - ( - ) emma 3.4: Assume that limNjoo N = 0. Then there exists a set n c n with IP n = 1, 
such that, for all w E fi, for all but a finite number of indices N, 

13~ In zi,,tJ,•[w](m) = sup 
aE[-l,lJ2"(N) 

11n1 ... p(a)-thll~~· 
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Proof: We have 

zI (iii)= 2-N N,/3,e 

(3.41) 
where W1117 1 = {-1, -1+2/lv...,I, ... ,1 - 2/lv...,I, l}. The last sum over the a is easy to compute. 
Namely 

(3.42) 

with I the well-known entropy function 

I(x) = { 1t1: ln(l + x) + 12:r: ln(l - x) , if lxl ~ 1 
+ oo , otherwise 

(3.43) 

(3.44) 

Observe now. that the a..., take values in the set W1117 1 so that the total number of terms in the sum 
2:a

7
,...,=l, ... ,2P is bounded by rr~:1 Iv..,! < e2

p lnN. Therefore, it suffices to use the upper and lower 
bounds 

(3.45) 

Since we have assumed that 2
p ~ N l 0 as N i oo, and using (3.37) we see that on n both the 

upper and the lower bound in (3.45) only differ by terms that converge to zero as N j oo from the 
quantity 

(3.46) 

But this proves the lemma. 0 

If p(N) were bounded, we would now be done. For in such a case, the limit as N tends to 
infinity of ~ N,/3,e( iii) clearly exists and yields the desired large deviation rate function in terms of 
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a variational formula. In our situation, since the dimension of the space over which the a: vary 
diverges, it is not a priori evident that the limit exists and can be expressed through a variational 
principle. To prove it we need some notation. Let us first observe that the vectors eµ can be chosen 
in the following explicit form, 

e~ = (-1)b2-<µ.-1>1 

where [x] denotes the integer part of x. Let us define the sets 

Obviously, 

~ c Ai c ... c A~-1 c A~= [-1,1]2
p 

The points to notice are now the following: If a: E A~, with d < p, then 

(i) m~(a:) = 0, if v > d and 

(ii) m~( a:) = m~( a:), ifµ ~ d. 

Let us set 

and 

Tp,e(m) = sup 0p(a:) 
aE.A~ 

llII1mp{a)-~ll~~· 

(3.4 7) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

Then, for a: E A~, 0p(a:) = 0d(a:), while at the same time the constraint in the sup is satisfied 
simultaneously w.r.t. mp or md, as soon as dis large enough such that IC {1, ... , d}. Therefore, 

sup 0p(a:) = 
ae.A: 

llII1m4(0)-~11~~· 

sup 0d(a:) = Td,e(m) (3.52) 
ae.A; 

l1II1m4{a)-~11~~" 

Hence T p,e( m) is an increasing sequence in p and being bounded from above, converges. With 
these preparations, we are ready to prove the following proposition. 

P •t. 3 5 A h . 211(N) 1 N . roposi ion . : ssume t at limNloo N n = 0. Then for almost all w, the induced mea-
sures Q~1'[w] satisfy a large deviation principle with rate function Ff/opf,I(m) given by the fol-
lowing variational formula 

FHopf,I(m) = - sup 
{3 pEIN 

(3.53) 

+ sup (x2 
- rr1 l(x)) 

:i:E[-1,1] 2 
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If r P denotes the set 

rp = {m E IR1 
l3ae(-1,l)P: IIrmp(a:) = m} 

then F(!opf,I(m) is uniformly bounded on f111 and F(!opf,I(m) = +oo if m r/. f111. F(!opf,I(m) is 

lower-semicontinuous, and uniformly Lipshitz continuous on r111. 

Proof: We have shown above that T p,e( m) converges for fixed E, from which we obtain immediately 
that F!f.:Pf ( m) exists and is given by the variational formula 

(3.54) 

+ sup (x2 
-{r1I(x)) 

:z:E[-1,1] 2 

From this it is obvious that F!f.;pf,I converges, as f l 0 to a lower-semicontinuous function and that 

(3.55) 

with F(!opf,I(m) understood to be defined by (3.53). This will imply 

(3.56) 

whenever F(!opf,I is continuous in a neighborhood of m. 

Now recall that I(x) is uniformly bounded on [-1, 1], and uniformly continuous with bounded 
derivative on (-1, 1). Therefore, 0p(a:) enjoys the same properties on [-1, l]P and (-1, l)P, respec-
tively. Moreover, a straightforward computation shows that on its domain of continuity, 0p is in 
fact uniformly Lipshitz with constant c2-P/2 , i.e. for a:, a:' E (-1, l)P, 

(3.57) 

Now it is clear that if there exists panda: E [-1, l]P such that II1mp(a:) = m, then F(!opf,I(m) < 
+oo. This shows that F!f 0pf,I is bounded on r111· But it is not difficult to see that r111 :J r P for 
all p ~ III, so that r111 is the domain of finiteness of Ff!opf,l. 

Notice that if a: E [-1, 1 ]P is such that IIrmp( a:) = m then a:' defined through a:~ = a:-y + 
'L:µeI e~(m"' - m"') satisfies IIrmp(a:) = m. Clearly Ila: - a:'ll 2 = 2P/2 llm - mll 2 • Using this fact 
and (3.57), we find that T p,o is actually uniformly Lipshitz continuous on r111 with constant C, 
independent of p. But this implies by a simple three epsilon argument the Lipshitz continuity of 
F(!opf,I on the interior of its domain of finiteness. This concludes the proof of Proposition 3.5. 0 
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Remark: From the rate functions for the marginal distributions one can of course, by standard ar-
guments construct the rate functions for the infinite dimensional distributions through an inductive 

limit, as in the Dawson-Gartner Theorem [DG] (see e.g. [DS]). 

It may be of interest to give an alternative expression for the variational formula (3.53) which 
allows to obtain some interesting bounds. To this end, we notice that the function I( x) is the 
Legendre transform of the function ln cosh(t), i.e. that 

Let us first rewrite 

q> N,/3,€( ih) = 

I(x) = sup (tx - ln cosh t) 
tEJR. 

(3.58) 

(3.59) 

To find the suprema under the constraints 2-p :E~: 1 e"Ya"Y = m, we introduce the corresponding 
Lagrange multipliers tµ, µ = 1, .. . ,p. The resulting function 

(3.60) 

is quadratic in mv, and d;!., L( m, a, t) = 0 if and only if tv = mv. Thus for the component v, with 
v E Jc, over which the supremum over mv is taken unconditioned, we must have that tv = mv. 
Therefore 

1 p 1 1 2
p ( p ) = sup sup inf L - (wµ - tµ)2 

- L-~ + f.l L ln cosh {3 L e~tµ 
uiE[-1,1]I tEJR.Ic tEJR.I I 2 v-1 2 p2P -1 -1 

llw-1hll2<, µE - "Y- µ-
2-

(3.61) 

where </>13(z) = -z; + ~ ln cosh({jz) and where to get the last line we have used the orthogonality 
relations (3.38). 

From (3.61) we can derive the following alternative variational formula for the rate function 
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F%opf,I(m): 

F/f opf ,I ( m) = - sup sup inf L ! ( m'-' - tµ)2 + 2
1 f: </Jfl (L e~tµ + L e~tv) 

pEJN tEJR{l, ... ,p}\1 tEJR1 µEl 2 p '"(=l µEI vEJc 

- j~Jiz ( ~
2 

- ,tr1 In cosh,Bx) 
(3.62) 

In fact, to obtain (3.62), we have to show, like in the proof of Proposition 3.5, that the limit 
of (3.61) as N tends to infinity exists. To do this, let us define, in complete analogy to the proof of 
Proposition 3.5, 

(3.63) 

Note that c.t>N,13,e(w) depends on N only through p(N). This suggests to define 

Tp(w) = sup Sp(t,w) (3.64) 
tEJR{l, ... ,p}\1 

Now to compute this supremum, we can first compute the suprema over subspaces in which only 
the first d components of l are allowed to take non-zero values, and then take the supremum over 
d ~ p. But notice that for such l, Sp(l, w) = Sd(l, w), where obviously in the second function l is 
understood to be the projection of the original t onto the subspace _m{l, ... ,d}\I. Thus 

Tp(w) =sup sup Sp(t,w) 
d~p rem{1, ... ,p}\1 

! 11 =0V11>ct 

=sup sup Sd(i, w) 
d~p tEJR{l, ... ,ct}\1 

(3.65) 

=sup Td(w) 
d~p 

But this implies that T p( w) is a monotone increasing sequence in p. Since it is bounded from above 
(see e.g. (3.68), it therefore converges to a finite limit. Thus 

lim q> N.13,e( m) = sup lim T p( w) 
NToo 111E[-1,111 pToo 

(3.66) 

11111-"1.ll~S• 

From this it is obvious that the expression (3.62) represents the rate function. 

From (3.61), it is possible to derive two bounds that involve suprema in a finite number of 
variables only. First we obtain the obvious lower bound 

(3.67) 
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by bounding the sup over l by its value for l = 0. On the other hand, we get an upper bound 

(3.68) 
Here Concf denotes the concave hull of the function f, i.e. the smallest concave function that is 
pointwise larger or equal to f. To obtain (3.68) we used two facts: First, the sum of the concave 
hulls of the functions </>{3 is in fact the concave hull of the sum, as a function of the t and i. 
Moreover, the function appearing in the first line of (3.68) is symmetric in l. Being also concave in 
l, its supremum must be taken on at zero. 

Remark: In the case III = 1 one can easily show that this upper bound coincides with the concave 
hull of the lower bound (3.67), and one may think that this could be true in general, but we cannot 
prove this. 
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4. A Lebowitz-Penrose theorem 

Having reduced the FHKP-model effectively to an interacting local mean field model in Section 
2 we will now use the results on the rate function for the Hopfield model obtained in Section 3 to 
show that the large deviation properties of the total overlap parameters mA of the FHKP-model 
can be found in terms of those of the usual mean field Hopfield model. This is an anologue of the 
Lebowitz-Penrose theory [LP] of the Kac-model. 

As usual, we need to proof upper and lower bounds on the non-normalized versions of the 

quantities QA,/3,-y[w](m), that is we define for ih E IR1 

ZA,/3,-y,e[w](m) = r{2N+l) L JI{llTI1mA(u)-mll;~e}e-l3HA,,[w](u) 
uESA. 

( 4.1) 

Using Corollary 2.2, we see immediately that, for almost all w, for all but a finite number of indices 
N, this quantity differs from 

ZA,/3,-y,e[w](m) = 2-{2N+l) L JI{llTI1mA{u)-mll;~e}e-l3HL[w](u) 
uESA 

(4.2) 

only by a factor e±C2N+l)"Yl(-y)4../2Iog 2+v'2-yM(-y) which under the assumptions 1l(r) l 0and1M(r) l 
0 will give a negligible contribution in the limit 1 l 0. We thus have only to get bounds on 

ZA,/3,-y,e[w ]( ih ). 

Let us begin with the lower bound. For this, we write, using (2.7) 

ZA,/3,-y,e[w](m) = 2-<2N+i) L Il{llTiimA(u)-mll~~e} 
uESA 

> 

{ 
1 M("Y) } 

X exp {32.l(r) L J-yl("Y)(x - y) L m~(:i)a)m~(y)(a) 
(:r:,y)Erxr µ=1 

sup 
m.EWz,M 

llil1m.-""ll~~-(p) 

(4.3) 

where €(p) = ( y'€ - .J"P) 2 • ( 4.3) holds for arbitrary p but we will later choose p = p"Y that tends to 
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zero with "Y in a suitable way. Since under the characteristic functions in the last expression 

M(-y) 

L J..,z(-y)(x - y) L m~(:r:)(a)m~(y)(a) = 
(:r:,y)Erxr µ=1 

M(-y)( L J..,z(-y)(x - y) L (m"')2 + m'°' ( m~(:r:)(a) - m'°') + m'°' ( m~(y)(a) - m'°') 
(:r:,y)Er xr µ=1 ( 4.4) 

+ ( m~(")(u)- m") ( m~(y)(u)- m")) 

~ L llmll~ - 2v'Pllmll2 - P 
:r:Er 

we get from ( 4.3) 

ZA,,8,..,,E[w](m) ~ 

sup II 2-Z(-y) L 1I{llmA{11)(u)-mll~P} exp {,B~l( "Y )llmll~ - 2,Bl( "Y )y'p - ,Bl( "Y )p} ( 4.5) 
-ewi,M :r:Er uESA., 

llII1Tn-'9&.1i~9(P) 

In the last line we recognize the function 

(4.6) 

so that our lower bound can be expressed in the form 

ZA,,8,-y,E[w](m) ~ (4.7) 

where Wx is defined, in a slightly abusive way, through the relation that for i E {1, ... , l("Y)}, 
li(w:r:) = 6(-y):r:+i(w). (Sorry!) Thus, using Kolmogorov's strong law of large numbers, we see that 
for fixed "Y, for almost all w, 

_#~ 2/+ 1 In Z A,13,., ,,[w] ( m) ~ sup #r~ 2/ + 1 L Jn zff ;).L [w,,] ( m) - 2(3./P - fjl(-y) 
-ew1,M :r:Er 

llIIr--79&.ll~Si(p) 

-:~~M l(~)JE [1n z:.,i.~)wJ(m)] - 2(3.jp{jl(;) 
11n1--""ll~Si(p) 

( 4.8) 
Furthermore, we can write 

sup l(l )IE [1n zff;)~ P[w](m)] ~IE [ sup l(l) ln zff;)~ P[w](m)] 
-ew1,M "Y I I -ew1,M "Y I I 

llII1--t9&.ll~Si(p) llII1--"'ll~Si{p) ( 4.9) 

- IE (m::..M I(~) j1n zff.,i.~)w](m)- !Eln z:.,i.~)w](m)I) 
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The first term in ( 4.9) is what we want. To control the second, we can use Lemma 3.1. By the 
bound provided there, a simple calculation shows that 

IE [ _:~;,M !(~) l1n zff;r.Llw](m)- IE!n zff-ri.Llw](m)I] ~ c 
llll1m.-"7.ll~::;.t(p) 

ln Z(-y)M(..y) 
l( 'Y)/(M( 'Y)P) (4.10) 

for some positive constant c. At this point we can choose reasonably p = MC'Y). To sim-
plify the notation we will set € = € (1/M('r)). Taking furthermore advantage of the fact that 
limNioo 21J+l 1n ZA,,8,"(,e[w](m) is necessarily a concave function, we arrive at the lower bound 

lim Nl 1 ln ZA,,8,"(,t:[w](m) "?_Cone.IE [ sup l(l) ln zfl(;)p~ 1/M('Y)[w](m)l 
Njoo 2 + m.EWz,M 'Y 1 

' ( ) 

11n1 m.-,,,,11~:5• 4.11 

_ c· /lnZh)Mh) -{3 ~ _ _IL V Z('Y) V MG) M('Y) 

(recall that we exclude the trivial case of bounded M('Y) from our considerations. If M('Y) grows 
much more slowly than l('Y ), this bound can of course be improved by making a different choice of 
p). Finally, by using the trivial bound 

Z Hopf,l[ ]( - ) 2 -z('Y) ~ -,8H~0)f (u) :IT 
Z('Y),,8,e w m = L-J e 1 7 {llII1m1(u)-mll~~e} 

uES1(7 > 

sup zff;),~,l/M('Y)(w](m) 
m.EWzM 

llll1m.-,,,:ll~:5· 

( 4.12) 

this becomes 

»~ 2/+ 1 In ZA,/l,-y,•[w](m) ?:ConclE [ zk In zff-ri.~:!lw](m)] 
_ C. f ln Z('Y)M('Y) _ {3 ~ _ M('Y) In Z('Y) _ _IL 

V Z('Y) V M°("() l('Y) M('Y) 

( 4.13) 

This is in fact the desired form of the lower bound. 

We now derive the upper bound. Here we use the simple fact that 

m~(:i:)(a)m~(y)(a) ~ ~ ( m~(:i:)(a)r + ~ ( m~(y)(a)r ( 4.14) 

to write 

ZA,,8,"(,dw](m) ~ 2-(
2N+l) L :rr{llIIimA(u)-mll~~e} exp {{3~l('Y) L llmA(x)(a)ll~} 

uESA :i:Er 

~ L :rr{llII1u!+r l: .. er m.,-mll~~e} 
m~ ,:i:Er ,µ.El 

X IT 2-l(-y) L ll{rr1 m1c,i(u)=m.} exp{{3~l('Y) L llm:i:ll~} 
:i:Er uESic-r> xEr 

( 4.15) 

~ L :rr{llII1u!+r l: .. er m.,-mll~~t:} exp {L ln zff;),~'1[w:i:](m:i:)} 
m~ ,:i:Er ,µ.El :i:er 
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(2N+l) !!!..!W III Since the number of terms in the sum over them~ is bounded by [l(1)]<2L+i)III = e 1(7) 

we can bound ( 4.15) by the number of terms in the sum times the maximal term. This gives 

( 4.16) 

Therefore 

li 1 1 Z [ ]( - ) ln l(r) 111 
N~ 2N + 1 n A,~,-y,E w m - zc:yf" 

. 1 """ 1 Hopf ,I[ ]( ) ~ ff! 2L + 1 sup L.J l('V) ln zl(-y),~ Wx mx 
m.~ ,mer.~EI xEP t 

11n12C+1 2':.,er m..,-,,..ll~S· 

1 
~ Concl(r)"ZElnz:;r,~:![w](m) 

+ f~ 2L 
1+ 1 ~ !(~) m~;E1 l1n z:'Yi.V[wzJ(mz)- IE In z:'Yi.V[wzJ(mz)i 

( 4.17) 

$Cone I(~ )JE!n z:;r.~:![w](m) 

+ lim l(l )IE [ sup lln z:;),~' 1[wx](mx) - IEln z:;r,~,I[wx](mx)I] 
Lloo l m:: ,µEl 

almost surely, by the Kolmogorov law of large numbers. Moreover, using Lemma 3.1 and the 
ineqality ( 4.12), we can bound the expectation of the supremum in the last line just as in the case 
of the lower bound by cJM(-rzl~)l(-r). Thus, we have that almost surely, 

ffr! 2Nl+ 1 ln ZA,,B,'f,E[w](m) $Concz@JE1n z:;r.~:![w](m) 
+ C. f M(-y) ln Z(-y) + ln Z(-y) 111 V Z(-y) l(-y) 

A consequence of these bounds will be the following 

( 4.18) 

Lemma 4.1: Assume that M ( /), l ( /) are such that lim-y !O M( ~~ ~) l(-y) = 0. Then, J or all E1 < € 

and for almost all w, 

limsup fr~.FA,~,-y,E[w](m) ~ limsup ConvIEF1~~~/11(m) 
-y!O Zloo 

( 4.19) 

and 

liminf lim FA f.I 'V E[w](m) > liminf ConvIEF,1~0~f,I(m) -r!O ATZ ,,.,, ,, - Zloo ,,..,, .. ( 4.20) 
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where F [w](m) = -{3-1 - 1 -ln .ZA.@.7.•[w](m) A,{3,-y,e - 2N+l .ZA,,e,,.,.[w] • 

In particular, if the limit limzroo ConvlEFz~~~f,I(m) := c:,:pf,I(m) exists and is continuous in 
e, then, for almost all w, 

( 4.21) 

If in addition lim-y !O 'Y l ( 'Y) = 0 then for almost all w, 

~fo ffj.FA,{3,-y,e[w](m) = c:,:pf,I(m) ( 4.22) 

Proof: Let us first remark that due to Lemma 2.3, if the statements concerning the limits 'Y l 0 
hold for subsequences 'Yn = 1/n with probability one, then they hold for with probability one for 
all subsequences. By this remark, Eqs. ( 4.19) and ( 4.20) follow directly from the bounds ( 4.18) 
and ( 4.13). ( 4.21) is a direct consequence of ( 4.19) and ( 4.20) under the additional assumptions 
on the existence and continuity of c%,;pf,I(m). Finally, the use of the estimates of Section 2, in 
particular Corollary 2.2 allows to replace F by F and thus to obtain ( 4.22) under the additional 
assumption on l( 'Y ). 0 

We will now use this lemma to prove Theorems 1 and 2. 

Proof of Theorem 1: We consider the situation where M(T) = '::;1
• If we choose l(T) such that 

l(7)llnl(7)I = 1, then (4.22) relates this FHKP-model to the Hopfield model withp(l) = lnl~l;Z) = 
ln zt~~ ln z. But this function satisfies the assumption of Proposition 3.5, so that 

lim p,Hopf,I(m) = inf pHopf,I(m) 
ljoo l,{3,e m:llm-mll~5e f3 

( 4.23) 

where F/f opf,I is given in Proposition 3.5. In particular, the continuity of this function on r111 
implies immediately the continuity of the left hand side of ( 4.23) in e for all m E r111. Thus, under 
these assumption, ( 4.22) holds and, moreover, 

F13(m) = ~ft}~l1J ff.j-FA,/3,-y,e[w)(m) = ConvF/fopf,I(m) 

exists and is given by the convex hull of the function (3.53). 

( 4.24) 

Now the left hand sides of (4.22) and (4.24) do not depend on the choice of l(T). Therefore, 
we can make a different choice of l(T), to relate the same FHKP-model to a Hopfield model with 

different p(l). For any function p(l), such that p(l) = 1~ 1 q(l), where q(l) l 0, we just have to choose 
l( 'Y) in such a way that 

~q(l(T)) = I ln'YI = M(T) 
lnl(7) ln3 

( 4.25) 
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Then the assumption of Lemma 4.1 on M('Y) and l( 'Y) are still satisfied, but the rate functions of 
the FHKP-model with this M('Y) will be related to those of the Hopfield model with the chosen 
p(l). Now, instead of (4.19) and (4.20), we can derive from (4.13) and (4.18) that, for all e" > e, 
for almost all w, 

( 4.26) 

and 
liminf ConvJEF,1~0:111(m) 2:': lim lim FA r.1..., E"[w](m) 

lToo ii-Ji"" "YlO AT Z ii-Ji 
11 

( 4.27) 

But the right hand sides are continuous in e, and so the limit 

lim ConvJEF,1~0:111(m) = lim lim FA r.1...,, E[w](m) 
lToo t1-J1"" "YlOATZ t1-J111 

( 4.28) 

actually exists, almost surely, and is a continuous function of e. In fact, 

lim lim ConvJEF,HopftI(m) = ConvFHopf,1 (m) 
ElO l T 00 l,{3 ,E /3 ( 4.29) 

with the left hand side independent of the function p(l). This concludes the proof of Theorem 1. 

00 

Proof of Theorem 2: We have actually just established that the requirements for ( 4.20) are 
in fact satisfied as long as p( l) = 1~ l q( l), with q( l) tending to zero arbitrarily slowly. Making 
the choice l(T) = JM("YWn"YI, we see that (4.21) and thus (4.25) hold as long as M(7) satisfies 
'YI ln7jM(7) l 0. But this proves Theorem 2. 00 

32 



References 

[AGS] D.J. Amit, H. Gutfreund, and H. Sompolinsky, "Storing infinite numbers of patterns in a spin 
glass model of neural networks", Phys. Rev. Letts. 55: 1530-1533 (1985). 

[BGl] A. Bovier and V. Gayrard, "Rigorous results on the thermodynamics of the dilute Hopfield 
model", J. Stat. Phys. 69: 597-627 (1993). 

[BG2] A. Bovier, and V. Gayrard, "Rigorous results on the Hopfield model of neural networks", to 
appear in Resenhas do IME-USP 2 (1994). 

[BGPl] A. Bovier, V. Gayrard, and P. Picco, "Gibbs states of the Hopfield model in the regime of 
perfect memory", to appear in Prob. Theor. Rel. Fields (1994). 

[BGP3] A. Bovier, V. Gayrard, and P. Picco, in preparation. 

[Co] F. Comets, "Large deviation estimates for a conditional probability distribution. Applications 
to random Gibbs measures", Prob. Theor. Rel. Fields 80: 407-432 (1989). 

[COP] M. Cassandra, E. Orlandi, and E. Presutti, "Interfaces and typical Gibbs configurations for 
one-dimensional Kac potentials, Prob. Theor. Rel. Fields 96: 57-96 (1993). 

[DS] J.-D. Deuschel and D. Stroock, "Large deviations", Academic Press, Boston, (1989). 

[DG] D.A. Dawson and J. Gartner, "Large deviations from the McKeane-Vlasov limit for weakly 
interacting diffusions'', Stochastics 20: 247-308 (1987). 

[E] R.S. Ellis, "Entropy, large deviations, and statistical mechanics", Springer-Verlag, Berlin (1985). 

[FPl] L.A. Pastur and A.L. Figotin, "Exactly soluble model of a spin glass", Sov. J. Low Temp. 
Phys. 3(6): 378-383 (1977). 

[FP2] L.A. Pastur and A.L. Figotin, "On the theory of disordered spin systems", Theor. Math. Phys. 
35: 403-414 (1978). 

[FP3] L.A. Pastur and A.L. Figotin, "Infinite range limit for a class of disordered spin systems", 
Theor. Math. Phys. 51: 564-569 (1982). 

[G] V. Gayrard, The thermodynamic limit of the q-state Potts-Hopfield model with infinitely many 
patterns, J. Stat. Phys. 68: 977-1011 (1992). 

[Gae] J. Gartner, "Large deviations from the invariant measure", Th. Prob. Appl. 22: 24-39 (1977). 

[GK] D. Grensing and K. Kiihn, "On classical spin-glass models", J. Physique 48: 713-721 (1987). 

33 



[vH] J.1. van Hemmen, "Spin glass model of a neural network", Phys. Rev. A 34: 3435-3445 (1986). 

[Ho] J.J. Hopfield,"Neural networks and physical systems with emergent collective computational 
abilities", Proc. Natl. Acad. Sci. USA 79: 2554-2558 (1982). 

[K] H. Koch, "A free energy bound for the Hopfield model", J. Phys. A: Math Gen. 26: 1353-1355 
(1993). 

[KP] H. Koch and J. Piasko, "Some rigorous results on the Hopfield neural network model", J. Stat. 
Phys. 55: 903-928 (1989). 

[KS] H. Kesten and R. Schonmann, "Behaviour in large dimensions of the Potts and Heisenberg 
model", Rev. Math. Phys. 1: 147-182 (1990). 

[KUH] M. Kac, G. Uhlenbeck, and P.C. Hemmer, "On the van der Waals theory of vapour-liquid 
equilibrium. I. Discussion of a one-dimensional model" J. Math. Phys. 4: 216-228 (1963); "IL 
Discussion of the distribution functions" J. Math. Phys. 4: 229-247 (1963); "III. Discussion of 
the critical region'', J. Math. Phys. 5: 60-74 (1964). 

[LP] J. Lebowitz and 0. Penrose, "Rigorous treatment of the Van der Waals Maxwell theory of the 
liquid-vapour transition", J. Math. Phys. 7: 98-113 (1966). 

[PST] L. Pastur, M. Shcherbina, and B. Tirozzi, "The replica symmetric solution without the replica 
trick for the Hopfield model", J. Stat. Phys. 74: 1161-1183 (1994) 

[ST] M. Shcherbina and B. Tirozzi, "The free energy for a class of Hopfield models", J. Stat. Phys. 
72: 113-125 (1992). 

[Yu] V. V. Yurinskii, "Exponential inequalities for sums of random vectors", J. Multivariate. Anal. 
6: 473-499 (1976) 

34 



Recent publications of the 
Institut fiir Angewandte Analysis und Stochastik 

Preprints 1993 

66. Gunther Albinus, Hans-Christoph Kaiser, Joachim Rehberg: On stationary 
Schrodinger-Poisson equations. 

67. Jorg Schmeling, Reinhard Winkler: Typical dimension of the graph of certain 
functions. 

68. Ale Jan Homburg: On the computation of hyperbolic sets and their invariant 
manifolds. 

69. John W. Barrett, Peter Knabner: Finite element approximation of transport 
of reactive solutes in porous media. Part 2: Error estimates for equilibrium 
adsorption processes. 

70. Herbert Gajewski, Willi Jager, Alexander Koshelev: About loss of regularity 
and "blow up" of solutions for quasilinear parabolic systems. 

71. Friedrich Grund: Numerical solution of hierarchically structured systems of 
algebraic-differential equations. 

72. Henri Schurz: Mean square stability for discrete linear stochastic systems. 

73. Roger Tribe: A travelling wave solution to the Kolmogorov equation with 
n01se. 

7 4. Roger Tribe: The long term behavior of a Stochastic PDE. 

75. Annegret Glitzky, Konrad Groger, Rolf Hunlich: Rothe's method for equa-
tions modelling transport of dopants in semiconductors. 

76. Wolfgang Dahmen, Bernd Kleemann, Siegfried Profidorf, Reinhold Schnei-
der: A multiscale method for the double layer potential equation on a poly-
hedron. 

77. Hans-Gunter Bothe: Attractors of non invertible maps. 

78. Gregori Milstein, Michael Nussbaum: Autoregression approximation of a 
nonparametric diffusion model. 

Preprints 1994 

79. Anton Bovier, Veronique Gayrard, Pierre Picco: Gibbs states of the Hopfield 
model in the regime of perfect memory. 



80. Roland Duduchava, Siegfried ProBdorf: On the approximation of singular 
integral equations by equations with smooth kernels. 

81. Klaus Fleischmann, Jean-Fran~ois Le Gall: A new approach to the single 
point catalytic super-Brownian motion. 

82. Anton Bovier, Jean-Michel Ghez: Remarks on the spectral properties of 
tight binding and Kronig-Penney models with substitution sequences. 

83. Klaus Matthes, Rainer Siegmund-Schultze, Anton Wakolbinger: Recurrence 
of ancestral lines and offspring trees in time stationary branching popula-
tions. 

84. Karmeshu, Henri Schurz: Moment evolution of the outflow-rate from non-
linear conceptual reservoirs. 

85. Wolfdietrich Miiller, Klaus R. Schneider: Feedback stabilization of nonlinear 
discrete-time systems. 

86. Gennadii A. Leonov: A method of constructing of dynamical systems with 
bounded nonperiodic trajectories. 

87. Gennadii A. Leonov: Pendulum with positive and negative dry friction. Con-
tinuum of homoclinic orbits. 

88. Reiner Lauterbach, Jan A. Sanders: Bifurcation analysis for spherically sym-
metric systems using invariant theory. 

89. Milan Kucera: Stability of bifurcating periodic solutions of differential in-
equalities in JR.3• 

90. Peter Knabner, Cornelius J. van Duijn, Sabine Hengst: An analysis of crystal 
dissolution fronts in flows through porous media Part I: Homogeneous charge 
distribution. 

91. Werner Horn, Philippe Lauren~ot, Jiirgen Sprekels: Global solutions to a 
Penrose-Fife phase-field model under flux boundary conditions for the in-
verse temperature. 

92. Oleg V. Lepskii, Vladimir G. Spokoiny: Local adaptivity to inhomogeneous 
smoothness. 1. Resolution level. 

93. Wolfgang Wagner: A functional law of large numbers for Boltzmann type 
stochastic particle systems. 

94. Hermann Haaf: Existence of periodic travelling waves to reaction-diffusion 
equations with excitable-oscillatory kinetics. 


