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Abstract. The dispersion relation for surface waves on the boundary between a fully saturated
poroelastic medium and a vacuum is investigated numerically in the whole range of frequencies.
A linear model of a two-component poroelastic medium similar to but simpler than the classical
Biot’s model is used.

In the whole range of frequencies there exist two modes of surface waves corresponding to the
classical Rayleigh and Stoneley waves. The numerical results for phase velocities, group velocities
and attenuations of these waves are shown for different values of the bulk permeability coefficient,
π.

1 Introduction

The most popular model for the study of surface waves in two-component porous media is
the model of Biot [2]. One of the first investigations of surface waves within this model stems
from Deresiewicz [4]. An extensive analysis of Biot’s model in the range of high frequencies
was carried by Feng & Johnson [7]. They show some basic properties of surface waves for
the boundary porous medium/fluid (open and sealed boundary) in different ranges of the
stiffness of the skeleton.

In this work we rely on a “simple mixture model” and this is, of course, simpler than
that of Biot. We neglect two effects:

• an added mass effect reflected in the Biot’s model by off-diagonal contributions to the
matrix of partial mass densities,

• a static coupling effect between partial stresses.

The first contribution is neglected because it yields a non-objectivity of Biot’s equations
(see e.g. [9]). The second contribution is neglected because it yields small quantitative
changes (app. 5%) [11] and does not influence spectral qualitative properties of surface
waves.

The purpose of this work is to investigate the dispersion relation for surface waves on
an impermeable boundary of a fully saturated poroelastic medium in the whole range of
frequencies. Until now this has not been performed within the Biot’s model because it yields
a very complicated analysis of complex roots of the dispersion relation. Even though not
straightforward either, it is simpler in the ”simple mixture model”.

2 Model

In this section we present the linear form of an extract of the ”simple mixture model” of a
two-component poroelastic saturated medium. (For the complete model see e.g. Wilmanski
[8]).

The process is described by the macroscopic fields ρF (x, t) – partial mass density of the
fluid, vF (x, t) – velocity of the fluid, vS (x, t) – velocity of the skeleton, eS (x, t) – symmetric
tensor of small deformations of the skeleton. They satisfy the following relations

∂ρF

∂t
+ ρF

0 div vF = 0,

∣∣∣∣∣
ρF − ρF

0

ρF
0

∣∣∣∣∣ ¿ 1,

ρF
0

∂vF

∂t
+ κ grad ρF + p̂ = 0, p̂ :=π

(
vF − vS

)
,

ρS
0

∂vS

∂t
− div

(
λS

(
tr eS

)
1 + 2µeS

)
− p̂ = 0, (1)
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∂eS

∂t
= sym grad vS,

∥∥∥eS
∥∥∥ ¿ 1.

Here ρF
0 , ρS

0 denote constant reference values of the partial mass densities, and κ, λS, µS, π
are constant material parameters. The first one describes the macroscopic compressibility
of the fluid component, the next two are macroscopic elastic constants of the skeleton and
π is the coefficient of bulk permeability. We do not quote the equation for the porosity
because the problem of evolution of porosity, which in this model is a field, can be solved
separately from the rest of the problem and does not influence the propagation of acoustic
waves in the medium.

2.1 Construction of solution

For the construction of solution we follow the procedure applied before in the works [10],
[6] and [12]. We consider solely monochromatic waves with a given real frequency ω.

Compatibility with field equations We introduce the displacement vector uS for the
skeleton, and formally the displacement vector uF for the fluid:

uS = grad ϕS + rot ψS, vS =
∂uS

∂t
, eS = sym grad uS, (2)

uF = grad ϕF + rot ψF , vF =
∂uF

∂t
.

For the two-dimensional case we make the following ansatz for monochromatic wave solu-
tions in the x-direction

ϕS = AS (z) exp [i (kx− ωt)] , ϕF = AF (z) exp [i (kx− ωt)] , (3)

ψS
y = BS (z) exp [i (kx− ωt)] , ψF

y = BF (z) exp [i (kx− ωt)] ,

ψS
x = ψS

z = ψF
x = ψF

z = 0, ρF − ρF
0 = AF

ρ (z) exp [i (kx− ωt)] .

Substitution in field equations (1) leads to compatibility conditions

BF =
iπ

ρF
0 ω + iπ

BS, AF
ρ = −ρF

0

(
d2

dz2
− k2

)
AF ,

[
κ

(
d2

dz2
− k2

)
+ ω2

]
AF +

iπ

ρF
0

ω
(
AF − AS

)
= 0,

[
λS + 2µS

ρS
0

(
d2

dz2
− k2

)
+ ω2

]
AS − iπ

ρS
0

ω
(
AF − AS

)
= 0, (4)

[
µS

ρS
0

(
d2

dz2
− k2

)
+ ω2 +

iπρF
0

ρS
0 (ρF

0 ω + iπ)
ω2

]
BS = 0.

Dimensionless notation Introduction of a dimensionless notation is convenient. Using
relations

cP1 :=

√
λS + 2µS

ρS
0

, cP2 :=
√

κ, cS :=

√
µS

ρS
0

. (5)

which are the front velocities of the three bulk waves in a two-component porous medium:
two longitudinal waves, P1 (fast wave) and P2 (slow wave, also called Biot’s wave), and



3

one shear wave, S, we define the following dimensionless quantities

cs :=
cS

cP1

< 1, cf :=
cP2

cP1

, π′ :=
πτ

ρS
0

> 0, (6)

r :=
ρF

0

ρS
0

< 1, z′ :=
z

cP1τ
, k′ := kcP1τ, ω′ := ωτ,

where τ is the relaxation time (arbitrarily chosen for the purpose of this work).

Ansatz Further we omit the prime for typographical reasons. Substitution of (6) in equa-
tions (4) yields

[
c2
f

(
d2

dz2
− k2

)
+ ω2

]
AF + i

π

r
ω

(
AF − AS

)
= 0,

[(
d2

dz2
− k2

)
+ ω2

]
AS − iπω

(
AF − AS

)
= 0, (7)

[
c2
s

(
d2

dz2
− k2

)
+ ω2 +

iπω2

ω + iπ
r

]
BS = 0.

The matrix of coefficients for homogeneous materials is independent of z. Hence the differ-
ential eigenvalue problem can be easily solved. We seek solutions in the form

AF = A1
fe

γ1z + A2
fe

γ2z, AS = A1
se

γ1z + A2
se

γ2z, BS = Bse
ζz. (8)

Substitution in (7) yields relations for the exponents in the form

(
ζ

k

)2

= 1− 1

c2
s

(
1 +

iπ

ω + iπ
r

) (
ω

k

)2

, (9)

c2
f

[(
γ

k

)2

− 1

]2

+
[
1 +

(
1 +

1

r

)
iπ

ω

] (
ω

k

)4

+
[
1 + c2

f +
(
c2
f +

1

r

)
iπ

ω

] [(
γ

k

)2

− 1

] (
ω

k

)2

= 0. (10)

Simultaneously, we obtain for the eigenvectors the following relations

R1 =
(
Bs, A

1
s, A

1
f

)T
, R2 =

(
Bs, A

2
s, A

2
f

)T
, (11)

where
A1

f = δfA
1
s, A2

s = δsA
2
f , (12)

δf :=
1

r

iπ
ω

ω2

k2

c2
f

[(
γ1

k

)2 − 1
]

+
(

ω
k

)2
+ iπ

ωr
ω2

k2

, δs :=
iπ
ω

ω2

k2(
γ2

k

)2 − 1 +
(

ω
k

)2
+ iπ

ω
ω2

k2

. (13)

The above solution for the exponents still leaves three unknown constants Bs, A
2
f , A

1
s which

must be specified from boundary conditions.
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Boundary conditions In order to determine surface waves in a saturated poroelastic
medium we need conditions for z = 0. For the boundary porous medium/vacuum we have
the following boundary conditions

• T13|z=0 ≡ T S
13

∣∣∣
z=0

= c2
SρS

0

(
∂uS

1

∂z
+

∂uS
3

∂x

)∣∣∣∣∣
z=0

= 0, (14)

• T33|z=0 ≡ (T S
33 − pF )

∣∣∣
z=0

=

= c2
P1ρ

S
0

(
∂uS

1

∂x
+

∂uS
3

∂z

)
− 2c2

SρS
0

∂uS
1

∂x
+ (15)

−c2
P2

(
ρF − ρF

0

)∣∣∣
z=0

= 0,

• ∂

∂t

(
uF

3 − uS
3

)∣∣∣∣∣
z=0

= 0, (16)

where uS
1 , uS

3 are x-, and z-components of the displacement uS, respectively, and uF
3 is the

z-component of the displacement uF .

The first two conditions describe the continuity of the full traction, t :=
(
T S + T F

)
n,

n = (0, 0, 1)T , on the boundary; the third condition is the continuity of the fluid mass flux.

These conditions follow for this boundary from the more general boundary conditions
formulated by Deresiewicz & Skalak [5] for the boundary porous medium/fluid.

Dispersion relation Substitution of the above results in the boundary conditions (14)-
(16) yields the following equations for the three unknown constants Bs, A

2
f and A1

s

AX = 0, (17)

where

A :=




(
ζ
k

)2
+ 1 2iγ2

k
δs 2iγ1

k

−2ic2
s

ζ
k

[(
γ2

k

)2 − 1 + 2c2
s

]
δs+

+rc2
f

[(
γ2

k

)2 − 1
]

(
γ1

k

)2 − 1 + 2c2
s+

+rc2
f

[(
γ1

k

)2 − 1
]
δf

i rω
rω+iπ

− (δs − 1) γ2

k
(δf − 1) γ1

k




, (18)

X :=
(
Bs, A2

f , A1
s

)T
. (19)

This homogeneous set yields the dispersion relation: det A = 0 determining the ω − k
relation. We investigate the numerical solution of this equation.

3 Numerical prodedure and parameters

The problem det A =0 has been solved for the wave number, k. From the complex results
for k we are able to determine the normalized velocities of the Rayleigh and Stoneley modes
c′Ra = ω

Re k1
, c′St = ω

Re k2
, respectively, and the corresponding normalized attenuations Im k1

for the Rayleigh wave and Im k2 for the Stoneley wave.
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The results have been obtained for the following numerical data

β = 0, cP1 = 2500 m
s
, cP2 = 1000 m

s
, cS = 1500 m

s
,

ρS
0 = 2500 kg

m3 , ρF
0 = 250 kg

m3 , cs = cS

cP1
= 0.6, cf = cP2

cP1
= 0.4,

r =
ρF
0

ρS
0

= 0.1, π =

{
107 kg

m3s

or variable
, τ = 10−6 s, π′ := πτ

ρS
0

=

{
0.004
or variable

.

(20)

These data correspond approximately to, for instance, either marls or porous and saturated
sandstones [3].

4 Numerical results

In the whole range of frequencies there exist two surface modes of propagation corresponding
to the classical Rayleigh and Stoneley waves.

Results are shown for different values of the bulk permeability coefficient, π. This para-
meter describes the resistance of the porous medium against the flow of the fluid.

4.1 Velocities of Rayleigh and Stoneley waves

Fig. 1 shows the phase velocities of the Rayleigh (left) and Stoneley (right) waves normalized
by the P1-velocity (see: (6)) in dependence on the frequency. The velocities are given for
different values of the bulk permeability parameter π. We see a range of frequencies from
zero to the very large value of 100 MHz. On the left figure we indicate additionally the high
and low frequency limits of the Rayleigh wave common for all values of permeability. We
see that, indeed, the results for intermediate frequencies lie between these limits.

Fig. 1. Normalized velocities of the Rayleigh wave c′Ra ≡ cRa
cP1

and of the Stoneley wave c′St ≡ cSt
cP1

for different values of the permeability coefficient π in units
[

kg
m3s

]

In the range of very small frequencies the Rayleigh velocity remains nearly constant. This
range depends on the permeability and grows with growing π. In this region of frequencies
there exists a little decay of this velocity (app. 0.025% of the difference of limit values for
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ω = 0 and ω → ∞). Due to its small size this effect is not visible in this figure. Bourbié
et al. [3] prescribe this effect to an influence of the P2-wave. The minimum value remains
constant for different values of π. This means that the decay is not driven by the diffusion.

Curves for different values of π are selfsimilar. This is due to the fact that π and ω are
normalized by the characteristic time τ : ω′ = ωτ, π′ = πτ

ρS
0

and these are the only indepen-

dent parameters which contain τ. In other words we could use
ρS
0

π
as a time normalization

parameter. Certainly, as in the classical case of Rayleigh waves in a single component elastic
medium, all values lie below the normalized velocity of the shear wave cs ≡ cS

cP1
= 0.6.

The Stoneley velocity increases from the zero value for ω = 0. The growth is faster
than the growth of the Rayleigh velocity but the maximum value is smaller. It lies always
below the normalized velocity of the fluid cf ≡ cP2

cP1
= 0.4. This happens for all values of π.

The maximum value of the Stoneley velocity appearing for ω →∞ is approximately 0.15%
smaller than the velocity of the fluid. One should point out that – differently than often
stated – the Stoneley velocity behaves regularly in the whole range of frequencies and it
ceases to exist only for ω = 0. In the vicinity of this point the Stoneley velocity possesses
a similar feature to the P2-wave: it decays to zero as

√
ω.

Fig. 2. Comparison of the behaviour of Rayleigh and Stoneley wave velocities for a permeability
coefficient π = 107 kg

m3s
. Left: Phase velocities for low frequencies; right: phase and group

velocities of both waves for a wide range of frequencies

In order to be more specific, in Fig. 2 we consider a selected case which may appear in
geotechnics and show the normalized velocities of both Rayleigh and Stoneley waves for a
permeability coefficient π = 107 kg

m3s
and very low frequencies. This corresponds, as shown

above, to sandstone saturated with water.

The figures for phase velocities of Rayleigh and Stoneley waves show that both of them
depend on the frequency ω. This phenomenon is known as dispersion. In the present case
dispersion is caused by diffusive dissipation (for π = 0 there is no dispersion). Monochro-
matic waves are an idealization which is never strictly realized in nature. Most sources
emit signals with a continuous spectrum over a limited frequency band. The group velocity
cg (for details see e.g. [1]) for a given frequency ω is the velocity of transport of a wave
package consisting of contributions from a band of frequencies around ω. In our case the
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wave number k is complex. However, under the simplifying assumptions of a narrow band
of frequencies, small changes of the amplitude and small changes of damping we are able to
derive a similar relation for the group velocity to this for real wave numbers. We know that
the wavenumber k = kR + ikI and the phase velocity cph depend on the frequency. Then,
with kR = ω

cph

dkR

dω
=

1

cg

=
1

cph

− ω

c2
ph

dcph

dω
, ⇒ cg =

cph

1− ω
cph

dcph

dω

. (21)

On the right hand side of Fig. 2 we show both the phase velocities and the group velocities
of both surface waves. The derivative

dcph

dω
has been calculated as central difference.

4.2 Attenuation of Rayleigh and Stoneley waves

This section is devoted to the behaviour of the attenuation of the Rayleigh and Stoneley
waves. Imaginary parts of the wave number k determine the damping of waves. It is nor-
malized by the product with the P1-velocity and the relaxation time (see: (6)). This means
for our parameters that the values presented in the figures are 400 times smaller than in
real physical units.

Fig. 3. Normalized attenuations of Rayleigh- and Stoneley waves for different values of the
permeability coefficient π in units

[
kg

m3s

]
.

Let us first turn our attention to the Rayleigh wave. Fig. 3 (left) shows the normalized
attenuation of this wave. It is obvious that this wave is strongly attenuated. The attenuation
linearly increases to infinity as ω →∞. Similar to the attenuation of P1-waves these curves
intersect for different values of π. The impression that the attenuation would not start from
zero with zero frequency stems from the double logarithmic plot of the curves. In reality
the attenuation for all values of π starts from zero. The attenuation is in the same manner
selfsimilar as the velocity.

Inspection of the right hand side of Fig. 3 shows that also the normalized attenuation of
the Stoneley wave starts from the zero value for ω = 0. But in contrast to the Rayleigh wave
attenuation for small frequencies it increases much faster and then approaches a horizontal
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asymptotic value for larger values of the frequency. This means the limit ω → ∞ is finite
and dependent on the permeability coefficient π.

In order to expose a practically important region of very small frequencies, we present
in Fig. 4 on the left hand side the attenuation of both surface waves and two bulk waves:
P1 and P2 in the range of frequencies up to 1000 Hz. Clearly, in this range, the Rayleigh
wave is attenuated stronger than the P1 wave but still weaker than P2. For low frequencies
the attenuation of the Stoneley wave is much higher than this of the Rayleigh wave. Both
attenuations are starting from zero for ω = 0. The right hand side shows that the Stoneley
wave attenuation increases rapidly until it reaches a certain value which depends on the per-
meability coefficient π, in the case under consideration – app. 0.0496× (cP1τ)−1 ' 19.84 1

m
.

After reaching this value – which happens in the low frequency range – it remains almost
constant. The Rayleigh wave attenuation, however, does not have a finite value for ω →∞.
In contrast to all other waves whose attenuation goes to a finite limit as ω →∞ the attenu-
ation of the Rayleigh wave grows unbounded. This is the feature of a leaky wave. Generally,
the Rayleigh attenuation increases linearly with growing ω, only for very low frequencies the
growth is a little bit faster. Consequently, there appears an intersection of the attenuation
curves of both waves. This point lies in the range of high frequencies.

Fig. 4. Normalized attenuation of Rayleigh, Stoneley, P1 and P2-wave, for π = 107 kg
m3s

in
different ranges of frequencies.

5 Concluding remarks

This work is devoted to the numerical investigation of the dispersion relation for surface
waves on an impermeable boundary of a fully saturated poroelastic medium in the whole
range of frequencies. In the whole range there exist two modes of surface waves correspond-
ing to the classical Rayleigh and Stoneley waves. We have shown numerical results for
the normalized velocities and attenuations of these waves for different values of the bulk
permeability coefficient, π, in different ranges of frequencies, ω.
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Rayleigh

• the velocity of propagation of this wave lies in the interval determined by the limits
ω → 0 and ω →∞. The high frequency limit is app. 4.7% higher than the low frequency
limit. The velocity is always smaller than cS, i.e. slower than the S-wave. As a function
of ω it possesses an inflection point and it is slightly nonmonotonous,

• the attenuation of this wave grows from zero for ω = 0 to infinity as ω → ∞. In the
range of large frequencies it is linear. This means that it is a leaky wave.

Stoneley

• the velocity of this wave grows monotonically from the zero value for ω = 0 to a finite
limit which is slightly smaller (app. 0.15%) than the velocity cP2 of the P2-wave. The
growth of the velocity of this wave in the range of low frequencies is much steeper than
this of Rayleigh waves

• both the velocity and attenuation of the Stoneley wave approach zero as
√

ω,
• the attenuation of the Stoneley wave grows monotonically to a finite limit for ω → ∞.

It is slightly smaller than the attenuation of P2-waves. Consequently, in contrast to the
claims in the literature, the Stoneley wave is attenuated.

Results for different values of the permeability coefficient π are selfsimilar, i.e. a change of
π yields a corresponding change in the scale of the frequency axis for velocities, and of both
axes for attenuations. Otherwise the qualitative behaviour remains unchanged.
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