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Abstract

The work is devoted to the investigation of the integral manifolds of the

nonautonomous slow-fast systems, which change their attractivity in time.

The method used here is based on gluing attractive and repulsive integral

manifolds by using an additional function.

1 Introduction.

Systems of di�erential equations with several time-scales play an important role

in modeling processes in reaction kinetics [2], biophysics [6], and also in modern

technology (e.g. dynamics of semiconductor lasers [7]). In the paper at hand we

restrict ourselves to systems of ordinary di�erential equations with two-time scales

in the slow-fast form

dy

dt
= " f(t; y; z; ");

dz

dt
= B(t)z + ~g(t; y; z; ");

(1.1)

where " is a small parameter, y 2 Rn; z 2 R2. We assume ~g(t; y; 0; 0) � 0 so that

z � 0 is an integral manifold of (1.1) for " = 0. Our goal is to establish the existence

of an integral manifoldM" of (1.1) for suÆciently small " with the representation

z = h(t; y; "); (1.2)

where h is uniformly bounded and tends to zero as " ! 0: Under the crucial as-

sumption that the linear system

dz

dt
= B(t)z

exhibits an exponential dichotomy, the existence of an integral manifold of system

(1.1) in the form (1.2) has been established in several papers (see e.g. the books
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[3, 5, 11]). The peculiarity of this paper consists in proving the existence of such an

integral manifold under the assumption that B(t) has the form

B(t) =

 
t �1
1 t

!
: (1.3)

We note that B(t) has a pair of complex conjugate eigenvalues that cross the imag-

inary axis from left to right for increasing t at the moment t = 0. In that case, it

can be checked easily that for " = 0 the hyperplane z � 0 is attracting for t < 0

and repelling for t > 0. Thus, we say that the integral manifold z � 0 looses its

attractivity for increasing t at t = 0. As a �rst step in treating this problem we

consider in the next section the two-dimensional system

dz

dt
= B(t)z + �(t; z) (1.4)

where B(t) is de�ned by (1.3). We will show that it has a solution bounded for

all t only under a special condition on the function �. To be able to ful�l the

corresponding condition for the existence of a bounded integral manifold M" for

system (1.1) we include some control u into the function ~g, that is, we consider the

slow-fast system

dy

dt
= " f(t; y; z; ");

dz

dt
= B(t)z + g(t; y; z; u; ");

(1.5)

where u belongs to some control set U .

The paper is organized as follows. In the next section we derive a necessary condition

for equation (1.4) to have a uniformly bounded solution. Section 3 contains the

hypotheses on the right hand side of system (1.5), and also our main result. In

section 4 we derive a necessary condition for the existence of a bounded integral

manifold M" with the representation (1.2) for system (1.5). This condition will

be used in section 5 to determine the control function u as a �xed point of some

operator P in U . Section 6 is devoted to the existence of a unique �xed point of

the operator T introduced in section 4. This �xed point yields the integral manifold

M" to system (1.5) for suÆciently small ". We close with some simple example.
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2 Bounded solutions in case of missing dichotomy.

Let G 2 R2 be a connected set containing the origin. We consider the system of

ordinary di�erential equations

dz

dt
= B(t)z + �(t; z) (2.1)

for z 2 G, where the matrix B(t) is de�ned by

B(t) :=

 
t �1
1 t

!
: (2.2)

Concerning the function � we assume

(H). � : R � G ! R2 is continuous and such that to any given (t0; z0) the Cauchy

problem to (2.1) has a unique solution de�ned for t 2 R.

First we consider the linear system

dz

dt
= B(t)z; (2.3)

which has the fundamental matrix

V (t; t0) := e
1
2
(t2�t20)W (t� t0); (2.4)

where W (t) is de�ned by

W (t) :=

�
cos t � sin t

sin t cos t

�
: (2.5)

If we denote by j � j the Euclidean norm and by jj � jj the corresponding matrix norm,

then we get from (2.4), (2.5)

jjV �1(t; t0)jj = jje
1
2
(t20�t

2)W�1(t� t0)jj � e
1
2
(t20�t

2);

that is, we have

lim
t!�1

jjV �1(t; t0)jj = 0: (2.6)

Furthermore, the general solution z(t; t0; z0) = V (t; t0)z0 of (2.3) satis�es

jz(t; t0; z0)j � jz0je
1
2
(t2�t

2
0):

Hence, the solution z � 0 of the linear system (2.3) is exponentially attracting for

t < 0 and exponentially repelling t > 0. Moreover, the following canard-like e�ect

can be observed: The trajectory of system (2.3) starting for t = t0 < 0 at any initial
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point z0 6= 0 enters after a short time interval a small neighbourhood of the solution

z � 0 and stays in it until some time t = t� > 0. For t > jt0j the trajectory grows

exponentially.

A solution z(t; t0; z0) of the nonlinear system (2.1) satisfying z(t0; t0; z0) = z0 is a

solution of the integral equation

z(t) = V (t; t0)

�
z0 +

Z
t

t0

V �1(s; t0)�(s; z(s))ds

�
(2.7)

and vice versa. If we look for an initial value z0 such that the solution z(t; z0) of

(2.7) obeys

jz(t; t0; z0)j � c 8t 2 R; (2.8)

where c is some positive constant, then we get from (2.6), (2.7) that z0 has to ful�l

the conditions

z0 =

Z
1

t0

V �1(s; t0)�(s; z(s))ds;

z0 =

Z
�1

t0

V �1(s; t0)�(s; z(s))ds:
(2.9)

Therefore, a solution z(t; t0; z0) of (2.7) satisfying (2.8) has to ful�l the conditionZ
1

�1

V �1(s; t0)�(s; z(s))ds = 0: (2.10)

Using (2.4) and (2.5) and the fact that V (t � t0) = V (t)V �1(t0), we can rewrite

(2.10) as Z
1

�1

e�
s
2

2 W�1(s)�(s; z(s))ds = 0: (2.11)

If the condition (2.11) is ful�lled, then any solution of (2.1) satisfying (2.8) is a

solution of the integral equation

z(t) = e
t
2

2 W (t)

Z
t

�1

e�
s
2

2 W�1(s)�(s; z(s))ds for t � 0; (2.12)

and of the integral equation

z(t) = e
t
2

2 W (t)

Z
t

1

e�
s
2

2 W�1(s)�(s; z(s))ds for t � 0: (2.13)

Consequently, we have the result
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Lemma 2.1 Suppose the function � satis�es hypothesis (H) and the matrix B(t) is

de�ned by (2.2). Then, for equation (2.1) to have a solution �z(t) uniformly bounded

for all t, it is necessary that the relationZ
1

�1

e
�s

2

2 W�1(s)�(s; �z(s))ds = 0 (2.14)

holds. Moreover, �z(t) is a solution of the integral equations (2.12) and (2.13).

A similar result has been obtained in [9].

As an example we consider the di�erential system

dz

dt
= B(t) + ~�(t) + u; (2.15)

where

~�(t) = (cos t; 0)
T

(2.16)

and u is a constant two-dimensional vector to be determined. The function � := ~�+u

satis�es hypothesis (H). The necessary condition (2.14) for a uniformly bounded

solution of (2.15) takes the form

Z +1

�1

e�
s
2

2

�
cos2 s+ u1 cos s+ u2 sin s

�
ds = 0;

(2.17)Z +1

�1

e�
s
2

2

�
� 1

2
sin 2s� u1 sin s+ u2 cos s

�
ds = 0:

Using the relations

Z +1

�1

e�
s
2

2 cos s ds =

r
2�

e
;

Z +1

�1

e�
s
2

2 sin ks ds = 0; k = 1; 2; (2.18)

Z +1

�1

e�
s
2

2 cos2 s ds =

p
2�

2
(1 + e�2); (2.19)

we get from (2.17)

u1 = �
p
e(e2 + 1)

2e2
; u2 = 0: (2.20)

According to (2.12), (2.13), the uniformly bounded solution of (2.15), where u1 and

u2 are determined by (2.20), can be represented by
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z(t) =

8>>>>>><
>>>>>>:

tZ
�1

e
t
2
�s

2

2 W (t� s)
�
~�(s) + u

�
ds for t � 0;

�
+1Z
t

e
t
2
�s

2

2 W (t� s)
�
~�(s) + u

�
ds for t � 0:

Let us return to the slow-fast system (1.1). If we assume that this system has

an integral manifold z = h�(t; y; ") which is uniformly bounded for all (t; y; ") 2
R � Rn � I"0 and if we suppose that y = '(t; t0; y0; ") is a solution of the Cauchy

problem
dy

dt
= "f(t; y; h�(t; y; "); "); y(t0) = y0;

de�ned for 8t 2 R, then z(t; y0; ") := h�(t; '(t; t0; y0; "); ") represents a uniformly

bounded solution of the system

dz

dt
= B(t)z + ~g(t; z; h�(t; '(t; t0; y0; "); "); "):

According to Lemma 2.1, this solution satis�es the relationZ
1

�1

e
�s

2

2 W�1(s)~g(s; '(s; t0; y; "); h
�(s; '(s; t0; y0; "); "); ") ds = 0 (2.21)

for any t0 2 R, y0 2 Rn and 8" 2 I"0. In order to be able to ful�ll relation (2.21)

without imposing the condition ~g � 0 we include a control u = u(y; ") into the

function ~g, that is, we will consider slow-fast systems of the type (1.5), where the

control belongs to some admissible set U . If we suppose g(t; y; 0; 0; 0) � 0 for all

(t; y) 2 R �Rn, then any admissible control u must tend to zero as "! 0:

3 Notation. Assumptions. Formulation of the

problem.

We consider the slow-fast system

dy

dt
= "Y (t; y; z; ");

dz

dt
= B(t)z + Z(t; y; z; u; ") + u;

(3.1)

where the matrix B(t) is de�ned in (2.2), and " is a small parameter. Let 
z � R2
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and 
u 2 R2 be bounded connected regions containing the origin, let I"0 be the

interval I"0 := f" 2 R : 0 � " � "0 � 1g:

We study system (3.1) under the assumptions

(A0). Y 2 C(R�Rn � 
z � I"0; R
n); Z 2 C(R �Rn � 
z � 
u � I"0 ; R

2).

(A1). There are positive constants b1; b2; l1; l2 such that for t 2 R; y; �y 2 Rn; z; �z 2

z; u; �u 2 
u the following relations hold

jY (t; y; z; ")j � b1; (3.2)

jZ(t; y; z; u; ")j � b2
�
"+ "jzj+ jzj2

�
; (3.3)

jY (t; y; z; ")� Y (t; �y; �z; ")j � l1 (jy � �yj+ jz � �zj) ; (3.4)

jZ(t; y; z; u; ")� Z(t; �y; �z; �u; ")j �

l2
�
("+ "j~zj+ j~zj2)jy � �yj+ ("+ j~zj)jz � �zj+ "ju� �uj

�
; (3.5)

where j~zj := maxfjzj; j�zjg.

A manifold M" in the space of motion R � Rn � 
z is called an integral manifold

of (3.1) if a solution of (3.1) passing for t = t0 a point onM" stays for all t onM".

From (3.3) we get

Z(t; y; 0; u; 0) � 0: (3.6)

Hence, for " = 0; u = 0, system (3.1) coincides with the linear system (2.3) and has

the integral manifold z � 0, which is attracting for t < 0, and repelling for t > 0. In

the sequel we characterize such behavior by saying that the integral manifold z � 0

loses its attractivity with increasing t.

From (3.6) we conclude that any admissible control u must tend to zero as " tends to

zero. Hence, we suppose that the set U of admissible control functions consists of all

function umappingRn�I"0 continuously into 
u and satisfy for all y; �y 2 Rn; " 2 I"0

ju(y; ")j � "b3; ju(y; ")� u(�y; ")j � "l3jy � �yj; (3.7)

where b3 and l3 are some positive numbers to be determined later. If we endow U

with the metric

%(u; �u) := sup
y2Rn; "2I"0

ju(y; ")� �u(y; ")j; (3.8)

then U is a complete metric space.
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Our goal is, for suÆciently small ", to establish the existence of a control function u 2
U such that the slow-fast system (3.1) has an integral manifold M" := f(t; y; z) 2
R � Rn � 
z : z = h(t; y; ")g, where h is continuous and satis�es for t 2 R; " 2
I"0; y; �y 2 Rn the inequalities

jh(t; y; ")j � "b4; jh(t; y; ")� h(t; �y; ")j � "l4jy � �yj; (3.9)

where b4 and l4 will be determined later. We denote the space of these functions by

H. With respect to the metric

d(h; �h) := sup
t2R; y2Rn; "2I"0

jh(t; y; ")� �h(t; y; ")j

H is a complete metric space.

Our main result is the following:

Theorem 3.1 Under the assumptions (A0); (A1) there exists an "� 2 I"0 such that

for all 0 � " � "� there is a control function u 2 U ensuring that system (3.1) has

an integral manifold z = h(t; y; ") with h 2 H.

Remark 3.2 If for suÆciently small " system (3.1) has an integral manifold z =

h(t; y; ") with h 2 H, then we know that for " = 0 the integral manifold z � 0 loses

its attractivity for increasing t. Therefore, it follows from the continuous dependence

of the trajectories of (3.1) on the parameter " that also the integral manifold z =

h(t; y; ") loses its attractivity for increasing t. In this case for suÆciently small " the

trajectories of system (3.1) starting for t0 < 0 at any initial point after a short time

interval enter a small neighbourhood of the attracting part of the integral manifold

z = h(t; y; ") and follow it until the time t = 0. For t > 0 the trajectories stay in

this small neighbourhood of the repelling part of the integral manifold until some

time t = t� > 0. For t > jt0j the trajectory grows exponentially. We note that this

property reminds of the phenomenon of delayed loss of stability in the theory of

singularly perturbed systems [1, 4, 10].

4 A necessary condition for the existence of the

integral manifold M".

We assume that system (3.1) has for u = u�(y; ") an integral manifoldM" with the

representation z = h�(t; y; "), where h� belongs to the space H. The dynamics of

(3.1) on M" is described by the di�erential system

8



dy

dt
= "Y (t; y; h�(t; y; "); "): (4.1)

Under the hypotheses (A0), (A1), the Cauchy problem y(t0) = y0 to (4.1) has for any

t0 2 R y0 2 Rn and " 2 I"0 a solution y = '(t; t0; y0; ") de�ned for all t 2 R . Thus,

the function z(t; y; ") = h�(t; '(t; t0; y0; "); ") is a solution of the two-dimensional

system

dz

dt
= B(t)z + Z(t; '(t; t0; y0; "); z; u

�('(t; t0; y0; "); "); ") + u�('(t; t0; y0; "); ");

which is bounded for all t. According to (2.21), the following relation must be valid

for any (t0; y0; ") 2 R �Rn � I"0.

Z
1

�1

e
�s

2

2 W�1(s)
h
Z(s; '(s; t0; y0; "); h

�(s; '(s; t0; y0; "); ");

u�('(s; t0; y0; "); "); ") + u�('(s; t0; y0; "); ")
i
ds = 0:

(4.2)

Our idea is to use the necessary condition (4.2) for the existence of the integral

manifold M" in order to determine the control function u� 2 U . For this purpose

we consider for any h 2 H the Cauchy problem

dy

dt
= "Y (t; y; h(y; t; "); "); y(t0) = y0: (4.3)

Under our assumptions, it has a unique solution denoted by 'h(t; t0; y0; ") which is

de�ned for all t. Using this solution we will employ the relationZ
1

�1

e
�s

2

2 W�1(s)
h
Z(s; 'h(s; t0; y0; "); h(s; 'h(s; t0; y0; "); "); (4.4)

u('h(s; t0; y0; "); "); ") + u('h(s; t0; y0; "); ")
i
ds = 0

to determine u 2 U as a function of (y; h; ").

Using the fact that

'h(t; t0; y0; ") = 'h(t; 0; ~y0; ");

we rewrite (4.4) in the formZ
1

�1

e
�s

2

2 W�1(s)
h
Z(s; 'h(s; 0; ~y0; "); h(s; 'h(s; 0; ~y0; "); "); (4.5)

u('h(s; 0; ~y0; "); "); ") + u('h(s; 0; ~y0; "); ")
i
ds = 0:

In the following section we will show that to given h 2 H and for suÆciently small

", equation (4.5) determines u 2 U as a unique function of (h; y; "). We denote this

function by uh(y; ").
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Since t0; y0 are arbitrary, we put t0 = t, y0 = y. Then, by means of the function

uh(y; ") we de�ne on H the operator T by

(Th)(t; y; ") :=

8>>>>>>>>>><
>>>>>>>>>>:

e
t
2

2 W (t)

Z
t

�1

e
�s

2

2 W�1(s)
h
Z(s; 'h(s; t; y; "); h(s; 'h(s; t; y; "); ");

uh('h(s; t; y; "); "); ") + uh('h(s; t; y; "); ")
i
ds for t � 0;

�e t
2

2 W (t)

Z
1

t

e
�s

2

2 W�1(s)
h
Z(s; 'h(s; t; y; "); h(s; 'h(s; t; y; "); ");

uh('h(s; t; y; "); "); ") + uh('h(s; t; y; "); ")
i
ds for t � 0:

(4.6)

In section 6 we will prove that under the hypotheses (A0); (A1) the operator T maps

H into itself and is strictly contractive for suÆciently small ". That is, T has a

unique �xed point h� in H. It is then easy to see that the relation

z = h�(t; y; ") (4.7)

de�nes an integral manifold to system (3.1) in the (t; y; z)-space. If we replace in the

right hand side of (4.7) y by the trajectory 'h�(t; t0; y0; "), then it is easy to prove

that z(t; t0; y0; h
�; ") := h�(t; 'h�(t; t0; y0; "); ") satis�es the di�erential equation

dz

dt
= B(t)z+Z(t; 'h�(t; t0; y0; "); z; uh�('h�(t; t0; y0; "); "); ")+uh�('h�(t; t0; y0; "); "):

5 Determination of the control function

At �rst we describe the dependence of the solution 'h(s; t; y; ") of (4.3) on the initial

value y and on the function h 2 H.

Lemma 5.1 Under the assumptions (A0); (A1) the following inequalities are valid

for any y; �y 2 Rn, h; �h 2 H

j'h(s; t; y; ")� 'h(s; t; �y; ")j � jy � �yje"l1(1+"l4)js�tj;

j'h(s; t; y; ")� '�h(s; t; y; ")j �
1

1 + "l4
d(h; �h)

�
e"l1(1+"l4)js�tj � 1

�
:

Proof. By (4.3) it holds

10



'h(s; t; y; ") = y + "

Z
s

t

Y (�; 'h(�; t; y; "); h(�; 'h(�; t; y; "); "); ")d�;

'h(s; t; �y; ") = �y + "

Z
s

t

Y (�; 'h(�; t; �y; "); h(�; 'h(�; t; �y; "); "); ")d�;

'�h(s; t; y; ") = y + "

Z
s

t

Y (�; '�h(�; t; y; ");
�h(�; '�h(�; t; y; "); "); ")d�:

(5.8)

Using (5.8) and the inequalities (3.2), (3.4) and (3.9) we obtain for s � t

j'h(s; t; y; ")� 'h(s; t; �y; ")j � jy � �yj+

+

Z
s

t

"jY (�; 'h(�; t; y; "); h(�; 'h(�; t; y; "); "); ")�

�Y (�; 'h(�; t; �y; "); h(�; 'h(�; t; �y; "); "); ")jd� �

� jy � �yj+
Z

s

t

"l1 (j'h(�; t; y; ")� 'h(�; t; �y; ")j+

+jh(�; 'h(�; t; y; "); ")� h(�; 'h(�; t; �y; "); ")j)d� �

� jy � �yj+
Z

s

t

"l1(1 + "l4)j'h(�; t; y; ")� 'h(�; t; �y; ")jd�:

Using the Gronwall-Bellman inequality we get

j'h(s; t; y; ")� 'h(s; t; �y; ")j � jy � �yje"l1(1+"l4)(s�t) for s � t: (5.9)

For the di�erence j'h(s; t; y; ")� '�h(s; t; y; ")j we have

j'h(s; t; y; ")� '�h(s; t; y; ")j �
Z

s

t

"jY (�; 'h(�; t; y; "); h(�; 'h(�; t; y; "); "); ")�

�Y (�; '�h(�; t; y; ");
�h(�; '�h(�; t; y; "); "); ")jd� �

�
Z

s

t

"l1
�
(1 + "l4)j'h(�; t; y; ")� '�h(�; t; y; ")j+ d(h; �h)

�
d�:

Using the Gronwall-Bellman inequality we obtain

j'h(s; t; y; ")� '�h(s; t; y; ")j �
1

1 + "l4
d(h; �h)

�
e"l1(1+"l4)(s�t) � 1

�
for s � t:

(5.10)

In the same way we get for s � t

j'h(s; t; y; ")� 'h(s; t; �y; ")j � jy � �yje"l1(1+"l4)(t�s);

j'h(s; t; y; ")� '�h(s; t; y; ")j �
1

1 + "l4
d(h; �h)

�
e"l1(1+"l4)(t�s) � 1

�
:

11



This completes the proof.

2

Now we consider equation (4.5). In what follows we prove that to any given h 2 H

this equation determines uniquely a function u 2 U which we denote by uh(y; ").

Theorem 5.2 Suppose the hypotheses (A0); (A1), to be valid. If we choose b3 = 4b2

and l3 = 32l2, then there is a suÆciently small "1 2 I"0 such that to given h 2 H

equation (4.5) de�nes uniquely a function uh(y; ") 2 U for " 2 I"1 .

Proof. To given h 2 H we de�ne on U the linear operator Ah and the nonlinear

operator Qh by

(Ahu)(y; ") :=

r
2

�

Z +1

�1

e
�s

2

2 W�1(s)u('(s; 0; y; h; "); ") ds;

(Qhu)(y; ") := �
r

2

�

Z +1

�1

e
�s

2

2 W�1(s)Z(�) ds; (5.11)

where

Z(�) = Z(s; 'h(s; 0; y; "); h(s; 'h(s; 0; y; "); "); u('h(s; 0; y; "); "); "): (5.12)

By means of these operators we can rewrite equation (4.5) in the form

Ahu = Qhu: (5.13)

In order to be able to prove that Ah is invertible it is convenient to represent the

operator Ah in the form Ah = I +Rh, where I is the identity and Rh is de�ned by

(Rhu)(y; ") :=

r
2

�

Z +1

�1

e
�s

2

2 W�1(s)[u('h(s; 0; y; "); ")� u(y; ")]ds: (5.14)

By (2.5), (3.7) we obtain

j(Rhu)(y; ")j �
r

2

�

Z +1

�1

e
�s

2

2 j u('h(s; 0; y; "); ")� u(y; ")jds �

� "l3

r
2

�

Z +1

�1

e
�s

2

2 j'h(s; 0; y; ")� yjds �

� 2"2l3

r
2

�

Z +1

0

e
�s

2

2

Z
s

0

jY (r; 'h(r; 0; y; "); h(r; 'h(r; 0; y; "); "); ")jdrds �

12



� 2"2l3b1

r
2

�

Z +1

0

e
�s

2

2 s ds = 2"2l3b1

r
2

�
:

Thus, if we choose " suÆciently small such that

"2l3b1

r
2

�
<

1

4
;

then the operator norm of Rh is less than 1
2
, and there exists the linear inverse

operator (I +Rh)
�1 satisfying

jj(I +Rh)
�1jj � 2: (5.15)

Let us introduce the operator Ph with domain U by

Phu := (I +Rh)
�1Qhu: (5.16)

Then the operator equation (5.13) is equivalent to the �xed point problem

u = Phu:

In the sequel we prove that the operator Ph maps U into itself and is strictly con-

tractive. Thereby, the error integral

erf(r) =

p
2p
�

Z
r

0

e�
s
2

2 ds (5.17)

satisfying

erf(0) = 0; erf(�r) = erf(r); erf 0(r) > 0; erf(+1) = 1 (5.18)

will be used.

From (3.3), (3.9), (5.11), (5.12) we get

j(Qhu)(y; ")j �
r

2

�

Z +1

�1

e
�s

2

2 jZ(�)jds �

�
r

2

�

Z +1

�1

e
�s

2

2 b2("+ "jhj+ jhj2)ds � "b2(1 + "b4 + "b24):

Using this estimate and inequality (5.15), we obtain from (5.16)

j(Phu)(y; ")j � 2"b2(1 + "b4 + "b24):

If we set

b3 := 4b2; (5.19)

13



then the estimate

jPhu(y; ")j � "b3

is valid for suÆciently small ".

By Lemma 5.1 and inequality (3.5) we obtain

j(Qhu)(y; ")� (Qhu)(�y; ")j �

�
p
2p
�

Z +1

�1

l2e
�s

2

2 [("+ "jhj+ jhj2)j'h(s; 0; y; ")� 'h(s; 0; �y; ")j+

+("+ jhj) jh(s; 'h(s; 0; y; "); ")� h(s; 'h(s; 0; �y; "); ")j+

+"ju('h(s; 0; y; "); ")� u('h(s; 0; �y; "); ")j]ds �

� "
p
2l2l5(")p
�

Z +1

1

e
�s

2

2 j'(s; 0; y; h; ")� '(s; 0; �y; h; ")jds �

� "
p
2l2l5(")p
�

jy � �yj
Z +1

�1

e
�s

2

2 e"l1(1+"l4)jsjds; (5.20)

where

l5(") := 1 + "b4 + "b24 + "l4(1 + b4) + "l3: (5.21)

For suÆciently small " we have

l5(") � 2: (5.22)

The integral in the last line of (5.20) can be rewritten asZ +1

�1

e
�s

2

2 e"l1(1+"l4)jsjds = 2

Z +1

0

e�
s
2

2
+"l1(1+"l4)sds: (5.23)

From the relation

��2 + 2"l1(1 + "l4)� = �(� � "l1(1 + "l4))
2 + ("l1(1 + "l4))

2 (5.24)

we get

Z +1

0

e�
s
2

2
+"l1(1+"l4)sds = e"

2
�(")

Z +1

0

e�
(��"l1(1+"l4))

2

2 d�; (5.25)

where

�(") := (l1(1 + "l4)
2:

Thus, for suÆciently small " we may assume

e"
2
�(") �

p
e: (5.26)
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By means of the transformation

� = � � "l1(1 + "l4)

we get Z +1

0

e�
(��"l1(1+"l4))

2

2 d� =

Z +1

�"l1(1+"l4)

e�
�
2

2 d�: (5.27)

By (5.17), (5.18) we have

Z +1

0

e�
(��"l1(1+"l4))

2

2 � =

Z 0

�"l1(1+"l4)

e�
�
2

2 d� +

Z +1

0

e�
�
2

2 d� =

=

p
�p
2

�
erf("l1(1 + "l4)) + 1

�
�
p
2�;

(5.28)

and we obtain from (5.25) and (5.26)

Z
1

0

e
�s

2

2 e"l1(1+"l4)sds �
p
2�e: (5.29)

Consequently, according to (5.23) we haveZ +1

�1

e
�s

2

2 e"l1(1+"l4)jsjds � 2
p
2�e: (5.30)

Taking into account this estimate, by (5.20), (5.22) it holds

j(Qhu)(y; ")� (Qhu)(�y; ")j � 8"l2
p
ejy � �yj:

Therefore, for suÆciently small " we have by (5.15) and (5.16)

j(Phu)(y; ")� (Phu)(�y; ")j � 2j(Qhu)(y; ")� (Qhu)(�y; ")j � 16"l2
p
ejy � �yj:

If we put

l3 := 32l2
p
e; (5.31)

then the estimate

j(Phu)(y; ")� (Phu)(�y; ")j � "l3jy � �yj

is valid for suÆciently small " and we can conclude that Ph maps U into itself.

In the next step we derive conditions assuring Ph to be a contraction operator in

U . At �rst we estimate the di�erence Qhu�Qh�u for u; �u 2 U . According to (3.5),

(3.7), (5.11), (5.17) and (5.18) we have

j(Qhu)(y; ")� (Qh�u)(y; ")j �
p
2p
�

Z +1

�1

e
�s

2

2 "l2%(u; �u)ds = 2"l2%(u; �u):

15



Hence, by (5.15) and (5.16) we get

j(Phu)(y; ")� (Ph�u)(y; ")j � 4"l2%(u; �u):

Thus, for suÆciently small ", Ph is contraction operator in U , and the equation

u = Phu, which is equivalent to (4.5), possesses a unique solution uh in U . 2

Now we study the dependence of the �xed point uh of Ph on h. Let uh(y; ") and

u�h(y; ") be the solutions of (4.5) corresponding to the functions h and �h respectively.

Thus, we have

(I +Rh)uh = Qhuh; (I +R�h)u�h = Q�hu�h; (5.32)

where in analogy to (5.11), (5.14) it holds

(R�hu�h)(y; ") :=

p
2p
�

Z +1

�1

e
�s

2

2 W�1(s)[u�h('�h(s; 0; y; "); ")� u�h(y; ")]ds; (5.33)

(Q�hu�h)(y; ") := �
p
2p
�

Z +1

�1

e
�s

2

2 W�1(s)Z(�)ds; (5.34)

with

Z(�) = Z(s; '�h(s; 0; y; ");
�h(s; '�h(s; 0; y; "); "); u�h('�h(s; 0; y; "); "); "):

From (5.32) we obtain

uh � u�h = (I +Rh)
�1[Qhu�Q�hu�h + (R�h �Rh)u�h]: (5.35)

By (3.7), (3.9), (5.11), (5.21), (5.34) and Lemma 5.1 we have

j(Qhuh)(y; ")� (Q�hu�h)(y; ")j �

�
p
2l2p
�

Z +1

�1

e
�s

2

2

"
("+ "j~hj+ j~hj2)j'h(s; 0; y; ")� '�h(s; 0; y; ")j+

+("+ j~hj)jh(s; 'h(s; 0; y; "); ")� �h(s; '�h(s; 0; y; "); ")j+

+"juh('h(s; 0; y; "); ")� u�h('�h(s; 0; y; "); ")j
#
ds

� "
p
2l2p
�

Z +1

�1

e
�s

2

2

"
l5(")j'h(s; 0; y; ")� '�h(s; 0; y; ")j+

16



+(1 + b4)d(h; �h) + %(uh; u�h)

#
ds � "l2

"
%(uh; u�h) + (1 + b4)d(h; �h)+

+

p
2l5(")d(h; �h)p
�(1 + "l4)

Z +1

�1

e
�s

2

2 (e"l1(1+"l4)jsj � 1)ds

#
: (5.36)

Taking into account the estimate (5.30) and the relations (5.17) and (5.18) we haveZ +1

�1

e
�s

2

2 (e"l1(1+"l4)jsj � 1)ds �
p
2�(2�

p
e): (5.37)

Assuming " to be suÆciently small such that 1 + "l4 � 3
2
holds, then we get from

(5.36), (5.37), (5.22)

j(Qhuh)(y; ")� (Q�hu�h)(y; ")j � "l2
�
%(uh; u�h) +

�
1 + b4 + 6(2�

p
e)
�
d(h; �h)

�
:

(5.38)

Analogously we obtain from (5.14) and (5.33) for suÆciently small "

j(R�h �Rh)u�h(y; ")j �
p
2p
�

Z +1

�1

e
�s

2

2 ju�h('�h(s; 0; y; "); ")� u�h('h(s; 0; y; "); ")jds �

�
p
2p
�

Z +1

�1

e
�s

2

2 "l3j'h(s; 0; y; ")� '�h(s; 0; y; ")jds �

� "
p
2l3d(h; �h)p
�(1 + "l4)

Z +1

�1

e
�s

2

2 (e"l1(1+"l4)jsj � 1)ds � 3"l3(2�
p
e)d(h; �h):

(5.39)

Hence, from (5.15), (5.31), (5.35), (5.38), (5.39) we get

%(uh; u�h) � 2"l2

h
%(uh; u�h) + (1 + b4) + 102(2�

p
e)d(h; �h)

i
:

From this inequality we obtain the following result

Lemma 5.3 Suppose the hypotheses of Theorem 5.2 are satis�ed. Then for suÆ-

ciently small " the following estimate is true

%(uh; u�h) � 2"l2

h
1 + b4 + 102(2�

p
e)
i
d(h; �h): (5.40)

6 Existence of the integral manifold

As we mentioned in section 4, a �xed point of the operator T de�nes an integral

manifold of system (3.1). In this section we derive conditions guaranteeing that T

maps the space H into itself and is strictly contractive in H.
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For h 2 H, uh 2 U , and t � 0 we get from (3.3), (3.7), (3.9), (4.6), (5.18), (5.19)

j(Th)(t; y; ")j �
Z

t

�1

e
t
2
�s

2

2

"
jZ (�) j+ juh('h(s; t; y; "); ")j

#
ds �

� "
�
b2(1 + "b4 + "b24) + b3

� Z +1

0

e
�s

2

2 ds = "

p
�p
2
b2(5 + "b4 + "b24):

(6.41)

If we set

b4 := 10b2

p
�p
2
; (6.42)

then the boundedness condition in (3.9) is valid for suÆciently small " and t � 0.

It can be veri�ed that the same result is valid in case t � 0.

In order to prove that (Th)(t; y; ") obeys the Lipschitz condition in (3.9) we estimate

for t � 0 in a similar way

j(Th)(t; y; ")� (Th)(t; �y; ")j �

�
Z

t

�1

e
(t2�s

2)

2

"
jZ (s; 'h(s; t; y; "); h(s; 'h(s; t; y; "); "); u('h(s; t; y; "); "); ")�

�Z (s; 'h(s; t; �y; "); h(s; 'h(s; t; �y; "); "); u('h(s; t; �y; "); "); ") j+

+ju('h(s; t; y; "); ")� u('h(s; t; �y; "); ")j
#
ds �

�
Z

t

�1

e
(t2�s

2)

2 ["l2(1 + "b4 + "b24)j'h(s; t; y; ")� 'h(s; t; �y; ")j+

+"l2(1 + b4)jh(s; 'h(s; t; y; "); ")� h(s; 'h(s; t; �y; "); ")j+
+("l2 + 1)ju('h(s; t; y; "); ")� u('h(s; t; �y; "); ")j]ds �

� "(l2l5(") + l3)

Z
t

�1

e
(t2�s

2)

2 j'h(s; t; y; ")� 'h(s; t; �y; ")jds �

� "(l2l5(") + l3)jy � �yj
Z +1

0

e
�s

2

2 e"l1(1+"l4)sds:

Due to (5.22), (5.29) we obtain for t � 0 and suÆciently small "

j(Th)(t; y; ")� (Th)(t; �y; ")j � "
p
2�e(2l2 + l3)jy � �yj:

Since the same inequality is valid for t � 0 and if we take into account relation

(5.31) it holds for any t

j(Th)(t; y; ")� (Th)(t; �y; ")j � 2"l2
p
2�e(1 + 16

p
e)jy � �yj:
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Hence, if we set

l4 := 2
p
2�el2(1 + 16

p
e); (6.43)

then T maps H into itself.

Now we prove that T is strictly contractive in H. In the same way as above we

obtain from (4.6) for t � 0 and suÆciently small "

j(Th)(t; y; ")� (T �h)(t; y; ")j �

�
Z

t

�1

e
(t2�s

2)

2

"
jZ (s; 'h(s; t; y; "); h(s; 'h(s; t; y; "); "); uh('h(s; t; y; "); "); ")�

�Z
�
s; '�h(s; t; y; ");

�h(s; '�h(s; t; y; "); "); u�h('�h(s; t; y; "); "); "
�
j+

+juh('h(s; t; y; "); ")� u�h('�h(s; t; y; "); ")j
#
ds �

�
Z

t

�1

e
(t2�s

2)

2

�
"l2(1 + "b4 + "b24)(j'h(s; t; y; ")� '�h(s; t; y; ")j+

+"l2(1 + b4)jh(s; 'h(s; t; y; "); ")� �h(s; '�h(s; t; y; "); ")j)+

+ (1 + "l2)juh('h(s; t; y; "); ")� u�h('�h(s; t; y; "); ")j)ds �

�
Z 0

�1

e
�s

2

2

�
"(l2l5 + l3)j'h(s; t; y; ")� '�h(s; t; y; ")j+

+"l2(1 + b4)d(h; �h) + (1 + "l2)%(uh; u�h)
�
ds �

�
�
"l2(1 + b4)d(h; �h) + (1 + "l2)%(uh; u�h)

� Z +1

0

e
�s

2

2 ds+

+2"l2
(1 + 16

p
e)

1 + "l4
d(h; �h)

Z +1

0

e
�s

2

2

�
e"l1(1+"l4)s � 1

�
ds:

Taking into account (5.18), (5.29), (5.40) we get for suÆciently small "

j(Th)(t; y; ")� (T �h)(t; y; ")j �

"l2

p
�p
2

" 
1+ b4+2(1+ "l2)

�
1+ b4+102(2�

p
e
�!

+3(1+16
p
e)(2

p
e� 1)

#
d(h; �h)

Therefore, T is a contraction operator in H for suÆciently small ".

Thus, we have proved Theorem 3.1
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Remark 6.1 Theorem 3.1 can be generalized for the case when the matrix B(t)

has the form

B(t) =

 
�(t) t �(t)

��(t) �(t) t

!
;

where �(t); �(t) are continuous for all t 2 R and satisfy

0 < �1 � �(t) � �2 < +1; 0 < �1 � �(t) � �2 < +1:

Remark 6.2 If in addition to the conditions of the Theorem 3.1 the functions

Y (t; y; z; "), Z(t; y; z; u; ") on the right hand side of (3.1) have continuous and

bounded partial derivatives with respect to y; z; u up to the order (k + 1), then

the integral manifold h(t; y; ") and the control function u(y; ") have continuous and

bounded partial derivatives with respect to y up to the order k.

Remark 6.3 If the functions Y (t; y; z; ") and Z(t; y; z; u; ") have bounded partial

derivatives with respect to y; z; u; " of order (k + 1), then the integral manifold

z = h(t; y; ") and the control function u(y; ") have the asymptotic representation

h(t; y; ") =

kX
i�0

"ihi(t; y) + rh(t; y; ");

u(y; ") =

kX
i�0

"iui(y) + ru(y; ");

(6.44)

where hi and ui are bounded functions which are by Remark 6.2 k-times continuously

di�erentiable with respect y up to the order k, and rh = O("k+1); ru = O("k+1).

As an example we consider the slow-fast system

dy

dt
= "Y (t; y; z; ");

dz

dt
= B(t)z + Z(t; y; z; u; ") + u(y; ");

(6.45)

with y 2 R and

Z(t; y; z; u; ") = Z(t; y; ") :=

 
" cos t cos y

0

!
: (6.46)

The function Z satis�es hypotheses (A0) and (A1). Then, relation (4.5) takes the
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form

" cos y

Z +1

�1

e�
s
2

2 cos2 sds+ u1

Z +1

�1

e�
s
2

2 cos sds = 0;

(6.47)

�"cos y
2

Z +1

�1

e�
s
2

2 sin 2sds+ u2

Z +1

�1

e�
s
2

2 sin sds = 0:

Using the relations (2.18), (2.19) we get from (6.47)

u1(y; ") = �
"e1=2

2
(1 + e�2) cos y; u2(y; ") = 0:

Substituting these results into the right hand side of (4.6) we get the following

representation of the integral manifold z = h(t; y; ") given by

h(t; y; ") =

8>>>>>><
>>>>>>:

tZ
�1

e
t
2
�s

2

2 W (t� s)
�
Z(s; y; ") + u(y; ")

�
ds for t < 0;

�
+1Z
t

e
t
2
�s

2

2 W (t� s)
�
Z(s; y; ") + u(y; ")

�
ds for t � 0:
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