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Abstract

The work is devoted to the investigation of the integral manifolds of the
nonautonomous slow-fast systems, which change their attractivity in time.
The method used here is based on gluing attractive and repulsive integral

manifolds by using an additional function.

1 Introduction.

Systems of differential equations with several time-scales play an important role
in modeling processes in reaction kinetics [2], biophysics [6], and also in modern
technology (e.g. dynamics of semiconductor lasers [7]). In the paper at hand we
restrict ourselves to systems of ordinary differential equations with two-time scales

in the slow-fast form

dy

dt - E f(t’y’ 276)7
% = B(t)z+g(t, vy, 2,¢€),

(1.1)

where ¢ is a small parameter, y € R", z € R?. We assume §(¢,y,0,0) = 0 so that
z = 0 is an integral manifold of (1.1) for e = 0. Our goal is to establish the existence

of an integral manifold M, of (1.1) for sufficiently small ¢ with the representation
z=h(t,y,e), (1.2)

where h is uniformly bounded and tends to zero as € — 0. Under the crucial as-

sumption that the linear system

dz

— = B(t)z

- = B(t)

exhibits an exponential dichotomy, the existence of an integral manifold of system

(1.1) in the form (1.2) has been established in several papers (see e.g. the books
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13, 5, 11]). The peculiarity of this paper consists in proving the existence of such an

integral manifold under the assumption that B(t) has the form

B(t) = ( i _tl ) . (1.3)

We note that B(t) has a pair of complex conjugate eigenvalues that cross the imag-
inary axis from left to right for increasing ¢t at the moment ¢ = 0. In that case, it
can be checked easily that for ¢ = 0 the hyperplane z = 0 is attracting for t < 0
and repelling for £ > 0. Thus, we say that the integral manifold z = 0 looses its
attractivity for increasing t at t = 0. As a first step in treating this problem we

consider in the next section the two-dimensional system

% Bz +n(t,7) (1.4)
where B(t) is defined by (1.3). We will show that it has a solution bounded for
all ¢t only under a special condition on the function 1. To be able to fulfil the
corresponding condition for the existence of a bounded integral manifold M, for
system (1.1) we include some control u into the function g, that is, we consider the

slow-fast system

d

== e flty2e),

d

d_i = B(t)z+g(t, vy, z,u,¢),

(1.5)

where u belongs to some control set U.

The paper is organized as follows. In the next section we derive a necessary condition
for equation (1.4) to have a uniformly bounded solution. Section 3 contains the
hypotheses on the right hand side of system (1.5), and also our main result. In
section 4 we derive a necessary condition for the existence of a bounded integral
manifold M, with the representation (1.2) for system (1.5). This condition will
be used in section 5 to determine the control function u as a fixed point of some
operator P in U. Section 6 is devoted to the existence of a unique fixed point of
the operator 1" introduced in section 4. This fixed point yields the integral manifold

M. to system (1.5) for sufficiently small e. We close with some simple example.



2 Bounded solutions in case of missing dichotomy.

Let G € R? be a connected set containing the origin. We consider the system of

ordinary differential equations

& _
dt
for z € G, where the matrix B(t) is defined by

B(t) = (i _1t ) . (2.2)

Concerning the function n we assume

B(t)z + n(t, 2) (2.1)

(H). n: R x G — R? is continuous and such that to any given (¢, 29) the Cauchy
problem to (2.1) has a unique solution defined for ¢ € R.

First we consider the linear system

dz
= =B, (2.3)

which has the fundamental matrix

V(t, to) = e2E=RW (¢ — ty), (2.4)

where W (t) is defined by

W(t) := (COSt _Sint>. (2.5)

sint cost

If we denote by |-| the Euclidean norm and by || - || the corresponding matrix norm,
then we get from (2.4), (2.5)

[Vt to)|| = [le2 B~ DW= (¢ — k)| < €251,
that is, we have

lim [[V7Y(t, )] = 0. (2.6)

t—+too

Furthermore, the general solution z(¢;to, z9) = V(¢,%9)2o of (2.3) satisfies
|2(t; to, 20)] < |20]e2® 1),

Hence, the solution z = 0 of the linear system (2.3) is exponentially attracting for
t < 0 and exponentially repelling ¢ > 0. Moreover, the following canard-like effect
can be observed: The trajectory of system (2.3) starting for ¢t = ¢, < 0 at any initial
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point 2y # 0 enters after a short time interval a small neighbourhood of the solution
z = 0 and stays in it until some time ¢ = t* > 0. For ¢ > |ty| the trajectory grows

exponentially.

A solution z(t;to, z9) of the nonlinear system (2.1) satisfying z(to; o, 20) = 20 is a

solution of the integral equation

t
0 =viet) (a+ [ Vs tnts,(9)as) 7
to
and vice versa. If we look for an initial value 2z, such that the solution z(¢; zy) of
(2.7) obeys
|2(¢; b0, 20)| < ¢ VEER, (2.8)

where ¢ is some positive constant, then we get from (2.6), (2.7) that 2z, has to fulfil

the conditions

20 = /oon(s,tg)n(s,z(s))ds,

to

2y = /oon(s,to)n(s,z(s))ds.

to

(2.9)

Therefore, a solution z(¢; ¢y, z9) of (2.7) satisfying (2.8) has to fulfil the condition

/_00 V(s to)n(s, 2(s))ds = 0. (2.10)

e o]

Using (2.4) and (2.5) and the fact that V(¢ —t;) = V(¢)V~'(¢y), we can rewrite
(2.10) as

/ T e F WL (s)n(s, 2(s))ds = 0. (2.11)

o0

If the condition (2.11) is fulfilled, then any solution of (2.1) satisfying (2.8) is a

solution of the integral equation

2 t 52
z(t) = eTW(t)/ e  TW(s)n(s, z(s))ds for ¢ <0, (2.12)
and of the integral equation

2(t) = T W (1) /te_gw_l(s)n(s,z(s))ds for ¢>0. (2.13)

o0

Consequently, we have the result



Lemma 2.1 Suppose the function n satisfies hypothesis (H) and the matriz B(t) is
defined by (2.2). Then, for equation (2.1) to have a solution Z(t) uniformly bounded

for all t, it is necessary that the relation

/ T W () (s, 2(s))ds = 0 (2.14)

o0

holds. Moreover, Z(t) is a solution of the integral equations (2.12) and (2.13).

A similar result has been obtained in [9].

As an example we consider the differential system

% — B(t) +i(t) + u, (2.15)
where
ii(t) = (cost, 0)F (2.16)

and u is a constant two-dimensional vector to be determined. The function n := 7+u
satisfies hypothesis (H). The necessary condition (2.14) for a uniformly bounded
solution of (2.15) takes the form

+o0o 32
/ 6_7(cos2s+u1coss+uQsins)ds:0,

o0

(2.17)

too 2 1
/ 6_7(—isin2s—ulsins+u2coss>ds:0.

o0

Using the relations

too 2 27 too 2
/ e” 2 cossds = |/ —, / e"zsinksds =0, k=12, (2.18)
—oo € —o0

/ e 2 cos’sds = Tﬂ(l +e %), (2.19)

e o]

|

we get from (2.17)

Ve(e? +1)

o u2=0. (2.20)

Uy = —

According to (2.12), (2.13), the uniformly bounded solution of (2.15), where u; and
us are determined by (2.20), can be represented by
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122
/ ez W(t—s) (ﬁ(s) + u) ds for t<0,

—/et Ea W(t—s)(ﬁ(s)—lru)ds for ¢>0.

Let us return to the slow-fast system (1.1). If we assume that this system has
an integral manifold z = h*(¢,y,e) which is uniformly bounded for all (¢,y,e) €
R x R™ x I, and if we suppose that y = ¢(¢; ¢y, yo,€) is a solution of the Cauchy

problem
dy

—=cf(ty, M (ty,e)0), ylt) = o,

defined for V¢ € R, then z(t,yo,€) := h*(¢, (t; to, Yo, <), €) represents a uniformly

bounded solution of the system

dz
% = B(t)Z + g(ta 2, h*(ta QD(t, Lo, Yo, 5)) 5)) 5)'
According to Lemma 2.1, this solution satisfies the relation

©
/ ez W(s)g(s, o(s;to,y,€), h* (s, (s;to, Yo, €),€),€)ds = 0 (2.21)

o0

for any ty € R, yp € R" and Ve € I.,. In order to be able to fulfill relation (2.21)
without imposing the condition § = 0 we include a control v = u(y,e) into the
function g, that is, we will consider slow-fast systems of the type (1.5), where the
control belongs to some admissible set U. If we suppose g(¢,y,0,0,0) = 0 for all
(t,y) € R x R"™, then any admissible control u must tend to zero as € — 0.

3 Notation. Assumptions. Formulation of the

problem.

We consider the slow-fast system

dy = eY(t,y,z2,¢),

dt

dz (3.1)
- = B(t)z + Z(t,y,z,u,e) + u,

where the matrix B(t) is defined in (2.2), and ¢ is a small parameter. Let 2, C R?



and Q, € R? be bounded connected regions containing the origin, let I, be the
interval I,, :={e € R: 0 < e <gy K 1}.

We study system (3.1) under the assumptions
(Ap). YEC(RXR"xQ, xI,,R"), Z € C(RX R"x Q, x Q, X I, R?).

(A1). There are positive constants by, bs, 1,5 such that fort € R, y,5 € R"*, z,Z €
Q,, u,u € Q, the following relations hold

|Y(t7y7zas)| S bl; (32)
Z(t,y,z,u,e)| < by (e +el2| + |2]°), (3.3)
|Y(ta Y, 2,5) - Y(ta Y,z, 6)| < ll (|y - g| + |Z - 2|) ) (34)

|Z(t,y,z,u,€) - Z(ta ga 2,ﬂ,€)| S
Iy ((e +elz[ + 21"y — gl + (e + |2]) |2 — 2| +elu —al), (3.5)

where |Z| := max{|z|, ||}

A manifold M. in the space of motion R x R" x €2, is called an integral manifold
of (3.1) if a solution of (3.1) passing for ¢t = ¢, a point on M, stays for all t on M,.

From (3.3) we get

Z(t,y,0,u,0) = 0. (3.6)

Hence, for e = 0,u = 0, system (3.1) coincides with the linear system (2.3) and has
the integral manifold z = 0, which is attracting for ¢ < 0, and repelling for ¢ > 0. In
the sequel we characterize such behavior by saying that the integral manifold z = 0

loses its attractivity with increasing ¢.

From (3.6) we conclude that any admissible control » must tend to zero as € tends to
zero. Hence, we suppose that the set U of admissible control functions consists of all

function v mapping R" x I, continuously into €2, and satisfy forally,g € R", € € I,

|u(ya €)| < €b3a |'U,(y, 8) - U(g, €)| < €l3|y - g|’ (37)

where bz and [3 are some positive numbers to be determined later. If we endow U

with the metric

o(v,u) == sup |u(y,e) —u(y,e)|, (3.8)
yER”, EEIEO

then U is a complete metric space.



Our goal is, for sufficiently small €, to establish the existence of a control function u €
U such that the slow-fast system (3.1) has an integral manifold M, := {(t,y,2) €
R X R"x Q, : z = h(t,y,e)}, where h is continuous and satisfies for t € R, e €
Ic,,y,7 € R" the inequalities

|h’(ta Y, €)| < €b4’ |h(ta Y, 5) o h’(ta Y, 5)| < 8l4|y - g|a (39)
where by and [, will be determined later. We denote the space of these functions by
H. With respect to the metric

d(h7 h’) = sup |h’(t’ Y, 5) - B(ta Y, é‘)|
tER, yeR™, e€l¢
H is a complete metric space.

Our main result is the following:

Theorem 3.1 Under the assumptions (Ay), (A1) there exists an €* € I, such that
for all 0 < e < &* there is a control function u € U ensuring that system (3.1) has
an integral manifold z = h(t,y,e) with h € H.

Remark 3.2 If for sufficiently small & system (3.1) has an integral manifold z =
h(t,y,e) with h € H, then we know that for £ = 0 the integral manifold z = 0 loses
its attractivity for increasing t. Therefore, it follows from the continuous dependence
of the trajectories of (3.1) on the parameter £ that also the integral manifold z =
h(t,y, ) loses its attractivity for increasing ¢. In this case for sufficiently small € the
trajectories of system (3.1) starting for ¢, < 0 at any initial point after a short time
interval enter a small neighbourhood of the attracting part of the integral manifold
z = h(t,y,e) and follow it until the time ¢ = 0. For ¢ > 0 the trajectories stay in
this small neighbourhood of the repelling part of the integral manifold until some
time ¢t = t* > 0. For ¢t > |to| the trajectory grows exponentially. We note that this
property reminds of the phenomenon of delayed loss of stability in the theory of
singularly perturbed systems [1, 4, 10].

4 A necessary condition for the existence of the

integral manifold M..

We assume that system (3.1) has for u = u*(y, €) an integral manifold M, with the
representation z = h*(¢,y,e), where h* belongs to the space H. The dynamics of
(3.1) on M, is described by the differential system
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dy

==
Under the hypotheses (Ag), (A1), the Cauchy problem y(¢y) = yo to (4.1) has for any
to € Ryp € R" and ¢ € I, a solution y = ¢(¢; 1o, yo, €) defined for all ¢ € R . Thus,
the function z(t,y,e) = h*(t, ©(t; to, Yo,€),€) is a solution of the two-dimensional

eY(t,y,h*(t,y,€),€). (4.1)

system

dz . ¥
% :B(t)z+Z(t7@(t;t0)y07€)7zau (W(tQtO;yo,E),E),5)+u (W(t;to,yoag);g);
which is bounded for all ¢. According to (2.21), the following relation must be valid

for any (t9,y0,€) € R X R" x I,.

o
/ eTwil(s) Z(S, QD('S; th Yo, E)a h*(87 QO(S7 tO; Yo, 5)7 5)7

o0 (4.2)
’U,*(QO(S, th Yo, E)a E)a E) + ’UI*(QO(S, tO; Yo, E)a 5) ds = 0.

Our idea is to use the necessary condition (4.2) for the existence of the integral
manifold M, in order to determine the control function u* € U. For this purpose

we consider for any h € H the Cauchy problem

d
d_:g = EY(ta Y, h(y7 ta E)a E)a y(tO) = Yo. (43)

Under our assumptions, it has a unique solution denoted by @ (t; to, ¥, €) which is

defined for all ¢. Using this solution we will employ the relation

/ e%Wil(S) Z(S, @h(s;to,yo,g), h(S,QOh(S;tU,yo,é"),é"), (44)

u(en(s;to, %o, €), €),€) + u(en(s; o, Yo, €),€) |[ds = 0
to determine u € U as a function of (y, h,€).
Using the fact that
on(t;to, Yo, €) = n(t; 0, 9o, €),
we rewrite (4.4) in the form

0 9 ~ ~
/ 6TI/V_l('S) Z(87 @h(s;oayOaE)’ h(sagoh(s;oay():g):g): (45)

o0

u(pn(s;0,90,€),€),€) + u(pn(s; 0, Jo, €),€) |ds = 0.

In the following section we will show that to given h € H and for sufficiently small
g, equation (4.5) determines u € U as a unique function of (h,y,e). We denote this

function by uy(y, €).



Since ty, yo are arbitrary, we put ¢, = ¢, yo = y. Then, by means of the function

un(y,€) we define on H the operator T' by

(2 t
GTW(t)/ eTW_l(S) |:Z(S,gOh(S;t,y,FJ),h(S,gOh(S;t,y,S),S),

— 00

un(n(5:4,9,€),€),¢) + un(n(sst,y,€),€)|ds for £ <0,

(Th)(t,y, ) == { (4.6)

_etZW(t)/ E%Wil(s) |:Z(S, gDh(S;t,y,S),h,(S, gDh(S;t,y,FJ),FJ),
t

un(n(s:,9,€),€),¢) + un(gn(s;t,y,€),€)|ds for ¢ 0.

\

In section 6 we will prove that under the hypotheses (Ay), (A1) the operator 7' maps
H into itself and is strictly contractive for sufficiently small . That is, T has a

unique fixed point A* in H. It is then easy to see that the relation
z="h"(t,y,¢) (4.7)

defines an integral manifold to system (3.1) in the (¢, y, z)-space. If we replace in the
right hand side of (4.7) y by the trajectory @p-(t; o, o, €), then it is easy to prove
that z(¢;to, yo, h*, ) := h*(t, pn-(t; o, Yo, €), €) satisfies the differential equation

dz
E = B(t)Z—I_Z(t; Phr (ta lo, Yo, 5)7 2, Up* (Qoh* (t7 lo, Yo, 6)) 6)) 5)+uh*(¢h* (ta lo, Yo, 5)7 5)'

5 Determination of the control function

At first we describe the dependence of the solution y(s;t,y,€) of (4.3) on the initial
value y and on the function h € H.

Lemma 5.1 Under the assumptions (Ayp), (A1) the following inequalities are valid
for any y,y € R*, h,h € H

|Q0h(8; t; Y, 8) - QOh(S; t; g: é‘)| S |y - g|66l1(1+6l4)|s_t‘)

1

d h B 6l1(1+6l4)|s—t‘ _ 1 .
1 +ely (.2 (e )

lon(s;t,y,€) — pr(s;t,y,e)| <

Proof. By (4.3) it holds

10



QOh(S; ta Y, 6) =Y +e€ / Y(na Qoh(nﬁ ta Y, 6)’ h’(na 90h(77, ta Y, 8)’ 8)’ 5)d77,
t

goh(s;t,gj,s) =y +€/ Y(T’a @h(n;t;@f)ah(ﬂa Wh(n:taga E)as)as)dna (58)
t

or(sity,e) = yte / Y (n, 0n(m: 6,9, ), B(n, on(mit, 9, 2), €), €)dn.
t

Using (5.8) and the inequalities (3.2), (3.4) and (3.9) we obtain for s > ¢
on(s;t,y,€) — en(sit, g,e)| < |y — g+

+ [ eV ontm 0, b onl b, ), ) 2) -
~Y (0, pn(m;t, G, €), h(n, pn(n; L, ,€), ), €)ldn <
<ly-gl+ [ e (ontmite) - eatmt, g o)+
+|h(n, on(n;t,y,€),€) — h(n, en(n;t, g,€),€)|) dn <
<ly-+ [ el (1 -+ L) on(ni b v,€) — on(mi 6,5, ) dn.
Using the Gronwall-Bellman inequality we get
ely(1+¢elq)(s—t)

lon(s;t,y,€) — on(s;t, 7,6)| < ly — Fle for s>t. (5.9)

For the difference |pn(s;t,y,e) — ¢r(s;t,y,€)| we have
fon(sit0,2) — enlsi by, 2) < [ elY (n,onlmit,2), bl onlt v, ), ), )
t

—Y (0, 0n(m;t,y, ), h(n, op(n;t,y,€),€),€)]dn <
< / ely (1 +els)lon(mt,y,€) — op(n;t,y,€)| + d(h, b)) dn.
t

Using the Gronwall-Bellman inequality we obtain

d(h, k) (et 1) for s>t
(5.10)

it y,€) — on(sit <
|Q0h(3; ayag) QOh(S, aya5)| = 1—|—6l4

In the same way we get for s <t

lon(s;t,y,€) — on(s;t, G,e)| < |y — glertretdlize)

[on(s;t,y,€) — oi(s;t,y,€)| < d(h, h) (0o 1)

- ]_+El4
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This completes the proof.

O

Now we consider equation (4.5). In what follows we prove that to any given h € H

this equation determines uniquely a function v € U which we denote by ux(y, €).

Theorem 5.2 Suppose the hypotheses (Ayp), (A1), to be valid. If we choose by = 4by
and l3 = 32ls, then there is a sufficiently small e, € I, such that to given h € H
equation (4.5) defines uniquely a function uy(y,e) € U fore € I, .

Proof. To given h € H we define on U the linear operator A; and the nonlinear
operator Q) by

(.2)i= )2 [ W ot 0,0, ), .
(Qnu) (v, &) : \[/mef “1(5)2() ds, (5.11)

Z(-) = Z(s,on(5;0,9,€), h(s, on(s;0,y,¢), ), u(en(s;0,y,€),€),€). (5.12)

where

By means of these operators we can rewrite equation (4.5) in the form

In order to be able to prove that Aj is invertible it is convenient to represent the
operator Ay in the form A, = I 4+ Ry, where [ is the identity and Rj is defined by

(Rpu)(y, e \/7/ h 72 L(8)[u(pn(s; 0,9, €),€) — u(y,e)|ds. (5.14)

By (2.5), (3.7) we obtain

|(Rnu)(y, )| < \/g/ Ooe_Tsz| u(pn(5;0,y,€),€) — u(y,e)|ds <

2 [T e
< 8[3\/;/ €T|Q0h(s; O,y,&‘) - y|d8 <

2 +00 .2 s
< 252[3\/;/ 62/ |Y(T‘, QDh(’I";O,y,E),h’(?", goh(r;O,y,e),e),a)|d7"ds <
0 0

12



2 2 [T e 2 2
< 2el3bit /) — e 2 sds=2e%l3bi4/ —.
T Jo T

Thus, if we choose € sufficiently small such that

2
2
Isbir ]2 < =
¢ “ﬁ 1’

then the operator norm of Rj is less than %, and there exists the linear inverse

operator (I + Ry) ! satisfying

(I +Rp) M < 2. (5.15)

Let us introduce the operator P, with domain U by
Phu = ([ + Rh)*lQhu. (516)
Then the operator equation (5.13) is equivalent to the fixed point problem

u = Pju.

In the sequel we prove that the operator P, maps U into itself and is strictly con-

tractive. Thereby, the error integral

2 r 52
erf(r) = i/ e 2ds (5.17)
VT Jo
satisfying
erf(0) =0, erf(—r) =erf(r), erf'(r) >0, erf(+oo)=1 (5.18)

will be used.

From (3.3), (3.9), (5.11), (5.12) we get

@<y [ et s <

< \/g/Jroo 6#b2(€ + |h| + |h|?)ds < eby(1 + by + €b3).
Using this estimate a;ld inequality (5.15), we obtain from (5.16)
|(Pyu)(y,€)| < 2eby(1 + eby + €b3).
If we set
by = 4bs, (5.19)

13



then the estimate
|Phu’(ya E)| S Eb3

is valid for sufficiently small €.

By Lemma 5.1 and inequality (3.5) we obtain

(@nu)(y;€) — (Qnu)(g,¢)| <

2 [t e
2 [ e (e elhl + Pon(si 0,5, — u(5i0,5,2)

+(e + |h]) |h(s, on(s;0,y,€),€) — h(s, ¢n(s;0,7,€),¢)|+
+elu(en(s; 0,y,¢€),€) — u(wn(s;0,7,€),€)|lds <

< s\f 1215 eV2yl5(e) /+°°

o0

+o00
- s\f%( _y|/ e e tela)lsl gg (5.20)
T

e |p(s;0,y, h,e) — ¢(s;0,7, h,e)|ds <

where
Is(€) :== 1 + &by + b] + ely(1 + by) + €l3. (5.21)

For sufficiently small € we have
I5(e) < 2. (5.22)

The integral in the last line of (5.20) can be rewritten as

+o00 —+o00
/ e%ﬁesll(1+sl4)\s|ds —9 / 87§+5l1(1+al4)sd8. (523)
_ 0

oo

From the relation
—0% + 2ely(1 4 €ly)o = —(0 — ely (1 +€ly))? + (el (1 + ely))? (5.24)

we get

+oo Py +o0 2
82 2 _ (o—ely (1+elg))”
/ e 2 +Ell(1+6l4)5ds — eE K,(E) / e 2 do’, (525)
0 0

where

k(e) == (I (1 +ely)?.

Thus, for sufficiently small € we may assume

e ) < Ve. (5.26)

14



By means of the transformation

T =0 —c¢li(1+¢ely)

+o0 2 +o0 2
_ (o—ely (1+ely)) _T°
/ e 2 do = / e 2 dr. (5.27)
0 —

Ell(l+El4)

we get

By (5.17), (5.18) we have

O gty (14ely))? 0 L2 teo 2
e 2 o= e 2dt+ e 2dr =
0 —6l1(1+6l4) 0

(5.28)
= % (erf(all(l +ely)) + 1) < Vm,

and we obtain from (5.25) and (5.26)

© 5
/ 6Teal1(1+sl4)sds S \/ﬁ (529)
0

Consequently, according to (5.23) we have

+oo 82
/ e eilrellslgs < 94/27e. (5.30)

o0

Taking into account this estimate, by (5.20), (5.22) it holds

(@nu)(y, ) — (Qnu)(7,2)| < 8elav/ely — 7.

Therefore, for sufficiently small e we have by (5.15) and (5.16)

|(Pau)(y, €) — (Pau)(9: €)| < 2/(Qnu)(y, ) — (Qnu) (5, €)| < 16cl2v/ely — gl

If we put
I3 := 32v/e, (5.31)
then the estimate
|(Pru)(y, ) — (Pru)(g,€)| < els|ly — 9|
is valid for sufficiently small € and we can conclude that P, maps U into itself.

In the next step we derive conditions assuring P} to be a contraction operator in
U. At first we estimate the difference Qru — Qna for u,@ € U. According to (3.5),
(3.7), (5.11), (5.17) and (5.18) we have

+o0 2

[(Qnu)(y,€) — (Qna)(y, )| < %/ e elyo(u, w)ds = 2ely0(u, @).

—00

15



Hence, by (5.15) and (5.16) we get

|(Phu)(y; €) — (Pati)(y, €)| < 4elao(u, u).

Thus, for sufficiently small €, P, is contraction operator in U, and the equation

u = Pyu, which is equivalent to (4.5), possesses a unique solution uy in U. O

Now we study the dependence of the fixed point uj of P, on h. Let ux(y,e) and
uz(y, €) be the solutions of (4.5) corresponding to the functions h and A respectively.

Thus, we have
(I + Ra)un = Quun, (I + Rp)up = Qpuz, (5.32)

where in analogy to (5.11), (5.14) it holds

(Rauw)(y;€) := %/_:oe SW L (5)ua(on(s0,,€),€) — way,9)lds, (5.33)

2 [T _»2

(Qnun)(y,€) = v et W i(s)Z()ds, (5.34)

with
Z(-) = Z(s,01(5;0,9,€), h(s, oi(s;0,9,€), ), ur(n(s; 0,9,€), ), €).
From (5.32) we obtain
up — up = (I + Rp) 7' [Qnu — Qpus + (R, — Ry)ug). (5.35)
By (3.7), (3.9), (5.11), (5.21), (5.34) and Lemma 5.1 we have
|(@nun)(y: €) — (Qaua)(y,€)| <

\/§l2 too ;-92
< e 2
VA

+(E + |B|)|h(8, QOh(S; Oa Y, E)a E) - ]TL(S, SOI_'L(S; Oa Y, E)a 5)|+

(e + elh| + |B%)|@n(s;0,y,€) — @n(s; 0, y,€) |+

+elun(on(s;0,y,€),€) — up(pn(s;0,y,¢€),€)||ds

< 8\/512

+00 >
< ﬁ/_ e ? [l5(6)|90h(8;0,y,€)—soh(S;O,y,s)H

e o]
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+(1 + bg)d(h, h) + o(un, uh)] ds < ely [Q(uh, up) + (1 + by)d(h, h)+

Vals(E)d(h,F) [+
T (el /_

Taking into account the estimate (5.30) and the relations (5.17) and (5.18) we have

_s2
e 2 (esh(tetalsl _ l)ds] : (5.36)

o0

+oo 82
/ e 5 (e _ 1)ds < v/27(2 — Ve). (5.37)

o0

Assuming ¢ to be sufficiently small such that 1+ ely < g holds, then we get from
(5.36), (5.37), (5.22)

|(Qnun)(y, ) — (Qrur)(y, )| < elo [o(un, uz) + (1 +bs +6(2 — +/e)) d(h, h)] .
(5.38)
Analogously we obtain from (5.14) and (5.33) for sufficiently small €

_g2

VB
(Fa = Bius(n,e)] < 22 / )

ur(0r(5;0,y,€),€) — up(@n(s;0,y,¢),¢)|ds <

Y
< ﬁ/_m e 2 ¢els|on(s;0,y,€) — oi(s;0,9,€)|ds < (5.39)

ev/2l3d(h, h) /+°°

< N e e#(eshumns\ —1)ds < 3el3(2 — v/e)d(h, h).
m Elg

e o]

Hence, from (5.15), (5.31), (5.35), (5.38), (5.39) we get

o(un, uz) < 2ely [g(uh,uE) (14 by) +102(2 — Ve)d(h, B)] .

From this inequality we obtain the following result

Lemma 5.3 Suppose the hypotheses of Theorem 5.2 are satisfied. Then for suffi-
ciently small € the following estimate is true

o(up, up) < 2ely|1+ by + 102(2 — v/e)|d(h, h). (5.40)

6 Existence of the integral manifold

As we mentioned in section 4, a fixed point of the operator 7' defines an integral
manifold of system (3.1). In this section we derive conditions guaranteeing that 7T

maps the space H into itself and is strictly contractive in H.
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For h € H, uj, € U, and t < 0 we get from (3.3), (3.7), (3.9), (4.6), (5.18), (5.19)

t t2—52
(Th)(t,y,€)| < / "5 |12 ()| + Jun(on(s; t,y,2),0)] | ds <
- 6.41)
+oo .2 \/7—1_ (
< elby(1l+eby+eb2)+b / e 2 ds = eY—by(5 + eby + b?).
>~ (2( 4 4) 3) ; \/5 2( 4 4)
If we set
VL3

by i= 106, YL 6.42
4 NG (6.42)

then the boundedness condition in (3.9) is valid for sufficiently small € and ¢ < 0.

It can be verified that the same result is valid in case ¢ > 0.

In order to prove that (T'h)(t,y, €) obeys the Lipschitz condition in (3.9) we estimate

for t <0 in a similar way

t 2_.2
(t2—=s%)
S/ e 2
—O0Q

= (Sa QOh(S; ta ga 8)) h(S, QOh(S; ta ga 5)a 5)a u(@h(s; ta ga 5)a 5)a 6) |+

|(Th) (ta Y, 5) - (Th) (ta v, 5)| <

|Z (8, QDh(S; t; Y, 5)7 h’(87 QOh(S; ta Y, E)a E)a U’(Qoh(s; ta Y, E)a E)a E) -

+|u(§0h(3;taya6)a6) - u(@h(s;tagag)agﬂ ds S

t 2 2
(t—s%)
< / e 7 [ely(1 + by + £b2) on(s; £, v, €) — wn(s;t, T, €)|+

— 00

+ela(1 4 by)|h(s, on(s;t,y,€),€) — h(s, on(s;t, 7,€),€) |+
+(€lz + 1)|u(g0h(s, ta Y, 8)’ 8) - U(QDh(S, ta ga 6)’ 6)|]d8 S

t (t27

.92)
< e(lols(e) + Is) / e+ (st y,€) — on(sit, 7, )ds <

— 00

+oo .2
< e(lals(e) + 1)y — 71 / ¢ 75 e l1ela)s g
0
Due to (5.22), (5.29) we obtain for ¢ < 0 and sufficiently small &
((Th) (¢, y,€) = (Th)(t,9,€)| < ev2me(2ly +13)|y — 3.

Since the same inequality is valid for ¢ > 0 and if we take into account relation
(5.31) it holds for any ¢

(Th)(t,y,€) — (Th)(¢,,€)| < 2elav/2me(1+ 16V/e)|y — 7.
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Hence, if we set

Iy := 2v2mely(1 + 164/€), (6.43)

then 1" maps H into itself.

Now we prove that T' is strictly contractive in H. In the same way as above we
obtain from (4.6) for ¢ < 0 and sufficiently small &

|(Th) (ta Y, 5) - (TB)(ta Y, €)| S
|Z (s, on(s;t,y,€), h(s, on(s;t,y,€),e), un(on(s; t,y,€),€),€) —

t 2_ .2
(t%—s%)
S/ e 2
— 00

—Z (S, QDB(S; ta Y, 6)a ;"(Sa QOE(S; ta v, 8)) 8)) ’U,E(QDB(S; ta Y, 5)a 5)a 5) |+

+lun(pn(s; t,y,€),€) — ug(en(s;t, y,e), )| | ds <

t 2_ 2
(t2-s%)
< / e 2 (ela(1 4 by + €b3)(Jen(s; t, v, €) — wu(s;t, y, )|+

o0

+ela(1 + ba)|h(s, on(s;t, y,€),€) — h(s, ou(s;t, y,€),€)])+

+ (1 +ela)|un(on(s; t,y,€),€) — ug(wn(s; t,y,€),€)])ds <
/ (a lls +13)|en(s; t,y,€) — or(s; b, y,€) |+

tely(1+ ba)d(h, B) + (1 + elp)o (uh,u,-l)>ds <

2

— +oo —s
< (ela(1 + by)d(h, h) + (1 + €l2) o(un, ug)) / e 2 ds+
0

1+1 [T 2
_|_2512(+76\/E) d(h, h)/ e (eel1(1+6l4)s _ 1) ds.
1+ €l4 0

Taking into account (5.18), (5.29), (5.40) we get for sufficiently small e
|(Th’) (ta Y, 8) o (TE’) (ta Y, 5)| <

JT
V2

Therefore, T is a contraction operator in H for sufficiently small €.

El2

(1 +by +2(1 +¢ly) (1 + by +102(2 — ﬁ)) +3(1+16+/e)(2v/e — 1)] d(h,h)

Thus, we have proved Theorem 3.1
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Remark 6.1 Theorem 3.1 can be generalized for the case when the matrix B(t)

B(t) — ( a(t)t A1) )

has the form

—6(@) a(t)t

where a(t), 8(t) are continuous for all ¢ € R and satisfy

0< o <at)<as <+4oo, 0<p <B(t) <Py < +oo.

Remark 6.2 If in addition to the conditions of the Theorem 3.1 the functions
Y(t,y,2,¢), Z(t,y,2,u,e) on the right hand side of (3.1) have continuous and
bounded partial derivatives with respect to y,z,u up to the order (k + 1), then
the integral manifold h(t,y,€) and the control function u(y,e) have continuous and

bounded partial derivatives with respect to y up to the order k.

Remark 6.3 If the functions Y (¢,y,z2,¢) and Z(t,y, z,u,e) have bounded partial
derivatives with respect to y,z,u,e of order (k + 1), then the integral manifold

z = h(t,y,e) and the control function u(y, ) have the asymptotic representation
k
h(ta Y, 6) = Z €Zhi(ta y) + Th (ta Y, 8))
i>0

u(y,e) = Y eu(y) +ru(y,e),

i>0

(6.44)

where h; and u; are bounded functions which are by Remark 6.2 k-times continuously
differentiable with respect y up to the order k, and 7, = O(e**!), r, = O(eF ).

As an example we consider the slow-fast system

d

d—gt/ = €Y(t,y,z,€),

dt (6.45)
= = B(t)z+ Z(t,y, z,u,€) + u(y, ),

with y € R and

(6.46)

t

0

The function Z satisfies hypotheses (Ag) and (A;). Then, relation (4.5) takes the
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form

+w 52 +m S2
€ COS y/ e 2 cos® sds + uy / e~ 2 cossds =0,

o0 o0

(6.47)

“+o0 “+o0
cosy _s2 _s2 .
—£ / e~z sin 23ds+uQ/ e~ 2 sinsds = 0.

o0 o0

Using the relations (2.18), (2.19) we get from (6.47)

1/2
c¢ (14+eHcosy, wuy(y,e)=0.

ul(ya 8) = -
Substituting these results into the right hand side of (4.6) we get the following
representation of the integral manifold z = h(t,y, ) given by

( t

2.2
/ ez W(t—s) (Z(s, y,€) + u(y, 5)>ds for ¢<0,
h(t’y’s) = % _oioo
t2—s2
— / ez W(t—2s) (Z(s, y,€) + u(y, 5)>ds for ¢>0.
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