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AbstractWe propose and study a new model describing passive mode-locking in asemiconductor laser { a set of di�erential equations with time delay. Ana-lytical analysis of this model is performed under the slow saturable absorberapproximation. Bifurcations responsible for the appearance and break-up ofmode-locking regime are studied numerically.Passive mode-locking (ML) is a very powerful method to generate high quality shortpulses with high repetition rates from di�erent kinds of lasers. In particular, mono-lithic passively and hybrid mode-locked semiconductor lasers are compact, low cost,reliable, and eÆcient sources of picosecond and subpicosecond pulses ideal for appli-cations in high speed communication systems [1]. Due to their small size, large gaincoeÆcient and fast recovery time of semiconductor material these lasers can producepulses at very high repetition rates (tens and hundreds of GHz). The duration ofML pulses generated by semiconductor lasers is typically much smaller than semi-conductor saturable absorber recovery time. This situation is usually referred to asa ML with slow saturable absorber [2]. The basic physical mechanism responsiblefor the appearance of passive ML in a laser with slow absorber is well known [3]:Absorbing medium saturates faster with the arrival of a pulse than the amplifyingone, and, therefore, opens a short net gain window for the pulse ampli�cation whichis necessary to compensate cavity round trip losses; the net gain window is closedby gain saturation.Analytical approaches to describe passive ML with slow saturable absorber weredeveloped by New [3] and Haus [2]. Both of them considered a situation of smallgain and loss per cavity round trip. They noticed that in the case of slow absorberwhen the relaxation times of amplifying and absorbing media are much larger thanthe pulse duration, time evolution of the ML solution can be split into two stages.The fast stage corresponds to a short time interval when the amplitude of a pulse islarge. Since saturable gain and absorption evolve on time scales much larger thanthe pulse duration, the relaxation processes in intracavity media can be neglected atthe fast stage. The slow stage corresponds to a time interval between two subsequentpulses when the laser intensity is close to zero. At this stage gain and absorptionrecover slowly to their unsaturated values. The slow stage can be described by lin-ear ordinary di�erential equations that are easily integrated analytically. However,analytical solution for the fast stage can be obtained only after introducing someadditional approximations. Speci�cally, New assumed that there is no spectral �l-tering in the cavity. This means that in�nitely large number of laser modes lock into form an in�nitely short pulse. Gluing the solutions obtained for the two stages1



and using the ML pulse background stability condition that requires the net gainbe negative during the slow stage [3], New obtained implicit analytical expressionsfor the stability boundaries of the ML regime in the laser parameter space.Unlike New's theory, the one developed by Haus is able to describe such impor-tant characteristics of ML solution as pulse shape, pulse duration, and deviationof the ML repetition period from the cold cavity round trip time. Haus includedinto consideration spectral �ltering under parabolic approximation [2]. He showedthat even in the limit of in�nitely broad bandwidth of the spectral �ltering element,background stability boundaries of ML pulses are di�erent from those obtained us-ing New's approach, in which spectral �ltering is neglected from the very beginning.In order to get analytical description of the ML phenomenon, Haus assumed thatthe pulse power is small enough, so that the intracavity media are weakly satu-rated. Under this approximation he derived a closed analytical expression for theML pulse shape in terms of hyperbolic secant. This result was found to be in agood agreement with the experimental data obtained with dye laser [4]. Since thendi�erent modi�cations of the Haus master equation have been derived and analyzed[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].Despite of signi�cant success of the Haus' model, its applicability to describe ade-quately real laser systems is questionable in the situations when the approximationsunderlying this model are not satis�ed. In particular, typical solid state lasers withsemiconductor saturable absorbers are operated under conditions of complete sat-uration [20], i.e. in a situation when Haus' model is not applicable. On the otherhand, semiconductor ML lasers typically have very high gain and losses per cav-ity round trip. Therefore, the classical models by New and Haus, both assumingsmall gain and loss per cavity round trip, fail to describe adequately ML in theselasers. This is why approaches based on direct numerical simulations of spatiallydistributed models have been mainly used to study ML of semiconductor lasers (fora review see Ref. [18]). Although these approaches in principle allow to reproduceexperimental data with quite good accuracy, they give only little insight into thephysical mechanisms involved. The purpose of this paper is to study a new delaydi�erential model that is able to describe ML in the parameter range typical ofsemiconductor lasers. When deriving this model we do not use small gain and loss,weak saturation, as well as in�nite bandwidth approximation. The only essentialassumption we adopt concerns a ring cavity geometry with unidirectional lasing.Being more general than the classical ML models our model remains simple enoughto perform comprehensive bifurcation analysis and allows physical interpretation ofthe obtained results in terms similar to those used by New and Haus, such as, forexample, the net gain parameter. Here we present a numerical study of the de-lay di�erential model and describe bifurcations responsible for the appearance andbreak-up of the ML regime. We show that under certain approximations analyticalresults obtained by New and Haus can be recovered from our model. Furthermore,we generalize their approaches to the case of large gain and loss per cavity roundtrip. 2



1 Model equationsLet us consider a ring laser shown in Fig. 1. It is assumed that one of the twocounterpropagating waves in the laser cavity is suppressed so that the lasing isunidirectional. The laser consists of �ve sections. Let z be the coordinate along thecavity axis. The �rst, z1 < z < z2, and the fourth, z4 < z < z5, sections are passive.The second, z2 < z < z3, and the third section, z3 < z < z4, contain saturableabsorber and gain medium, respectively. The last, �fth section, z5 < z < z1+L, actsas a spectral �lter that limits bandwidth of the laser radiation. Here L is the cavitylength. Traveling wave equations [21, 22] governing evolution of the slow varyingelectric �eld envelope E (t; z) in the gain and absorber sections can be written inthe form @E (t; z)@z + 1v @E (t; z)@t = gr�r2 (1� i�r) hNr (t; z)�N trr iE (t; z) ; (1)@Nr (t; z)@t = Jr � 
rNr (t; z)� vgr�r hNr (t; z)�N trr i jE (t; z)j2 : (2)Here the subscript r = g (r = q) corresponds to the gain (absorber) section. Thevariables Ng (z; t) and Nq (z; t) describe carrier densities in the gain and absorbersections, respectively. The parameters N trg;q are the carrier densities evaluated attransparency threshold. The parameter v is the light group velocity which is assumedto be constant and equal in all �ve sections. The parameters �g;q, gg;q, �g;q, and
g;q = 1=Tg;q are, respectively, linewidth enhancement factors, di�erential gains,transverse modal �ll factors, and carrier density relaxation rates in the gain andabsorber sections. The parameter Jg describes injection current in the gain section.For the absorber section we have Jq = 0.Evolution of the electric �eld envelope E (t; z) in the passive sections is governed byEq. (1) with zero right hand side:@E (t; z)@z + 1v @E (t; z)@t = 0: (3)The spectral �ltering section is assumed to be negligibly thin, i.e., z1 + L � z5.Transformation of the electric �eld envelope by this section is given by the relationbE (!; z1 + L) = bf (!) bE (!; z5) ; (4)where bE (!; z5) and bE (!; z1 + L) are the Fourier transformations of E (t; z5) andE (t; z1 + L), respectively. The function bf (!) in Eq. (4) describes the lineshape ofthe bandwidth limiting element.In a ring cavity the electric �eld envelope E obeys periodic boundary conditionE (t; z + L) = E (t; z) : (5)After the coordinate change (t; z)! (�; �), where � = 
q (t� z=v) is a retarded timedivided by the absorber relaxation time and � = z
q=v is a normalized coordinate3



along the cavity axis, Eqs. (1) and (2) for gain and absorber sections can be rewrittenin the following adimensional form:@A (�; z)@� = 12 (1� i�g)ng (�; z)A (�; z) ; (6)@ng (�; z)@� = jg � �ng (�; z)� ng (�; z) jA (�; z)j2 ; (7)@A (�; z)@� = �12 (1� i�q)nq (�; z)A (�; z) ; (8)@nq (�; z)@� = �jq � nq (�; z)� snq (�; z) jA (�; z)j2 : (9)Here A (�; �) = E (t; z)qvgg�g=
q, ng;q (�; �) = vgg;q�g;q [Nr (t; z)�N trr ] =
q, jg =vgg�g �Jg � 
gN trg � =
2q , jq = vgg�gN trq =
q, and � = 
g=
q. The parameter s =(gq�q)=(gg�g) is the ratio of the saturation intensities in the gain and absorbersections.In the new coordinates (�; �) Eq. (3) for the two passive sections takes the form:@A (�; �)@� = 0: (10)Solving Eqs. (6)-(10) and Eq. (4) the transformation of the electric �eld envelope byeach of the �ve laser sections can be described. According to Eq. (10), the relationbetween input and output �eld in the two passive sections is given byA (�; �2) = A (�; �1) ; A (�; �5) = A (�; �4) : (11)The transformations of the electric �eld envelope by the absorber and gain sectionsare obtained by integration of Eqs. (6) and (8)A (�; �3) = e� 1�i�q2 Q(�)A (�; �2) ; A (�; �4) = e 1�i�g2 G(�)A (�; �3) : (12)Here the dimensionless quantities Q (�) and G (�) describe saturable loss and gainintroduced by the absorber and gain section respectively [23, 24]. They are givenby Q (�) = Z �3�2 nq (�; �) d�; G (�) = Z �4�3 ng (�; �) d�:Integrating Eq. (9) over � from �2 = z2
q=v to �3 = z3
q=v and using the relationR �3�2 nq (�; �) jA (�; �)j2 d� = � jA (�3; �)j2+ jA (�2; �)j2 which follows from Eq. (6), wederive an equation governing evolution of the saturable loss:@�Q (�) = �q0 �Q (�) + s jA (�; �3)j2 � s jA (�; �2)j2 : (13)Here the unsaturated absorption parameter is de�ned by q0 = R �3�2 jqd�. An equationfor G (�) is obtained in a similar way. It is given by4



@�G (�) = g0 � �G (�)� jA (�; �4)j2 + jA (�; �3)j2 ; (14)with unsaturated gain (pump) parameter g0 = R �4�3 jgd�.Being rewritten in the time domain Eq. (4) for the spectral �ltering section takesthe following form A (�; �1 + T ) = Z ��1 f (� � �)A (s; �5) d�; (15)where T = 
qL=v is the normalized cavity round trip time (cavity length) and f (�)is assumed to decay at � ! 1 suÆciently fast, so that the integral in right handside of Eq. (15) converges.Substituting Eqs. (11) and (12) into Eq. (15) and using the periodic boundarycondition (5) which can be rewritten in the formA (�; � + T ) = A (� + T; �) ;we obtain the transformation of the electric �eld envelope A (�) � A (�; �1) after acomplete round trip in the cavityA (� + T ) = p� Z ��1 f (� � �) exp �1� i�g2 G (�)� 1� i�q2 Q (�)�A (�) d�: (16)Here the attenuation factor � < 1 describes non-resonant linear intensity losses percavity round trip.The equations governing the evolution of the saturable gain and loss are obtainedfrom Eqs. (14) and (13) by using Eqs. (11) and (12) to express A (�; �2), A (�; �3),and A (�; �4) in terms of A (�) = A (�; �1). They read@�G (�) = g0 � �G (�)� e�Q(�) �eG(�) � 1� jA (�)j2 ; (17)@�Q (�) = �q0 �Q (�)� s �1� e�Q(�)� jA (�)j2 : (18)Eqs. (16)-(18) describe passive ML in a ring laser with arbitrary lineshape of thespectral �ltering element de�ned by the linear response function f (�). In the casewhen spectral �ltering element is absent, this function can be replaced by the Diracdelta function, f (�) = Æ (�). Then Eq. (16) is transformed intoA (� + T ) = p�e 1�i�g2 G(��T )� 1�i�q2 Q(��T )A (�) : (19)which is similar to the map introduced by Ikeda [25, 26]. Eqs. (19), (17), and(18) describe passive ML in a laser without spectral �ltering element, i.e. in asituation considered by New [3]. A ML solution of these equations can be expressedin terms of the Dirac delta function jA (�)j2 = �P P1n=�1 Æ (� � nT ), where �P isthe dimensionless energy of a ML pulse. This solution is characterized by in�nitely5



large number of locked modes and in�nitely short pulse with repetition period equalprecisely to cold cavity round trip time T .Now let us consider the case when the response function in Eq. (16) is de�ned byf (�) = ( 
1�e�
� e(�
+i
)� ; 0 � � � �0; � > � ; (20)where the parameter 
 describes the detuning of the central frequency of the spectral�ltering element. In this case Eqs. (16)-(18) can be replaced by a set of delaydi�erential equations (DDEs) with two delays:@�A (�) + (
 � i
)A (�) = 
p�1� e�
� �e 1�i�g2 G(��T )� 1�i�q2 Q(��T )A (� � T )�e(�
+i
)�e 1�i�g2 G(��T1)� 1�i�q2 Q(��T1)A (� � T1)� :(21)Here T1 = T +�. The solution of Eq. (21) can be written in the formA (� + T ) = e(�
+i
)� "C + 
p�1� e�
� Z ���� e(
�i
)�+ 1�i�g2 G(�)� 1�i�q2 Q(�)A (�) d�# :(22)One can see from Eq. (22) that in order Eq. (21) be equivalent to Eq. (16) theequation C = 0 must be satis�ed. This implies the following initial condition forthe electric �eld envelopeA (0) = 
p�1� e�
� Z �T�T1 e(
�i
)�+ 1�i�g2 G(�)� 1�i�q2 Q(�)A (�) d�: (23)Eq. (23) de�nes the initial condition for which Eqs. (21) are equivalent to Eq.(16). However, since, for 
 > 0 the term proportional to C in Eq. (22) decaysexponentially as � !1, its precise form can be safely dismissed in the calculations.In order to clarify the physical meaning of (20) let us consider two limiting situa-tions. In the limit 
 ! 0 the function f (�) becomes a stepwise one with the Fouriertransform bf (!) / e�i!�=2 sin (!�=2) = (!�=2). Such a function describes a re
ec-tion from weak Bragg grating. Note, however, that for 
 = 0 the term proportionalto C in Eq. (22) does not decay with time. Therefore, in this case, unlike the casewhen 
 > 0, one has to choose the precise form of the initial condition de�ned byEq. (23) in order to get a correct result.The second situation, �!1, corresponds to Lorentzian lineshape of the bandwidthlimiting element, f (�) = 
e(�
+i
)� . In this case Eqs. (16)-(18) can be replaced bya set of DDEs with a single delay parameter equal to the cavity round trip time T .After the coordinate change A! Aei
� this set takes the form
�1@�A (�) + A (�) = p�e 1�i�g2 G(��T )� 1�i�q2 Q(��T )�i'A (� � T ) ; (24)@�G (�) = g0 � �G (�)� e�Q(�) �eG(�) � 1� jA (�)j2 ; (25)@�Q (�) = �q0 �Q (�)� s �1� e�Q(�)� jA (�)j2 ; (26)with ' = 
T . In the following we restrict our consideration to the analysis of Eqs.(24)-(26). 6



2 Limit of in�nitely broad bandwidthThe number of cavity modes that take part in ML process can be roughly estimatedthrough the ratio of the bandwidth of the spectral �ltering element, 
, and the cavityintermode frequency spacing, T�1. In this section we perform analytical study ofEqs. (24)-(26) in the case when T is �xed and 
 ! 1. In this limit the durationof a ML pulse vanishes, �p / 
�1, its amplitude diverges, A0 / 
1=2, while the pulseenergy, �P / A20�p, remains �nite. Physically this means that the number of lockedlaser modes grows, but at the same time the energy associated with each mode takenseparately decreases.If 
 is suÆciently large and the relaxation times of the intracavity media are largeas compared with the pulse duration (slow absorber), then following the approachof New [3] and Haus [2], we split the evolution of a ML solution into two stages.At the slow stage the amplifying and absorbing media recover slowly between twosubsequent pulses. During this stage the electric �eld intensity is close to zero,jA (�)j2 � 0 (see Fig. 2). Therefore, the terms proportional to jA (�)j2 in Eqs. (25)and (26) can be neglected at the slow stage. At the short fast stage the electric�eld intensity is large and therefore, the terms proportional to jA (�)j2 dominate inthe right hand sides of Eqs. (25) and (26). The remaining relaxation terms can beneglected at the fast stage.When 
 increases the duration of the slow stage tends to the cavity round trip timeT , while the duration of the fast phase vanishes. New solved the laser equations forthe two stages separately and calculated the energy of the pulse �P by gluing thetwo solutions [3]. He also proposed a stability criterion for ML pulses. According tothis criterion they are stable if the net gain G (�) � Q (�) + ln� is negative duringthe entire slow stage. Physically this means that small perturbations of the lowintensity background between ML pulses decay with time (absolute stability). Itcan be shown that the New's background stability criterion is ful�lled if the netgain is negative at the beginning and at the end of the slow stage. Therefore, thiscriterion can be rewritten as a set of two inequalitiesG1 �Q1 + ln� < 0; (27)G2 �Q2 + ln� < 0: (28)Here G2 and Q2 (G1 and Q1) are the saturable gain G (�) and loss Q (�) evaluatedat the beginning (end) of the slow stage (see Fig. 2). Since the end of the slow stagecorresponds to the beginning of the fast one and vice versa, the inequalities (27)and (28) give the background stability conditions at the leading and trailing edgeof a pulse, respectively.Linear ordinary di�erential equations that describe the evolution of G (�) and Q (�)at the slow stage are easily integrated. However, Eq. (24) describing evolution of theelectric �eld amplitude at the fast stage cannot be solved analytically without further7



approximations. The approach of New assumes the absence of spectral �ltering inthe cavity. In this case f (�) = Æ (�) in Eq. (16) and, therefore, this equation istransformed into Eq. (19). Such approximation is equivalent to the neglect of thederivative term 
�1@�A (�) in Eq. (24). Note, however, that for a ML solution thisterm remains �nite for 
�1 ! 0, and, therefore, cannot be neglected even in thelimit of in�nitely broad bandwidth. To illustrate this statement let us consider aML solution having time periodic intensity, jA (� + Tp) j2 = jA (�) j2, with the periodTp close to the cavity round trip time T . Substituting this solution into Eq. (24),taking modulus square from both sides, and integrating over the period Tp we obtain
�2 Z Tp0 j@�A (�)j2 d� +�P = � Z Tp0 eG(�)�Q(�) jA (�)j2 d�; (29)where �P = R Tp0 jA (�)j2 d� is the total dimensionless energy of the ML pulse. Eq.(29) is similar to Eq. (46) of Ref. [2] which was derived under assumptions ofparabolic dispersion, small gain and loss per round trip, and weak saturation. Theintegral in the left hand side of Eq. (29) describes energy losses introduced byspectral �ltering element. As it was pointed out by Haus [2], in the limit of in�nitelybroad bandwidth one gets j@�A (�)j2 / 
2 jA (�)j2 and, hence, these losses, neglectedby New, remain �nite. Physically this means that the spectral width of a ML pulseincreases with the bandwidth of the spectral �ltering element, so that the lossesintroduced by this element remain �nite.Since the electric �eld intensity is very small during the slow stage, the integrationin Eq. (29) can be restricted to the fast stage only. Then using the solutions for Gand Q obtained in section 2.2, the integral in the right hand side of Eq. (29) canbe expressed analytically in terms of the total pulse energy �P . The integral inthe left hand side, however, can be calculated analytically only in the limit of weaksaturation that underlies Haus' theory (see section 2.4).Below we demonstrate that under certain approximations the background stabilitydomains of ML solutions calculated analytically using Eqs. (24)-(26) coincide withthose derived by New [3] and Haus [2]. Moreover, our DDE model allows to gen-eralize their analytical results to the case when gain and loss per cavity round tripare not small, i.e. to a situation typical of semiconductor lasers. This is done insections 2.3 and 2.4.2.1 Slow stageLet us consider a solution of Eqs. (24)-(26) with periodic laser intensity corre-sponding to a ML regime (see Fig. 2). Between two subsequent pulses, when theamplitude of the electric �eld is close to zero, jA (�)j2 � 0, the equations for thesaturable gain and loss become linear@�G (�) = g0 � �G (�) ; @�Q (�) = �q0 �Q (�) : (30)8



Solving Eqs. (30) we express the saturable gain and loss at the end of the slowstage, G1 and Q1, via their values at the beginning of this stage, G2 and Q2:G1 = G2e��T + g0� �1� e��T� ; (31)Q1 = Q2e�T � q0 �1� e�T� : (32)Here T is the duration of the slow phase equal to the cavity round trip time in thelimit 
 !1.Eqs. (31), (32) can be further simpli�ed in two limiting cases:(i) Absorber relaxes completely between two subsequent pulses, T � 1. Theninstead of Eq. (32) we obtain Q1 = �q0: (33)(ii) The relaxation time of the gain medium is much smaller than the cavity roundtrip time, �T � 1. In this case Eq. (31) is replaced byG1 = G2 + g0T: (34)2.2 Fast stageThe duration of the fast stage coincides with the pulse width �p (see Fig. 2). Sinceunder the slow absorber approximation �p is assumed to be small as comparedwith the relaxation times of amplifying and absorbing media and the electric �eldintensity is large during the fast stage, the relaxation terms in the right hand sides ofEqs. (25) and (26) can be neglected at this stage. Then, introducing dimensionlessdi�erential pulse energy P (�) = R �0 jA (�)j2 d�, where � = 0 corresponds to thebeginning of the fast stage, we rewrite Eqs. (25) and (26) in the form@Pg (P ) = �e�q(P )(eg(P ) � 1); @P q (P ) = �s �1� e�q(P )� ; (35)with g (P ) = G (�) and q (P ) = Q (�). Using the solutions of Eqs. (35) we expressthe saturable gain and loss at the end of the fast stage (trailing edge of a pulse),G2 = g (�P ) and Q2 = q (�P ), via their values, G1 = g (0) and Q1 = q (0), at thebeginning of this stage (leading edge of a pulse)G2 = g (�P ) = � ln8><>:1� 1� e�G1he�Q1 (es�P � 1) + 1i1=s9>=>; ; (36)Q2 = q (�P ) = ln h1 + e�s�P �eQ1 � 1�i : (37)9



Here �P = P (�p) = R �p0 jA (�)j2 d� is the total dimensionless energy of a ML pulse.Substituting the solutions of Eqs. (35) into the right hand side of Eq. (29) andperforming integration we obtain� Z Tp0 eG(�)�Q(�) jA (�)j2 d� = � Z �P0 eg(P )�q(P )dP = � ln eG1 � 1eG2 � 1 :Therefore, instead of Eq. (29) we get
�2 Z �p0 j@�A (�)j2 d� +�P = � ln eG1 � 1eG2 � 1 : (38)In order to solve Eqs. (31), (32), and (36)-(38) for the pulse parameters, G1;2,Q1;2 and �P , one has to express the integral in the left hand side of Eq. (38) interms of these �ve unknowns. Two particular situations in which this can be doneanalytically are described in the following two sections, 2.3 and 2.4.2.3 A generalization of New's modelAs it was already mentioned, the neglect of spectral �ltering in New's approach [3]is equivalent to the neglect of the integral term in the left hand side of Eq. (38).Then this equation becomes �P = � ln eG1 � 1eG2 � 1 : (39)Together with Eq. (39), Eqs. (31), (32), (36), and (37) constitute a closed set ofequations that can be solved for G1;2, Q1;2 and �P . This gives the dependence of thepulse energy �P on the laser parameters. Substituting the solution into inequalities(27) and (28) one can calculate background stability boundaries of a ML pulse. Aresult of such a calculation is presented in Fig. 3 for the ML solutions with theperiod T and T=2. The �rst of them corresponds to a fundamental ML regime witha single pulse circulating in the cavity, while the second one corresponds to a regimewith twice greater repetition rate and two pulses in the cavity. One can see that thetwo stability domains overlap in a certain parameter range. This means that theremay be a hysteresis between regimes having di�erent repetition rates. According toFig. 3, the two background stability boundaries, namely those for the leading andtrailing edge of a pulse, meet each other at a codimension two point. This pointlying on the lasing threshold line Th can be calculated explicitlyq0 = � ln � (s� 1)s�� 1 ; g0 = � ln s� 1s�� 1 : (40)It is well known [17] that ML pulses with stable background can exist only if theabsorbing medium is saturated faster than the gain one [2], i.e. whens > 1: (41)10



It follows from Eqs. (40) that in a situation when gain and loss per cavity round tripare not small, the existence of such pulses is possible only if an additional conditions� > 1; (42)is satis�ed. In the small gain and loss limit, � ! 1, this new condition coincideswith (41). However, for the parameter values typical of semiconductor lasers withtheir high losses, � � 1, the inequality (42) implies much stronger limitation onthe minimal value of the ratio of saturation intensities than the previously knowncondition (41).Eqs. (31), (32), (36), (37) and (39) can be considered as a generalized New's modelbecause unlike the equations for the pulse parameters derived in Ref. [3] they donot assume that gain and loss per round trip are small. In order to recover fromthese equations those obtained by New we expand Eqs. (36), (37) up to the �rstorder terms in G1 and Q1:G2 = G1e��P ; Q2 = Q1e�s�P : (43)Then, substituting Eq. (36) into Eq. (39) and expanding it up to the �rst orderterms in G1, Q1, and ln� we obtain the equation for the pulse energyG1 �1� e�P��Q1�1� es�P�s ��P ln� = 0; (44)which is equivalent to Eqs. (11) and (12) of Ref. [3].Background stability boundaries of ML pulses calculated using four di�erent setsof equations are presented in Fig. 4. In this �gure solid lines labeled LN and TNindicate the leading and trailing edge instability boundaries obtained with the pulseparameters calculated using Eqs. (31), (33), (43), and (44). These equations areequivalent to the original equations derived by New [3]. Solid lines labeled LNGand TNG have been calculated using the generalization of New's model describedin this section. The dots in Fig. 4 represent points at the background stabilityboundaries which have been calculated by means of direct numerical integration ofEqs. (24)-(26) with 
 = 333. Noteworthy is that with the decrease of 
 the widthof the background stability domain increases. One can see from Fig. 4 that thegeneralized New's model appears to be in a quite good agreement with the resultsof numerical integration of the DDE model. On the other hand, discrepancy betweenthe numerical data and the results obtained using the original New's equations [3] isvery pronounced. This is because Fig. 4 corresponds to parameter values typical ofsemiconductor lasers in which gain and loss per round trip are large. The dotted linesin Fig. 4 indicate background stability boundaries obtained using the original Haus'equations [2] and a generalization of those equations derived in the next section.Note that it follows from our consideration that in the framework of New's approach,in which the derivative term is neglected in Eq. (24), the background stabilityboundaries do not depend on the linewidth enhancement factors. This is not true11



any more as soon as spectral �ltering is taken into account. However, for simplicitywe restrict our consideration below to the case when �g;q = 0 and ' = 0 in Eq. (24).In particular, this means that one of the cavity eigenfrequencies coincides with thecentral frequency of the spectral �ltering element.2.4 A generalization of Haus' modelIn this section we study a situation when gain and absorbing media are weaklysaturated by ML pulses. In this case using Haus' approach one can obtain anexplicit expression for ML pulse shape by solving analytically the ML equations forthe fast stage. Let us consider a periodic ML solution, A (� + T ) = A (� � ÆT ),where ÆT = Tp � T is the small di�erence between the pulse repetition period Tpand the cavity round trip time. Substituting this solution into Eq. (24) we obtain
�1@�A (� � ÆT ) + A (� � ÆT ) = p�e g(P )�q(P )2 A (�) : (45)In Eq. (45) g (P ) and q (P ) are the solutions of Eqs. (35). In the limit 
 ! 1corresponding to in�nite bandwidth of the spectral �ltering element the duration ofthe pulse vanishes and the period of ML solution tends to the cavity round triptime, i.e., �p; ÆT / 
�1. Introducing in this limit a rescaled time variable � = 
� werewrite Eq. (45) in the form@�a (� � c) + a (� � c) = p�F (P (�)) a (�) ; (46)where a (�) = 
�1=2A (�), P (�) = R ��1 ja (s)j2 ds, and c = lim
!1 (
ÆT ). Thefunction F (P ) is obtained by solving Eqs. (35) and substituting their solutionsinto Eq. (45):F (P ) = 8><>:h1 + e�sP (�) �eQ1 � 1�i 2641� 1� e�G1�esP (�)�Q1 � e�Q1 + 1�1=s3759>=>;�1=2 : (47)Eqs. (46) and (47) describe a ML pulse shape in the limit of in�nitely broadLorentzian bandwidth. For a laser operating close enough to the threshold thenormalized pulse energy is small P (�) ;�P � 1=s, which means that both theabsorber and ampli�er are weakly saturated. Under this approximation, which un-derlies Haus' theory [2], Eqs. (36) and (37) together with the function F (P ) inEq. (46) can be expanded in power series up to the second order terms in the pulseenergy. This yields G2 = G1 + g0 (0)�P + g00 (0)2 �P 2; (48)Q2 = Q1 + q0 (0)�P + q00 (0)2 �P 2; (49)c@��a (�)� (1� c) @�a (�) + "F (0) + F 0 (0)P (�) + F 00 (0)2 P (�)2# a (�) = 0: (50)12



Here the functions g, q, and F are de�ned by Eqs. (36), (37), and (47), respectively.In Eq. (50) we have used an approximation a (� � c) � a (�)�ca� (�) that is equiva-lent to the assumption that the gain dispersion is parabolic. Such approximation isvalid for a laser operating near the threshold. A solution of Eq. (50) can be writtenin the form [2]: a (�) = s�P2�p sech ��p! ; (51)where �p = 
�p is the normalized pulsewidth. At this solution the integral term inthe left hand side of Eq. (38) becomes �P=3� 2p . Substituting Eq. (51) into Eq. (50)and equating coeÆcients in front of di�erent powers of hyperbolic tangent we obtainthree equations for three unknown parameters: the normalized pulse energy �P ,the pulsewidth �p, and the coeÆcient c which describes the second order dispersion.Elimination of the two latter parameters leads to a second order equation for thepulse energy r0 + r1�P + r2�P 2 = 0; (52)with r0 = 2�p�eG2�Q22 � 1� ; (53)r1 = 12p�eG2�Q22 he�Q2 �1� eG2�+ s(1� e�Q2)i ; (54)r2 = 332p�e 3(G2�Q2)2 h3eG2�Q2 + s2eQ2�G2+ �3s2 � 4s+ 1� e�G2�Q2 + 4 (s� 1) e�Q2 � 4s (1� s) e�G2 � 4si : (55)Since in the derivation of Eqs (52), (31), (32), (36), and (37) we have not used smallgain and loss approximation they can be considered as a generalization of Haus'model [2]. Solving these equations for the pulse parameters G1;2, Q1;2, and �P andsubstituting their solutions into the inequalities (27) and (28) we get backgroundstability boundaries for the sech-solution de�ned by Eq. (51). It follows from Eq.(53) that the equation r0 = 0, corresponds to zero net gain at the trailing edge ofa pulse. Hence, this equation de�nes the trailing edge instability boundary of MLpulse. Furthermore, according to Eq. (52), the two equations r0 = 0 and r1 = 0de�ne a codimension-two point where the trailing edge instability boundary hits thelasing threshold. Solving these equations for G2 and Q2 and taking into accountthat at �P = 0 one has G1 = G2 = g0=� and Q1 = G2 = �q0 we recover thecodimension two point (40). Hence, the tips of the background stability tonguescalculated using the generalized New's and the generalized Haus' approaches arelocated at the same point in the parameter space.In the limit of small gain and loss per cavity round trip the generalized model derivedin this section is reduced to the original Haus' equations. To demonstrate this weexpand Eqs. (48) and (49) up to the �rst order terms in G1 and Q1:13



G2 = G1 �1��P + 12�P 2� ; (56)Q2 = Q1  1� s�P + s22 �P 2! ; (57)Then, expanding Eqs. (53)-(55) into power series up to the �rst order terms in G2,Q2, and ln� we obtain an equation for the normalized pulse energy equivalent toEq. (36) of Ref. [2]:G2 �Q2 + ln� + 12 (G2 � sQ2)�P � 316 �G2 � s2Q2��P 2 = 0: (58)In Fig. 4 leading and trailing edge instability boundaries calculated using the originalHaus' equations [2] are shown by the dotted lines LH and TH , respectively. Thesame boundaries obtained using the generalization of the Haus' model describedin this section are indicated by the dotted lines LHG and THG. One can see thatsimilarly to the original New's model the original Haus' model is not applicable todescribe ML in a parameter domain typical of semiconductor lasers. According tothe �gure, the generalized Haus' equations work well only when the pulse energyis small enough. The discrepancy between the background instability boundariescalculated using these equations and the results of direct numerical integration ofEqs. (24)-(26) increases with the increase of the pulse energy. On the other hand,the results obtained using the generalized New's approach remain in quite goodagreement with those of direct numerical simulations even under strong saturationcondition.3 Numerical resultsIn this section we present some results of numerical analysis of Eqs. (24)-(26)with T = 2:5, � = 0:1, � = 1:33 � 10�2, 
 = 33:3, �g;q = 0, and ' = 0. Asituation when the linewidth enhancement factors are non-zero will be a subject of aseparate investigation. We have used the RADAR5 code [27] to solve these equationsnumerically and the DDEBIFTOOL package [28] to trace their bifurcations in theparameter space. The simplest stationary solution of Eqs. (24)-(26) is the onecorresponding to zero electric �eld intensity:A = 0; G = g0=�; Q = �q0: (59)This solution corresponds to laser o�. The stability of the steady state (59) isdetermined by the roots of the characteristic equation�+ 
 �1�p�e g0� �q0��T � = 0: (60)14



It follows from Eq. (60) that the steady state (59) is stable wheng0 < � (ln�� q0) : (61)The inequality (60) de�nes the lasing threshold where so-called constant wave (CW)solution characterized by time-independent nonzero laser intensity bifurcates fromthe steady state (59) with the increase of the pump parameter g0. The intensity ofthe CW solution I = jAj2 obeys the implicit relation:ln24 I (s�� 1)p�� � I s+ ln�2 � g0�� (I + q0p�) 35 (62)= s �g0 + I � Ip��+ ln�2 + q0s�� 1 : (63)The CW solution is stable when the pump parameter g0 is large enough as comparedto the absolute value jq0j of the unsaturated loss parameter. This corresponds toa situation when the amount of saturable absorption is not suÆcient to destabilizeCW operation. With the increase of saturable losses jq0j the CW solution can exhibitHopf bifurcations leading to solutions with time periodic intensity. In Fig. 5 Hopfbifurcation curve H1 gives rise to a periodic solution that, when stable, correspondsto a fundamental ML regime with the pulse repetition period close to the cavityround trip time T . The Hopf bifurcation curves Hn with n = 2; 3; 4 signal the onsetof multiple pulse ML regimes with the repetition periods Tn � T=n. The curve HQindicates a Hopf bifurcation with the period approximately one order of magnitudegreater than T for the parameter values of Fig. 5. This frequency is associated withQ-switching instability. The dots in Fig. 5 have been calculated by direct numericalintegration of Eqs. (24)-(26). They represent points on the Q-switching instabilityboundary of the fundamental ML regime. One can see that this boundary turns outto be quite close to the Hopf bifurcation curve HQ of the CW solution.The results of direct numerical integration of the DDE model are presented in Figs.6-8. Bifurcation diagram in Fig. 6 shows extrema of time dependence of laserintensity calculated for di�erent values of the pump parameter g0. To calculate thisdiagram we have used the following procedure. First, Eqs. (24)-(26) have beenintegrated from � = 0 to � � 2 � 103 in order to skip transient behavior. Afterthat, during the time interval �� � 200, maxima and minima of the intensitytime trace have been plotted for each given value of g0. It follows from Fig. 6that when the pump parameter g0 is small enough, 0:09 < g0 < 1:13, the laserexhibits a regime with pulse power modulated in time by the Q-switching frequency.Intensity timetrace illustrating this regime is shown in Fig. 8a. With the increaseof g0 modulation disappears at a secondary Hopf bifurcation point g0 ' 1:13 anda transition to a fundamental periodic ML regime occurs. This regime is shownin Fig. 7a. With further increase of the pump parameter transitions to regimeswith approximately twice and thrice higher pulse repetition frequency take place atg0 ' 2:99 and g0 ' 4:01, respectively. These regimes shown in Fig. 7b and Fig. 7c15



are characterized by the pulse peak intensities smaller than that of the fundamentalML regime. The break up of ML behavior occurs at g ' 4:15 with the appearanceof nonperiodic modulation of the pulse power (see the intensity timetrace shownin Fig. 8b). Finally, at large gains, g0 > 5:2, the laser undergoes a transition toCW operation with the electric �eld intensity independent of time. The bifurcationdiagram in Fig. 6 appears to be in a qualitative agreement with the experimentalresults of Refs. [32, 33] where a gradual transition from a ML regime to a selfpulsingone was observed with the increase of the injection current in the gain section. Aregime with the repetition period equal approximately to one half of the cavityround trip time was also observed experimentally in a passively mode-locked ringsemiconductor laser [34].Fig. 9 shows time traces of the electric �eld intensity and the round trip net gainparameter G (�) � Q (�) + ln� for two di�erent fundamental ML regimes. In Fig.9a corresponding to g0 = 0:6 the net gain is negative between pulses and becomespositive only during a short time interval when the pulse amplitude is large. There-fore, the solution shown in this �gure has \stable" background according to New'scriterion. Perturbations of the low intensity background between these pulses donot grow with time. On the contrary, Fig. 9b corresponding to g0 = 1:33 repre-sents a stable periodic solution of Eqs. (24)-(26) having \unstable" background.The existence of stable ML pulses with \unstable" background at the trailing edgewas reported earlier in Refs. [13, 20]. Fig. 9b corresponds to the case when thenet gain is positive at the leading edge of a ML pulse. This behavior is similar tothe phenomenon of delayed loss of stability which is typical of singularly perturbeddynamical systems [29]. In a model of a laser with a saturable absorber the e�ect ofdelayed stability loss was studied in Ref. [30]. For periodic solutions correspondingto Q-switching regimes in this model the phase trajectory spends most time nearthe slow manifold A = 0, which is split into stable and unstable parts. Stabilityis accumulated when the phase trajectory goes along the stable part of the slowmanifold. After a transition to the unstable part, the phase trajectory continuesto stay near the slow manifold for a certain time interval until a critical amount ofinstability is accumulated for the pulse development. Similar behavior is observedin Fig. 9b where the net gain window is opened well before the arrival of a pulse inthe course of the carrier density relaxation process. Since for the parameter valuestypical of semiconductor lases the gain recovers much slower than the absorption,it continues to recover when the absorption is already almost completely recoveredto its unsaturated value. As a result, a net gain window appears. Such behavior isquite di�erent from the classical ML mechanism described in [3] and illustrated byFig. 9a.Obviously, stable ML solutions with \unstable" background can exist only whenthe group velocity of the pulses vp is di�erent from the group velocity v0 of smallperturbations of the low intensity background. Let us consider a ML regime withthe period Tp = T + ÆT , close to the cold cavity round trip time T , i.e. ÆT � T .
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Then the pulse group velocity can be estimated asvp = v TTp = v  1� ÆTTp ! � v  1� ÆTT ! :Here v is the cold cavity group velocity, which enters Eqs. (1) and (2). For large
 the group velocity v0 of small perturbations of the low intensity background canbe estimated using the approximation @�A (�) + 
A (�) � 
A(� + 
�1) in the lefthand side of Eq. (24). Then this equation becomes equivalent to Eq. (19) with theround trip time T replaced with T + 
�1. Therefore, the round trip time for smallperturbations is approximately equal to T + 
�1, and, hence, the correspondinggroup velocity is v0 � v TT + 
�1 � v  1� 1
T ! :Note that the di�erence between v0 and the cold cavity group velocity v arises dueto the presence of spectral �ltering element.Dependence of normalized pulse group velocity vp=v on the pump parameter g0 fordi�erent values of the unsaturated loss parameter q0 is shown in Fig. 10. Horizontallines in this �gure show the normalized group velocity v0=v � T=(T + 
�1) of smallperturbations of the low intensity background (dotted line) and the normalized coldcavity group velocity (solid line). According to Fig. 10, the group velocity of theML pulses with \unstable" leading edge shown in Fig 9b is greater than v0. Thesepulses remain stable because small perturbations ampli�ed at the leading edge areabsorbed by a pulse in the course of propagation. The acceleration of a pulse bynonlinear intracavity media can be understood by observing that in Fig. 9b the netgain window is shifted to the leading edge of a pulse. Hence, the leading edge isampli�ed, while the trailing edge is attenuated.The ML pulses shown in Fig. 9b have a group velocity smaller than that of thecold cavity, i.e. ÆT > 0. However, stable pulses with group velocities vp greaterthan v are also possible when the pump parameter g0 is large enough (see curve 1in Fig. 10). Such pulses should always have \unstable" background at the leadingedge. Indeed, if the period of the ML solution coincides with the round trip time,Tp = T , this solution obeys an ordinary di�erential equations that are given by Eqs.(24)-(26) with � � T replaced with � . Pulsed solutions of such ordinary di�erentialequations without delay cannot have stable background.Dependence of the ML pulsewidth as a function of the pump parameter is presentedin Fig. 11. One can see that the width of the pulses having stable backgrounddecreases with the increase of the pump parameter. However, the appearance of theunstable background leads to an increase of the pulse width (see curves 1 and 2 inFig. 11).
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4 ConclusionWe have developed and studied a new model for passive ML { a set of three dif-ferential equations with time delay (24)-(26). This model can be considered asa generalization of Haus' master equation. Being more general than the modelsproposed earlier by New and Haus our model includes both of them as particularlimits. An important feature of the delay di�erential model is that unlike Haus'master equation it does not assume small gain and loss per cavity round trip, lowsaturation, and in�nitely broad spectral bandwidth. These approximations (espe-cially the small gain and loss approximation) are hardly satis�ed for semiconductorlasers. The only assumptions we retain concern Lorentzian lineshape of spectral�ltering and ring cavity geometry. The latter approximation seems to be quite rea-sonable at least for qualitative consideration of ML unless colliding pulse ML devicesare considered.Our model allows of analytical description of the pulse background stability domainin the limit of in�nite bandwidth of the spectral �ltering element which is equivalentto the slow absorber approximation used by New and Haus. Using the approachesdeveloped by these authors we have generalized their analytical results to the casewhen gain and loss per round trip are not small. In particular, this refers to thepulse background instability boundaries shown in Fig. 4, and the condition (42)which gives a generalization of the well known ML condition s > 1. According to ourresults, in the parameter range typical of semiconductor lasers background instabilityboundaries of ML pulses can be quite well approximated using the generalization ofNew's approach described in section 2.3.Eqs. (24)-(26) can be easily simulated using standard codes developed for the solu-tion of delay di�erential equations. The numerical results obtained are in qualita-tive agreement with the experimental data. We have found that stable ML pulseswith positive net gain at the leading edge can exist for certain laser parameter val-ues. Such pulses do not satisfy New's background stability criterion. Also they areexpected to be much more a�ected by noise than usual ML pulses with \stable"background.The delay di�erential model described in this paper can be easily modi�ed to studyactive and hybrid ML or take into account such additional physical e�ects arising insemiconductor lasers as, for example, fast nonlinearities associated with intrabandrelaxation processes.We are grateful to U. Bandelow, B. H�uttl, R. Kaiser, G. Kozyre�, D. Rachinskii,M. Radziunas, K. Schneider, E. Viktorov, M. Wolfrum, and S. Yanchuk for usefuldiscussions. We would also like to thank T. Erneux for providing a copy us his paperprior to its publication.
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Figure 1: Schematic representation of a ring passively mode-locked laser. The coordinatez is measured along the cavity axis. The interval z2 < z < z3 (z3 < z < z4) correspondsto amplifying (absorbing) section. Spectral �ltering element is placed between z = z5 andz = z1 + L, where L is the cavity length. The intervals z1 < z < z2 and z4 < z < z5 are�lled with passive medium.
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 Figure 2: Time evolution of electric �eld intensity jAj2, saturable gain G, and saturableloss Q in a laser with slow absorber. The duration of the fast stage coincides with thepulse width �p. G1 and Q1 (G2 and Q2) are the saturable gain and loss evaluated at thebeginning (end) of the fast stage which corresponds to the end (beginning) of the slowstage.
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Figure 7: Periodic intensity time traces corresponding to di�erent ML regimes. (a)Fundamental ML regime, g0 = 2:0; (b) ML regime with two pulses in the cavity, g0 = 3:33;(c) ML regime with three pulses in the cavity, g0 = 4:13. Other parameters are the sameas in Fig. 6.
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Figure 8: Nonperiodic intensity timetraces. (a) ML solution modulated by Q-switchingfrequency, g = 0:67; (b) a regime that appears after the break-up of the periodic MLregime shown in Fig. 7c, g = 4:67. Other parameters are the same as in Fig. 6.
29



 Figure 9: Time dependency of the laser intensity (solid line) and the net gain parameter(dotted line). (a) ML pulses with \stable" background, g0 = 0:6; (b) ML pulses with\unstable" background at the leading edge, g0 = 1:33. q0 = 1:33. Other parameters arethe same as in Fig. 5.
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Figure 10: Normalized repetition frequency of a fundamental ML regime vs pump pa-rameter. 1 - q0 = 1:33; 2 - q0 = 2:0, 3 - q0 = 2:67, 4 - q0 = 3:33. Other parameters are thesame as in Fig. 5.
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 Figure 11: Normalized pulse width of a fundamental ML regime vs pump parameter. 1 -q0 = 1:33; 2 - q0 = 2:0, 3 - q0 = 2:67, 4 - q0 = 3:33. Other parameters are the same as inFig. 5.
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