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Abstract

We propose and study a new model describing passive mode-locking in a
semiconductor laser — a set of differential equations with time delay. Ana-
lytical analysis of this model is performed under the slow saturable absorber
approximation. Bifurcations responsible for the appearance and break-up of
mode-locking regime are studied numerically.

Passive mode-locking (ML) is a very powerful method to generate high quality short
pulses with high repetition rates from different kinds of lasers. In particular, mono-
lithic passively and hybrid mode-locked semiconductor lasers are compact, low cost,
reliable, and efficient sources of picosecond and subpicosecond pulses ideal for appli-
cations in high speed communication systems [1]. Due to their small size, large gain
coefficient and fast recovery time of semiconductor material these lasers can produce
pulses at very high repetition rates (tens and hundreds of GHz). The duration of
ML pulses generated by semiconductor lasers is typically much smaller than semi-
conductor saturable absorber recovery time. This situation is usually referred to as
a ML with slow saturable absorber [2]. The basic physical mechanism responsible
for the appearance of passive ML in a laser with slow absorber is well known [3]:
Absorbing medium saturates faster with the arrival of a pulse than the amplifying
one, and, therefore, opens a short net gain window for the pulse amplification which
is necessary to compensate cavity round trip losses; the net gain window is closed
by gain saturation.

Analytical approaches to describe passive ML with slow saturable absorber were
developed by New [3] and Haus [2]. Both of them considered a situation of small
gain and loss per cavity round trip. They noticed that in the case of slow absorber
when the relaxation times of amplifying and absorbing media are much larger than
the pulse duration, time evolution of the ML solution can be split into two stages.
The fast stage corresponds to a short time interval when the amplitude of a pulse is
large. Since saturable gain and absorption evolve on time scales much larger than
the pulse duration, the relaxation processes in intracavity media can be neglected at
the fast stage. The slow stage corresponds to a time interval between two subsequent
pulses when the laser intensity is close to zero. At this stage gain and absorption
recover slowly to their unsaturated values. The slow stage can be described by lin-
ear ordinary differential equations that are easily integrated analytically. However,
analytical solution for the fast stage can be obtained only after introducing some
additional approximations. Specifically, New assumed that there is no spectral fil-
tering in the cavity. This means that infinitely large number of laser modes lock in
to form an infinitely short pulse. Gluing the solutions obtained for the two stages
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and using the ML pulse background stability condition that requires the net gain
be negative during the slow stage [3], New obtained implicit analytical expressions
for the stability boundaries of the ML regime in the laser parameter space.

Unlike New’s theory, the one developed by Haus is able to describe such impor-
tant characteristics of ML solution as pulse shape, pulse duration, and deviation
of the ML repetition period from the cold cavity round trip time. Haus included
into consideration spectral filtering under parabolic approximation [2]. He showed
that even in the limit of infinitely broad bandwidth of the spectral filtering element,
background stability boundaries of ML pulses are different from those obtained us-
ing New’s approach, in which spectral filtering is neglected from the very beginning.
In order to get analytical description of the ML phenomenon, Haus assumed that
the pulse power is small enough, so that the intracavity media are weakly satu-
rated. Under this approximation he derived a closed analytical expression for the
ML pulse shape in terms of hyperbolic secant. This result was found to be in a
good agreement with the experimental data obtained with dye laser [4]. Since then
different modifications of the Haus master equation have been derived and analyzed
5, 6,7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

Despite of significant success of the Haus’ model, its applicability to describe ade-
quately real laser systems is questionable in the situations when the approximations
underlying this model are not satisfied. In particular, typical solid state lasers with
semiconductor saturable absorbers are operated under conditions of complete sat-
uration [20], i.e. in a situation when Haus’ model is not applicable. On the other
hand, semiconductor ML lasers typically have very high gain and losses per cav-
ity round trip. Therefore, the classical models by New and Haus, both assuming
small gain and loss per cavity round trip, fail to describe adequately ML in these
lasers. This is why approaches based on direct numerical simulations of spatially
distributed models have been mainly used to study ML of semiconductor lasers (for
a review see Ref. [18]). Although these approaches in principle allow to reproduce
experimental data with quite good accuracy, they give only little insight into the
physical mechanisms involved. The purpose of this paper is to study a new delay
differential model that is able to describe ML in the parameter range typical of
semiconductor lasers. When deriving this model we do not use small gain and loss,
weak saturation, as well as infinite bandwidth approximation. The only essential
assumption we adopt concerns a ring cavity geometry with unidirectional lasing.
Being more general than the classical ML models our model remains simple enough
to perform comprehensive bifurcation analysis and allows physical interpretation of
the obtained results in terms similar to those used by New and Haus, such as, for
example, the net gain parameter. Here we present a numerical study of the de-
lay differential model and describe bifurcations responsible for the appearance and
break-up of the ML regime. We show that under certain approximations analytical
results obtained by New and Haus can be recovered from our model. Furthermore,
we generalize their approaches to the case of large gain and loss per cavity round
trip.



1 Model equations

Let us consider a ring laser shown in Fig. 1. It is assumed that one of the two
counterpropagating waves in the laser cavity is suppressed so that the lasing is
unidirectional. The laser consists of five sections. Let z be the coordinate along the
cavity axis. The first, z; < z < 29, and the fourth, z; < z < z5, sections are passive.
The second, zo < z < z3, and the third section, 23 < z < z4, contain saturable
absorber and gain medium, respectively. The last, fifth section, z5 < 2z < z;+ L, acts
as a spectral filter that limits bandwidth of the laser radiation. Here L is the cavity
length. Traveling wave equations [21, 22| governing evolution of the slow varying
electric field envelope E (¢, z) in the gain and absorber sections can be written in
the form

OF (t,z) 10E(t,z) g, . t
- = 1-— N, — N E 1
0z + v Ot 9 ( iay) [ r (4, 2) T } (t,2), (1)
ON, (t,
# = JT — ’YTNT (t, Z) - Ugrrr |:Nr (ta Z) - N:T:| ‘E (ta Z)|2 : (2)

Here the subscript » = g (r = ¢) corresponds to the gain (absorber) section. The
variables N, (z,t) and N, (2,t) describe carrier densities in the gain and absorber
sections, respectlvely The parameters N” are the carrier densities evaluated at
transparency threshold. The parameter v is the light group velocity which is assumed
to be constant and equal in all five sections. The parameters ay 4, g4,4, g4, and
Yoq = 1/T,, are, respectively, linewidth enhancement factors, differential gains,
transverse modal fill factors, and carrier density relaxation rates in the gain and
absorber sections. The parameter J, describes injection current in the gain section.
For the absorber section we have J;, = 0.

Evolution of the electric field envelope E (, z) in the passive sections is governed by
Eq. (1) with zero right hand side:

OF (t,z) 10FE(t,z2)
- =0. 3
0z + v Ot (3)

The spectral filtering section is assumed to be negligibly thin, ie., 2y + L =~ 2z
Transformation of the electric field envelope by this section is given by the relation

E(w,z1+L) = f()E (w, 25), (4)

where E (w, 25) and E (w, 2 + L) are the Fourier transformations of F (¢, 25) and
E (t,z1 + L), respectively. The function f (w) in Eq. (4) describes the lineshape of
the bandwidth limiting element.

In a ring cavity the electric field envelope E obeys periodic boundary condition
E(t,z+ L) =E(t,z). (5)

After the coordinate change (¢, 2z) — (7, (), where 7 =, (t — z/v) is a retarded time
divided by the absorber relaxation time and ( = z7,/v is a normalized coordinate
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along the cavity axis, Egs. (1) and (2) for gain and absorber sections can be rewritten
in the following adimensional form:

0A(r,z) 1 .

67C:5(1—zo[g)ng(T,Z)A(T,Z), (6)
W :j!i_Fn.q (T’Z)_n.q (T’Z) ‘A(T’Z”Z’ (7)

0A(r,z) 1 .

—a - —5(1 —iay)n, (1,2) A(T,2), (8)
9% (12) _ . 1y (1,2) - smy () 4 (. ©)

Here A(7,C) = E(t,2) \/ugely/Ya: ngq (T,C) = v8geL'gq [Nr (£, 2) — N1 [Yg, dg =
vg,ly (Jq —'ygN_;T) /72, dq = vgglyNI" /v, and T' = 7,4/v,. The parameter s =
(g,'y)/(g,ly) is the ratio of the saturation intensities in the gain and absorber

sections.

In the new coordinates (7,¢) Eq. (3) for the two passive sections takes the form:

0A (7, ¢)

=0 (10)

Solving Eqs. (6)-(10) and Eq. (4) the transformation of the electric field envelope by
each of the five laser sections can be described. According to Eq. (10), the relation
between input and output field in the two passive sections is given by

A(r,6) =A(1,G), A(r,() = A(1,(4). (11)

The transformations of the electric field envelope by the absorber and gain sections
are obtained by integration of Egs. (6) and (8)

l1—iag

A(Ta C3) =e 2

A(r,G), Al )= 720D A(rG).  (12)

Here the dimensionless quantities @ (7) and G (7) describe saturable loss and gain
introduced by the absorber and gain section respectively [23, 24]. They are given
by

Q (7) :/ch ng (7, ¢)d¢, G (7) :/f ng (7, ¢) dC.

Integrating Eq. (9) over ¢ from ( = 297,/v to (3 = 2377,/v and using the relation
J§img (¢, 1) [A (7, Q)" d¢ = — |A (G, 7)* + A (G, 7)|* which follows from Eq. (6), we

derive an equation governing evolution of the saturable loss:

0:Q (1) = —q0 — Q (1) + s|A (1. &)|* — s|A(1, &) (13)

Here the unsaturated absorption parameter is defined by ¢y = ff;’ Jqd¢. An equation
for G (1) is obtained in a similar way. It is given by
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0,G (1) = go — TG (1) = [A (7, C) [ + |A (1, G) (14)
with unsaturated gain (pump) parameter gy = fé“ J,dC.

Being rewritten in the time domain Eq. (4) for the spectral filtering section takes
the following form

nG+T) = [ Jr-0)A(s,G)ds, (15)

where T' = v,L/v is the normalized cavity round trip time (cavity length) and f (7)
is assumed to decay at 7 — oo sufficiently fast, so that the integral in right hand
side of Eq. (15) converges.

Substituting Egs. (11) and (12) into Eq. (15) and using the periodic boundary
condition (5) which can be rewritten in the form

A(r,(+T)=A(r+T,(),

we obtain the transformation of the electric field envelope A (1) = A (7, (1) after a
complete round trip in the cavity

1 —1a4 1—zaq

G (0) —

Ar+T) =vE [ J(r 0exp Q0)| A0)ds. (16)
Here the attenuation factor K < 1 describes non-resonant linear intensity losses per
cavity round trip.

The equations governing the evolution of the saturable gain and loss are obtained
from Eqgs. (14) and (13) by using Eqgs. (11) and (12) to express A (71,(s), A (7, (3),
and A (7,(4) in terms of A (1) = A(7,(1). They read

0:G (1) = go = I'G (1) — e 97 (50 — 1) |A (7)?, (17)

0,Q(r) =~ —Q(r) — s (1 e ®M) A (7). (18)

Egs. (16)-(18) describe passive ML in a ring laser with arbitrary lineshape of the
spectral filtering element defined by the linear response function f (7). In the case
when spectral filtering element is absent, this function can be replaced by the Dirac
delta function, f (7) =6 (7). Then Eq. (16) is transformed into

AT+ T) = yre 7260 T)-52Q0-T) g (7Y (19)

which is similar to the map introduced by Ikeda [25, 26]. Egs. (19), (17), and
(18) describe passive ML in a laser without spectral filtering element, i.e. in a
situation considered by New [3]. A ML solution of these equations can be expressed
in terms of the Dirac delta function |A (7)[> = AP Y% (7 — nT), where AP is
the dimensionless energy of a ML pulse. This solution is characterized by infinitely



large number of locked modes and infinitely short pulse with repetition period equal
precisely to cold cavity round trip time 7.

Now let us consider the case when the response function in Eq. (16) is defined by
T_ e < <A

o ={ == , (20)

where the parameter (2 describes the detuning of the central frequency of the spectral
filtering element. In this case Eqs. (16)-(18) can be replaced by a set of delay
differential equations (DDEs) with two delays:

1—

FPLGE-T) Q) A (7 )

BAM) + (i) A(r) = —VE [,

1—eA

1—

(it Eratr ) S0 4 (- 7a)

—e

Here T} = T + A. The solution of Eq. (21) can be written in the form

A(T+T) = e(—THQ)T [C + % ’ (T iVI+LG(0) -2 Q(9) 4 (0)do)| .
1—e 72 Jioa
(22)
One can see from Eq. (22) that in order Eq. (21) be equivalent to Eq. (16) the
equation C = 0 must be satisfied. This implies the following initial condition for
the electric field envelope

__WE T iy iR - e g
A (0) — m = e 2 2 A (T) dT. (23)
Eq. (23) defines the initial condition for which Egs. (21) are equivalent to Eq.
(16). However, since, for v > 0 the term proportional to C in Eq. (22) decays

exponentially as 7 — oo, its precise form can be safely dismissed in the calculations.

In order to clarify the physical meaning of (20) let us consider two limiting situa-
tions. In the limit v — 0 the function f (7) becomes a stepwise one with the Fourier
transform f (w) o< e 2/ sin (wA/2) / (wA/2). Such a function describes a reflec-
tion from weak Bragg grating. Note, however, that for v = 0 the term proportional
to C' in Eq. (22) does not decay with time. Therefore, in this case, unlike the case
when v > 0, one has to choose the precise form of the initial condition defined by
Eq. (23) in order to get a correct result.

The second situation, A — oo, corresponds to Lorentzian lineshape of the bandwidth
limiting element, f (7) = ye(™7*)7 In this case Eqs. (16)-(18) can be replaced by
a set of DDEs with a single delay parameter equal to the cavity round trip time 7.
After the coordinate change A — Ae™" this set takes the form

Y18 A(r) + A(r) = Vre T O D A D e A (7 T (24)
0,G (1) =gy~ TG (r) — e 9 (e — 1) ]A(7)?, (25)
0,Q(r) =~ — Q1) —s(1—e“M)|A(7)P, (26)

with ¢ = QT'. In the following we restrict our consideration to the analysis of Egs.
(24)-(26).



2 Limit of infinitely broad bandwidth

The number of cavity modes that take part in ML process can be roughly estimated
through the ratio of the bandwidth of the spectral filtering element, -y, and the cavity
intermode frequency spacing, 7 1. In this section we perform analytical study of
Egs. (24)-(26) in the case when T is fixed and v — oco. In this limit the duration
of a ML pulse vanishes, 7, oc 1, its amplitude diverges, A, oc y'/2, while the pulse
energy, AP oc AT, remains finite. Physically this means that the number of locked
laser modes grows, but at the same time the energy associated with each mode taken
separately decreases.

If v is sufficiently large and the relaxation times of the intracavity media are large
as compared with the pulse duration (slow absorber), then following the approach
of New [3] and Haus [2], we split the evolution of a ML solution into two stages.
At the slow stage the amplifying and absorbing media recover slowly between two
subsequent pulses. During this stage the electric field intensity is close to zero,
|A (7)) ~ 0 (see Fig. 2). Therefore, the terms proportional to |4 (7)|* in Egs. (25)
and (26) can be neglected at the slow stage. At the short fast stage the electric
field intensity is large and therefore, the terms proportional to |A (7)|* dominate in
the right hand sides of Eqgs. (25) and (26). The remaining relaxation terms can be
neglected at the fast stage.

When v increases the duration of the slow stage tends to the cavity round trip time
T, while the duration of the fast phase vanishes. New solved the laser equations for
the two stages separately and calculated the energy of the pulse AP by gluing the
two solutions [3]. He also proposed a stability criterion for ML pulses. According to
this criterion they are stable if the net gain G (1) — @ (7) + In k is negative during
the entire slow stage. Physically this means that small perturbations of the low
intensity background between ML pulses decay with time (absolute stability). Tt
can be shown that the New’s background stability criterion is fulfilled if the net
gain is negative at the beginning and at the end of the slow stage. Therefore, this
criterion can be rewritten as a set of two inequalities

G —Q1+1nk <0, (27)

Gy — Q2+ 1nk <0. (28)

Here G5 and @, (G; and 1) are the saturable gain G (1) and loss @ (7) evaluated
at the beginning (end) of the slow stage (see Fig. 2). Since the end of the slow stage
corresponds to the beginning of the fast one and vice versa, the inequalities (27)
and (28) give the background stability conditions at the leading and trailing edge
of a pulse, respectively.

Linear ordinary differential equations that describe the evolution of G (1) and Q (7)
at the slow stage are easily integrated. However, Eq. (24) describing evolution of the
electric field amplitude at the fast stage cannot be solved analytically without further
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approximations. The approach of New assumes the absence of spectral filtering in
the cavity. In this case f(7) = §(7) in Eq. (16) and, therefore, this equation is
transformed into Eq. (19). Such approximation is equivalent to the neglect of the
derivative term v '8, A (7) in Eq. (24). Note, however, that for a ML solution this
term remains finite for y~! — 0, and, therefore, cannot be neglected even in the
limit of infinitely broad bandwidth. To illustrate this statement let us consider a
ML solution having time periodic intensity, |A (7 + T,) |* = |A (1) |?, with the period
T, close to the cavity round trip time 7. Substituting this solution into Eq. (24),
taking modulus square from both sides, and integrating over the period 7}, we obtain

TP TP
v 2 [0, A dr+ AP =k [0 00 |4 (r)? dr, (29)
0 0

where AP = [i7 |A(7)|*dr is the total dimensionless energy of the ML pulse. Eq.
(29) is similar to Eq. (46) of Ref. [2] which was derived under assumptions of
parabolic dispersion, small gain and loss per round trip, and weak saturation. The
integral in the left hand side of Eq. (29) describes energy losses introduced by
spectral filtering element. As it was pointed out by Haus [2], in the limit of infinitely
broad bandwidth one gets |8, A (1)|> « ¥ |A (7)|” and, hence, these losses, neglected
by New, remain finite. Physically this means that the spectral width of a ML pulse
increases with the bandwidth of the spectral filtering element, so that the losses
introduced by this element remain finite.

Since the electric field intensity is very small during the slow stage, the integration
in Eq. (29) can be restricted to the fast stage only. Then using the solutions for G
and @ obtained in section 2.2, the integral in the right hand side of Eq. (29) can
be expressed analytically in terms of the total pulse energy AP. The integral in
the left hand side, however, can be calculated analytically only in the limit of weak
saturation that underlies Haus’ theory (see section 2.4).

Below we demonstrate that under certain approximations the background stability
domains of ML solutions calculated analytically using Eqs. (24)-(26) coincide with
those derived by New [3] and Haus [2]. Moreover, our DDE model allows to gen-
eralize their analytical results to the case when gain and loss per cavity round trip
are not small, i.e. to a situation typical of semiconductor lasers. This is done in
sections 2.3 and 2.4.

2.1 Slow stage

Let us consider a solution of Eqs. (24)-(26) with periodic laser intensity corre-
sponding to a ML regime (see Fig. 2). Between two subsequent pulses, when the
amplitude of the electric field is close to zero, |[A (7)|> ~ 0, the equations for the
saturable gain and loss become linear

0,G (1) =g~ TG(1), 0;Q (1) = —qo — Q (7). (30)



Solving Egs. (30) we express the saturable gain and loss at the end of the slow
stage, G; and Q)4, via their values at the beginning of this stage, Gy and Qs:

Gr=Goe T+ (1), (31)

Q1 =Qe " g (1 - efT) . (32)
Here T' is the duration of the slow phase equal to the cavity round trip time in the
limit v — oo.
Egs. (31), (32) can be further simplified in two limiting cases:

(i) Absorber relaxes completely between two subsequent pulses, 7" < 1. Then
instead of Eq. (32) we obtain

Q1= —qo. (33)

(ii) The relaxation time of the gain medium is much smaller than the cavity round
trip time, I'T" < 1. In this case Eq. (31) is replaced by

Gl = G2 + g[)T (34)

2.2 Fast stage

The duration of the fast stage coincides with the pulse width 7, (see Fig. 2). Since
under the slow absorber approximation 7, is assumed to be small as compared
with the relaxation times of amplifying and absorbing media and the electric field
intensity is large during the fast stage, the relaxation terms in the right hand sides of
Egs. (25) and (26) can be neglected at this stage. Then, introducing dimensionless
differential pulse energy P (7) = [7 |A(0)]>df, where 7 = 0 corresponds to the
beginning of the fast stage, we rewrite Egs. (25) and (26) in the form

Opg (P) = —e 1P (e") 1), Bpq(P) = s (1 e 1)), (35)

with g (P) = G (1) and ¢ (P) = @ (7). Using the solutions of Egs. (35) we express
the saturable gain and loss at the end of the fast stage (trailing edge of a pulse),
Gy = g(AP) and Q2 = q(AP), via their values, G; = ¢ (0) and Q; = ¢ (0), at the
beginning of this stage (leading edge of a pulse)

1—e G

[e*m (esAP _ 1) + 1]

Gy =g(AP)=—In¢1— (36)

1/s

Q:=q(AP)=In[l+e 4 (e —1)]. (87)



Here AP = P (1,) = [* |A(7)” dr is the total dimensionless energy of a ML pulse.
Substituting the solutions of Eqgs. (35) into the right hand side of Eq. (29) and
performing integration we obtain

T, AP G _ 1
m/ G (1)-Q(7) |A (7')|2 dr = n/ ed(P)=aP)gp = k1n eG .
0 0 et2 — 1

Therefore, instead of Eq. (29) we get

ef1 -1
eGr — 1

v 2 [ 10, A(r) dr + AP = kIn (38)
Jo

In order to solve Egs. (31), (32), and (36)-(38) for the pulse parameters, G,

Q12 and AP, one has to express the integral in the left hand side of Eq. (38) in

terms of these five unknowns. Two particular situations in which this can be done

analytically are described in the following two sections, 2.3 and 2.4.

2.3 A generalization of New’s model

As it was already mentioned, the neglect of spectral filtering in New’s approach [3]
is equivalent to the neglect of the integral term in the left hand side of Eq. (38).
Then this equation becomes

et —1

AP:/-zlneG2 —7

(39)

Together with Eq. (39), Egs. (31), (32), (36), and (37) constitute a closed set of
equations that can be solved for G 2, Q1,2 and AP. This gives the dependence of the
pulse energy AP on the laser parameters. Substituting the solution into inequalities
(27) and (28) one can calculate background stability boundaries of a ML pulse. A
result of such a calculation is presented in Fig. 3 for the ML solutions with the
period T and T'/2. The first of them corresponds to a fundamental ML regime with
a single pulse circulating in the cavity, while the second one corresponds to a regime
with twice greater repetition rate and two pulses in the cavity. One can see that the
two stability domains overlap in a certain parameter range. This means that there
may be a hysteresis between regimes having different repetition rates. According to
Fig. 3, the two background stability boundaries, namely those for the leading and
trailing edge of a pulse, meet each other at a codimension two point. This point
lying on the lasing threshold line Th can be calculated explicitly

—1 —1
£y

g = —In (40)

sk — 1 sk —1°

It is well known [17] that ML pulses with stable background can exist only if the
absorbing medium is saturated faster than the gain one [2], i.e. when

s> 1. (41)
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It follows from Eqgs. (40) that in a situation when gain and loss per cavity round trip
are not small, the existence of such pulses is possible only if an additional condition

sk > 1, (42)

is satisfied. In the small gain and loss limit, x — 1, this new condition coincides
with (41). However, for the parameter values typical of semiconductor lasers with
their high losses, k < 1, the inequality (42) implies much stronger limitation on
the minimal value of the ratio of saturation intensities than the previously known
condition (41).

Egs. (31), (32), (36), (37) and (39) can be considered as a generalized New’s model
because unlike the equations for the pulse parameters derived in Ref. [3] they do
not assume that gain and loss per round trip are small. In order to recover from
these equations those obtained by New we expand Egs. (36), (37) up to the first
order terms in G; and Qq:

Gy = Gre 2F, Qa = Qe *2F. (43)

Then, substituting Eq. (36) into Eq. (39) and expanding it up to the first order
terms in Gy, @1, and In Kk we obtain the equation for the pulse energy

(1 _ esAP)

Gi(1-¢*") - Q - — APlnk =0, (44)

which is equivalent to Egs. (11) and (12) of Ref. [3].

Background stability boundaries of ML pulses calculated using four different sets
of equations are presented in Fig. 4. In this figure solid lines labeled Ly and Ty
indicate the leading and trailing edge instability boundaries obtained with the pulse
parameters calculated using Eqgs. (31), (33), (43), and (44). These equations are
equivalent to the original equations derived by New [3]. Solid lines labeled Lyg
and T yg have been calculated using the generalization of New’s model described
in this section. The dots in Fig. 4 represent points at the background stability
boundaries which have been calculated by means of direct numerical integration of
Egs. (24)-(26) with v = 333. Noteworthy is that with the decrease of v the width
of the background stability domain increases. One can see from Fig. 4 that the
generalized New’s model appears to be in a quite good agreement with the results
of numerical integration of the DDE model. On the other hand, discrepancy between
the numerical data and the results obtained using the original New’s equations [3] is
very pronounced. This is because Fig. 4 corresponds to parameter values typical of
semiconductor lasers in which gain and loss per round trip are large. The dotted lines
in Fig. 4 indicate background stability boundaries obtained using the original Haus’
equations [2] and a generalization of those equations derived in the next section.

Note that it follows from our consideration that in the framework of New’s approach,
in which the derivative term is neglected in Eq. (24), the background stability
boundaries do not depend on the linewidth enhancement factors. This is not true
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any more as soon as spectral filtering is taken into account. However, for simplicity
we restrict our consideration below to the case when o, , = 0 and ¢ = 0 in Eq. (24).
In particular, this means that one of the cavity eigenfrequencies coincides with the
central frequency of the spectral filtering element.

2.4 A generalization of Haus’ model

In this section we study a situation when gain and absorbing media are weakly
saturated by ML pulses. In this case using Haus’ approach one can obtain an
explicit expression for ML pulse shape by solving analytically the ML equations for
the fast stage. Let us consider a periodic ML solution, A (7 +7T) = A (7 — 67T),
where 67 = T, — T' is the small difference between the pulse repetition period 7,
and the cavity round trip time. Substituting this solution into Eq. (24) we obtain

v 10, A (T OT) + A(r — 0T) = Vre™ T A(1). (45)
In Eq. (45) ¢g(P) and ¢ (P) are the solutions of Egs. (35). In the limit v — oo
corresponding to infinite bandwidth of the spectral filtering element the duration of
the pulse vanishes and the period of ML solution tends to the cavity round trip
time, i.e., 7,07 o< v . Introducing in this limit a rescaled time variable & = y7 we
rewrite Eq. (45) in the form

0ca (£ —c) +a(§—c)=VeF(P(§)al(s), (46)

where a (&) = v 2A (1), P(€) = J* la(s)’ds, and ¢ = lim,_ (v6T). The
function F'(P) is obtained by solving Eqs. (35) and substituting their solutions
into Eq. (45):

~1/2
1—e &1 /

- (47)
(esp(f)*Ql —e @1 + 1)

F(Py={[t+e @ (e —1)] [1- -

Eqgs. (46) and (47) describe a ML pulse shape in the limit of infinitely broad
Lorentzian bandwidth. For a laser operating close enough to the threshold the
normalized pulse energy is small P (({),AP < 1/s, which means that both the
absorber and amplifier are weakly saturated. Under this approximation, which un-
derlies Haus’ theory [2], Egs. (36) and (37) together with the function F' (P) in
Eq. (46) can be expanded in power series up to the second order terms in the pulse
energy. This yields

Gy =G1+4¢ (0)AP + %(O)APZ, (48)
Q2= Q1+ ¢ (0)AP + %(O)APQ, (49)
FII (0)

cOica (§) — (1 —c)Bea (&) + |F (0) + F'(0) P (&) + P(€)*| a(€) =0. (50)

2
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Here the functions g, g, and F' are defined by Egs. (36), (37), and (47), respectively.
In Eq. (50) we have used an approximation a ({ — ¢) = a (¢) — ca¢ (¢) that is equiva-
lent to the assumption that the gain dispersion is parabolic. Such approximation is
valid for a laser operating near the threshold. A solution of Eq. (50) can be written

in the form [2]:
_ |AP 3
a (5) = 2—51)86(3}1 <g) , (51)

where £, = 7, is the normalized pulsewidth. At this solution the integral term in
the left hand side of Eq. (38) becomes AP/37”. Substituting Eq. (51) into Eq. (50)
and equating coefficients in front of different powers of hyperbolic tangent we obtain
three equations for three unknown parameters: the normalized pulse energy AP,
the pulsewidth &,, and the coefficient ¢ which describes the second order dispersion.
Elimination of the two latter parameters leads to a second order equation for the
pulse energy

ro + AP + ryAP? = 0, (52)

with

ro =2 (ﬁeraQZ - 1) , (53)

R T NS R

3 3(G2-Qy)
Ty = @ﬁe% {36G27Q2 + s%e@2 G2

+ (332 —4s + 1) e G 1 4(s—1)e 9 451 —s)e @ 43} . (55)

Since in the derivation of Egs (52), (31), (32), (36), and (37) we have not used small
gain and loss approximation they can be considered as a generalization of Haus’
model [2]. Solving these equations for the pulse parameters G 5, Q1 2, and AP and
substituting their solutions into the inequalities (27) and (28) we get background
stability boundaries for the sech-solution defined by Eq. (51). It follows from Eq.
(53) that the equation ry = 0, corresponds to zero net gain at the trailing edge of
a pulse. Hence, this equation defines the trailing edge instability boundary of ML
pulse. Furthermore, according to Eq. (52), the two equations 7o = 0 and 7, = 0
define a codimension-two point where the trailing edge instability boundary hits the
lasing threshold. Solving these equations for G5 and @2 and taking into account
that at AP = 0 one has G; = Gy = ¢o/T" and @Q; = G = —qy we recover the
codimension two point (40). Hence, the tips of the background stability tongues
calculated using the generalized New’s and the generalized Haus’ approaches are
located at the same point in the parameter space.

In the limit of small gain and loss per cavity round trip the generalized model derived
in this section is reduced to the original Haus’ equations. To demonstrate this we
expand Egs. (48) and (49) up to the first order terms in G; and Q;:
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1

Q2 = @1 (1 — sAP + S;A]ﬂ) ; (57)

Then, expanding Egs. (53)-(55) into power series up to the first order terms in G,
@2, and In kK we obtain an equation for the normalized pulse energy equivalent to
Eq. (36) of Ref. [2]:

3

1
GQ*QQ—FIHKZ—F?(GQ*SQQ)AP*E

(G2~ 5°Q2) AP? =0. (58)

In Fig. 4 leading and trailing edge instability boundaries calculated using the original
Haus’ equations [2] are shown by the dotted lines Ly and Ty, respectively. The
same boundaries obtained using the generalization of the Haus’ model described
in this section are indicated by the dotted lines Lyg and Tgxg. One can see that
similarly to the original New’s model the original Haus’ model is not applicable to
describe ML in a parameter domain typical of semiconductor lasers. According to
the figure, the generalized Haus’ equations work well only when the pulse energy
is small enough. The discrepancy between the background instability boundaries
calculated using these equations and the results of direct numerical integration of
Egs. (24)-(26) increases with the increase of the pulse energy. On the other hand,
the results obtained using the generalized New’s approach remain in quite good
agreement with those of direct numerical simulations even under strong saturation
condition.

3 Numerical results

In this section we present some results of numerical analysis of Eqs. (24)-(26)
with T = 2.5, Kk = 0.1, ' = 1.33-102, v = 33.3, ag, = 0, and ¢ = 0. A
situation when the linewidth enhancement factors are non-zero will be a subject of a
separate investigation. We have used the RADARS code [27] to solve these equations
numerically and the DDEBIFTOOL package [28] to trace their bifurcations in the
parameter space. The simplest stationary solution of Egs. (24)-(26) is the one
corresponding to zero electric field intensity:

A=0, G=gyT, Q=—q. (59)

This solution corresponds to laser off. The stability of the steady state (59) is
determined by the roots of the characteristic equation

Aty (1 VeeT ©AT) =0, (60)
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It follows from Eq. (60) that the steady state (59) is stable when
go<T'(Ink —qo). (61)

The inequality (60) defines the lasing threshold where so-called constant wave (CW)
solution characterized by time-independent nonzero laser intensity bifurcates from
the steady state (59) with the increase of the pump parameter gy. The intensity of
the CW solution I = |A|” obeys the implicit relation:

I(sT"—1)
In 1 (62)
VED (Ts+55 —g0) = (I + qo /)
s(go+1—2=)+58%+g¢
— (0 \/_) 2 0. (63)

sI'—1
The CW solution is stable when the pump parameter g is large enough as compared
to the absolute value |g| of the unsaturated loss parameter. This corresponds to
a situation when the amount of saturable absorption is not sufficient to destabilize
CW operation. With the increase of saturable losses |gy| the CW solution can exhibit
Hopf bifurcations leading to solutions with time periodic intensity. In Fig. 5 Hopf
bifurcation curve H; gives rise to a periodic solution that, when stable, corresponds
to a fundamental ML regime with the pulse repetition period close to the cavity
round trip time 7. The Hopf bifurcation curves H,, with n = 2, 3, 4 signal the onset
of multiple pulse ML regimes with the repetition periods T;, ~ T'/n. The curve Hg
indicates a Hopf bifurcation with the period approximately one order of magnitude
greater than T for the parameter values of Fig. 5. This frequency is associated with
Q-switching instability. The dots in Fig. 5 have been calculated by direct numerical
integration of Eqgs. (24)-(26). They represent points on the Q-switching instability
boundary of the fundamental ML regime. One can see that this boundary turns out
to be quite close to the Hopf bifurcation curve Hy of the CW solution.

The results of direct numerical integration of the DDE model are presented in Figs.
6-8. Bifurcation diagram in Fig. 6 shows extrema of time dependence of laser
intensity calculated for different values of the pump parameter g,. To calculate this
diagram we have used the following procedure. First, Eqs. (24)-(26) have been
integrated from 7 = 0 to 7 ~ 2 - 10% in order to skip transient behavior. After
that, during the time interval A7 ~ 200, maxima and minima of the intensity
time trace have been plotted for each given value of gg. It follows from Fig. 6
that when the pump parameter gy is small enough, 0.09 < gy < 1.13, the laser
exhibits a regime with pulse power modulated in time by the Q-switching frequency.
Intensity timetrace illustrating this regime is shown in Fig. 8a. With the increase
of go modulation disappears at a secondary Hopf bifurcation point gy ~ 1.13 and
a transition to a fundamental periodic ML regime occurs. This regime is shown
in Fig. 7a. With further increase of the pump parameter transitions to regimes
with approximately twice and thrice higher pulse repetition frequency take place at
go =~ 2.99 and gy =~ 4.01, respectively. These regimes shown in Fig. 7b and Fig. Tc
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are characterized by the pulse peak intensities smaller than that of the fundamental
ML regime. The break up of ML behavior occurs at g ~ 4.15 with the appearance
of nonperiodic modulation of the pulse power (see the intensity timetrace shown
in Fig. 8b). Finally, at large gains, gy > 5.2, the laser undergoes a transition to
CW operation with the electric field intensity independent of time. The bifurcation
diagram in Fig. 6 appears to be in a qualitative agreement with the experimental
results of Refs. [32, 33] where a gradual transition from a ML regime to a selfpulsing
one was observed with the increase of the injection current in the gain section. A
regime with the repetition period equal approximately to one half of the cavity
round trip time was also observed experimentally in a passively mode-locked ring
semiconductor laser [34].

Fig. 9 shows time traces of the electric field intensity and the round trip net gain
parameter G (7) — Q (7) + Ink for two different fundamental ML regimes. In Fig.
9a corresponding to gy = 0.6 the net gain is negative between pulses and becomes
positive only during a short time interval when the pulse amplitude is large. There-
fore, the solution shown in this figure has “stable” background according to New’s
criterion. Perturbations of the low intensity background between these pulses do
not grow with time. On the contrary, Fig. 9b corresponding to gy = 1.33 repre-
sents a stable periodic solution of Egs. (24)-(26) having “unstable” background.
The existence of stable ML pulses with “unstable” background at the trailing edge
was reported earlier in Refs. [13, 20]. Fig. 9b corresponds to the case when the
net gain is positive at the leading edge of a ML pulse. This behavior is similar to
the phenomenon of delayed loss of stability which is typical of singularly perturbed
dynamical systems [29]. In a model of a laser with a saturable absorber the effect of
delayed stability loss was studied in Ref. [30]. For periodic solutions corresponding
to Q-switching regimes in this model the phase trajectory spends most time near
the slow manifold A = 0, which is split into stable and unstable parts. Stability
is accumulated when the phase trajectory goes along the stable part of the slow
manifold. After a transition to the unstable part, the phase trajectory continues
to stay near the slow manifold for a certain time interval until a critical amount of
instability is accumulated for the pulse development. Similar behavior is observed
in Fig. 9b where the net gain window is opened well before the arrival of a pulse in
the course of the carrier density relaxation process. Since for the parameter values
typical of semiconductor lases the gain recovers much slower than the absorption,
it continues to recover when the absorption is already almost completely recovered
to its unsaturated value. As a result, a net gain window appears. Such behavior is
quite different from the classical ML, mechanism described in [3] and illustrated by
Fig. 9a.

Obviously, stable ML solutions with “unstable” background can exist only when
the group velocity of the pulses v, is different from the group velocity v, of small
perturbations of the low intensity background. Let us consider a ML regime with
the period T, = T'+ §7T', close to the cold cavity round trip time 7', i.e. 67 < T
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Then the pulse group velocity can be estimated as

Here v is the cold cavity group velocity, which enters Egs. (1) and (2). For large
v the group velocity vy of small perturbations of the low intensity background can
be estimated using the approximation 8, A (1) + yA (1) ~ YA(T + ') in the left
hand side of Eq. (24). Then this equation becomes equivalent to Eq. (19) with the
round trip time 7" replaced with 7"+ v~ !. Therefore, the round trip time for small
perturbations is approximately equal to 7'+ v !, and, hence, the corresponding
group velocity is

T . 1
Vo R V—— v |l — —|.
0 T+~ ~T

Note that the difference between vy and the cold cavity group velocity v arises due
to the presence of spectral filtering element.

Dependence of normalized pulse group velocity v,/v on the pump parameter g, for
different values of the unsaturated loss parameter g, is shown in Fig. 10. Horizontal
lines in this figure show the normalized group velocity vy/v =~ T /(T 4+~ ') of small
perturbations of the low intensity background (dotted line) and the normalized cold
cavity group velocity (solid line). According to Fig. 10, the group velocity of the
ML pulses with “unstable” leading edge shown in Fig 9b is greater than vy. These
pulses remain stable because small perturbations amplified at the leading edge are
absorbed by a pulse in the course of propagation. The acceleration of a pulse by
nonlinear intracavity media can be understood by observing that in Fig. 9b the net
gain window is shifted to the leading edge of a pulse. Hence, the leading edge is
amplified, while the trailing edge is attenuated.

The ML pulses shown in Fig. 9b have a group velocity smaller than that of the
cold cavity, i.e. 67" > 0. However, stable pulses with group velocities v, greater
than v are also possible when the pump parameter g, is large enough (see curve 1
in Fig. 10). Such pulses should always have “unstable” background at the leading
edge. Indeed, if the period of the ML solution coincides with the round trip time,
T, =T, this solution obeys an ordinary differential equations that are given by Egs.
(24)-(26) with 7 — T replaced with 7. Pulsed solutions of such ordinary differential
equations without delay cannot have stable background.

Dependence of the ML pulsewidth as a function of the pump parameter is presented
in Fig. 11. One can see that the width of the pulses having stable background
decreases with the increase of the pump parameter. However, the appearance of the
unstable background leads to an increase of the pulse width (see curves 1 and 2 in
Fig. 11).
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4 Conclusion

We have developed and studied a new model for passive ML, — a set of three dif-
ferential equations with time delay (24)-(26). This model can be considered as
a generalization of Haus’ master equation. Being more general than the models
proposed earlier by New and Haus our model includes both of them as particular
limits. An important feature of the delay differential model is that unlike Haus’
master equation it does not assume small gain and loss per cavity round trip, low
saturation, and infinitely broad spectral bandwidth. These approximations (espe-
cially the small gain and loss approximation) are hardly satisfied for semiconductor
lasers. The only assumptions we retain concern Lorentzian lineshape of spectral
filtering and ring cavity geometry. The latter approximation seems to be quite rea-
sonable at least for qualitative consideration of ML unless colliding pulse ML, devices
are considered.

Our model allows of analytical description of the pulse background stability domain
in the limit of infinite bandwidth of the spectral filtering element which is equivalent
to the slow absorber approximation used by New and Haus. Using the approaches
developed by these authors we have generalized their analytical results to the case
when gain and loss per round trip are not small. In particular, this refers to the
pulse background instability boundaries shown in Fig. 4, and the condition (42)
which gives a generalization of the well known ML condition s > 1. According to our
results, in the parameter range typical of semiconductor lasers background instability
boundaries of ML pulses can be quite well approximated using the generalization of
New’s approach described in section 2.3.

Egs. (24)-(26) can be easily simulated using standard codes developed for the solu-
tion of delay differential equations. The numerical results obtained are in qualita-
tive agreement with the experimental data. We have found that stable ML pulses
with positive net gain at the leading edge can exist for certain laser parameter val-
ues. Such pulses do not satisfy New’s background stability criterion. Also they are
expected to be much more affected by noise than usual ML pulses with “stable”
background.

The delay differential model described in this paper can be easily modified to study
active and hybrid ML or take into account such additional physical effects arising in
semiconductor lasers as, for example, fast nonlinearities associated with intraband
relaxation processes.

We are grateful to U. Bandelow, B. Hiittl, R. Kaiser, G. Kozyreff, D. Rachinskii,
M. Radziunas, K. Schneider, E. Viktorov, M. Wolfrum, and S. Yanchuk for useful
discussions. We would also like to thank T. Erneux for providing a copy us his paper
prior to its publication.
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Figure 1: Schematic representation of a ring passively mode-locked laser. The coordinate
z is measured along the cavity axis. The interval zo < z < z3 (23 < z < 24) corresponds
to amplifying (absorbing) section. Spectral filtering element is placed between z = z5 and
z = 21 + L, where L is the cavity length. The intervals z; < z < 29 and z4 < z < z5 are
filled with passive medium.
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Figure 2: Time evolution of electric field intensity |A|?, saturable gain G, and saturable
loss @ in a laser with slow absorber. The duration of the fast stage coincides with the
pulse width 7,. G1 and Q1 (G2 and Q2) are the saturable gain and loss evaluated at the
beginning (end) of the fast stage which corresponds to the end (beginning) of the slow
stage.

23



1
= 3
|
Aavi)
]/
)
/
|

Figure 3: Background stability domains calculated using the generalization of the New’s
approach described in section 2.3. Horizontally (vertically) hatched area presents the
background stability domain for a fundamental ML regime (a regime with twice higher
repetition rate). Straight line Th corresponds to the lasing threshold. The curves L o
and T o indicate the leading and trailing edge instability boundaries, respectively. CT is
the codimension two point defined by Egs. (40). The parameters are: T = 2.5, = 25,
[=133-102% k=0.1,0,,=0,¢=0.
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do
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do

Figure 4: ML pulse background stability boundaries calculated using four different sets
of equations. Solid lines Ly and Ty (Ix and ty) indicate the leading and trailing edge
instability boundaries obtained using the generalized (original) New’s model. Dotted
lines Ly and Ty (1 and tg) indicate the leading and trailing edge instability boundaries
obtained using the generalized (original) Haus’ model. Filled (empty) dots indicate leading

(trailing) edge instability boundary calculated by numerical integration of Egs. (24)-( 26).
Parameters are the same as in Fig. 3.
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stable CW

do
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J0

Figure 5: Hopf bifurcations of the CW solution of Eqs. (24)-(26). Curves H,, indicate Hopf
bifurcations with the frequency Q, ~ 27n/T (n =1,2,3,4). Curve T corresponds to a
Hopf bifurcation with the frequency approximately one order of magnitude smaller than
27 /T (Q-switching frequency). Black dots indicate a Q-switching instability boundary of
a fundamental ML regime. v = 33.3. Other parameters are the same as in Fig. 3.
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Figure 6: Bifurcation diagram obtained by direct numerical simulation of Eqgs. (24)-(26)
with gy = 3. Other parameters are the same as in Fig. 5.
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Figure 7: Periodic intensity time traces corresponding to different ML regimes. (a)
Fundamental ML regime, go = 2.0; (b) ML regime with two pulses in the cavity, go = 3.33;
(c) ML regime with three pulses in the cavity, go = 4.13. Other parameters are the same
as in Fig. 6.
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Figure 8: Nonperiodic intensity timetraces. (a) ML solution modulated by Q-switching
frequency, g = 0.67; (b) a regime that appears after the break-up of the periodic ML
regime shown in Fig. 7c, g = 4.67. Other parameters are the same as in Fig. 6.
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Figure 9: Time dependency of the laser intensity (solid line) and the net gain parameter
(dotted line). (a) ML pulses with “stable” background, go = 0.6; (b) ML pulses with
“unstable” background at the leading edge, go = 1.33. gy = 1.33. Other parameters are
the same as in Fig. 5.
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Figure 10: Normalized repetition frequency of a fundamental ML regime vs pump pa-
rameter. 1-qy9 = 1.33, 2- gy = 2.0, 3 - gy = 2.67, 4 - gy = 3.33. Other parameters are the
same as in Fig. 5.
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Figure 11: Normalized pulse width of a fundamental ML regime vs pump parameter. 1 -
qo = 1.33,2-qy=2.0,3 - qy = 2.67, 4 - qy = 3.33. Other parameters are the same as in
Fig. 5.
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