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Abstract

The main aim of this article is to present a review of most important acoustic
surface waves which are described by linear one- and two-component models. It
has been written for the CISM-course: ” Surface waves in Geomechanics” (Udine,
September 6-10, 2004). Among the waves in one-component linear elastic media we
present the classical Rayleigh waves on a plane boundary, Rayleigh waves on a cylin-
drical surface, Love waves, Stoneley waves (solid/solid and fluid/solid interface). In
the second part of the article we discuss two two-component models of porous mate-
rials (Biot’s model and a simple mixture model). We indicate basic differences of the
models and demonstrate qualitative similarities. We introduce as well some funda-
mental notions yielding the description of surface waves in two-component systems
(saturated porous materials) and review certain (porous materials with imperme-
able boundaries) asymptotic results for such waves. However, the full discussion of
this subject including numerous results of computer calculations can be found in
the article of B. Albers [3] also included in this volume.
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1 Introduction

Surface waves exist in an extremely wide range of frequencies over some 10 orders of
magnitude. This is schematically shown in the diagram below [32].
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Acoustic surface waves (SAWs) were discovered in 1885 by Rayleigh [53] and they
were the main subject of studies for some decades due to their appearance in the form
of seismic waves. The development of interdigital transducers (IDTs) and focused short
laser pulses around 1960 extended their study and applications from the low frequency
range to the ultrasound. Recent research work goes beyond this frequency range even to
the hypersound region corresponding to quantized lattice vibrations (surface phonons).



Box 1: RAYLEIGH, John William Strutt, 3rd Baron

Born: Terling, Essex, November 12, 1842,
Died: Witham, Essex, June 30, 1919

7Strutt at the age of thirty-one inherited his father’s title, so that he
is almost invariably referred to as Lord Rayleigh” (I. Asimov; Asi-
mov’s Biographical Encyclopedia of Science and Technology, Dou-
bleday & Co., Inc., Garden City, N.Y., 1964). In 1873 he was
elected to the Royal Society, in 1879 suceeded Maxwell as direc-
tor of the Cavendish Laboratory at Cambridge. All his life he was
interested in wave motion of all varieties: electromagnetic waves,
black-body radiation, sound waves, water waves. Important discov-
eries in chemistry but the Nobel Prize in the year 1904 in physics.
Since 1905 he was the president of the Royal Society, and in 1908
he became chancellor of Cambridge University.

This article is devoted to the presentation of models of basic types of surface waves in
homogeneous elastic materials and in two-component poroelastic materials. As the main
field of application of these models is assumed to be geomechanics [39], we concentrate on
models appropriate for the frequency regime of ultra-, audible- and infrasound. The reader
interested in applications of surface waves to testing electronic materials should consult
the review article of R. M. White [74]. Modelling, numerical evaluation and experimental
verification of surface waves in heterogeneous materials, both elastic and viscoelastic, do
not enter at all these notes in spite of the fact that they are particularly important in
nondestructive testing of soils (e.g. [37], [55]). However, they are the subject of detailed
presentations in other articles of this volume ( [27], [34], [38], [54]). Theoretical and
numerical details concerning the propagation of surface waves in two-component porous
materials are also presented separately [3]. For this reason, we concentrate here solely on
the explanation of some guidelines for these subjects without going much into details.

We leave out entirely the problem of nonlinear surface waves. This subject develops in
the recent years very vehemently (e.g. compare [50]) but it requires different theoretical
methods than these applied for linear waves. However, some hints on this subject can be
found in one of the articles of this volume [43].

In spite of the vast literature on surface waves, there exists no comprehensive presen-
tation of this subject for scientists working on engineering and materials sciences and
applying the technique of wave propagation in, for example, nondestructive testing. This
article aims at the theoretical description of the most popular surface waves, in particular
Rayleigh, Love, Stoneley, in one-component elastic media as well as the appropriate ex-
tensions to the saturated porous materials. We introduce as well some terminology used
in this theory which is peculiar for seismology, geotechnics, and nondestructive testing in
materials science. Due to the lack of space, we leave out the important problem of sources
of waves. However, an extensive presentation of this subject can be found elsewhere ( [2],

8], [56])-



Each surface wave is presented in a self-contained manner and the corresponding Sec-
tion can be read independently of other Sections of the article. It means that the deriva-
tion of the fundamental equation — dispersion relation, follows from the field equations
and boundary conditions for each case anew. In the literature, this is sometimes unified
by the ray method and the so-called transition and reflection conditions, following from
boundary conditions, which altogether yield the method of the constructive interfer-
ence (e.g. [2], [13], [67]). We do not apply this method in this article in order to have
an opportunity for the discussion of the physical inside of both field equations and of
boundary conditions for such different systems as the contact of a linear elastic solid with
an ideal fluid vs., say, the contact of porous materials with a permeable boundary with
an ideal fluid.

2 Water waves and classical Rayleigh waves

2.1 Water waves in an ideal incompressible fluid model

There exists a vast literature on this subject (e.g. [8], [25], [16], [75]). In contrast to all
other waves considered in this article which are produced by an unspecified source far
away from the space-time point (x,t) of analysis, water waves result from the action of
gravity. We present them here because they are well known to all who observed the motion
of water on the beach [66], and, simultaneously, they possess all properties characteristic
for surface waves.

We consider an ideal (inviscid) incompressible fluid which means that its mass density
p is constant. We assume that the motion is irrotational, i.e. the velocity v(x,t) possesses
a potential ¢. Then the mass conservation yields

V¢ =0, v=grad¢, p=const. (1)

Simultaneously, the momentum balance equation has the form

0
p (O_‘tf + v-grad v) = —gradp + pb, (2)

where p — pressure, b — mass force. Integration of this equation with respect to spacial
variable x yields the Bernoulli equation

o9 1, Db _
8t+20 +X+pr(t), b = —grad x, (3)

where C'(t) is an arbitrary function of time and we have used the identity v-gradv =
% grad v, v? = v - v, which holds for irrotational velocity fields.
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Fig.1: Water profile at the instant of
time t

We investigate the motion of the fluid shown schematically in Fig. 1. For the two-
dimensional motion assumed in this problem the upper boundary surface is described by
the relations

fs(x,t) = z—w(z,t)=0 = (4)
Ofs
gra‘d fS It aw
= = —— ~e€, Vg = ———— R ——e,,
n lgrad f] © nev lgrad f| ot ©

where n is the unit outward normal vector of the surface, vy is the velocity of this surface,
and e, the unit vector in the direction of z-axis. The approximation in the above relations
means that we linearize the problem with respect to the elevation function w and its
derivatives.

Let p, denote the atmospheric pressure acting on the fluid. Then, under the assumption
that we can neglect the surface tension, the continuity of the mass flux on the surface
(the surface is material with respect to the fluid) and the Bernoulli equation (3) yield

(v—vs)-n = 0, (5)
ow

Pa = —pgw —p (E) + pC (1),

where the nonlinear contribution v? has been neglected'.
Instead of the potential ¢, we use the potential ¢’ = ¢ + Bt — [ C (t)dt because

v =grad ¢ = grad ¢’. Then, omitting the prime,
109

=, (6)

)
z=0

where we place the boundary at z = 0 instead of z = w which yields the error of the same
order of magnitude as in other approximations.

! Approximations which we make in this derivation are based on the comparison with the wave-length
l (= 27“, k — wave number), wave period T (= 27”, w — frequency), and the amplitude a. Namely
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v? can be neglected if a < . Simultaneously

|w| ~a ow Y«
T | ox l '



Simultaneously, the first condition (5) and the relation (4); yield

ow  0¢
L2 g
ot 0z|,_,
Combination of (6) and (7) yields the following kinematic boundary condition for ¢
?¢ ¢
ﬁJrg%—O at z=0. (8)

The second boundary condition which must be fulfilled by solutions of equation (1) is
formulated at the bottom 96

~0. 9)

voel _ g

Box 2: Water waves

Conditions satisfied by the velocity potential ¢

V?¢ = 0 in the fluid,

% = 0 on the bottom z = —H,
0z
0? 0
a—tf + ga—f = 0 on the free surface z = 0,
w = —1% on the free surface z = 0,
g ot
ow the f f 0
5 o n the free surface z

Among the last three conditions two are independent.

Dispersion relation

w? = gkthkH.

Now we are in the position to make an ansatz for solutions of the problem. We seek it
in the form of the wave progressive in z-direction

¢ (z,2,t) = (4™ + Be ™) cos (kx — wt). (10)

Then, according to (6), the elevation w satisfies the one-dimensional wave equation.
Boundary conditions (8) and (9) yield
—w?(A+B)+gk(A—B) = 0, (11)
Ae M — Bt = 0.



Consequently, from the determinant of this homogeneous set we obtain the following
dispersion relation

w? = gkth (kH). (12)
Simultaneously, the potential can be written in the form
hk(H
6= s PEIEZ) o ke — ), (13)
where ¢, .. is a constant of integration.
According to (6) we obtain for the elevation
W = —Wmax SN [k ( — cput)],  cpp = %, Wnax 1= ggzﬁmax. (14)
g

Hence the elevation changes in the z-direction as it were the wave moving with the phase

velocity
w gl H 2m
Cph I \/27Tt <7Tl), l P (5)

where [ is the wavelength. The phase velocity of this wave depends on the frequency w
(or on the wave number k) and, therefore, the wave is called dispersive. This property
is characteristic for all surface waves which propagate in systems with a characteristic
length scale (e.g. the depth of the layer, the characteristic length of heterogeneous
materials whose properties depend on the location in space, etc.).

In order to find orbits of material points we use the following relation for displacements

Ouy 0p k chk (H + 2)
ot Y = or - w ™ chkH cos (kz — wi) (16)
ou, Lo k shk(H+z) .
= v, = — , = —— _ kx —wt) .
ot 7 9, - w ™ chkH sin (kz — wt)
Elimination of time yields
up | Ul
a_g + 04_2 =1, (17)
where ko chk(H+2) ko shk(H+2)
¢ + z S + z
z = — —7 2 = — e 18
“ w' ™ chkH “ w' ™™ chkH (18)
Consequently, the orbit of each particle is an ellipse with semiaxes «,, a,. The largest
ellipse appears at z = 0, and at the bottom z = —H, it degenerates into a straight line.

The orbits are schematically shown in Fig.2.

ZA

/*\ xb Fig.2: Orbits of particles given by

(17). Particles travel in the clock-
wise (prograde) direction.




In the short-wave limit (the deep water!): kH — oo, we have thkH ~ 1, i.e. w? ~ gk.
Consequently, the phase velocity is given by the relation
w g _ 9
=~ =,/2 =2 19
P TNE T w (19)
Simultaneously, the velocity potential becomes
¢~ P cos (kx — wt). (20)

Hence the motion of the fluid is negligible at the depth of about a wavelength | = 27”
For this reason, these waves are called surface waves.

The above dispersive wave gives rise to a structure of propagation which has a very
important bearing. The arrival of such waves to receivers is observed in form of wave
packages rather than in the form of single monochromatic waves or wave fronts. In order
to illustrate this property on our simple example of deep water waves we consider the wave
consisting of a narrow band of frequencies near the middle frequency wy rather than a
single frequency considered above. The solution (20) must be now replaced by the Fourier
integral which accounts for all frequencies entering the band

1 (o@)
o(z,t) = Py / Do (W) €77 cos (ka — wt) dw ~ (21)
7T —Oo0
1 o
~ §¢max (wo) eko* /_oo cos (kz — wt) dw,
where )
w
ko = =2. 22
0= (22)
Integration yields for small )ﬁ—‘:
Aw ko
¢ = gd)max (CU()) e "M (CU(), Aw) COS [k() (.Z' - Cpht)] ) (23)
where
sin [% (x — cgt)}
M (wo, Aw) := ? , 24
(WO Cd) %_:) (fL‘ o Cgt) ( )
and we have the relations
1 1
k—ky = —(wQ—wg)%—(w—wo), (25)
g Cq
g dw 1 g
c = = c,i=— = —Cyp = —.
ph wo’ 9 dk w=wo 2 ph 20)0

The quantity M is called the modulator, and as shown on an example in Fig. 3, it
has an extremum at x — ¢4t = 0. The modulator is an envelope of the band of waves
and propagates with the group velocity c, = fl—‘,’:. The carrier which in our example is
described by the cosine function in (23) describes the motion at the frequency wq with the
phase velocity c,,. In Figure 3 we show the wave in two instances of time. Clearly, due to
different velocities, the shape of the full wave plotted as the solid line moved differently

from the envelope of the modulator indicated by dotted curves.
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Fig. 3: Narrow band wave: configurations at two different instances of time
(arbitrary units)

Due to its practical importance, this form of propagation shall be discussed further in
this article in some details.

2.2 Remark on the choice of the independent variable in disper-
sion relations

It is easy to observe in the above example that in a general dispersion relation f (w, k) = 0
we may choose the frequency w as an independent variable and calculate the wave number
k as a function of w, or, vice versa, we can choose the wave number k (or, equivalently,
the wave length [ = 27”) as the independent variable and calculate the frequency w as
a function of k. A transformation from one choice to the other yields the same results
provided both w and k are real and the relation between these variables is monotonous.
In the seismological literature these properties are taken for granted and, on the same
page, one can find sometimes w and sometimes k chosen as independent. Obviously, in
the above presented example this is legitimate because the dispersion relation (12) is
invertible.

However, problems with complex solutions of the dispersion relation cannot be treated
so carelessly. Such solutions appear, for instance, in problems with damping. We present
in this remark two very simple examples in order to illustrate the problem. In practical
applications to surface waves this problem appears, for instance, in heterogeneous systems
and in two-component systems with a relative motion of components (diffusion).

Let us first consider the following one-dimensional partial differential equation for the
unknown function u

Pu  Ou 0%

o T o
where 7 is a positive constant (viscosity) and ¢ is a real constant. Obviously, in the
particular case n = 0 this equation becomes the classical linear wave equation.

We seek the solution of the above equation in the form of a monochromatic wave

— 0, (26)

u = Uei(kmfwt% (27)
where U, k,w are constant. Substitution of (27) in (26) yields the dispersion relation

w? +inw + 2k* = 0. (28)



We consider two cases: the given real frequency w, and the given real wave number k.
1) The given real frequency w. Then the solution of the dispersion relation has
the form

2
Rek = fi\/u 1+ (1),
Cc\/2 w

Imk =

(29)

It is clear that Rek is always different from zero and inspection of (27) shows that %
defines the phase velocity while Im & is the attenuation of the wave, i.e. the rate of
decay of the amplitude in space due to the damping 7.

2) The given real wave number k. Then the solution of the dispersion relation is
as follows

B ck for k>,
Rew {o for k<

(30)
—2 for k>,
I —
me —gIFck\/—’L4CQ2,€2—1 for kg%.

Hence, the wave propagates with the phase velocity RZ“’ solely for sufficiently large wave

numbers (i.e. for sufficiently short waves [ < %) The wave number k. = 7L is criti-
cal. Below this number the equation (26) describes a pure damping and waves cannot
propagate at all.

Secondly let us consider the following one-dimensional partial differential equation

Pu  Ou 0%

Pu  Ou 0% 1
oz gz a0 (31)

where 7 is a positive constant (spacial damping) and c is a real constant.
Again we consider a solution in the form (27). We obtain immediately the following

dispersion relation
w? —ivk — k* = 0. (32)

As before we consider two cases: the given real frequency w, and the given real wave
number k.
1) The given real frequency w. We obtain the following relations

w _ 2
Rek — T4/l — = for w> g,
0 for w< Qlw

(33)

0 o
5z for w>

Imk = 2
e A Sy e ol
5z + “\ 1z — 1 for w> 5

10



Hence, in contrast to the previous case, the given real frequency yields a critical damping
w. = 5. For higher frequencies, we have the propagation of a wave with the phase velocity
ror and the decay of the amplitude in space while in the range of lower frequencies the
wave cannot propagate and we have a pure damping.

2) The given real wave number k. Then it follows

¢k / Y \2
Rew = E\/1+ 1+(%),
1 :
- _
Ve @
Rew

Here the wave propagates for any choice of k£ with the phase velocity =¢=.

The above simple examples show that these problems in which we have a kind of a
viscosity contribution corresponding to a lower time derivative in the governing equations
the choice of the wave number k as the independent variable in the dispersion relation
leads to critical phenomena specified by the critical wave number k.. In their range the
relation £ — w is not invertible. This is not the case when we choose the frequency w as
the independent variable.

On the other hand, problems in which we deal with spacial heterogeneities yielding the
presence of lower spacial derivatives in the governing equations lead to critical phenomena
specified by the critical frequency w.. In their range the relation w — k is not invertible.
It is not the case when we choose the wave number k£ as the independent variable.

In this article we deal primarily with homogeneous problems in which we may have
the damping caused by diffusion (viscosity). Consequently, it is natural to choose the
frequency w as the independent variable. We do not pay attention to this choice solely in
cases when the relation between w and k is unconditionally invertible.

Certainly, equations which describe simultaneously viscosity and heterogeneity possess
critical damping related to the frequency as well as to the wave number.

(34)

2.3 Rayleigh waves on plane boundaries of linear elastic homo-
geneous materials

The surface wave described in Section 2.1 is not typical for solids. As we see in the rest
of this article, models of surface waves appear primarily as a combination of bulk waves
which, in turn, follow as solutions of hyperbolic field equations.

We illustrate this statement by the classical example of the Rayleigh wave [53] (for
example, see as well: [71], [1]).

Let us consider the linear elastic material described by the following equations for the
unknown fields of velocity v (x,¢) and deformation e (x, t)

¢ momentum balance
ov

o
O Hooke’s law (constitutive relation for the Cauchy stress tensor T')

= div T, (35)

T = Atrel + 2ue, (36)

11



where e is the Almansi-Hamel tensor of small deformations (i.e. ||e|| < 12), A, u are the
Lamé’s moduli,
¢ kinematic compatibility condition

e

— =symgradv. 37

5 = SYmg (37)
Let us first seek bulk waves, described by the above equations in the infinite medium.

It is sufficient to exploit the case of the monochromatic wave

. 1
v = Velkxh = Vexp [lk‘ <Ek “X — cpht)} , k:=vVk-Kk, (38)

. 1
e = Eelkx) = E exp {zk‘ (Ek “X — cpht)} ,  Cpp = %,
where w is the given frequency, k the wave vector, £ = vk - k is the wave number,
and V, E are constant amplitudes.
Substitution in (37) yields the following relation between the amplitudes

1
—szi(k®V+V®k). (39)
Hence the momentum balance (35) leads to the following equation
1 1
—wpV = ArEk + 2uEk = —A—V - kk — yu— (V - kk + k*V) . (40)
w w
We split this equation into the component parallel to k and perpendicular to k
(pw* = (A +2u)k*) V- -k = 0, (41)
1
2 2 _
(pw — pk ) <V — EV . kk) = 0. (42)
Obviously, we obtain two solutions
1 w\2  A+2u
1) V=—V . kk (—) - , 43
)V =5 = 3 P (43)
w\2 W
NAV-k=0 = <_) ==, 44
) o) =t ()

The first solution describes longitudinal waves or P waves (P for primary; the
amplitude is parallel to the direction of propagation: V||k) whose phase velocity is

2
o= 22 (45)

2The norm of the tensor e is defined by its eigenvalues which are identical with the principal stretches
)

det (e=A(51) =0, i=1,2,3,
lefl == max {|Aq)[, [Ax)| [A)]}-

12



and this is not dependent on the frequency. Consequently, the wave is non-dispersive —
each monochromatic wave propagates with the same velocity.

The second solution describes transversal waves or S waves (S for secondary or
shear; the amplitude is perpendicular to the direction of propagation: V -k = 0) whose

phase velocity is
m
Cr = —. (46)
Vs

Consequently, this wave is also non-dispersive.

The system of equations of linear elasticity is hyperbolic provided p > 0, A +2u > 0.
Then both velocities of the above described bulk waves are real.

Let us mention in passing that the separation of the eigenvalue problem presented
above can be done in many other ways. Depending on a particular problem, they appear
in the literature on the classical elasticity as well as in other problems of mechanics. Let
us mention two of them.

If we introduce the field of displacement u (x, t) the problem is described by equations
(35), (36) due to the following relations

0 1
v :a—ltl, e=3 (grad u+ (grad u)T> : (47)
and the relation (37) is identically satisfied. Simultaneously, the vector u can be repre-
sented as a sum of a potential part uy and a solenoidal part uy which, as can be shown
by a straightforward calculation, satisfy the following relations

u = ug+up, curlug=0, divur =0,
(48)
6211[, 62uT
el ¢ Viuy, I AV ur.

Hence we obtain two wave equations whose solutions have the form of two waves discussed
before.

One can use as well the following identity satisfied by any differentiable vector field
(the so-called Helmholtz decomposition theorem)

u = grad ¢ + curl 9, (49)

where @, 1) are the so-called scalar and vector potentials. Again one can easily show
that they satisfy the following equations

&
o2

2
= 3V, 86712/) = & V*. (50)
We obtain again the same result.

We proceed to construct a solution for a semiinfinite linear elastic medium, i.e. a
medium with a boundary. The presence of a boundary leads to important wave effects.
First of all, there are bulk wave reflection and transmission phenomena. We shall not dis-
cuss them in any details in this article. An interested reader should consult, for instance,

2], [67].

13



In order to analyze the problem we need boundary conditions on the plane boundary.
We choose the Cartesian coordinates with the z-axis perpendicular to the boundary. The
boundary is defined by z = 0. We consider the case of the boundary free of loading.
Hence

Tn|, =0, n=—e, u| =0, (51)

Z—00

where e, is the unit basis vector of the z-axis. It means that the z-axis is oriented into
the medium.

We seek the solution by splitting the displacement u into the potential and solenoidal
parts, ur, ur. Then we make the following ansatz

u; = 14Lef’yzei(ka:fwt)em + BLef’yzei(kmfwt) e,, (52)

ur = ATe—ﬁzei(kx—wt)em + BTe—ﬁzei(kx—wt)ez7

where Ay, Ar, By, Br are constant amplitudes. It means that we anticipate a progressive
wave solution in the z-direction and the decay of the solution in the z-direction provided
both v, 3 are positive. If this should not be the case a solution in the form of the surface
wave would not exist. Obviously, the form of the solution (52) indicates that particles
move in the zz-plane. This is the characteristic feature of Rayleigh waves.

Substitution of the above solution in conditions (48) 5 characterizing the potential and
solenoidal part of displacement yields the compatibility conditions

Y% B Gk W (53)
k2 22 A

Now the wave equations (48),5 lead to the following form of the solution

B = z%AL = up= (em + Z%e) Ape 12 gilka—t) (54)
k k —Bz_i(kz—wt)
Br = ZBAT = ur=|e,+ ZBeZ Are PPe .

In order to find the amplitudes we apply the boundary conditions (51). Obviously,
the last condition, the so-called Sommerfeld condition, is satisfied identically provided
both « and /3 are positive. The remaining relations yield

ou-e, ou-e,
(-2) 5+ =0, (55)
z=0
8u~ex+5’u~ez _ 0
0z or |,_,

Substitution of (54) gives rise to the following homogeneous set for the unknown constants

62
( - _C;R) AL +24r = 0, (56)
6 k _

Hence, the determinant leads to the following Rayleigh dispersion relation
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Clearly, solutions cg of this equation are independent of the frequency w. In other words,

Rayleigh waves in a semiinfinite medium are nondispersive.
We show (e.g. see [8]) that this equation possesses one real solution cg < ¢r. Namely,

it can be easily written in the form

3 2 ch Cr
fly) =y —8y"+8(3—-2n)y—16(1 —n) =0, y:= 2 M=y (58)
T
This function is concave in the interval (0,1) and f(0) = —16(1 —n) < 0, f(1) = 1.
Consequently, there exists one root in the interval determined by the condition cg < c7.
However, it may possess two other real roots bigger than 1 for er/cp = +/p/ (A +2p)

bigger than app. 0.57. It is instructive to calculate this coefficient in terms of the Poisson’s
ratio v

A 11—245- 11-2
V= =— Mo o =B - - (59)
1.e. ] ]
O<v<z = =—>-—" (60)

>
2 27 AN+2u "

Consequently, the value \/u/ (A +2u1) = /0.5 &~ 0.707 corresponds to the minimum
value of v equal to zero. For growing v the fraction p/ (A + 2u) decays. Hence the range

0.570 < v/p/ (A +2u) < 0.707 is physically not empty. The function f(y) is plotted in
Fig. 4 for Poisson’s number v :  —0.25,0,0.1667,0.2875,0.375, 0.4444. These correspond

to the fraction u/ (A + 2u) decaying from 0.6 to 0.1 by 0.1.
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Fig. 4 (left): Plots of the function f(y) for values of the fraction (z—T) from 0.1

L

(upper curve) to 0.6 by 0.1 (i.e. for the Poisson’s number v between 0.4444 and —0.25).

Fig: 5 (right): Dimensionless velocity of Rayleigh waves i—? as a function of the
fraction z—f
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There exist some hints (e.g. [46]) that both the complex roots appearing for v g 0.3
as well as the roots bigger than one may possess a physical bearing and describe leaky
waves intermediate between surface waves and bulk waves which loose its energy to both
Rayleigh wave and two usual body waves. However, the velocity of such waves should
rather not exceed the biggest velocity of the bulk waves ¢y and this is satisfied if the
lower root, say yg, satisfies the condition 1 < gy < % = 22 Fyen this possibility is not
excluded entirely anymore and there are some claims that supersonic Rayleigh waves may
indeed appear. We discuss some aspects of this issue in Sec. 4.4. Some details can be also
found in the books of Brekhovskikh and Godin [12], Viktorov [72], and possible practical
applications in nondestructive testing in [7].

The solution slower than the shear velocity is shown in Fig. 5, where the fraction cg/cr
is plotted as a function of the fraction of bulk velocities ¢z/cp. Clearly, the value of the
Rayleigh velocity lies very near the velocity of shear waves for most values of the material
parameters.

Let us consider the orbits of particles of Rayleigh waves. According to (48);, and (54)
the displacement is given by the relations

Uy = (ALe*VZ +ATe’ﬂz) ei(kmwt)? (61)
k .
u, = Z (%ALB_'YZ + BATG—BZ) el(kw—wt)‘

We choose the motion in which the z-component propagates as cos (kxz — wt). Then
taking real parts of the above relations and eliminating time we obtain

(Reuy,)? N (Reu.)’

a2 o2 =1, (62)
where
ay : =Ape 4+ Are P, (63)
a, : = %ALG_W + %ATG_BZa
and
Reu, = a, cos (kx —wt), Reu, = —a,sin (kz — wt). (64)

Hence, as in the case of water waves (comp. (16)), the orbit of each particle is an
ellipse with semiaxes |ay|, |a,|. However, the motion is anticlockwise (retrograde). The
semiaxes decay exponentially with the depth (see: Fig. 6).

Obviously, the vector of the amplitude of the Rayleigh wave lies on the xz-plane. This
plane is defined by the direction of propagation = (called in seismology the P direction,
for primary), and the direction of decay z (called in seismology SV-direction: for shear
vertical). It is called in seismology the plane of incidence or the sagittal plane in
materials sciences. In the general case, the progressive wave solution in the z-direction
may also possess an amplitude in the direction perpendicular to the plane of incidence —
the so-called SH-direction (for shear horizontal). This part of the solution would have the
form

u, (1, 2,t) = Ce 02elthe—wt), (65)
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Fig. 6: Coefficients of components
of the displacement o, o, as
functions of the depth z
for two values of the Poisson’s ratio:

Coefficients of displacements [arbitrary units]

v =0.25,0.34
[ ra e x-comp. for Poisson 0.25 ] e
05 - pd —————— z-comp. for Poisson 0.25 (1.6. CT/CL 05773’ 04924)
08 F = 7 — — — — x-comp. for Poisson 0.34
“F o ————————— z-comp. for Poisson 0.34
07k 4

Such waves are called Love waves. It is easy to check that the boundary condition
(51) yields immediately C' = 0. Consequently, Love waves do not exist in homogeneous
semiinfinite media. As we see in the next Section they do exist in layers on semiinfinite
media.

2.4 Rayleigh waves on cylindrical boundaries

The problem of surface waves on cylindrical surfaces is quite common in geotechnics and
appears, for instance, in the analysis of waves in boreholes. We present a simple example
of a solid cylinder in order to see the influence of curvature on propagation of surface
waves.

Let us investigate the problem of propagation of surface waves in an infinite cylinder
of the radius R, i.e. waves which satisfy the following conditions:

1) the surface of the cylinder is free of stresses,

2) waves propagate in the circumferential direction and decay in the radial direction.

This problem has been solved in 1958 by Viktorov [69], [70] and it demonstrates the
influence of the curvature of the surface on the propagation of surface waves.

It is convenient to use the potentials ¢ and 1) in this case. As the problem is two-
dimensional the vector potential has solely one component 1/, in the direction of the axis
of cylinder. These potentials satisfy the equations (50) which have the following form in

polar coordinates
0 , [10 [ Op 1 9%p
W = s e) ) (66)

a2¢z 2 1 a awz 1 a2¢z
= cpy——=—|\r + =73 (>
ot? ror or r?2 96
where r, 0 are the radius and the angle coordinate, respectively.
It is convenient to consider the extension of the problem to the infinite interval for the
angle : —oo < 6 < oo. Then the axis » = 0 is the branch cut of the infinite order.

This extension allows to consider the propagation of surface waves on an infinite plane of
repetitions of the circumferential surface of the cylinder. In practical applications it may
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correspond, for instance, to spiral surface waves whose amplitude is weakly dependent on
the z-variable.

In polar coordinates the physical radial and circumferential components of displacement
are given by relations

By 10y, 10y O,

= SE wg= o - 2 67
R R R (67)
We seek solutions in the form

p=0(r) WD = () P, (68)

where p plays the role of the angular wave number. It is related to the wave length [ by the
relation p = 27 R/l. The usual wave number is then given by the relation k = 27/l = p/R.
Due to the extension of domain for angle 6, the variable p can be considered as continuous.
Certainly, the limit p — 0 corresponds to very long waves (I > R) and the limit p — oo
is the limit of short waves.

Substitution of the above ansatz in the equations (66) yields the following Bessel equa-

tions
d*’® 1 dd p2) w r c
— 4+ (1= )P = 0, =r— = —p—, 69
a3 &, ey < & A (69)
d*U 1 d¥ < p2) w _r c wR
—+t———+|1-= |V =0, & =r—=—=p—, c:=—.
de3 " &g dér & e Rie P

The solution of this set which remains finite in the middle points of the cylinder has
the following form
¢ = AJP (gL) ) U= BJP (gT) ) (70)

where A, B are constants and J, is the Bessel function of order p.

The constants appearing in the solution should be determined from the boundary
condition on the free surface r = R. These boundary conditions — the boundary is free of
stresses — have the following form in the cylindrical coordinates

Po 10p 10%
2 o2\ (0¥ lop 109
(CL ZCT) (8r2+r67‘+r2892)+

Po 1%, 10y
9 2 - z z
2 (&»2 roro0 12 00

) =0, for r=R, (71)

20 10p 10%. O, 10v.
rorod r200 r?2 §56? or? r or

i.e. the radial stress and the shear stress are zero at the circumferential surface » = R.
Substitution of (70) in (68) and, subsequently, in (71) yields a homogeneous set of
equations for the constants A, B

b11A+b12iB = O, (72)
b21A+b22iB = O,
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where? ) )
¢cL T\ 1L ¢ 2L
by i=-2pJF — —Zpl2p+1-2-L)JE + =p*JL,,
1 PJp cTch<p 02) p+1 C2Tp p+2

L
2 T C o, L CCr o1
by :=2 (p — 1) J, ——p ‘]p+1:| ;b i=p(2p—1)J; —2——p°J\,
Ctr Cr Cy,
T c T c? T
by =2p(p—1) Jp - ap (2p—1) Jp+1 + g‘]p+27 (73)

L. c T . c
Jp = Jp <pg) s Jp = Jp (pa) s

and similarly for the other Bessel functions.
Consequently, for the existence of nontrivial solutions the determinant of the set (72)
must be zero and we obtain the following dispersion relation for this problem

Pre(c, p) = bi1bya — biaba = 0. (74)

This relation is plotted in Fig. 7 for the data c¢y/c;, = 0.4924 which corresponds to
Poisson’s ratio v = 0.34. This value has been chosen to coincide with the value chosen
by Viktorov [72] in his numerical example. Not visible in the Figure 7 are infinitely many
zero points for relative velocities bigger than ¢/cr > cp/er = 2.0310.
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Dispersion function

rT 11117 1T T 1T 1T
e

-10F J

1 1.4 1.2
Relative velocity c/cT
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Fig. 7: Zeros of the dispersion relation (74) for four different values of the wave
number p:  2,5,10,20. The drawing on the right is the magnification of the part of the
picture on the left.

Rayleigh waves on the cylinder are the waves whose velocity c is bigger than ¢y and
correspond to the first zero points above the point é = 1. This is demonstrated on the

3We have used here the following identity for Bessel functions

%JSIE) = %]p () — Jpi1 (2).
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right hand side of Fig. 7 which is a magnification of the diagram on the left hand side.
These solutions of the dispersion relation exist for p > 1 (i.e. | < 2wrR) and decay to the
Rayleigh velocity on the plane boundary for p — oo. This is a purely geometrical effect.
The velocity of surface waves can be bigger than the velocity of shear waves because the
path of the surface wave is longer than the path of the shear wave in the case of curved
boundaries. For instance, for points of the boundary lying on the same diameter, the
shear wave covers the distance 2R and the surface wave the distance mR. Consequently,
the arrival time of the shear wave is shorter than the arrival time of the surface wave and,
in this way, we fulfil the condition for constructive interference.

This effect was demonstrated by Viktorov who claims as well that an influence of the
Poisson’s ratio (i.e. relative bulk velocity <) is rather small.

Numerous zero points in this problem indicate that, in addition to Rayleigh waves,
some additional waves may exist due to interactions of bulk waves with the surface. We
shall discuss some aspects of this property of dispersion relations in Sec. 4.4.

The problem of propagation of surface waves on cylindrical surfaces has an important
bearing in nondestructive testing of shafts. These circumferential waves belong then to the
class of guided waves (e.g. [1], [41]). The dispersion relation for surface waves in a hollow
cylinder with an inner shaft was obtained numerically by Valle, Qu and Jacobs [68]. They
compare the first five modes of propagation of these waves with the corresponding modes
for the solid and hollow cylinders and with the Rayleigh wave on the plane boundary.
It comes out that the behavior of waves in the layered cylinder coincides with this of
the solid cylinder in the low frequency regime and it differs substantially in the range of
high frequencies. In this range, the first mode tends asymptotically to the Rayleigh mode
on the plane surface, while the second mode approaches in this limit a Rayleigh mode
appearing on sliding interfaces. Further references can be found in the original work [68].

3 Waves in a layer of an ideal fluid and Love waves
on plane boundaries

3.1 Layer of an ideal compressible fluid on a semiinfinite rigid
body

In order to appreciate the influence of heterogeneities on the propagation of surface waves,
we investigate first a simple example of a layer of an ideal fluid —co < x < 00,0 < 2 < H.
The upper surface z = H (z-axis is oriented upward in this case) is free of loading and
the lower surface z = 0 is in contact with a rigid body. The problem is described by the
equations of mass and momentum conservation

0 , ov
—p+p0d1VV:0, poaz—gradp, p=po+£(p—po), (75)

ot
where pg, po are reference constant values of the mass density and pressure, respectively,
and k denotes a constant compressibility coefficient of the fluid.
Simple manipulations lead to the following wave equation for the pressure p
Pp 2
w = KV p, (.I‘,Z) < (_007 OO) X (07H) : (76)
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The solution of this equation must satisfy the following boundary conditions
p(x,z=H,t)=0, v,(x,z=0,t)=0. (77)

As before, we seek the solution in the form of a monochromatic wave of the frequency
w

p= (Aeirkz + Be—irkz) ei(ka:—wt)' (78)

Then, due to the momentum balance, the second boundary condition can be replaced

by the following one

% (x,z=0,t) =0. (79)

Substitution of (78) in the equation (76) yields the compatibility relation

2
c
2 _ “ph —
re = 2 -1, =

%, c:= k. (80)
Simultaneously the evaluation of boundary conditions with the ansatz (78) yields the
set of homogeneous algebraic relations for the constants A and B

AeiTkH—*—BeiiTkH — O, (81)
A—B = 0.

Consequently, the determinant of this set must be equal to zero and we obtain the
dispersion relation

cos (rkH) = 0. (82)

In order to obtain nontrivial solutions we have to require that r is real. This means,
however, that the dispersion relation given in term of the periodic function yields in-
finitely many solutions. Each solution is called a mode of propagation. This is the
characteristic feature of heterogeneous systems.

Simultaneously, it follows from (82) that the phase velocities ¢, are bigger than the
velocity of propagation ¢ appearing in the wave equation for the pressure (76)(k = ¢?),
and that they go to infinity as the frequency approaches certain critical values. If we
require that waves of the form (78) do exist then this seems to violate the basic property
of the hyperbolic problem. This result follows from the assumption that the foundation of
the fluid is a rigid body in which all disturbances propagate with an infinite velocity.
As we see further a modification of the boundary condition (77)s for the case of contact
with an elastic body which we make for the so-called Love waves eliminates this paradox.

In details, solution of the equation (82) yields immediately the following relation be-
tween the phase velocity and the frequency

1
Cph:%a Wer = <Tl+§) 77-%7 TL:LQ,... (83)

w
1-3%

This relation is illustrated in Figure 8.
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3.2 Love waves on plane boundaries

The paradox of infinite phase velocities does not appear anymore in the case of surface
waves which propagate in an elastic layer over an elastic half-space. Transversal waves in
such a system have been described in 1911 by Love [42]. We proceed to present briefly
these results. They form the simplest illustration of the problem of surface waves in
heterogeneous solids.

We consider the propagation of a wave whose amplitude has solely an e,-component
u, = u-e, (perpendicular to the (x, z)-plane; hence it corresponds to SH amplitude for
waves with P-SV incident plane in seismological terminology). The body consists of a
layer of thickness H in the z-direction in which the mass density is p’ and the velocity
of shear waves is ;. This layer is connected to the elastic half-space z < 0 whose mass
density is p and the velocity of shear waves cy. We seek the solution of wave equations

0%/
ato = ¢V, 0<z<H, (84)
92
a;y = &Viu,, =z2<0,
in the form
u; _ (Aleiks’z + Ble—iks’z> ei(ka:—wt) =
= 2(ReA cosks'z — Im A'sin ks'z) e'ke=t) (85)

Bekszei(kx—wt)
i.e. in the form of a monochromatic wave which propagates in the direction of the z-axis
with the frequency w, wave number £ in this direction, and with the phase velocity ¢ := .
The wave should decay in the z-direction, i.e. s must be positive. We check now if the
ansatz (85) can fulfil equations (84), and the following boundary conditions

1) shear stress on the plane z = H is equal to zero, i.e.

ou’
Yy
— =H t) =
En (gc,z ,t) 0, (86)
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2) shear stress and the displacement must be continuous on the interface z = 0

/
/ 12 8uy

ou
pPCr Oz (%,Z:O,t) = pc’%’a_zy (%,Z:O,t), (87)
u, (z,2=0,t) = uy(x,z2=0,1).
Substitution of the ansatz (85) in equations (84) yields
2 2

C

7=— -1, §=1-—,
C/2 62
T T

c (88)

w
.
Boundary condition (86) leads immediately to the following relation for the displacement
in the layer
cos (ksl (H — Z)) i(kx—wt)
€

cos (ks'H)

Then the boundary conditions (87) yield a homogeneous set of two algebraic relations
for the constants Re A’, B. Consequently, its determinant must be zero and this condition
yields the Love dispersion relation

2
[arctan ( Pers ) + mr] , n=123,..., (90)

pers'

u; =2Re A’

(89)

w

_c
- Hs
where both s, and s must be real, i.e.

cr <c<er. (91)

This is the condition for the existence of Love waves. Hence the Love waves can
propagate solely in layers which are softer than the foundation. In addition there
exist infinitely many modes of propagation whose existence is limited from below by
corresponding critical frequencies. All these modes are dispersive because the phase
velocities depend on the frequency given by the inverse relation to (90).

Box 4: Love waves

Dispersion relation

2
w:% [arctan(chs)—i—mT}, n=123,...,

! A2 o!

s p'ciEs
where
2 2
c C
32:1——2, '2272—1, cr < c<er.
c C
T T
Displacement
¥ = o cos (]CS, (H — Z)) ei(kw—wt)
v v cos (ks'H) ’

23



In Fig. 9 we show an example of the solution of relation (90) for the following data:

k k /
ep =50 3" P 0875 H = 10km. (92)
s T s p

We plot the relative velocities ¢, /cr as functions of the frequency w for four values of
n.
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Fig. 9: Relative phase velocities for
four modes (n = 0,1,2,3) of the Love
wave given by relation (90)
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The data were chosen to be identical with the data used in the Box 7.2. by Aki and
Richards [2]. For these data the phase and group velocities of the first mode are shown
in Fig. 10.
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The group velocity as a function of the phase velocity was calculated by means of the

following relation
dw C2
dc,, Ph
Cg = 7d P 9 (93)
“=Cpp, — W
depp ph

which follows immediately from the definitions. Then we can directly use the relation (90)
and invert variables ¢,, — w in the graphical program. In this way, we avoid a numerical
differentiation.
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For completeness, we present in Fig. 11 the wave number k as a function of frequency
for the first mode of the Love wave. Clearly, the relation is monotonous and, according
to our earlier remarks, we may choose w as well as k as independent.
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Fig. 11: The dispersion relation k =

k(w) for the first mode of the Love
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) - the initial velocity, i.e. kg = dw, and
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infinity ko = 3w.
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3.3 Arrival times for packages of waves — example

Bearing above results in mind, we investigate an example for the procedure of calculating
the arrival times of a package of dispersive waves. This problem of propagation of packages
of dispersive waves was already indicated in Sec. 2.1. Instead of assuming a narrow band
structure we consider a problem in which an arbitrary displacement wu (z, z,t) has the
following Fourier representation

1 [ ,

u(x,z,t) = — / A(w;2) e®F2=Ddy k= k(w), (94)
™ —0o0

where a dependence on the variable z is parametric. In order to evaluate this integral,

we make the assumption that the amplitude A (w;z) is a slowly varying function of w

in comparison with variations caused by the phase ®. This assumption is schematically
illustrated in Figure 12.

A(@,2) Fig. 12: [llustration of the
principle of stationary phase.
Changes of the amplitude A, the
trigonometric contribution to the
integral cos ® (or sin ®), and the
phase ®

NMA AN A NN ® = kr — wt.
R A AVAAVENI VAL VA' R Ay

Diw,z)
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In such a case, similarly to the method of saddle point of integration, we can assume
that the essential contribution to the integral comes from the vicinity of stationary
points of the phase ®. For a chosen point x and a chosen instant of time ¢ these points,
say ws, are defined by the relation

dk x
%(x,t,ws)f() = %(ws)x—tf() = cg(ws)f? (95)

If there is a single such point then we can expand the phase

1 d*k 2
O~ kor — - or _
kst — wst + 2 de?|, (w—ws)”, (96)
and the integral (94) becomes
1 . > 1d
u(x,z,t) ~ %A (wy; ) eiksm—wst) /_OO exp {_iZ—cgd—(ijx (w— ws)?| dw, (97)
where ks = k (ws) and ¢, as well as % are evaluated at w,. Easy integration? yields
A S 1 — —cZ . d
u(x,z,t) = Awsz)ey i (hs—wst §4), S = mgnﬁ. (98)
de dw
2|2z

In the case of many stationary points the above formula transforms into the sum of
contributions for each point.

If the derivative of the group velocity at the stationary point vanishes we have to make
an expansion to the third order and it follows

A (ws; 2)
(3252<) 0 (3)

The phase determined in the above described manner is called the Airy phase. We
proceed to present a numerical example of its evaluation from a given dispersion relation.
We do so for the above presented Love surface waves. We choose the data (92) and the
distance from the source x = 500 km. These are the same data as those chosen by Aki
and Richards [2] in their presentation (Box 7.2).

e’i(ksxfwst). (99)

u(z,z,t) =

4The integral can be written as follows

~ 1 dey 2 deg 1 oo o
[m exp [—zﬁax (w—ws) ] dw = 269\/F/o exp (—iso?) do =
dc -1 0 -1
= 2¢cg4/2 < —= ff) (1- §Z)/ coso?do = Cg\|2m < x) e,q%,
0

deg

dw dw

where we have used the formula for the Fresnel integral

o0 /
/ cosa’do = ﬁ
0 4
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Box 5: Arrival times of wave packages

Procedure for calculation of arrivals:

1) determination of the dispersion relation k = k (w), phase
@)—1

velocity ¢, = %, and the group velocity ¢, = (4

2) for a chosen point z, determination of the phase
® =k (w) x — wt for different instances of time ¢,

3) determination of stationary points wy :
() =0 = w,=uw,(tz),

4) calculation of the derivative % (W= ws),

5) calculation of the amplitude u (¢; ) as a function of time.

Let us begin from the plots of the phase ® for different values of time (Fig.13). The
wave number k and the frequency w are related by the implicit dispersion relation (90).

Obviously, the first signal arrives at x = 500 km after ¢ = 100 seconds because the
fastest disturbance corresponds to the monochromatic wave traveling with the velocity
5 km/s (see: Fig. 10). The last arrival at the instant approximately ¢ = 181 seconds
corresponds to the minimum group velocity minc, ~ 2.74 km/s.

;s y
;o 4
Y P S t=100's
B ;o ~ — — — — t=120s
50 ;o s — — — — t=140s
i B — t=160s
FA e t=167 s

; 3 e i 1180

Phase [-]
Phase (detail) [-]

g g ew T v g vow 0 g py
505 =
Frequency {1/s]

2
Frequency [1/s]

Fig. 13: Plots of the phase ® := kx — wt as a function of frequency w for the data (92),
x = 500 km, and different instances of time t. On the right hand side, we present some
details in the important region of time (see: text).

By means of the above curves for the phase we can find the location of extrema of
phases for different times. These are shown in Fig. 14. There is no minimum before the
first arrival at ¢ = 100 sec. Then the value of frequency w; at which the phase possesses
a minimum grows to the limit value at the arrival time with the minimum group velocity
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t = 181 sec. In the time range between the arrival time with the limit phase velocity
for w — oo (i.e. 500/3 = 167 sec.) and the largest arrival time ¢ = 181 sec the phase
possesses also a maximum. Corresponding frequencies are also plotted in Fig. 14.
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The monotonous relation between the time ¢ and the frequency w, of the phase mini-
mum is sometimes used by seismologists to replace on seismograms the time scale by a
scale based on the frequency.

The rest of steps required in the procedure presented in Box 5 we perform numerically.
We choose the time step to be 2 seconds and calculate the group velocity and its derivative
at frequencies wy for different instances of time, and subsequently the amplitude. The
results are presented in Fig.15.
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Fig. 15: Amplitude as a function of arrival time. The left figure presents the amplitude
in the whole range of existence of a nonzero amplitude while the right figure is a
magnification of the amplitude in the range before the arrival with the limit group

velocity ¢y = 3 km/s (t = 167 sec).

The quality of this calculation is rather poor and we can easily spot reasons for numer-
ical problems. First of all, in order to evaluate the integral (94) we have used solely the
approximation given by the formula (98). This is, of course, very bad in the vicinity of

C

points ¢ = 100 sec and ¢ = 167 sec, where ‘fi—j is equal to zero. It is visible in particular at

28



the first instant of arrival time ¢t = 100 sec where the amplitude should be zero (Fig. 13
right). The procedure of calculation should be changed in such regions to this based on
the formula (99) or to even higher order approximations. Simultaneously, in the range of
the Airy phase where the variations of the amplitude are very strong the time step should
be made much smaller to get a sufficient accuracy.

However, in spite of their bad quality the above results reflect the most important
features of the arrival of a package of dispersive waves. An example of a real seismogram
from the earthquake Oklahoma is shown in Fig. 16.

2002 Jun 19, Cimarron Co., Oklahoma earthquake, magnitude 3.6 (mbLg)

T T T T T T T T T T T T T T T T T T
Detected near Leonard. Tulsa County.

Oklahoma. 651 km (404 miles) from the AIRY PHASE

epicenter,

Bandpass filter 0.5 to 1.5 Hz.

OKL AHOMA

GEOLOGICAL

SURVEY L

P (S SO RSN NS R

12:16:00 130 :17:00 :30 :18:00 130 :19:00
Time (hr:min:sec) GMT/UTC

Fig. 16: Arrivals recorded by Oklahoma (Tulsa County) earthquake in 2002 illustrating
the notion of the Airy phase (Oklahoma Geological Survey, A State Agency for Research
and Public Services).

3.4 Rayleigh waves in a layer of elastic material

Now we investigate a problem similar to the propagation of Love waves, i.e. the prop-
agation in a semiinfinite elastic body with a layer of thickness H and different material
properties but we assume the amplitude of the wave to lie in P-SV-plane rather than in
the SH-direction. This is the same assumption as in the case of Rayleigh waves on the
plane boundary of the semiinfinite medium.

AZ

M W IH Fig. 17: The geometry consi-
®»  dered in the Rayleigh wave prob-
X , . :

/ lem in the medium with layer
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The material properties are as follows. The mass density of the semiinfinite medium
is p, the velocities of the longitudinal and transversal waves cy, ¢y, and in the layer they
are p', 7, c¢». We use the potentials for the description of displacements, i.e.

dp OV, dp 0P,
= - —_— = ——— — <
T ox + 02" T 9z on for z<0,
;0 oY, 0y O
Up =5 T 5 U=~ 5

for 0<z<H. 100
0z Ox - (100)

Anticipating the existence of a surface wave in the semiinfinite medium, we make the
following ansatz for solution

© = 146167‘,261(km7u.)t)7 wy _ Bekszez(kxfwt)’
/

(’0 —=
Py

(A sin (kr'z) + A} cos (kr'z)) pitka=wt)
(By sin (ks'z) + Bj cos (ks'z)) e'kz=«t),

(101)
These potentials fulfil wave equations of the form (50) with the appropriate material
parameters. This requirement yields
2 2
’]”2:1—0—2’ 82:1—0—27 C::g,
ci ch k
2 2
2 € 2 €
! :C_Ig_l’ 8/ :C_Ij%_ (102)
Solutions of the problem should fulfil the following boundary conditions
1) The stress vector on the free surface z = H must be zero
52 90/ 52 QDI 5?2 90/ aQw’
! 12 112 Y
_ 0 103
per <8x2 * 622) pCT(axQ +8xaz) ’ (103)

p/cl2 9 8290, + 82¢; _ a2¢; = 0
T\ 0x0z = 022 0Ox? ’
2) The displacement and the stress vector must be continuous on the interface z = 0

8_90+%:a901 a

ox 0Oz or | 0z’ g_f B % - a@il B %_ﬁ;’ (104)
i ()~ (5 + ) =
(D) a3
(o5 2 2) i (25 % 2). e
3) The solution vanishes for z — —oc.

These conditions form a homogeneous set of algebraic equations for constants
iA, B,iA}, By, 1A, B). The matrix of coefficients has the following form
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0 1 s 0 . s
r! 0 0 —1 —r 1
0 P e 2‘3'7% 210_/‘3'7% ! 2
o\ — 22 —203s 0 2—-5 2s
2 T T T , T ,
= 2g%y 0 0 2-5 -2 —(2-%) |
(2 6’22) S (2 éi?) Cr s'Cy —5'Sy 0 0
T
2w C, —9'S, (2 _ §—2> Sy (2 f—i) C, 0 0
L T .

where for typographical reasons we have introduced the notation
Sy =sinkr'H, C, =coskr'H, Sy =sinks’'H, Cy = cosks H. (108)
Consequently, the determinant of this matrix yields the dispersion relation
Prr = det Dy = 0. (109)

Solutions of this kind of equations are discussed in other contributions to this volume
and, for this reason, we skip here a complicated analysis. However, two properties of
this problem are immediately visible in the above relations. First of all, if there exists a
solution of the above dispersion relation then, similarly to Love waves, it is dispersive
and there exist infinitely many modes due to the contributions of trigonometric functions
to the equation (109). Secondly, the relations (102) and the boundary condition in infinity
yield the following necessary condition for the existence of solutions in the form of surface
waves

cL>cop>c>dcp > dp (110)

Further we discuss in some details the problem of existence of solutions solely for the
much simpler problem of Stoneley waves.

4 Stoneley waves

4.1 Interface of two semiinfinite elastic solids

Properties of waves on an interface were considered for the first time by Stoneley in 1924
[62]. The interface investigated in this work is a classical ideal plane boundary between
two linearly elastic isotropic solids and boundary conditions follow from the so-called jump
conditions on the ideal singular surface. This means that all surface effects like surface
tension, boundary layers, intermediate layers of a different material, etc. are neglected.
In contrast to Love waves, amplitudes of the wave should decay with the distance from
the interface in both directions: for the coordinate z going to +oo and to -oco (see: Fig.
18). Formally, one can construct the solution of the problem by taking the infinite limit
of depth H of the layer in the solution for Rayleigh waves in a semiinfinite medium with
the layer. However, following the work of Stoneley, we formulate the problem anew.

31



Fig: 18: Interface
of two elastic solids —
Stoneley wave

We consider two semiinfinite elastic media whose properties are described, as before, by
the mass density o, the velocities of propagation of bulk waves: ¢, ¢} in the upper part
(z > 0), and, respectively, p,cr,cr in the lower part (z < 0). The bulk waves satisfy the
equations (50) for potentials with appropriate constants in each part of the system. For
technical reasons, it is convenient to choose the potentials ¢, = v, , ¢, Y = @Z;’y for the
components g, U, Uy, u,, of the displacement and the components of displacement w,, u,,
as unknown. For the two-dimensional problem, the latter would be given solely by the
difference of derivatives of the two components of the vector potentials: ¢, (z, z) , v, (z, 2)
and, correspondingly, by ¢! (z,z),% (z,z). Certainly, this can be replaced by combined
functions w,, u;,.

Consequently, we make the following ansatz for the solution

0= Aekrzeik(x—ct) for z < 0, 90/ _ A/e—kr’zeik(x—ct) for z > 0,

= B e* @) for 2 <0, o = Ble "kt for 2 >0, (111)

u, = Cere* @) for 2 <0, u, = C'lekas'zgik(@=ct)  for 5 > .

Hence, the wave is supposed to propagate in the z-direction, and the problem is as-
sumed to be two-dimensional.

Substitution in equations (50) yields the following compatibility conditions for the
exponents of potentials

2 2
C C
= 1-=, $&=1--, (112)
‘L ¢r
2 2
(& C
=l =1
C C
L T

As we see in a moment, the relations for ¢ and ¢’ are immaterial.
Boundary conditions follow from the continuity of displacements on the interface

[u]=u —u=0 for 2z=0, (113)

and from the jump condition for the stress vector on the plane boundary z = 0 as well as
from the Sommerfeld conditions for |z| — oo

[Tn = (T'—T)n=0, for 2=0, (114)
limu = 0, lim u=0,
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where n = e, is the unit vector normal to the interface.
Hence, for real k, Stoneley waves may exist solely if r, s, q,r’, s’, ¢ are nonnegative.
The boundary condition for shear stresses in y-direction yields immediately

C=0C"=0, (115)

i.e. a Stoneley wave with the amplitude in SH-direction (horizontal polarization) does
not exist. The amplitude must lie in the vertical P-SV incident plane.
Bearing the relations (49) in mind, we obtain for z = 0

(A —§'B)— (iA+sB) = 0, (116)
(—r'iA'+ B') — (riA+ B) = 0,
[—p'cf (L=r"7) +2p'ch] (iA") — 20/ dfs' B’ = (117)

= [—pci (1 =r?) + 2pct] (i1A") + 2pcisB,
p'cr [—2iAY + B (14 §7)] = pcj [2iAr + B (1 + 5°)] .
As usual, this set of homogeneous algebraic equations yields the dispersion relation.
It can be written in the following compact form

DX =0, X:=[iA B iA B]", (118)
where the matrix Dg; is defined as follows
Dg; := (119)
_ 5 -
C 2
~1 1— e 1 -5
c? c?
- = ~1 1- = 1
2 2

The determinant of this matrix gives rise to the dispersion relation for Stoneley waves
Psi :=det Dg; = 0. (120)

One important property of Stoneley waves follows immediately from the inspection of
matrix Dg;. Namely, if there exists a real solution = of the equation (120) then it is
independent of the frequency. Hence, like Rayleigh waves, Stoneley waves are nondis-
persive.

The question of existence of Stoneley waves is far from being trivial. Already in the
original work [62] Stoneley has shown that for certain combinations of material parameters
these waves may not exist (see also: [1], [15]).

In Figure 19, we quote some existence results of J. G. Scholte [57] for two limit cases
of material parameters. Solutions for the Stoneley wave exist solely in the range between
the two curves A and B.
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Fig. 19: FEuxistence results
of Scholte [57] for two limit
values of material
parameters:
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An extensive study of existence of this wave was also carried through by Ginzbarg and
Strick whose paper [30] contains many graphs of ranges of existence.

4.2 Interface of a semiinfinite elastic solid and a semiinfinite
ideal fluid

The interface between the linear elastic solid and the ideal fluid yields the problem of
surface waves which can be obtained from the above problem of Stoneley waves as a
particular case. Equations for this problem were formulated by Scholte in 1947 [58] and,
for this reason, these waves are sometimes called Scholte waves.

We derive the dispersion relation again from the governing equations indicating some
points which are common with modelling of surface waves for porous materials with
permeable boundaries.

We choose the same coordinates as before and assume that the fluid in the range z > 0
is ideal, i.e. we have the following linear equations for fields p’, v/ in this region

op' ov’ ,

o T ppdivv’ =0, pgg =—gradp, p ' =py+£ (0 —pp), (121)
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where £’ is the compressibility coefficient. Consequently

ot?

= graddivv’/, cf =+ (122)

It is customary to introduce for technical reasons the displacement vector u’ also for the

fluid component

,  ou o*u’
"t T o

where C (x) is an arbitrary function of the spacial variable. We can redefine the displace-

ment in the following way

= graddivu’ + C (x), (123)

A%

u—u+U(x), graddivU=-C, (124)

and eliminate this arbitrary function entirely because we are interested solely in the time
derivative of u’.
It is easy to see that only the potential part of u’ is of interest. Hence

2, 7

0%
ot2

u =grad¢y’ = = V3, (125)
where an arbitrary function of time was incorporated in the potential.

Hence, the solution for monochromatic waves in this case can be written in the form
(111), (112) in which B’ = 0.

We have to modify also the boundary conditions. Instead of the continuity of motion
on the interface between two solids we have now solely the condition of continuity of the
normal velocity

0
V"nza—?.n for z=0. (126)

For the ideal fluid the tangential component of the velocity can be arbitrary and, conse-
quently, we have a scalar condition instead of the vector condition (113).

Condition for stresses must be modified as well because now we have the shear stress in
the fluid identically zero and the normal component of stresses is reduced to the pressure.
The latter has to be written in terms of the displacement potential ¢’. Namely, it follows
by the integration of the mass balance (121);

pr=p(1—diva) =py (1-V2') = p =p)—ppcEVi. (127)

Boundary conditions for stresses at the boundary z = 0 have now the form

Pp 2o o2
pociV3e’ = pc <—90 + —90) — 2pct <—90 + 2 ) , (128)

or? 022 oxr?  0x0z

P 0% 0%
28x82 + 022 02 0.

Substitution of relations (111) yields again the homogeneous set of equations

DgX =0, X:=[iAiA B]", (129)
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where

2 2 2

Dsyi= | 25 2-5 21— 1. (130)
Per Cr Cr

2 2

0 2/1-5 2-5

L ‘L Cr

The determinant of this matrix yields immediately the following

Box 6: Stoneley (Scholte) dispersion relation

2
VTR L (131)
€L Cr
C 2

The last relation is identical with the dispersion function (57) defining Rayleigh waves.

It is obvious that velocity c is independent of the frequency w and, consequently, also
this surface wave is nondispersive.

The problem of existence of Stoneley-Scholte waves has been rather intensively inves-
tigated (e.g. [63], [64]). It can be shown that a single real solution exists if ¢ < c,
where cg is Rayleigh velocity and it is smaller than ¢/, i.e. it is the smallest velocity of
propagation appearing in the system.

One of the important properties of the Stoneley-Scholte wave is that the energy is car-
ried by this wave primarily in the fluid. This can be proven by the analysis of amplitudes
which we do not present here.

Apart from this real velocity, there exist complex solutions of the dispersion relation
of Box 6. These were discussed in details by Ansell [6]. Some properties of complex roots
yielding leaky waves [51] shall be briefly presented Subsection 4.4.

Propagation of surface waves in the system described above but either with a weak
anisotropy of the solid or the fluid under a hydrostatic pressure has been investigated
by Norris and Sinha [49]. They have used a perturbation method and found explicit
corrections to the velocity of Scholte waves.

where

4.3 Interface of a semiinfinite elastic solid and a layer of an ideal
fluid

In this case, one can consider waves intermediate between Stoneley and Rayleigh varying
the height H of the layer. We quote here solely a finite result which can be derived in the
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same way as the above presented examples of surface waves. We obtain [72]

2 2
\/%—1PR+——,/ — < tan (CUH\/——l) 0. (133)

where Pg is again the Rayleigh dispersion function.

Clearly these waves are dispersive, there exist infinitely many surface modes whose
velocity is bigger than the velocity in the fluid. The above dispersion relation possesses
also complex solutions which we discuss in the next Subsection.

4.4 Few remarks on leaky waves

It has been seen already in the Rayleigh dispersion relation that for some values of ma-
terial parameters some solutions k (w) may be complex. This means that the factor
gilke—wt) — g—Imkzgi(Rekz—wt) of the ansatz for the solution yields a decay of the amplitude
characteristic for the dissipation. However, the whole system is reversible — there are no
losses of energy due to the heat transfer or some other means of dissipation. Consequently,
such solutions can be admissible solely under the condition that the energy of this mode
of propagation must be transferred on some other modes — bulk or surface waves. If this
is indeed the case we say that the wave loosing the energy is leaky.

We present briefly an example of such a wave considered by Viktorov [72]. It corre-
sponds to one of the complex solutions of equation (133). Viktorov found analytically
the complex solution of this equation under the assumption of small Poisson’s ratio v.
He was able to show that this solution yields attenuation of the wave Imk ~ v* and the
velocity is of the order of the longitudinal wave c;,. The wave consists of the longitudinal
and transversal parts. The amplitude of the longitudinal part decays exponentially with
the depth (i.e. it is indeed a surface wave). The transversal part behaves like a bulk wave
propagating from the boundary under the angle 8 = % (see: Fig. 20). The energy of this
wave is transferred on the transversal bulk wave.

=€

Fig. 20: Scheme
of propagation of the
B first leaky wave for the
semuinfinite body with
a layer of fluid.

The existence of leaky waves has an important practical bearing. For instance, Norris
[47] has presented a very neat model explaining a phenomenon of backscattering of ul-
trasound from a fluid-solid interface. It is shown that the energy radiated back into the
fluid where the incident beam originates can be observed when the angle of incidence lies

37



near the so-called leaky wave angle. Hence, it is proven that the backscattering is due to
a leaky wave reflection zone.

Existence of leaky modes depends on the distribution of complex roots of the disper-
sion relation. Phinney [51] has designed a fairly general method (a generalization of the
so-called Rosenbaum method) to find these roots by the analysis of a single integral ex-
pression. The method refers to properties of such an integral when the path of integration
changes the Riemann surface.

5 Elastic two-component media

5.1 Biot’s model and a simple mixture model of two-component
poroelastic materials

5.1.1 Introduction

In contrast to single component elastic models, continuous modelling of porous materials
requires the construction of a two-component model for fields describing the motion and
deformation of the solid component (skeleton) and of the fluid component. In addition, it
has been shown that modelling of porous media leads to the so-called immiscible mix-
tures which require an additional variable of the volume fraction of the fluid component
(porosity). Porosity, in addition to the concentration of the fluid component in the mix-
ture (i.e. the ratio of the partial mass density to the full mass density of the mixture), is
the independent field in such a mixture theory.

We limit the attention to linear poroelastic models. Then the unknown fields are
the following functions of spacial variable x €8 and time t € 7 (B C ®* is the current
domain occupied simultaneously by both components, and 7 C R is the interval of time)

{pF’VF7VS’ eS7n} Y (134)

where p! is the current mass density of the fluid component referred to the unit macro-
scopic volume of the mixture, v, v¥ are macroscopic velocity fields of the fluid and of the
skeleton, respectively, € is the Almansi-Hamel tensor of small macroscopic deformations
of the skeleton, and n is the current porosity. The current mass density of the skeleton
p° does not appear in this list because in the case of small deformations it is determined
by the tensor of deformations

p° = p§ (1—tre), (135)

where p5 denotes the initial value of this mass density (in a chosen reference configuration
for which e = 0), and tr e reflects small volume changes of the skeleton.

In soil mechanics and geotechnics usually the set of fields does not coincide with this
presented above. Instead of the mass density of the fluid, often the concepts of the volume
change of the fluid ¢ or the increment of the fluid content ( are used. They are defined
by the following relations

_ o —p"

7, (:=mng (treS — 5) , (136)
Po

where p{ is the initial value of the fluid mass density (in the reference configuration
e® = 0), and ng is the initial porosity in the reference configuration.
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A lot of confusion arises also due to the fact that the mass densities are sometimes
referred not to the common macroscopic unit volume but rather to partial volumes of
components. These so-called true mass densities satisfy the following relations

p p
pSR — ’ pFR = (137)

where n is the current porosity.
In our presentation we either rely on the choice (134) or we replace p’ by e.
Two-component models describing these fields are based on partial balance equations.
In the linear model, they have the following form
1) mass balance equation of the fluid component

opt 0
%—i—pg‘divvlg‘:() = a—i = divv”, (138)
2) partial momentum balance equations for both components
ov® ovr
pg% = div T® + p+p°b, pg% =divT" — p + p'b”, (139)

where T, T¥ are partial Cauchy stress tensors, p denotes the source of momentum, and
b, b are external mass forces,
3) integrability condition for the deformation of the skeleton
de’

& = Sym grad v, (140)

and this is equivalent to the existence of the displacement vector u® for the skeleton.
We have to close this system by appropriate constitutive relations. Further in this
article we discuss two models: the Biot’s model and the simple mixture model.
The Biot’s model is based on the following constitutive relations ([10], see also a full
collection of Biot’s works on porous materials [65])

TS = T5 + X tre’1 +2u°e” + Qel,

T = —pf1, p"" =pl —kpte —Qtre®, (141)
. ovl  ov®
p = W(VF—VS)_012<W_W)>
n = n0(1+6tres+’y(tres—e)),

where T4, pl are the initial partial stress in the skeleton and the initial partial pressure
in the fluid, respectively. A%, ;5 are effective (i.e. macroscopic, dependent on the initial
porosity ng) Lamé constants describing the skeleton, x is the effective compressibility
coefficient of the fluid component, @) is the coupling parameter between partial stresses,
p1o is the added mass parameter, and §, v are parameters describing changes of porosity
caused by volume changes of both components.

The above set of material parameters is not commonly accepted and the literature is
full of its different variations. For instance, Stoll [61] relies on the following set

2
K = X 4op®+ppr+2Q, G=p (142)
1 bk
C = — o M=22=
no(Q—i_pO,{)a TL%
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In the standard reference book on linear acoustics of porous materials of Bourbie,
Coussy, Zinszner [14], the following set of equations is applied

ovs 0*w

— — =divT, T:=T°+TF
pat +puwat2 IV’ + ?

ov’ o? 1
o g+ P =~y wism (Vo))

T:)\ftresl—i—Q,ueS—ﬁMCl, TF = —ngp1, p:M(—ﬁtreS+C),

where w corresponds to the so-called filter velocity and

1
PP 00 Puw =0 P = = (00— pr2) (144)
0
s F s 1 F 1 T
A =X+ Kpy +2Q, pi=p7, ﬁM::—(Q+/<;pO), — = —.
no K ng

The quantity p = n—lopF is called the fluid pore pressure in contrast to p” which is
the partial pressure.

Certainly, all these relations are equivalent to the original Biot’s equations.

The added mass is usually related to the tortuosity a by the relation

prz=pp (1—a). (145)

In addition to the porosity n, the tortuosity a describes the morphology of the porous
material and, roughly speaking, it is the ratio of the average length of microchannels
in the porous material to the average characteristic distance on the microlevel, i.e. for
straight channels it is equal to one and otherwise bigger than one: 1 < a < oco. In the
linear model, this quantity is constant.

It can be easily shown that the added mass effect incorporated in the Biot’s model
through the relative acceleration violates the principle of material objectivity [79]
and the coupling effect described by the material parameter () violates the second law
of thermodynamics [82]. However, one can construct a nonlinear model [83], [84]
which satisfies these two principles of continuum thermodynamics and, simultaneously,
whose linearization leads to the Biot’s model. In this sense the Biot’s model can be
considered as a thermodynamically sound way of a linear description of dynamics of
saturated porous materials.

The second model which can be used to describe dynamics of linear poroelastic ma-
terials is the so-called simple mixture model. This model has been constructed by
means of continuum thermodynamics for modelling nonlinear processes [76], [77]. For
this reason changes of porosity are described by the balance equation rather then the
relation (141),. Namely, in the linear model this equation is of the form

n—mng

on—n
%—i—@odiv(vlr—vs):— , nE:n0(1+6treS), (146)
T
where 7 is the relaxation time of porosity and &, = ngyy.
The coupling parameter () is equal to zero in the simple mixture model and the tortu-
osity a = 1, i.e there is no influence of relative acceleration. Such a model satisfies both
the principle of material objectivity and the second law of thermodynamics.
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The questions arise if the simple mixture model reflects properly dynamical features of
porous materials and what are the differences between the results obtained by the Biot’s
model and the simple mixture model. Before we proceed to a discussion of surface waves
described by a two-component model we address these two questions.

5.1.2 Objective relative acceleration

In order to appreciate the problem of material objectivity, we consider some kinematic
properties of the two-component system which we describe in two different reference
systems specified by the following transformation of the point x in the space of motions
(the so-called configuration space)

x*=0({t)x+c(t), O '=07, (147)

where the time dependent orthogonal matrix O describes the rotation of one reference
system with respect to the other while the time dependent vector ¢ describes the motion
of the origin of one system with respect to the other.

This transformation (isometry) describes the most general change of reference which
preserves the distance between two arbitrary points, say xi, Xs:

|x] — X§|2 = (x7 — x3) - o’o (x1 —X2) = |x1 — x2|2. (148)

In particular, this transformation may describe the change of the inertial reference
system into a noninertial one (e.g. the change from the reference with respect to fixed
stars to the reference which rotates with a turntable in the laboratory).

It is shown in continuum mechanics that the above transformation yields certain rules
of transformation for fields of mechanics. Any scalar quantity does not change under this
transformation. We say for this reason that scalars are objective. Vectors and tensors
may or may not be objective. If a vector w and a tensor of the second grade e transform

according to the rules
w* = Ow, e" = 0e07, (149)

we call them objective. For instance, the Almansi-Hamel deformation tensor is objective.
Certainly, these rules reduce to simple transformations of coordinates if we refer the
objects to their coordinates.

Time dependence of the orthogonal tensor O and of the vector ¢ yield modifications of
these transformation rules if they involve some time differentiation. In the case of a two-
component mixture for the basic kinematic quantities we have the rules of the following
form

1) partial velocities

v = Ov® + Ox + ¢, v =0vF 4 Ox+ ¢, (150)
2) partial velocity gradients

LS — OLS0” +00", L™ —O0Lf0” +00", (151)
L° = gradv®, L =gradv’,
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3) accelerations
. S . . .
a® = 0a® +20v_ +O0x+&, a’™ =0a"+ 20v" + Ox + ¢, (152)

and the nonobjective contributions lead to the so-called Coriolis, centrifugal, Euler and
translational accelerations (e.g. [40]). When multiplied by the mass densities they may
be considered as apparent mass forces. It is known that such forces indeed appear in
equations of motion in noninertial frames of reference.
It is obvious that the relative acceleration does not transform in an objective manner.
We have
aF*—aS*:O(aF—aS)+20 (vF = v7). (153)

Hence, the result depends on an arbitrary angular velocity O. As the relative acceleration
enters the momentum balance equations with the constitutive (material) parameter p;,
solutions of these equations depend on the choice of the reference system in a nontrivial
manner. Hence, such contributions violate the principle of material objectivity and they
are not admissible in continuum models.

Considering a suspension of bubbles in a fluid Drew, Cheng and Lahey, Jr. [22] have in-
troduced a definition of the relative acceleration which transforms in an objective manner.
Such a definition reminds definitions of various objective time derivatives appearing in
continuum mechanics (such as Jaumann derivative, Oldroyd derivative, Truesdell deriva-
tive, etc.). It is rather easy to show that an objective relative acceleration can be
also introduced in the nonlinear mechanics of porous materials [84]. The definition may
have the following form

a, = % (VF — VS) + (LF — LS) vi—(1—3)LF (VF - VS) —3L° (VF - VS) (154)
a, = Oa,

where 3 is an arbitrary scalar. Some properties of a thermodynamical model constructed
with a contribution of such a relative acceleration can be found elsewhere [84] but we do
not need to go into any details in this work. It is sufficient to state that the thermody-
namics admits a linear dependence of the momentum source p on the objective relative
acceleration, i.e the following relation for momentum source

p=m (VF — VS) — ppoay, (155)

satisfies the principle of material objectivity and the second law of thermodynamics.

It is clear that the Biot’s contribution follows as a linearization of the above formula.
One has pyya, =~ plQ% (vF — v¥) as required by the relations (141) of the Biot’s model.
After such a linearization the model is not objective anymore and, consequently, we
cannot transform reference systems within the Biot’s model. Experiments performed in
static conditions cannot be compared with experiments performed in a centrifuge if we
process the experimental data with the Biot’s model.

We return to the problem of added mass further in order to estimate the order of its
contributions to the propagation conditions of acoustic waves.
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5.1.3 Gassmann relations

The problem of violation of the second law of thermodynamics by Biot’s equations is
related to the fact that thermodynamics of mixtures does not admit couplings between
components if constitutive relations do not contain higher gradients. This property has
been noticed by I. Miiller in 1973 [44], [45] who has shown that partial quantities describing
components of a mixture of fluids such as partial free energies or partial pressures may
depend on partial mass densities of all components solely in the case when they also
depend in a constitutive manner on gradients of mass densities. Otherwise the mixture
becomes simple, i.e. partial free energies, partial pressures, etc. depend solely on their
own partial mass densities.

The two-component model of porous materials possesses the same property. The partial
stress tensor in the skeleton, say, may depend on volume changes of the fluid only if it
depends also on some higher gradients such as the gradient of porosity. Otherwise the
second law of thermodynamics yields ) = 0.

A thermodynamical correction of the model through the extension of the set of consti-
tutive variables has been introduced in the work [82]. It has been shown that a dependence
on the gradient of porosity grad n leads to the following constitutive relations for partial
stresses in the linear model

TS = T5+ X tre’1+2u%e” + Qel + B (n —ng) — N (n —ny), (156)
TF = —pf1, pF:pg—ﬁpge—QtreS+ﬁ(n—nE)—N(n—no),

where the parameter 3 describes the influence of local nonequilibrium changes of porosity
and the parameter NV stems from the contribution to the source of momentum of the form
N gradn. It has been discussed in earlier works on acoustics of poroelastic materials (e.g.
[78]) that the influence of [ is negligible in processes with slow relative motion (small
filtration velocity). This is the case in geomechanics and we neglect this contribution also
in this article, i.e. we assume 3 = 0.

However, the influence of the constant N cannot be evaluated so easily and we shall
do it in this section by means of some Gedankenexperiments. Their role in geoacoustics
is quite fundamental (e.g. [73]) and we present here the main results.

One of the main questions in applications of waves to nondestructive testing are rela-
tions between macroscopic quantities entering a model describing waves and microscopic
quantities which we are trying to test. The typical example of such a quantity is the poros-
ity of porous materials. We present here a brief review of results for granular materials
which follow by means of certain static Gedankenexperiments for saturated materials.
These experiments proposed by Gassmann [29] and incorporated into the Biot’s model
by Biot and Willis [11] describe the behavior of homogeneous samples of fully saturated
porous materials in jacketed drained and undrained experiments as well as in an
unjacketed experiment. In such Gedankenexperiments we know constitutive relations
between microscopic pressures and microscopic volume changes of both components as
well as corresponding macroscopic relations. Microscopic and macroscopic deformations
must fulfil kinematic and dynamic compatibility relations which lead to a system of equa-
tions for unknown fields which is, in turn, overdetermined. Consequently, we obtain
admissibility relations which connect microscopic and macroscopic material parameters.

We assume that the relaxation time of porosity 7 is sufficiently large in comparison
with other characteristic quantities (for example, 1/wgy, where wy is the characteristic
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frequency of monochromatic waves) in order to neglect the relaxation in the porosity
balance equation (146). As the Biot’s model does not describe the relaxation of porosity
this assumption is necessary for the comparison of the two models.

We skip here the derivation of micro-macro relations referring the reader to the paper
[83] and present the results. It is assumed that microscopic (true) compressibility pro-
perties of components are known. It means that we assume the measurability of the true
compressibility modulus of the solid component K, the true compressibility modulus of
the fluid component K, the drained modulus K, (compare [39]) and the initial porosity
no. Macroscopic parameters K, M, C, N are then given by four equations [83]

Kj(K — K,) = N(K — Ky)

C,=C =0 157
1 + no(KS—Kf) ) ( )
C  Ky1—(1—ng)fs N(K = noC
Cimmy— B 120 ?V)o“{ —&}:o, (158)
M KS 1_n_0I(b_M TLOMKb
C—-N
Coi=K-K;—(C——= =0. 159
3 d M—nﬂo ( )
K 1—7100
Cii=(1—— M—-C—-N — 160
o (i) ( o) a0
C 1—TLO K
1—— K-C-N 1—— =0
(-5 ( SeR)) e
where
02
KV = (1—?’),0)KS+TL0KJ0, Kb:K—M, (161)
| No.
Ky K, K;

In general, this set cannot be solved analytically. However, one can show that it possesses
two physically admissible solutions. One of them yields a nonzero value of the parameter
N but this value is small when compared with other moduli. The other solution contains
N = 0. Then the remaining parameters K, C, M can be found analytically. Their values
almost coincide with these obtained in the case of N # 0. We conclude that the form of
relations appearing in the Biot’s model (N = 0) is thermodynamically acceptable within
reasonable limits.

The analytical solution of the micro-macro transition problem for NV = 0 was obtained
for the first time by Gassmann [29] and it has the following form

K, — K;)? K, (K, - K, K2
K:(Q—‘j)+Kd, C:M, M= ———. (162)
5 K 5K K K
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In Figure 21, we present a numerical example for the above relations. It is clear that
the coupling parameter () is much smaller than the other moduli of the Biot’s model. In
the next Section we investigate its influence on the propagation conditions of bulk waves.
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The procedure of micro-macrotransition does not give any information on the shear
modulus ¢°. This must be supplemented by some macroscopic measurements. A possible
estimate based on values of the Poisson’s ratio v is given in [4]. This may have some
practical bearing in soil mechanics because the Poisson’s ratio seems to vary only a little
for soils.

Finally let us mention a result obtained from some geometrical considerations by Berry-
man for the tortuosity parameter. He has shown [9] that for granular materials with
moderate porosities it may be roughly estimated by the following simple relation

1/1
—-(=+1)5 163
a 2<n0+) (163)

We use this relation in numerical examples presented further in this article.

5.2 Bulk monochromatic waves in two-component poroelastic
materials

We proceed to analyze the propagation of monochromatic waves in two-component (sat-
urated) poroelastic materials. There exists a vast literature on this subject. We mention
here only two excellent books [14], [5] in which both the wave analysis for Biot’s model
as well as a comparison with experiments is presented.

The governing equations of the Biot’s model have the form presented in the Box 7.

®Johnson, Plona, Scala, Pasierb and Kojima [33] suggest the relation a = ng A , where 8 = 2/3 for
random array of needles and § = 1/2 for random array of spheres. Certainly, none of these relations
can be true in general as tortuosity is independent of porosity for arbitrary morphology. For instance,
two classes of pipe-like channels differing in the area of cross-section on, say, factor two and yielding the
same porosity give tortuosities differing also on factor two as the characteristic length in both cases is
the same.

45



Box 7: Biot’s model

ov’ ovr s S S Jiv oS F_yS
pnw—%pmw = M gradtre” +2p” dive +Qgrad€+7r(v -V ),
ovs ovr
p12ﬁ+pggw = pg’ngrad»s—|—Qgradtres—7r(VF—VS)7 (164)
de’ 9
% = symgradvs, 8_i = diVVF,

pu = P +pa=pL—r(l—a), pyu=p; +p=raps, (165)

S Pg
p12 = r(1—a)pg, ri=—g,
Po

Material parameters: \°, wS kT, Q,a.

For the simple mixture model: ) =0,a = 1.

The equation for e follows easily from the mass balance for the fluid (see (138)). In
the case of the simple mixture model, we have @ = 0, p;, =0 (i.e. a = 1).
We seek solutions of equations (164) which have the form of the following monochro-
matic waves
vi=VS¢, vI=vVFE e =E%E, e=EFE, (166)

& :=expli(k-x—wl),

where V¥, VI ES EF are constant amplitudes, k is the wave vector, w real frequency.
By means of the last two equations (164) we can eliminate the amplitudes ES, EF
s 1 s s F 1 p
E°=-———(k®V”+V°gk), E'=--V' .k (167)
2w w

The remaining field equations yield the following compatibility conditions

(P10 1-Mk @k — 1 (K*1 +k ® k) + imwl] V5+

+ [prow’l — Qk @ k — imwl] VI =0, (168)

[p12w21 —Qk® k — z'm)l] AV [,022w21 —kpbk @k + iﬁwl} Vi =0.

As usual, the problem of existence of such waves reduces to an eigenvalue problem with
the eigenvector [VS ,VFE } . As in the case of classical one-component elasticity we split the
problem into two parts: in the direction k; = k—%k7 perpendicular to k (transversal
modes) and in the direction of the wave vector k (longitudinal modes). This yields two
dispersion relations k = k (w).
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In contrast to cases which we have considered before for the elastic single component
materials, the above dispersion problem possesses solely complex solutions. For a given
real frequency w, the imaginary part of k arises due to the dissipation of energy whose
amount is controlled by the permeability coefficient m and it is physically caused by the
diffusion. This energy is transferred as heat to the exterior and cannot be recovered by
the system. This makes the physical interpretation of complex solutions of the disper-
sion relation different from this which we indicated in Section 4.4. on leaky waves. We
see further that both leaky and dissipative waves appear in two-component poroelastic
materials.

Simultaneously, inspection of the set (168) shows that the contribution of permeability
7 enters these equations exactly in the same way as the damping 7 in equation (26) —
accelerations (second time derivatives) are related to w? and the permeability, similarly
to the first time derivative, to w. Consequently, we could expect the existence of a critical
wave number k if this was chosen as the independent variable rather than the frequency
w. This was indeed shown in the work of Edelman [23]. Even though it is an interesting
mathematical problem, it does not seem to have much to do with the physical reality
as, due to dispersion, one practically does not observe waves of a particular wavelength
(i.e. of a particular value of k) but rather broad band packages of waves in which the
influence of such a critical wave number cannot be spotted. For this reason we use in
the analysis of diffusive systems solely the frequency w as the independent variable in
dispersion relations.

For transversal modes (monochromatic shear waves) we have

[p11w2 — 1K+ iww} v+ [p12w2 — iﬂw} Vi =0, K =k-k,
[p1ow? — inw] VE + [ppow® +inw] VI = 0, (169)

VE=VvS.k,, VI=VF.k,.

The dispersion relation can be written in this case in the following form

w 2
w { (PnPQz - P%z) (E) - Nspm} +

, %
+um {(1011 + P22 + 2p12) (E) - MS} =0, (170)
i.e. Lz
WA 2 wra +i- ) ) 1S
Z) = = —. 171
(k:) wr[a—r(l—a)]—i—i%(l%—r)cs’ s o8 (171)

Consequently, neither the phase velocity w/ Re k nor the attenuation Im k of monochro-
matic shear waves is dependent on the coupling coefficient Q.
In the two limits of frequencies we have then the following solutions

0 tim (<) = 2 i (k) 0
v wlinm(Rek:) 7pg+pg’ wl_%(m)i ’
. w 2 P22 s
w—o0: lim (—) = —", (172)
w—oo \Rek P11P22 — Pla
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lim (Imk) = T iﬂ a
w—00 ZWG,Q CL—T’(l—CL)‘

The first result checks with the results of the classical one-component model commonly
used in soil mechanics.

In the simple mixture model, the result for w — 0 is, of course, the same. For w — oo
we get <

: w \?

s (for) =g =% 073
and this is identical with the result of the classical elasticity where we have used the
notation cr rather than cg for this limit.

Let us notice that the attenuation in the limit w — oo is finite and reaches there a
maximum. Consequently, for 7 = 0 the solution of the dispersion relation would be real.
This means that indeed, for the above investigated waves, the attenuation is caused solely
by the diffusion.

We demonstrate properties of monochromatic waves on a numerical example in the
whole range of frequencies w € [0,00). Both for shear waves and for longitudinal waves
we use the following numerical data

A\ 4+ 218 S
ep o= | 9500 2 epy=VE=1000 2, e =K = 1500 2,
T s s o5 s

K
Py = 2500 =, r=01, w=10°—o, (174)
m

Q = 08GPa, ng=0.4, a=1.75.

Velocities cp1, cps, cs, the mass density p5 (i.e p3® = 4167 % for the porosity ng = 0.4)
and the fraction 7 = pl'/p5 possess values typical for many granular materials under a
confining pressure of a few atmospheres and saturated by water. In units standard for
soil mechanics the permeability 7 corresponds to app. 0.1 Darcy. The coupling coefficient
@ has been estimated by means of the Gassmann relation discussed in Sec. 5.1.3. The
tortuosity coefficient a = 1.75 follows from Berryman formula (163) for the chosen value
of porosity.

Transversal waves described by the relation (171) are characterized by the following
distribution of velocities and attenuations in function of the frequency (Fig. 22). The
solid lines correspond to the solution of Biot’s model and the dashed lines to the solution
of the simple mixture model.

It is clear that the qualitative behavior of the velocity of propagation is the same in
both models. It is a few percent smaller in Biot’s model than this in the simple mixture
model in the range of high frequencies. A large quantitative difference between these
models appears for the attenuation. In the range of higher frequencies it is much smaller
in the Biot’s model, i.e. tortuosity decreases the dissipation of shear waves.
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Figure 22: Velocity of propagation and attenuation of monochromatic S-waves for
two values of the tortuosity coefficient a : 1.75 (Biot),1.00 (simple mizture).

The latter property is illustrated in Fig. 23 where we plot the attenuation of the front
of shear waves, i.e. lim Im k, as a function of the tortuosity coefficient a. This behavior of

wW—00

attenuation indicates that damping of waves created by the tortuosity, which is connected
in the macroscopic model to the relative velocity of components, is not related to scattering
of waves on the microstructure. It is rather related to the decrease of the macroscopic
diffusion velocity in comparison with the difference of velocities on the microscopic level
due to the curvature of channels and volume averaging. Fluctuations are related solely
to this averaging and not to temporal deviation from time averages (lack of ergodicity!).
Whatever the argument may be the influence of tortuosity on the attenuation of waves
seems to be much too strong.

Figure 23: Attenuation
of the front of shear waves
in function of the tortuosity
coefficient a.

attenuation of the front of shear waves [1/m]

O =~ N WA 1O N ® ©

2 3 4
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Let us remark in passing that, in order to describe properly the influence of morphology
(i.e. a random real geometry of channels, their volume contribution — porosity, their
curvature — tortuosity, etc.) on the propagation of waves one would have to account for
random scattering of waves on microscopic obstacles. This is, certainly, not done by the
added mass coeflicient p,, of Biot’s model. However, one way of doing it is the overall
interpretation of the permeability coefficient 7. Usually in the literature on Biot’s model,
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the permeability 7 is attributed to the viscosity of the true fluid component. This is, of
course, an unnecessary restriction as curvature microeffects contribute to values of 7 as
well and, consequently, a dissipative influence of tortuosity can be included in the model
by an effective value of permeability coefficient 7.
Let us return to the second part of the dispersion relation (168). For longitudinal waves
we obtain
[p11w2 — ()\S + Zus) k* + imu} [p22w2 — Kpp K+ imu} —

— (prow® — Qk* — z'7rw)2 =0, (175)

or, after easy manipulations,

w {[1 —r-a) (£) —c?;l} {a () —cg} T

1.7 fw\2 w2 Q
L (D00 (2) - rdam 22} 176
r pg L ( ) L P2 P1 pOS ( )
1 w\2 @ 2 2 428
——wsr(l—a (—) ——} =0, b =—c—, 5 =k
r { ( ) k pOS P1 pOS P2

Again we check first solutions for two limits of frequencies: w — 0, and w — oco.
Let us begin with the second limit which corresponds to the propagation of wave fronts.
We have

W — 00 : coozzli_{n (é),
2
r{l—r(l—a)c —ch} {CLCZO—C%Q}—{T(l—a)CgO—%} = 0. (177)
0

This is a biquadratic equation for ¢, which yields two nontrivial solutions. These are
called the P1-wave and the P2-wave (or Biot’s wave). In contrast to the simple mixture
model, in the case of the Biot’s model these waves are not longitudinal even though they
are customarily called so. It can be easily checked by the calculation of corresponding
eigenvectors. We shall not do it in this article.

For the simple mixture model, the solution of (177) is immediate

e = { cp1; (178)
Cp2.

In the classical elasticity, we have cp; = c¢;, and the second longitudinal wave does not

exist.

The second, slow wave has been discovered in 1944 by Frenkel [28] and then rediscov-
ered by Biot. However, this kind of waves is known since the discovery of the so-called
second sound in liquid helium by Tisza in 1938. They appear in all hyperbolic models of
multicomponent systems — for liquid helium these are the normal fluid and the superfluid.
They are very difficult to verify experimentally due to a very high attenuation. However,
at least for some porous materials (e.g. sintered glass spheres), they have been indeed
observed (e.g. [52]).

Simultaneously, we obtain the following attenuation in the limit of infinite frequencies

r
lim (Imk) = k!

—_— 179
Ww—00 2p€rr2 ’ ( )
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1
I = ¢ [1—1—7‘—07(0%1%—7’0%2—1—2%)},
00 Po
c c? Q Q
I, = ¢ gt i 2 (1—-r(1—a)— 2 ) +2=2 (1 —a—

and, for the simple mixture model,

SL for P1-wave,
2p5cp1
lim (Imk) = (180)
FL for P2-wave.
2py cp2

Hence both limits of attenuation for the P1-wave and P2-wave are finite and caused
by the permeability .
In the case of the low frequency limit we obtain

w—0: cozzlim( d ),

w—0 \Rek
c {(1 + 7))t — 1Chy — Chy + 2%} =0, liH(lJ (Imk) = 0. (181)
0 v

Obviously, we obtain two real solutions of this equation

Chy +7Chy + 2% AT+ 205 + pfk + 2%

I ( d )2 % (182)
im (—— L =clp = =

w—0 \Rek/ |, oP1 1+ p5 + pt ’

. w \2 9

lli% (Rek) ) = Cor2 = 0.

These are squares of velocities of propagation of two longitudinal modes in the limit
of zero frequency. Clearly, the second mode, P2-wave, does not propagate in this limit.
Both limits are independent of tortuosity. The result (182) checks with the relation for the
velocity of longitudinal waves used in the classical one-component model of soil mechanics
provided @ = 0.

For the data (174) we construct now the numerical example for the P1- and P2-waves
discussed above. The solid lines in the following Figures correspond again to Biot’s model,
the dashed lines to the simple mixture model. In order to show separately the influence
of tortuosity a and of the coupling @ we plot as well the solutions with a = 1 (dashed
dotted lines) and the solutions with @ = 0 (dashed double dotted lines).

Even though similar, again, the quantitative differences are much more substantial
for P1l-waves (Fig. 24). This is primarily the influence of the coupling through partial
stresses described by the parameter (). The simple mixture model (Q = 0,a = 1) as well
as Biot’s model with () = 0 yield velocities of these waves which differ only a few percent
(lower curves in the left diagram). The coupling @ shifts the curves to higher values and
reduces the difference caused by the tortuosity. This result does not seem to be very
realistic because the real differences between low frequency and high frequency velocities
were measured in soils to be rather as big as indicated by the simple mixture model. This
may be an indication that Gassmann relations give much too big values of the coupling
parameter () with respect to those indeed appearing in real granular materials.

Both the tortuosity a and the coupling () reduce the attenuation quite considerably as
indicated in the right Figure.
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Figure 24: Velocity of propagation and attenuation of monochromatic P1-waves for
various coupling parameters ) and tortuosity coefficients a.
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Fig. 25: Velocity of propagation and attenuation of monochromatic P2-waves for
various coupling parameters ) and tortuosity coefficients a.

In spite of some claims in the literature the tortuosity a does not influence the existence
of the slow (P2-) wave (Fig. 25). Velocities of this wave are again qualitatively similar in
Biot’s model and in the simple mixture model. The maximum differences appear in the
range of high frequencies and reach some 35 percent. The same concerns the attenuation
even though quantitative differences are not so big (app. 8 percent).

Let us notice that the lack of coupling through diffusion, 7 = 0, yields for both shear
waves (170) and longitudinal waves (176) dispersion relations whose solutions — phase
velocities — are independent of frequencies. The waves are nondispersive. Hence, both
dispersion and dissipation in the system are caused by the diffusive coupling.

5.3 Some remarks on the simple mixture model

It is evident from the above analysis that the simple mixture model yields very substantial
technical simplifications in the analysis of wave propagation when compared with the full
Biot’s model. There appear quantitative differences between both models, in some cases
substantial. The question arises if Biot’s model leads to some qualitative effects which
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are not appearing in the simple mixture model. The claims that experiments confirm
Biot’s model are based on quantitative analysis of data rather than on any additional
wave effects. Such an analysis may not be very reliable as it is based already on the a
priori presumption that Biot’s model is the only way to describe linear dynamics of porous
saturated materials. However, some features of this model like the disastrous diagram in
Figure 23 indicate that the model requires corrections.

Simultaneously, an extensive wave analysis for the simple mixture model (e.g. [76],
[78], [80], [81], [84], [85], [4]) does not reveal any effects which would not appear as well in
Biot’s model and, vice versa, Biot’s model does not indicate any additional effects either.
Even such a sophisticated coupling of P1- and P2-waves which yields a local minimum
in the velocity of Rayleigh waves (see: [14]) appears in both models. Similar effects are
discussed in details in the contribution of B. Albers [3] to this volume.

As an important consequence of these remarks we proceed with our analysis of surface
waves in linear poroelastic materials on the basis of the simple mixture model.

6 Surface waves in two-component media

6.1 Preliminaries

The theory of surface waves in two-component systems differs qualitatively from such
a theory for one-component continua. Such waves are produced in linear models by a
combination of bulk waves. In the case of a one-component continuum there are two bulk
modes of propagation which yield a single Rayleigh wave. For two-component systems
we have three bulk modes: P1l-waves, P2-waves and S-waves which produce two surface
modes in the case of impermeable boundary. For the permeable boundary, i.e. for the
case of an additional system — a fluid in the exterior, there may exists three surface modes,
etc. In addition, as all these waves are dissipative, there may exist additional leaky modes
similar to these which we have mentioned in Sec. 4.4.

In this Section we consider surface waves in two-component homogeneous poroelastic
materials with an impermeable boundary. However, we indicate as well some properties
related to the permeable boundary condition. This condition has been proposed in 1962
by Deresiewicz [18], [21]. The analysis is based on the simple mixture model. We limit the
attention solely to high and low frequency ranges. The presentation should be considered
to be an introduction to the much more extensive article of B. Albers [3] contributed to
this volume. That article contains also a numerical analysis of dispersion relations in the
whole range of frequencies for three types of interfaces: sealed porous medium/vacuum,
sealed porous medium /ideal fluid, unsealed porous medium/ideal fluid. We leave entirely
open the problem of existence which is at least as complicated as in the case of single
component materials.

To the end of this Section we quote a few results obtained within Biot’s model. As this
model is much more complicated than the simple mixture model results are limited only
to some special cases.
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6.2 Compatibility conditions and dispersion relation

As discussed in [81] we seek a solution of the set of fields equations which we obtain from
Biot’s equations (Box 7) by the substitution @) = 0,a = 1. It is convenient to introduce
the displacement vector u® for the skeleton, and, formally, the displacement vector u’
for the fluid. The latter is introduced solely for the technical symmetry of considerations
and it does not have any physical bearing. Then

o S

u® = grad® +rot”, vsz%, e’ = sym grad u®, (183)
o F

u” = grad o’ 4+ roty*, VF:%,

where %, %, oF T are two pairs of potentials analogous to those which we were using
in the classical elasticity model.

We choose the axes with the downward orientation of the z-axis and the z-axis in the
direction of propagation of the wave. As the problem is assumed to be two-dimensional
we make the following ansatz for solutions

0¥ = A% (2)expli(kz —wt)], ¢ = A" (2)exp[i(kx — wt)], (184)
ng = BY(2)exp[i (kxr — wt)], ¢5 = B (2)exp [i (kz — wt)],
vy = W =l =9l =0,

and

p¥—py = A (2)expli(kz —wt)], p" —py = Ay (2)expli(kz —wt)], (185)
n—ny = APexpli(kz — wt)].

Substitution in field equations leads after straightforward calculations to the following
compatibility conditions for z > 0

i nowt [ d?
BFf = —— BS 4r=_"" — — k%) (AT — A 186
phw+ir i+ wr \ dz? ( ) (186)
d? d?
s _ s 2\ 48 F_ _F 2\ AF
4 = ‘M@"“)A 4 == <@—’C)A’

as well as
d? d? )
<(am ) e [t () g r - A =0 o)

| .
2 () [ ()0 o

I dz? po (1 +wr) \ d2? I
s 2 . F
1% d 2 2 s LT Py 2nS
— | — -k B —w*B” = 0. 189
{pg (d22 )w} R e in” (189)
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It is convenient to introduce a dimensionless notation. In order to do so we define the
following auxiliary quantities

Cg Cp2 T N
¢ = —<1, ¢g=—, 7=—5>0, = S? > 0, (190)
cp1 cp1 Po PoCp1
F
z
ro o= p_% <1, 2 = , K =kepir, W =wr.
Po cp1T

where the velocities cp1, cps,cs are defined by (174) and, in the simple mixture model,
they describe the velocities of fronts of bulk P1-, P2-, and S-wave, respectively. These
are, of course, identical with the limits of bulk phase velocities for w — co. As we neglect
processes of relaxation of porosity, the reference time 7 can be chosen arbitrarily.

As we have already mentioned, we neglect further the influence of the nonequilibrium
changes of porosity, i.e. f = 0. In the compatibility relations derived in this Subsection
we still keep it in the relations in order to show the way in which this influence enters the
model if not ignored.

Further we omit the prime for typographical reasons. Substitution of (190) in equations
(187), (188), (189) yields

9 (i =) | [ () + T - = 0o

2 2
{(% —k'Q) —i—wQ] A% — [iiww (% —k‘2) —i—imu} (AF —AS) = 0,

c d—Q—kQ + w? + z'mu. B% = 0.
dz? w -+

This differential eigenvalue problem can be easily solved because the matrix of coeffi-
cients for homogeneous materials is independent of z. This is different from the case of
waves in heterogeneous materials (compare, for instance, the article of C. G. Lai [38]).
Consequently, we seek solutions in the form

AF = A}e”lz + A?ewz, A% = Alem® 4 A%2e72% B = Bt (192)

where, due to the chosen direction of the z-axis, the exponents ~,,7,,( must possess
negative real parts. This is the existence requirement for surface waves. Substitution in
(191) yields them in the form

<%)2_1‘c12<“wfz‘%) (5) 1)
i+ () 2 [ ) + e (0 2] G

+ {1+c§c+ (1+%) iiww - (c§+%) %} {(%)2— 1} (%)2 = 0. (194)

Simultaneously we obtain the following relations for eigenvectors

and

R! = (B, AL AN, R?= (B, A2, A2)" (195)
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where

Ay =654, Al =5,A% (196)
Bw | (1)2 _ ir w?
6f : 1 i+w [( k) 1} + o (197)
’ w 1\2 w)2 ir w?
TG+ ) () -]+ () 25

Buw 2)2 ir w?
s := o [(?) _ 1] w k2 . 19%)
(1+2) () 1]+ () + 2% 198

The above solution for the exponents still leaves three unknown constants B, Afc, Al
which must be specified from boundary conditions. This is the subject of the next Sub-
section.

For technical reasons, we limit the attention solely the limit problems in the range of
high and low frequencies.

In the case of high frequency approximation we immediately obtain from relations
(193) and (194)

(199)

and
§;=6,=0 = R'=(B,AL0)", R*=(B,,0,42%)". (200)

For the case of low frequency approximation the equation (194) becomes singular.
It can be written in the following form

S (R R S COIOR
—i—[w (1+¢) +ir (cfﬁ—%)}w[(%f—l} (%)2:0. (201)

Making the following substitution

W::w[(%)g—l] +w<%>21;;;c’ (202)

we obtain a quadratic equation for W

. {m

w

AW rin (2 4+ 1) (2) w- (203)
! Py k

G0rd) ;)] (g)“}www “o0
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which for small w can be solved by the regular perturbation method
W =Wy +wW; + 0 (w?) . (204)

After easy calculations we obtain

1+C2 1 2
|: 2c?f TZ?++1i| (%) w,
W = . (205)
1+c2 1 2 . re2+l 2
- |3 -] @ e -t (9)

Bearing the relation (202) in mind we arrive at the following results for the exponents

() -5 ()

71\2 r+1 rw\2
(?) =1- rei +1 (E) ’ (206)
(72)2_1 Tc?c—%—l <w>2 Z"]TTC?L‘"‘l <w>2
k) c; (rcfc +1) \k w  rc k)’
and for the coefficients of amplitudes

2 2
R i A S i (207)
i7r1+7‘cff ! i7r1+rcff

Obviously due to the singular character of the equation (201) the last contribution to
2
k

becomes singular for w — 0.

6.3 Boundary value problems for surface waves

In order to determine surface waves in saturated poroelastic medium we need conditions
for 2 = 0. We discuss in some details the problem in which this boundary is imperme-
able, and a poroelastic medium is in contact with vacuum. Boundary conditions have
then the form

ous  ouf
2z=0

Tssl, o= (Tgs — pF)L:o =

ou?  ous ou?
= et (6_; i a_f) — 25055, (" =) =0, (209)
z2=0
0 (ui —u3)| =0, (210)
ot 0

where the first two conditions mean that the surface z = 0 is stress-free (far-field approx-
imation), and the last condition means that there is no transport of fluid mass through
this surface (impermeable boundary). uf,u3 denote the components of the displacement
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u® in the direction of r-axis and z-axis, respectively, while uZ is the z-component of the

displacement uf’.

In the case of a permeable boundary neither the condition (208) nor the condition
(210) would hold.

The first condition would have to possess the right-hand side reflecting the external
pressure p,; appearing in the fluid outside of the porous material. This change would
appear as well in the case of impermeable boundary when we did not have the vacuum
outside.

Condition (210) which reflects the fact that the impermeable boundary is material
for both the solid and fluid component would have to describe mass transport through
the surface specified by a relation to a driving force. According to the proposition of
Deresiewicz and Skalak [21] such a driving force is proportional to the difference of pore
pressures on both sides of the boundary

pg% (uf —uf) — a (p" — nopeat) =0, (211)
z=0
where o denotes a surface permeability coefficient and p.,; is an external pressure.

The coefficient « is an overall macroscopic description of a boundary layer which is
created by the flow of the fluid component from conditions specified by the porous material
(i.e. by the permeability m, porosity n, a geometry of the microscopic vicinity of the
boundary such as a shape of openings of channels, their average orientation with respect
to the surface normal, etc.) to the free space of a pure fluid. It is clear that the limit o — 0
corresponds to the impermeable (sealed) boundary, and the limit o — oo corresponds to
the continuity of pressure in the fluid: p!" = ngpes:. Such a boundary condition is used,
for instance, in theories of porous materials with a rigid skeleton which are used in the
description of various geotechnical diffusion and seepage processes.

In addition, for the permeable boundary we have to account for the continuity of the
mass flux through the boundary. This additional boundary condition is necessary with
respect to the existence of an additional constant in the solution for the exterior (in the
range z < 0).

Substitution of results of the previous Subsection in boundary conditions (208)-(210)
yields the following equations for three unknown constants B,, A%, Al

AX =0, (212)
where
($)"+1 21326, 2i %
ﬁ2—1+202]68+ 1n)? 122y
U IV (O o) ~1racs
a1 g [ -1
o —(6s—1)F 6y —1)F

X:= (B, A% A)".
This homogeneous set yields the dispersion relation: det A = 0 determining the

w — k relation. We investigate separately solutions of this equation for high and low
frequencies.
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6.4 High frequency approximation

In the case of high frequencies % < 1 we have 65 = 65 = 0 and the dispersion relation

follows in the form
1 /wN\2  r fw\4 w2
PR\/“@(E) +c—g(z) 1-(3) =0 (214)
Pr = (2— 61—2 (%)2)2—4,/1— (%)2,/1— 0—12 (%)2 (215)

Hence for r = 0 the relation (214) reduces to Pr = 0 which is the Rayleigh dispersion
relation for single component continua. Otherwise we obtain the relation identical with
this analyzed by I. Edelman and K. Wilmanski [24] in the limit of short waves (i.e. ; < 1).
Consequently, the conclusions for this case are the same as well. As shown in the paper
[24] the equation (214) possesses two roots defining two surface waves: a true Stoneley
wave which propagates with the finite attenuation and with the velocity a bit smaller
than cy as well as a generalized Rayleigh wave which is leaky (i.e. it radiates the energy
to the P2-wave) and propagates with the velocity cg: ¢y < cg < ¢s. The Rayleigh wave
is leaky because its attenuation is unbounded, i.e. such a wave cannot exist in the range
of high frequencies. Immediately after the initiation, it transforms into bulk waves.

These results are not very surpprising because the dispersion relation (214) is identical
with the dispersion relation in Box 6 for the Stoneley-Scholte wave. The only difference is
that the real Stoneley-Scholte wave propagates on both sides of the interface and the above
presented wave propagates solely below the boundary (z > 0) in the porous medium.

The detailed description of these waves can be found in [3].

where

6.5 Low frequency approximation

If we account for the relations (206) and (207) in the condition det A =0 then we obtain
the dispersion relation reflecting a dependence of ¥ on w. The expansion with respect to
J/w yields the identity in the zeroth order and the following relation for the higher order

e @) O @ e

+0 (Vw) = 0.

Clearly we obtain two solutions:

1. Rayleigh wave whose velocity is different from zero in the limit w — 0 and whose
attenuation is of the order O (y/w). The relation for the velocity reminds the relation
(215) with the velocities of bulk waves replaced by the low frequency limits. Namely

we have
r+l o potey b+l o, pitpl _ chy (217)
2 ‘n 5 = 2 21 P33 s, F,. 2 -
s ® Cos  TCr+ N 205+ pg Kk Copy
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Consequently

2 rwon2\ 2 2, fw\2 % fw2
-2 2B e
oS oS oP1

2. The Stoneley wave has the velocity of propagation of the order O (y/w). Hence, it
goes to zero in the same way as the velocity of propagation of the P2-wave.

Box 8: Surface waves on an impermeable boundary of porous ma-
terials — dispersion relations

High frequency approximation: w — oo

1 /w2 r orw\4 1 jw\2
fE @ 5@ g
Pr ct, \k +c§ k 4, \k

Low frequency approximation: w — 0

Lz (@) @ )=

where
A+ 2u8 s
cp1 = —S/i’ cpy =V, cs= /l_S’
Po Po

X5 +2u5 + pf s ps P
CoP1 = s 7 GeS=\[ s 7 =g
Po t Po Po + Po Po

6.6 Remarks on modelling surface waves by Biot’s model and
the simple mixture model

The results for a two-component model of porous solid-fluid mixtures presented in this
Section should be compared with those obtained by means of the Biot’s model and with
experimental observations. We shall not go into details of such a comparison in this
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work. However, as mentioned before, there is a very good qualitative agreement of both
models as far as propagation of acoustic waves is concerned. Velocities of bulk waves
are influenced by the coupling parameter () but this influence reflected in high frequency
— low frequency relations seems to be too strong for values of this parameter following
from the classical Gassmann relations. The influence of tortuosity a on the velocities of
propagation is rather small and, simultaneously, essential changes of attenuation do not
correspond to the physical inside, particularly to mechanisms of scattering of waves, of
the morphology of porous materials in spite of some claims in the literature (e.g. compare
33]).

Neither bulk waves nor surface waves reveal any qualitative differences between Biot’s
model and the simple mixture model. It can be expected that ranges of existence of
different surface modes are different for both models but results of analysis of this problem
are not yet available.

It should be mentioned that results for surface waves within the Biot’s model are often
limited to high frequency limits [26]. Some early results of Deresiewicz for low frequencies
[17], [18], [19], [20] do not depart from those obtained within the simple mixture model.
There exists a number of works in which solutions similar to those of Deresiewicz are
obtained for more complex systems (e.g. [35], [36], [59], [60]). For instance, in the work
[36] a porous semiinfinite medium described by the Biot’s model is considered to be in
contact with a layer of an ideal homogeneous fluid on which there is another layer of ideal
inhomogeneous fluid with a linear dependence of material parameters on the z-coordinate.
Surface waves are sougth under the following simplifying assumptions. In the Deresiewicz-
Skalak boundary condition (211), it is assumed that the boundary permeability o — oc.
The second assumption concerns the diffusion. Authors assume lack of dissipation which
means that the partial velocities of components are equal. This happens approximately
indeed in the range of low frequencies where the components move almost synchronized
but not in the range of high frequencies. However, both limits are investigated numerically
in the work. In these calculations, the data are chosen in such a way that the tortuosity
a = 1.01 which is, of course almost eliminating this effect from Biot’s model. It is rather
natural that results practically do not differ from those for single component materials.

The most interesting work with a very extensive comparison of different models has
been done by Norris [48] for the propagation of Stoneley waves on the permeable boundary
of the porous material. He investigates two problems. A low frequency regime is first
described by the model of pore-pressure diffusion in a compressible frame. In this range,
the Stoneley wave in a borehole is called a tube wave and Norris presents a comparison
of various so-called quasi-static models. He is using the full Deresiewicz-Skalak boundary
condition. The most extensive part of the work concerns the application of Biot’s model
for which the frequency variations of the velocity and attenuation of the Stoneley wave
are discussed in details for the range app. 0-50 kHz. For the lack of space in this article
we have to refer to the original work for details. It would be, certainly, interesting to
compare these results based on Biot’s model with those which follow from the simple
mixture model.

Further details concerning the comparison of both models and a full account of nu-
merical results for surface waves described by the simple mixture model can be found in
the article of B. Albers [3]. Certainly, it should be born in mind that the simple mixture
model must be quantitatively a worse approximation than Biot’s model because it does
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not contain natural physical couplings. However, it is known from the theory of mixture
of fluids that many results of the simple mixture theory are good enough for some prac-
tical purposes. This seems to be also the case for porous materials as far as a qualitative
analysis of acoustic waves is concerned.

References

[1] J. D. ACHENBACH; Wave propagation in elastic solids, North-Holland Publ. Comp.,
Amsterdam, 1973.

2] K. Ak1, P. G. RICHARDS; Quantitative seismology, Second Edition, University
Science Books, Sansalito, 2002.

[3] B. ALBERS; Modelling of surface waves in poroelastic saturated materials by means
of a two-component continuum, in this CISM-Volume, 2004.

[4] B. ALBERs, K. WILMANSKI; On modeling acoustic waves in saturated poroelastic
media, WIAS-Preprint #874, 2003; Journal of Engn. Mechanics, to appear, 2004.

[5] J. F. ALLARD; Propagation of Sound in Porous Media. Modelling Sound Absorbing
Materials, Elsevier, Essex, 1993.

6] J. H. ANSELL; The roots of the Stoneley wave equation for solid-liquid interfaces,
Pure Appl. Geophys., 94, 172-188, 1972.

[7] E. A. AsH, E. G. S. PAIGE; Rayleigh- Wave theory and application, Springer, Berlin,
1985.

[8] A. BEN-MENAHEM, S. J. SINGH; Seismic waves and sources, Second Edition,
Dover, N.Y., 2000.

9] J. G. BERRYMAN; Confirmation of Biot’s Theory, Appl. Phys. Lett., 37, 382-384,
1980.

[10] M. A. B1oT; Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous
Solid. I. Low-Frequency Range, J. Acoust. Soc. Am., 28, 168-178, 1956.

[11] M. A. Biot, D. G. WiLLIs; The elastic coefficients of the theory of consolidation,
J. Appl. Mech., 24, 594-601, 1957.

[12] L. M. BREKHOVSKIKH, O. A. GODIN; Acoustics of layered media. I. Plane and
quasi-plane waves, Springer, Berlin, 1998.

[13] L. M. BREKHOVSKIKH, V. GONCHAROV; Mechanics of continua and wave dynam-
ics, Second Edition, Springer, Berlin, 1994.

[14] T. BoOurBIE, O. Coussy, B. ZINSZNER; Acoustics of porous media, Editions Tech-
nip, Paris, 1987.

[15] L. CAGNIARD; Reflection and refraction of progressive waves, McGraw-Hill Book
Co., 1962.

62



[16]

[17]

18]

[19]

[27]

28]

[29]

[30]

C. A. CouLsoN, A. JEFFREY; Waves; A mathematical approach to the common
types of wave motion, Second Edition, Longman, London, 1977.

H. DERESIEWICZ; The effect of boundaries on wave propagation in a liquid-filled
porous solid: II. Love waves in a porous layer, Bull. Sesmol. Soc. Am., 51, 1, 51-59,
1961.

H. DERESIEWICZ; The effect of boundaries on wave propagation in a liquid-filled
porous solid: IV. Surface waves in a half-space, Bull. Seismol. Soc. Am., 52, 3,
627-638, 1962.

H. DERESIEWICZ; The effect of boundaries on wave propagation in a liquid-filled

porous solid: VI. Love waves in a double surface layer, Seismol. Soc. Am., 54, 417-
423, 1964.

H. DERESIEWICZ; The effect of boundaries on wave propagation in a liquid-filled

porous solid: VII. Surface waves in a half-space in the presence of a liquid layer,
Bull. Seismol. Soc. Am., 54, 1, 425-430, 1964.

H. DERESIEWICZ, R. SKALAK; On uniqueness in dynamic poroelasticity, Bull. Seis-
mol. Soc. Am., 53, 783-788, 1963.

D. Drew, L. CHENG, R. T. LAHEY, JR.; The Analysis of Virtual Mass Effects in
Two-Phase Flow, Int. J. Multiphase Flow, 5, 233-242, 1979.

I. EDELMAN; Bifurcation of the Biot slow wave in a porous medium, Jour. Acoust.
Soc. Am., 114.1, 90-97, 2003

I. EpELMAN, K. WILMANSKI; Asymptotic analysis of surface waves at vac-

uum /porous medium and liquid /porous medium interfaces, Cont. Mech. Thermodyn.,
14, 1, 25-44, 2002.

W. C. ELMORE, M. A. HEALD; Physics of waves, Dover, N.Y., 1985.

S. FEnG, D. L. JoHNSON; High-frequency acoustic properties of a fluid/porous
solid interface, I. New surface mode, J. Acoust. Soc. Am., 74, 3, 906-914, 1983; II.
The 2D reflection Green’s function, J. Acoust. Soc. Am., 74, 3, 915-924, 1983.

S. Forr; Surface wave testing for geotechnical characterization of a real site, in this
CISM-volume, Springer, Wien, 2004.

YA. FRENKEL; On the Theory of Seismic and Seismoelectric Phenomena in Moist
Soils, J. Phys., 8, 4, 230-241, 1944.

F. GASSMANN; Uber die Elastizitit poroser Medien, Vierteljahresschrift der Natur-
forschenden Gesellschaft in Zirich, 96, 1-23, 1951.

A. S. GINZBARG, E STRICK; Stoneley-wave velocities for a solid-solid interface,
Bull. Seismol. Soc. Am., 48, 51-63, 1958.

63



[31]

[36]

[37]

[45]
[46]

[47]

[48]

V. G. GOGOLADZE; Rayleigh waves at the boundary between a compressible fluid
medium and a solid elastic half-space, Trudy Seismologicheskogo Instituta Akad. Nauk

SSSR, 127, 1948.

P. HEess; Surface acoustic waves in materials science, Physics Today, 42-47, 2002.

D. L. JounsoN, T. J. ProNa, C. ScaLA, F. PasierB, H. KoJiMa; Tortuosity
and acoustic slow waves, Phys. Rev. Lett., 49, 1840-1844, 1982.

E. KAUSEL; Numerical technics in eigenvalue problems for surface waves, in this
CISM-volume, Springer, Wien, 2004.

R. KuMAR, A. MiGLANTI; Effect of pore alignment on surface wave propagation in
a liquid-saturated porous layer over a liquid-saturated porous half-space with loosely
bonded interface, J. Phys. Earth, 44, 153-172, 1996.

R. KuMAR, A. MIGLANI, N. R. GARG; Surface wave propagation in a double liquid
layer over a liquid-saturated porous half-space, Sadhana, 27, 6, 643-655, 2002.

C. G. Lar; Simultaneous inversion of Rayleigh phase velocity and attenuation for
near-surface site characterization, PhD-Thesis, Georgia Institute of Technology,
1998.

C. G. LAr1; Surface waves in dissipative media: forward and inverse modelling, in
this CISM-volume, Springer, Wien, 2004.

R. LANCELLOTTA; Experimental soil behavior, its testing by waves, engineering
applications, in this CISM-volume, Springer, Wien, 2004.

I-SHIH L1u; Continuum Mechanics, Springer, Berlin, 2002.

G. Liu, J. Qu; Guided circumferential waves in a circular annulus, J. Appl. Mech.,
65, 424-430, 1998.

A. E. H. Love; Some problems of geodynamics, Cambridge University Press, 1911:
reprinted by Dover, N.Y., 1967.

G. MAUGIN; Theory of nonlinear surface waves and solitons, in this CISM-volume,
Springer Wien, 2004.

I. MULLER; A new approach to thermodynamics of simple mixtures, Zeitschrift fir
Naturforschung, 28a, 1973.

I MU’LLER; Thermodynamics, Pitman, Boston, 1985.

E. G. NEsVIJSKI; On a possibility of Rayleigh transformed sub-surface waves prop-
agation, NDT.net, 5, No.09, Spetember 2000.

A. N. NORRIis; Back reflection of ultrasonic waves from a liquid-solid interface, J.
Acoust. Soc. Am., 73, 2, 427-434, 1983.

A. N. NORRIS; Stoneley-wave attenuation and dispersion in permeable formations,
Geophysics, 54, 3, 330-341, 1989.

64



[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

A. N. Norris, B. K. SINHA; The speed of a wave along a fluid/solid interface in
the presence of anisotropy and prestress, J. Acoust. Soc. Am., 98 (2), 1147-1154,
1995.

D. F. PARKER, G. A. MAUGIN; Recent developments in surface acoustic waves,
Springer, Berlin, 1988.

R. A. PHINNEY; Propagation of leaking interface waves, Bull. Seismol. Soc. Am.,
51, 4, 527-555, 1961.

T. J. PLoNA; Observation of a second bulk compressional wave in a porous medium
at ultrasonic frequencies, Appl. Phys. Lett., 36, 259-261, 1980.

J. W. (STrRUTT) RAYLEIGH; On waves propagated along the plane surface of an
elastic solid, Proceedings of the London Mathematical Society, 17, 4-11, 1887.

G. J. Rix; Surface testing for near-surface site characterization, in this CISM-
volume, Springer, Wien, 2004.

G. J. Rix, C. G. LA, S. Forr; Simultaneous measurement of surface wave disper-
sion and attenuation curves, Geotechnical Testing Journal, 24(4), 350-358, 2001.

H. SaTo, M. FEHLER; Seismic wave propagation and scattering in the heterogeneous
earth, Springer, N.Y., 1998.

J. G. ScHOLTE; The range of existence of Rayleigh and Stoneley waves, Monthly
Notices of the Royal Astronomical Society, Geophysical Supplement, 5, 120-126, 1947.

J. G. SCHOLTE; On sesmic waves in a sherical Earth, Koninkl. Ned. Meteorol. Inst.,
122-165, 1947.

M. D. SHARMA, R. KuMAR, M. L. GOGNA; Surface wave propagation in a trans-
versely isotropic elastic layer overlying a liquid-saturated porous solid half-space and
lying under a uniform layer of liquid, Pure Appl. Geophys., 133, 523-540, 1990.

M. D. SHARMA, R. KUMAR, M. L. GOGNA; Surface wave propagation in a liquid-

saturated porous layer overlying a homogeneous transversely isotropic half-space and
lying under a uniform layer of liquid, Int. J. Solids Struct., 27, 1255-1267, 1991.

R. D. StOLL; Sediment Acoustics, Lecture Notes in Earth Sciences, #26, Springer,
New York, 1989.

R. STONELEY; Elastic waves at the surface of separation of two solids, Proc. Roy.
Soc. London, A, 106, 416-428, 1924.

E. STRICK; The pseudo-Rayleigh wave, in: W. L. Roever, T. F. Vining and E. Strick;

On the propagation of elastic wave motion, Phil. Trans. Roy. Soc. (London), Ser. A,
251, 488-509, 1959.

E. STtrIiCcK, A. S. GINZBARG; Stoneley-wave velocities for a fluid-solid interface,
Bull. Seismol. Soc. Am., 46, 281-292, 1956.

65



[65]

[66]
[67]
[68]

[69]

[70]

[71]

[72]

73]

[74]
[75]
[76]
[77]

78]

[79]

[80]

[81]

[82]

I. ToLsTOY; Acoustics, FElasticity and Thermodynamics of Porous Media: Twenty-
One Papers by M. A. Biot, Acoustical Society of America, 1991.

J. TREFIL; A scientist at the seashore, Macmillan Publ. Co., N.Y., 1984.
A. Ubias; Principles of seismology, Cambridge University Press, 1999.

C. VALLE, J. Qu, L. J. JAcoBS; Guided circumferential waves in layered cylinders,
Int. J. Engn. Sci., 37, 1369-1387, 1999.

I. A. VIKTOROV; Wolny tipa relejewskich na cilindricheskich powierchnostiach (in
Russian), Akust. Zurnal, 4, 2, 131-136, 1958.

I. A. VIKTOROV; Rayleigh-type waves on curved surfaces, J. Acoust. Soc. Am., 4,
131-136, 1958.

I. A. VIKTOROV; Rayleigh and Lamb waves, physical theory and applications,
Plenum Press, N.Y., 1967.

I. A. VIKTOROV; Zwukovyje powierchnostnyje wolny w twiordych telach (in Rus-
sian), Nauka, Moskwa, 198]1.

J. E. WHITE; Underground sound, application of seismic waves, Elsevier Sci. Publ.,
N.Y., 1983.

R. M. WHITE; Surface elastic waves, Proc. of the IEEE, 58, 8, 1238-1276, 1970.
G. B. WHITHAM; Linear and nonlinear waves, John Wiley & Sons, N.Y., 1974.
K. WILMANSKI; Thermomechanics of continua, Springer, Berlin, 1998.

K. WILMANSKI; A Thermodynamic Model of Compressible Porous Materials with
the Balance Equation of Porosity, Transport in Porous Media, 32:, 21-47, 1998.

K. WILMANSKI; Waves in porous and granular materials, in: K. Hutter, K. Wilman-
ski (eds.), Kinetic and continuum theories of granular and porous media, CISM
Courses and Lectures No. 400, Springer WienNew York, 131-186, 1999.

K. WILMANSKI; Some Questions on Material Objectivity Arising in Models of Porous
Materials, in: P. Podio-Guidugli, M. Brocato (Eds.), Rational Continua, Classical
and New, Springer-Italy, Milan, 149-161, 2001.

K. WiLMANSKI; Thermodynamics of multicomponent continua, in: R. Teisseyre,
E. Majewski (eds.), FEarthquake thermodynamics and phase transformations in the
Earth’s interior, Academic Press, San Diego, 567-653, 2001.

K. WILMANSKI; Propagation of sound and surface waves in porous materials, in: B.
T. Maruszewski (ed.), Structured Media, Publishing House of Poznan University of
Technology, 312-326, 2002.

K. WILMANSKI; Thermodynamical admissibility of Biot’s model of poroelastic sat-
urated materials, Arch. Mech., 54, 5-6, 709-736, 2002.

66



[83] K. WILMANSKI; On a Micro-Macro Transition for Poroelastic Biot’s Model and
Corresponding Gassmann-type Relations, WIAS-Preprint #868, 2003; Géotechnique
(submitted).

[84] K. WILMANSKI; Tortuosity and objective relative acceleration in the theory of porous
materials, WIAS-Preprint # 922, 2004; Proc. Roy. Soc. series A (submitted).

[85] K. WILMANSKI, B. ALBERS; Acoustic waves in porous solid-fluid mixtures, in: K.
Hutter, N. Kirchner (eds.), Dynamic response of granular and porous materials under
large and catastrophic deformations, Springer, Berlin, 283-313, 2003.

67



