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Abstract

In this paper we show that the asymptotic methods provide an advanta-

geous approach to obtain models of thin elastic bodies under minimal regu-

larity assumptions on the geometry. Our investigation is devoted to clamped

curved rods with a nonsmooth line of centroids and the obtained model is a

generalization of results already available in the literature.

1 Introduction

The asymptotic methods in modelling thin elastic bodies like plates, beams, arches

or shells have a long history. The recent treatise of Ciarlet [4] together with the

previously published volumes provide a unitary and modern mathematical treatment

of the contemporary research in elasticity. In the case of elastic curved rods, the

book of Trabucho and Via~no [16] and the articles of Jurak and Tamba�ca [10] and

[11] demonstrate the application of asymptotic approaches in a general geometric

setting.

In the papers of Blouza and Le Dret [2], Ignat, Sprekels and Tiba [6], [7], the

possibility of relaxing the regularity assumptions on the shape of the elastic body

is examined for polynomial-type models. It turns out that the most advantageous

way in reaching minimal regularity hypotheses on the geometry is the asymptotic

modelling method.

We discuss this for curved elastic rods, but many of the ideas seem possible to

be further applied to shells. As announced in the title, we study (for the line of

centroids) unit speed curves in R3 which admit Lipschitz parametrization. However,

by the standard reparametrization with respect to the arc length, one may consider

general absolutely continuous regular parametrization (i.e. with nonzero tangent

vector a.e.).

The basic idea is rather simple and natural. If we denote by � > 0 the \thickness"

parameter speci�c to asymptotic methods, we also introduce another small param-

eter Æ = �
r (0 < r <

1
3
) associated to a regularization procedure applied to the

nonsmooth line of centroids. A careful examination of the convergence properties of

the arising smooth coeÆcients and sharp estimates in the corresponding variational

formulation of the linear elasticity system (after scaling) allows to pass to the limit

� ! 0 and to obtain the asymptotic model. In the smooth case, this is similar to

the model of Jurak and Tamba�ca [10] and [11].

An important ingredient in our argument is the construction of a local frame (dif-

ferent than the classical Frenêt basis) applicable for Lipschitzian parametrizations.

This is a generalization of the ideas developed in Ignat, Sprekels and Tiba [7]. Let us

also mention other related works discussing asymptotic models: Aganovi�c and Tutek

[1] (for beams), Nazarov and Slutskij [12], Jamal [8], Jamal and Sanchez-Palencia [9]

(for curved rods). The very recent work of Tamba�ca [15] discusses a regularization

procedure for piecewise C1 parametrizations and in the absence of surface tractions,
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directly in the setting of ordinary di�erential equations (with di�erent boundary

conditions) obtained as the asymptotic model in the smooth case. Our work is more

general from these points of view and our arguments are constructive and certainly

di�erent.

Finally, we mention a brief outline of the paper. In Section 2, we introduce the basic

notations and notions that will be further needed. Section 3 deals with the construc-

tion of a local frame for piecewise C1 parametrizations and its regularization. This

will be later re�ned (in the Appendix) to the case of Lipschitzian parametrizations.

In Section 4 we study the functional space which plays the essential role in our ap-

proach. Section 5 contains several auxiliary results, some of them collected from the

existing literature. Section 6 is devoted to the formulation of the linear elasticity

equations and their transformation. Section 7 gives the basic estimates including

a Korn-type inequality with explicit constants with respect to the thickness � > 0.

In Section 8 the passage to the limit � ! 0 is performed and the main existence

and uniqueness result is proved. Section 9 provides a short comparison with other

results available in the literature.

2 Basic notation

We denote by R3 the usual three dimensional Euclidean space with scalar product

(�; �) and norm j � j. By \ � � � " we shall denote the vector product in R3 and by h�; �i

any ordered pair. In the text the symbol \�" is also used for the Cartesian product

of two spaces and jAj will also denote the Lebesgue measure of some measurable

set A, without danger of confusion. The summation convention with respect to

repeated indices will be also used, if not otherwise explicitly stated.

Let S � R
2 be a bounded simply connected domain of class C1 satisfying the

\symmetry" conditionZ
S

x2 dx2dx3 =

Z
S

x3 dx2dx3 =

Z
S

x2x3 dx2dx3 = 0: (2.1)

We denote by 
 = (0; l) � S, 
� = (0; l) � �S open \cylinders" in R
3 , where l > 0

and � > 0 \small", are given.

Let C be a unit speed curve of length l in R
3 de�ned by its parametrization � :

[0; l]! R
3 , and let t, n, b denote its tangent, normal and binormal vectors. As we

shall assume less regularity for � as for instance in [3], the local frame t, n, b is not

necessarily the Frenêt one. Alternative ways to construct local frames under low

regularity assumptions may be found in [7] and in Appendix. Let �� : [0; l]! R
3 be

a smoothing of � such that it remains a unit speed curve (i.e. j�0
�
(y1)j = 1, 8y1 2

[0; l]) and t�, n�, b� be the associated local frame. The regularization parameter will

be of the form �
r, r 2 (0; 1

3
), and we just write ��, t�, n�, b� to simplify notation.

More details on the construction of t, n, b and their regularizations are given in

Section 3 and in Appendix.
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Further, we de�ne the auxiliary functions ��, ��, � (corresponding to the usual

notions of curvature and torsion) by

�� = (t0
�
;b�); �� = (t0

�
;n�); � = (b0

�
;n�);

where t0
�
is the derivative of t� with respect to x1, etc. To obtain this relations,

we use the assumed orthonormality of the local basis t�, n�, b� which gives the

orthogonality properties (t�; t
0
�
) = 0, (n�;n

0
�
) = 0, (b�;b

0
�
) = 0, that is t0

�
may be

expressed via n�, b� and so on. We obtain the \laws of motion" of the local frame

t0
�
= ��b� + ��n�;

n0
�
= ���t� � �b�; (2.2)

b0
�
= ���t� + �n�:

We introduce the mappings R�

R� : 
! 
�; R�(x1; x2; x3) = (x1; �x2; �x3); (2.3)

and �P�

�P� : 
� ! R
3
; �P�(y) = ��(y1) + y2n�(y1) + y3b�(y1); (2.4)

(y1; y2; y3) 2 (0; l) � �S, which gives the parametrization of the curved rod e
� =
�P�(
�). Further,

�d�(y) = det( �r�P�(y)) = 1� ��(y1)y2 � ��(y1)y3 for all y 2 
�: (2.5)

We can suppose that �d�(y) 6= 0 for all y 2 
� (see (2.10) and Corollary 3.3) and for

� \small". Then �P� : 
� !
e
� is a C

1-di�eomorphism, Ciarlet [4], Theorem 3.1-1.

In the sequel, we shall write e@i = @

@eyi
, where ey = (ey1; ey2; ey3) 2 e
�, �@i =

@

@yi
, for

y = (y1; y2; y3) 2 
�, and @i =
@

@xi
, where x = (x1; x2; x3) 2 
. Thus, in (2.5)

�r = (�@1; �@2; �@3). In an analogous way, we denote by eV a function de�ned on e
�, �V a

function de�ned on 
� and V a function de�ned on 
. We suppose throughout this

subsection that all derivatives, that we need, exist, which will follow from Section 3

later.

The covariant basis at point �P�(y), y 2 
�, of the curved rod is de�ned by �gi;�(y) =
�@i �P�(y) and (using (2.2)) these vectors are given by

�g1;�(y) = (1� y2��(y1)� y3��(y1))t�(y1) + y3�(y1)n�(y1)� y2�(y1)b�(y1);

�g2;�(y) = n�(y1); �g3;�(y) = b�(y1): (2.6)

The vectors �gj;� de�ned by the relations (�gi;�; �g
j;�) = Æ

ij, constitute the contravariant

basis of the curved rod at the point �P�(y). They have the form

�g1;�(y) =
t�(y1)
�d�(y)

; �g2;�(y) =
�y3�(y1)t�(y1)

�d�(y)
+ n�(y1);
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�g3;�(y) =
y2�(y1)t�(y1)

�d�(y)
+ b�(y1): (2.7)

Further, we de�ne the covariant and contravariant metric tensors (�gij;�)
3
i;j=1 and

(�gij;�)3
i;j=1, where

�gij;� = (�gi;�; �gj;�); �g
ij;� = (�gi;�; �gj;�): (2.8)

After substitution y = R�(x), we adopt the notation

g
ij;�(x) = �gij;�(R�(x)); gij;�(x) = �gij;�(R�(x)); gi;�(x) = �gi;�(R�(x)); (2.9)

gj;�(x) = �gj;�(R�(x)); d�(x) = �d�(R�(x)); A
ijkl

�
(x) = �Aijkl

�
(R�(x)); (2.10)

where x 2 
 and ( �Aijkl

�
(y))3

i;j;k;l=1 is a fourth-order tensor to be de�ned later in (6.2).

In an analogous way, we can derive the covariant basis at the point ( �P� Æ R�)(x),

x 2 
. Thus oi;�(x) = @i( �P� ÆR�)(x) and these vectors are given by

o1;�(x) = (1� �x2��(x1)� �x3��(x1))t�(x1) + �x3�(x1)n�(x1)� �x2�(x1)b�(x1);

o2;�(x) = �n�(x1); o3;�(x) = �b�(x1): (2.11)

The vectors oj;� de�ned by the relations (oi;�; o
j;�) = Æ

ij, constitute the contravariant

basis at the point ( �P� ÆR�)(x), x 2 
. They have the form

o1;�(x) =
t�(x1)

d�(x)
; o2;�(x) =

�x3�(x1)t�(x1)

d�(x)
+
n�(x1)

�
;

�o3;�(x) =
x2�(x1)t�(x1)

d�(x)
+
b�(x1)

�
: (2.12)

We can de�ne the covariant and contravariant metric tensors (oij;�)
3
i;j=1 and (o

ij;�)3
i;j=1,

where

oij;� = (oi;�; oj;�); o
ij;� = (oi;�; oj;�): (2.13)

These tensors have the form

(oij;�)
3
i;j=1 =

0@ d
2
�
+ �

2
x
2
3

2
�
+ �

2
x
2
2

2
�

�
2
x3� ��2x2�

�
2
x3� �

2 0

��2x2� 0 �
2

1A (2.14)

and

(oij;�)3
i;j=1 =

0B@
1
d2�

�x3�

d2�

x2�

d2�

�x3�

d2�

1
�2
+

x23
2
�

d2�

�x2x3
2
�

d2�

x2�

d2�

�x2x3
2
�

d2�

1
�2
+

x22
2
�

d2�

1CA : (2.15)

Now, we can compute

o�(x) =
q
det(oij;�(x))

3
i;j=1 = �

2
d�(x): (2.16)
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We use for constants the symbols C or Ci, for i 2 N0 = f0; 1; 2; : : :g. Constant

vectors will be denoted by C or Ci for i 2 N0 .

The symbols H1(
), H1
0 (
) and L

p(
), respectively, denote (for p 2 [1;1]) the

standard Sobolev and Lebesgue spaces endowed with the norms k � k1;2 or k � kp. We

will use the same notation of the norms also for vector or tensor functions in the case

that all their components belong to above mentioned Sobolev or Lebesgue spaces.

H
�1(
) stands for the dual space to H1

0 (
). The notation Cm(
), with m 2 N0 ,

means the usual spaces of continuous functions whose derivatives up to the order m

are continuous in 
. The symbols Lp(0; l;X), p 2 [1;1), and C([0; l];X), where X

is a Banach space, stand for the Bochner spaces endowed with the norms

kvkLp(0;l;X) =

�Z
l

0

kv(x1)k
p

X
dx1

�1=p

and kvkC([0;l];X) = max
x12[0;l]

kv(x1)kX :

The de�nitions of the domains e
�, 
� and 
 enable us to introduce the following

notation:

V (e
�) = feV 2 H
1(e
�)

3 : eVj�P�(f0g��S) =
eVj�P�(flg��S) = 0g;

V (
�) = f �V 2 H
1(
�)

3 : �Vj(f0g��S) = �Vj(flg��S) = 0g;

V (
) = fV 2 H
1(
)3 : Vj(f0g�S) = Vj(flg�S) = 0g

and further we introduce the space

V
t;n;b

0 (0; l) = fhV;  i 2 H1
0 (0; l)

3
� L

2(0; l) : (V0
; t) = 0

and V� = � t + (V0
;b)n� (V0

;n)b 2 H1
0 (0; l)

3
g: (2.17)

The properties of the space V
t;n;b

0 (0; l) will be studied in Section 4.

3 Construction of the local frame for the unit

speed curve C and its regularization

We start by recalling the result established in [7]:

Proposition 3.1 If 	 2 C1([0; l])3 then the tangent vector t	 2 C([0; l])3 is de�ned

by t	 = 	0 and there exists a normal vector n	 2 C([0; l])3 such that jn	(x1)j = 1,

(n	(x1); t	(x1)) = 0, x1 2 [0; l]. The vector b	 = t	 � n	 has the same regularity

properties and completes the local frame.

In this section, we extend and complete Proposition 3.1 as follows
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Proposition 3.2 Let the function � 2 C([0; l])3 be such that its tangent vector t =

�0 is a piecewise continuous function with a �nite set D of points of discontinuity.

Then there exists the functions n and b piecewise continuous such that

jtj = jnj = jbj = 1; t?n?b in [0; l] nD: (3.1)

In addition, there exist the functions

f��g�2(0;1); ft�g�2(0;1); fn�g�2(0;1); fb�g�2(0;1) � C
1([0; l])3

such that

�0
�
= t�; jt�j = jn�j = jb�j = 1; t�?n�?b� on [0; l] (3.2)

t� ! t; n� ! n; b� ! b pointwisely in [0; l] nD; (3.3)

kt0
�
k1; kn

0
�
k1; kb

0
�
k1 � O(

1

�r
) (3.4)

and

kt00
�
k1; kn

00
�
k1; kb

00
�
k1 � O(

1

�2r
) (3.5)

for r 2 (0; 1
3
).

P r o o f: First, we denote by Dti
, i = 1; 2; 3, the sets given by the points of

discontinuity for the functions ti, i = 1; 2; 3. Further, we have D =
S3

i=1Dti
.

The existence of the functions n and b satisfying (3.1) immediately follows from

Proposition 3.1 after application on the intervals forming the set [0; l] nD.

In the �rst step, we construct the continuous approximation of the functions t, n,

b. As D has a �nite number of elements, its points are isolated and we denote them

in increasing order by bxj, j = 1; : : : ; k. The approximation will be demonstrated on

some points bxj < bxj+1 < bxj+2 2 D. We de�ne the functions

bti;� =
8<:

ti on [bxj + �; bxj+1 � �]

li;� on [bxj+1 � �; bxj+1 + �]

ti on [bxj+1 + �; bxj+2 � �];

(3.6)

where � > 0 is arbitrary and suÆciently small and the functions li;� are continuous

and such that

li;�(bxj+1 � �) = ti(bxj+1 � �); (3.7)

li;�(bxj+1 + �) = ti(bxj+1 + �) (3.8)

and there is no point z 2 [bxj+1 � �; bxj+1 + �] such that simultaneously

li;�(z) = 0; 8i = 1; 2; 3: (3.9)

Thus we have constructed the continuous vectorial function bt� such that

bt� ! bt pointwisely in [0; l] nD (3.10)
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for � ! 0 and

jbt�j > 0 on [0; l] (3.11)

for all � suÆciently small. Then the functions

t� =
bt�
jbt�j (3.12)

are continuous and satisfy the convergence

t� ! t pointwisely in [0; l] nD (3.13)

for � ! 0.

Now, using Proposition 3.1 we can construct the continuous normal and binormal

vector functions �n� and �b� to the curve ��, where we put

��(x1) =

Z
x1

0

t�(z1) dz1 +�(0); x1 2 [0; l]:

Let us de�ne the function bn� in this way

bni;� =
8>>>><>>>>:

ni on [bxj + 2�; bxj+1 � 2�]

(1� bli;1;�)ni + bli;1;��ni;� on [bxj+1 � 2�; bxj+1 � �]

�ni;� on [bxj+1 � �; bxj+1 + �]

(1� bli;2;�)�ni;� + bli;2;�ni on [bxj+1 + �; bxj+1 + 2�]

ni on [bxj+1 + 2�; bxj+2 � 2�];

(3.14)

where bli;m;�, i = 1; 2; 3 and m = 1; 2, are linear functions such that

bli;1;�(bxj+1 � 2�) = 0; bli;1;�(bxj+1 � �) = 1;

bli;2;�(bxj+1 + �) = 0; bli;2;�(bxj+1 + 2�) = 1:

It is easy to see from (3.6) and (3.14) that the vector bn� is orthogonal to t� and all

functions bni;�, i = 1; 2; 3, cannot be equal to zero at the same point, if

ni(bxj+1 �
3

2
�) 6= ��ni;�(bxj+1 �

3

2
�) (3.15)

and

ni(bxj+1 +
3

2
�) 6= ��ni;�(bxj+1 +

3

2
�) (3.16)

for some i, i = 1; 2; 3.

Now, we show how to modify the de�nition (3.14) of the function bn� in the case

that (3.15) or (3.16) do not hold. We suppose for instance that

ni(bxj+1 �
3

2
�) = ��ni;�(bxj+1 �

3

2
�) (3.17)
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for all i, i = 1; 2; 3, and

ni(bxj+1 +
3

2
�) 6= ��ni;�(bxj+1 +

3

2
�) (3.18)

for some i, i = 1; 2; 3. In this case, we de�ne the functions bni;�, i = 1; 2; 3, by

bni;� =
8>>>>>>><>>>>>>>:

ni on [bxj + 2�; bxj+1 � 2�]

(1� bli;1;�)ni � bli;1;��ni;� on [bxj+1 � 2�; bxj+1 � �]

�(1� bli;2;�)�ni;� + bli;2;��bi;� on [bxj+1 � �; bxj+1]

(1� bli;3;�)�bi;� + bli;3;��ni;� on [bxj+1; bxj+1 + �]

(1� bli;4;�)�ni;� + bli;4;�ni on [bxj+1 + �; bxj+1 + 2�]

ni on [bxj+1 + 2�; bxj+2 � 2�];

(3.19)

where �bi;� are the components of the binormal �b� and bli;m;�, for i = 1; 2; 3 and

m = 1; 2; 3; 4, are linear functions such that

bli;1;�(bxj+1 � 2�) = 0; bli;1;�(bxj+1 � �) = 1; bli;2;�(bxj+1 � �) = 0; bli;2;�(bxj+1) = 1;

bli;3;�(bxj+1) = 0; bli;3;�(bxj+1 + �) = 1; bli;4;�(bxj+1 + �) = 0; bli;4;�(bxj+1 + 2�) = 1:

We can derive from (3.6) and (3.19) that

t�?bn�; jbn�j > 0 on [0; l] (3.20)

for all � suÆciently small and

bn� ! n pointwisely in [0; l] nD (3.21)

for � ! 0. We can easily check using (3.19) and (3.20) that the functions

n� =
bn�
jbn�j (3.22)

are continuous, orthogonal to t� on [0; l] for all � 2 (0; 1) and

n� ! n pointwisely in [0; l] nD (3.23)

for � ! 0.

De�ning the function b� by

b� = t� � n� (3.24)

we can complete the local frame. It is easy to verify that jb�j = 1 and

b� ! b pointwisely in [0; l] nD (3.25)

for � ! 0.
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Now, we construct C1-approximation of the local frame. Let us de�ne the functions

t�;Æ =
t� � #Æ

jt� � #Æj
; (3.26)

n�;Æ =
n� � #Æ � (n� � #Æ; t�;Æ)t�;Æ

jn� � #Æ � (n� � #Æ; t�;Æ)t�;Æj
; (3.27)

where # 2 C1
0 (�1; 1),

R 1

�1
#(x1) dx1 = 1, 0 � # � 1 and #Æ(x1) =

1
Æ
#(x1

Æ
). From the

convergence

t� � #Æ ! t� in C([0; l])3 (3.28)

for Æ ! 0, which imply that

jt� � #Æ(x1)j � C1(�; Æ); 8x1 2 [0; l]; (3.29)

where C1(�; Æ)! 1 for Æ ! 0, we see that (3.26) makes sense and

t�;Æ ! t� in C([0; l])3 (3.30)

for �xed � and Æ ! 0. Similarly, we deduce that

n�;Æ ! n� in C([0; l])3 (3.31)

for �xed � and Æ ! 0. De�ning, now, the function bÆ by

b�;Æ = t�;Æ � n�;Æ (3.32)

completes the approximating local frame and the convergences (3.30){(3.31) imply

that

b�;Æ ! b� in C([0; l])3 (3.33)

for �xed � and Æ ! 0. The fact that t�;Æ, n�;Æ and b�;Æ 2 C
1([0; l])3 follows from

(3.26){(3.27), (3.29) and from the de�nition of molli�ers.

From (3.6), (3.12), (3.19), (3.22) and (3.24), it follows that

t� = t on [bxj + �; bxj+1 � �]; n� = n; b� = b on [bxj + 2�; bxj+1 � 2�]; (3.34)

which implies that���x1 2 [bxj; bxj+1] : jt�(x1)� t(x1)j+ jn�(x1)� n(x1)j

+jb�(x1)� b(x1)j � �1

��� = 4�; (3.35)

where � is independent of �1. Further we deduce from (3.30), (3.31) and (3.33) that

8� 2 (0; 1) 8�2 > 0 9Æ0(�; �2) : 8Æ 2 (0; Æ0(�; �2))

kt�;Æ � t�kC([bxj ;bxj+1]) + kn�;Æ � n�kC([bxj ;bxj+1]) + kb�;Æ � b�kC([bxj ;bxj+1]) < �2: (3.36)
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Let now �2 = �2(�), where �2(�) ! 0 for � ! 0, then we conclude from (3.36) that

9Æ0(�) : 8Æ 2 (0; Æ0(�))

kt�;Æ � t�kC([bxj ;bxj+1]) + kn�;Æ � n�kC([bxj ;bxj+1]) + kb�;Æ � b�kC([bxj ;bxj+1]) < �2(�): (3.37)

From (3.34) and (3.37) it follows that

kt�;Æ � tkC([bxj+2�;bxj+1�2�]) + kn�;Æ � nkC([bxj+2�;bxj+1�2�])

+kb�;Æ � bkC([bxj+2�;bxj+1�2�]) < �2(�) (3.38)

and ���x1 2 [bxj; bxj+1] : jt�;Æ(x1)� t(x1)j+ jn�;Æ(x1)� n(x1)j

+jb�;Æ(x1)� b(x1)j � �2(�)
��� = 4� (3.39)

for all Æ 2 (0; Æ0(�)). It is clear that the choice of Æ depends on �. Now, we

reformulate the argument in such way that � depends on Æ. We suppose for simplicity

that we have two decreasing sequences f�ng
1
n=1 and fÆ(�n)g

1
n=1, where Æ(�n) ! 0

for �n ! 0, such that

kt�n;Æ(�n) � tkC([bxj+2�n;bxj+1�2�n]) + kn�n;Æ(�n) � nkC([bxj+2�n;bxj+1�2�n])+

kb�n;Æ(�n) � bkC([bxj+2�n;bxj+1�2�n]) < �2(�n) (3.40)

and

kt�n;Æ � tkC([bxj+2�n;bxj+1�2�n]) + kn�n;Æ � nkC([bxj+2�n;bxj+1�2�n])

+kb�n;Æ � bkC([bxj+2�n;bxj+1�2�n]) < �2(�n) (3.41)

for all Æ 2 (Æ(�n+1); Æ(�n)) see (3.38). Now, we can put Æn = Æ(�n) and we can de�ne

the function

�(Æ) = �n for Æ 2 (Æn+1; Æn]; n = 1; 2; : : : : (3.42)

This enables us rewrite (3.40) using (3.41) and (3.42) as

kt�(Æ);Æ � tkC([bxj+2�(Æ);bxj+1�2�(Æ)]) + kn�(Æ);Æ � nkC([bxj+2�(Æ);bxj+1�2�(Æ)])

+kb�(Æ);Æ � bkC([bxj+2�(Æ);bxj+1�2�(Æ)]) ! 0 (3.43)

for Æ ! 0. We denote

tÆ = t�(Æ);Æ; nÆ = n�(Æ);Æ ; bÆ = b�(Æ);Æ

and

�Æ(x1) =

Z
x1

0

tÆ(z1) dz1 +�(0); x1 2 [0; l]:

In the sequel, we �x Æ = �
r, r 2 (0; 1

3
), and redenote simply �Æ, tÆ, nÆ, bÆ by ��, t�,

n�, b�. Analogously as we have obtained (3.43), we get from (3.37) using the above

mentioned notation

kt� � t�(�r)kC([bxj ;bxj+1]) + kn� � n�(�r)kC([bxj ;bxj+1]) + kb� � b�(�r)kC([bxj ;bxj+1]) < �2(�(�
r));

which together with the de�nition of molli�ers and (3.26), (3.27) and (3.32) give

(3.4) and (3.5). 2
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Corollary 3.3 Let the function ��, t�, n� and b� have the properties given by Propo-

sition 3:2. Then the functions ��, ��, � de�ned by (2:2) belong to C1([0; l]), have

the following behaviour

k��k1; k��k1; k�k1 � O

�
1

�r

�
; (3.44)

k�
0
�
k1; k�

0
�
k1; k

0
�
k1 � O

�
1

�2r

�
; (3.45)

for r 2 (0; 1
3
). In addition,

sup
y12[0;l]

 
sup

(y2;y3)2�S

j��(y1)y2 + ��(y1)y3j

!
< 1 (3.46)

for � suÆciently small and thus the mapping �P� de�ned by (2:4) is injective and

there exist constants Cj, j = 0; 1, independent of � and x such that

0 < C0 � d�(x) � C1; 8� 2 (0; 1) and 8x 2 
: (3.47)

P r o o f: From (2.2), it follows that

�� = (t0
�
;b�); �

0
�
= (t00

�
;b�) + (t0

�
;b0

�
);

�� = (t0
�
;n�); �

0
�
= (t00

�
;n�) + (t0

�
;n0

�
);

� = (b0
�
;n�); 

0
�
= (b00

�
;n�) + (b0

�
;n0

�
):

Hence and from Proposition 3.2, we get (3.44) and (3.45).

(3.44) yields (3.46) for � suÆciently small, because y2 = �x2 and y3 = �x3 for

(x2; x3) 2 S (see (2.3)). (3.46) together with (2.5) imply that the mapping �P�

de�ned by (2:4) is injective and that (3.47) holds. 2

Remark 3.4 Without loss of generality, by rescaling the domain S, we can suppose

that (3.46) remains valid for � 2 (0; 1).

4 Properties of the space V
t;n;b
0 (0; l)

Proposition 4.1 Let the space V
t;n;b

0 (0; l) be de�ned by (2:17). Then

 = �(V�; t) and V(x1) =

Z
x1

0

[�(V�;b)n+ (V�;n)b] dz1 (4.1)

for x1 2 [0; l], where  is a piecewise continuous function, and

V(l) =

Z
l

0

[�(V�;b)n+ (V�;n)b] dx1 = 0: (4.2)

V
t;n;b

0 (0; l) is a nontrivial Hilbert space endowed with the norm

khV;  ik2 = kVk21;2 + k k
2
2 + kV�k

2
1;2: (4.3)
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P r o o f: The relations in (4.1) follow from (2.17), since (V0
;b) = (V�;n) and

�(V0
;n) = (V�;b). Relation (4.2) is a consequence of the assumed boundary con-

ditions for the function V.

Using the embbeding theorem, we obtain from the de�nition of the functions V�, t

(see (2.17) and Proposition 3.2) and from (4.1) that  is piecewise continuous.

It is obvious that the set V
t;n;b

0 (0; l) is linear and the norm (4.3) is induced by the

scalar product

((hV;  i; hbV; b i)) = Z l

0

[(V; bV) + (V0
; bV0)] dx1

+

Z
l

0

 b dx1 +

Z
l

0

[(V�;
bV�) + (V0

�;
bV0
�)] dx1 (4.4)

for arbitrary couples hV;  i; hbV; b i 2 Vt;n;b0 (0; l). It remains to show that the space

V
t;n;b

0 (0; l) is complete in the norm introduced in (4.3). Using completeness of

the spaces H1
0 (0; l)

3 and L
2(0; l) and taking a Cauchy sequence fhVn;  nig

1
n=1 in

V
t;n;b

0 (0; l), we can �nd such functions V, V� 2 H
1
0 (0; l)

3 and  2 L2(0; l) that

Vn ! V; V�;n ! V� in H
1
0 (0; l)

3 (4.5)

and

 n !  in L2(0; l); (4.6)

where fhVn;  nig
1
n=1 � V

t;n;b

0 (0; l). One can pass to the limit in the de�nition of

V
t;n;b

0 (0; l) and the completeness is proved.

Now, we want to show that the space V
t;n;b

0 (0; l) also contains nontrivial couples.

To prove this we take an arbitrary function bV� 2 H
1
0 (0; l)

3 such that the functionsbV�;i, i = 1; 2; 3, are not identically zero. Then the function bV de�ned by

bV(x1) =

Z
x1

0

[�(bV�;b)n+ (bV�;n)b] dz1; x1 2 [0; l];

satis�es bV(l) =

Z
l

0

[�(bV�;b)n+ (bV�;n)b] dx1 = C1

for some constant vector C1. Now, we take another function h 2 H
1
0 (0; l)

3, which is

not proportional with bV� and whose components are not identically zero, such thatZ
l

0

[�(h;b)n + (h;n)b] dx1 = C2;

where C2 = (C2;1; C2;2; C2;3), C2;i 6= 0 for i = 1; 2; 3. We de�ne the function V� by

(we do not use the summation convention here)

V�;i(x1) = bV�;i(x1)� C1;i

C2;i

hi(x1); x1 2 [0; l]: (4.7)
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Then V� 2 H
1
0 (0; l)

3, the functions V�;i, i = 1; 2; 3, are not identically zero and

V(l) =

Z
l

0

[�(V�;b)n+ (V�;n)b] dx1 = 0:

This implies that the function V de�ned by

V(x1) =

Z
x1

0

[�(V�;b)n+ (V�;n)b] dz1; x1 2 [0; l]; (4.8)

belongs to H1
0 (0; l)

3, (V0
; t) = 0,  = �(V�; t) is piecewise continuous and thus the

nontrivial couple hV;  i belongs to V
t;n;b

0 (0; l). 2

Now, we construct \approximating spaces" to the space V
t;n;b

0 (0; l).

Proposition 4.2 Let t�, n� and b� be the functions from Proposition 3:2 and let

the space V
t�;n�;b�

0 (0; l) be de�ned by (2:17) using the functions t�, n�, b� instead

of t, n, b. Let, further, hV;  i 2 V
t;n;b

0 (0; l). Then there exist couples hV�;  �i 2

V
t�;n�;b�

0 (0; l) generating the functions V�;� such that

fV�g�2(0;1) � C
1
0 (0; l)3; f �g�2(0;1) � C

1
0 (0; l); fV�;�g�2(0;1) � C

1
0 (0; l)3;

V� ! V; V�;� ! V� in H
1
0 (0; l)

3
; (4.9)

 � !  pointwisely in [0; l] nD and in Lp(0; l); 8p 2 (1;1); (4.10)

for �! 0 and

kV00
�
k2 � O(

1

�r
); k 0

�
k2 � O(

1

�r
); r 2 (0;

1

3
): (4.11)

P r o o f: In the de�nition (2.17) of the space V
t;n;b

0 (0; l), we have de�ned the

function V� with the help of the function V. But we can use the inverse procedure

as in Proposition 4.1. We can easily construct by regularization the set of functions

fbV�;�g�2(0;1) � C
1
0 (0; l)3 such that

bV�;� ! V� in H
1
0 (0; l)

3 (4.12)

for � ! 0. We know from Proposition 3.2 that t� ! t, n� ! n and b� ! b

pointwisely in [0; l] n D and strongly in L
p(0; l)3, p 2 (1;1), and thus, using the

Lebesgue theorem,Z
l

0

[�(bV�;�;b�)n� + (bV�;�;n�)b�] dx1 = C3(�)! 0; (4.13)

for �! 0. Let h be some vector function from C
1
0 (0; l)3, which is not proportional

with bV� and whose components are not identically zero, such thatZ
l

0

[�(h;b)n + (h;n)b] dx1 = C4 = (C4;1; C4;2; C4;3);
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with C4;i 6= 0, i = 1; 2; 3. ThenZ
l

0

[�(h;b�)n� + (h;n�)b�] dx1 = C4 +C5(�); (4.14)

where C5(�)! 0 for �! 0. Now, we de�ne the function V�;� by (we do not use the

summation convention here)

V�;�;i(x1) = bV�;�;i(x1)� C3;i(�)

C4;i + C5;i(�)
hi(x1); x1 2 [0; l]; i = 1; 2; 3: (4.15)

Then V�;� 2 C
1
0 (0; l)3, the functions V�;�;i, i = 1; 2; 3, are not identically zero andZ

l

0

[�(V�;�;b�)n� + (V�;�;n�)b�] dx1 = 0: (4.16)

Then analogously as in Proposition 4.1 we de�ne the functions

V�(x1) =

Z
x1

0

[�(V�;�;b�)n� + (V�;�;n�)b�] dz1; (4.17)

 � = �(V�;�; t�) (4.18)

and thus hV�;  �i 2 V
t�;n�;b�

0 (0; l) for � 2 (0; 1). Since t�, n� and b� 2 C
1([0; l])3,

we get easily from (4.15) and from the properties of the functions bV�;� and h that

V�;� 2 C
1
0 (0; l)3 and thus using (4.17){(4.18), V� 2 C

1
0 (0; l)3 and  � 2 C

1
0 (0; l) for

all � 2 (0; 1).

The veri�cation of (4.9) and (4.10) is left to the reader. From (4.17), it follows the

estimate

kV00
�
k2 = k � (V0

�;�;b�)n� � (V�;�;b
0
�
)n� � (V�;�;b�)n

0
�
+ (V0

�;�;n�)b�

+(V�;�;n
0
�
)b� + (V�;�;n�)b

0
�
k2 � 2

�
kV0

�;�k2 + kV�;�k2(kb
0
�
k1 + kn0

�
k1)

�
;

which together with (3.4) yields the �rst relation in (4.11). The second relation in

(4.11) easily follows from the fact that  � = �(V�;�; t�) and from (3.4). 2

5 Auxiliary propositions

Proposition 5.1 [11] Let w 2 H
1(
). Then @i@jw 2 L

2(0; l;H�1(S)) for i, j =

1; 2; 3 except for i = j = 1. If, in addition, wjx1=0 = wjx1=l = 0, then @jwjx1=0 =

@jwjx1=l = 0, for j = 2; 3, in the sense of the space C([0; l];H�1(S)). Furthermore,

if v 2 L
2(0; l;L2(S)), @1v 2 L

2(0; l;H�1(S)) and vjx1=0 = vjx1=l = 0 in the sense of

the space C([0; l];H�1(S)), then there is a constant C independent of v such that

kvkL2(0;l;L2(S)) � CkrvkL2(0;l;H�1(S)): (5.1)
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Proposition 5.2 [11] Let fvng
1
n=1 � L

2(0; l;L2(S)), f@1vng
1
n=1 � L

2(0; l;H�1(S))

and let vnjx1=0 = vnjx1=l = 0, for all n 2 N, in the sense of the space C([0; l];H�1(S)).

Assume, in addition, that this sequence satis�es

@1vn * �; @jvn * 0 in L2(0; l;H�1(S)); j = 2; 3; (5.2)

where � 2 L
2(0; l;H�1(S)). Then � 2 L

2(0; l) and there exists a unique function

v 2 H1
0 (0; l) such that v0 = � and

vn * v in L2(0; l;L2(S)); (5.3)

vn ! v in C([0; l];H�1(S)): (5.4)

If the convergences in (5:2) are strong then the convergence (5:3) is also strong.

Every function V 2 H1(
)3 may be represented in the local frame generated by the

vectors t�, n�, b�:

V(x) = v1;�(x)t�(x1) + v2;�(x)n�(x1) + v3;�(x)b�(x1); (5.5)

where the components of the vector v� = (v1;�; v2;�; v3;�) 2 H
1(
)3 are de�ned by

(V; t�) = v1;�; (V;n�) = v2;�; (V;b�) = v3;�: (5.6)

Using (2.2) together with (5.5) we get similar relations for the derivative @1 of V

(@1V(x); t�(x1)) = @1v1;�(x)� ��(x1)v3;�(x)� ��(x1)v2;�(x); (5.7)

(@1V(x);n�(x1)) = @1v2;�(x) + ��(x1)v1;�(x) + �(x1)v3;�(x); (5.8)

(@1V(x);b�(x1)) = @1v3;�(x) + ��(x1)v1;�(x)� �(x1)v2;�(x) (5.9)

for a.a. x 2 
. The following proposition shows that the relations (5.7){(5.9) remain

valid under weaker assumptions on the function V.

Proposition 5.3 Let V 2 L
2(
)3 and let the vector function v� = (v1;�; v2;�; v3;�)

from (5:6) be such that @1v� 2 L
2(0; l;H�1(S)3). Then the function V of the form

(5:5) is such that @1V 2 L2(0; l;H�1(S)3) and ful�lls the relations (5:7){(5:9) in the

sense of the space L2(0; l;H�1(S)) for all � 2 (0; 1).

P r o o f: We must �nd the functions mi 2 L
2(0; l;H�1(S)), i = 1; 2; 3, such that

lim
h!0

Vi(�+ h; �; �)� Vi(�; �; �)

h
�mi


L2(o;l�o;H�1(S))

! 0; i = 1; 2; 3; (5.10)

where o is arbitrary small and h satis�es jhj < o. We can substitute the expression

(5.5) in the fraction in (5.10), which leads to the expression

Vi(x1 + h; x2; x3)� Vi(x1; x2; x3)

h
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=
v1;�(x1 + h; x2; x3)ti;�(x1 + h)� v1;�(x1; x2; x3)ti;�(x1)

h

+
v2;�(x1 + h; x2; x3)ni;�(x1 + h)� v2;�(x1; x2; x3)ni;�(x1)

h

+
v3;�(x1 + h; x2; x3)bi;�(x1 + h)� v3;�(x1; x2; x3)bi;�(x1)

h
; i = 1; 2; 3:

The �rst term may be rewritten as�
v1;�(x1 + h; x2; x3)� v1;�(x1; x2; x3)

�
ti;�(x1 + h)

h

+

�
ti;�(x1 + h)� ti;�(x1)

�
v1;�(x1; x2; x3)

h

for i = 1; 2; 3 and a.a. x 2 
 and similarly the last two terms. Using (2.2),

the fact that the functions ti;�, ni;�, bi;�, i = 1; 2; 3, belong to C1([0; l]) and that

@1v 2 L
2(0; l;H�1(S)3), we can deduce that the relation (5.10) is ful�lled for the

vector function m = (m1; m2; m3) 2 L
2(0; l;H�1(S)3) de�ned by

m = @1v1;�t� + v1;�(��b� + ��n�) + @1v2;�n� + v2;�(���t� � �b�)

+@1v3;�b� + v3;�(���t� + �n�): (5.11)

Since the function V does not depend on �, then the function m is an independent

function of � as well. Since o is arbitrary, using the relations (5.10), (5.11), we can

conclude that @1V = m in the sense of the space L2(0; l;H�1(S)3). We get from

(5.11) that Z
S

(m; t�)' dx2dx3 =

Z
S

(@1v1;� � ��v2;� � ��v3;�)' dx2dx3

for arbitrary ' 2 H1
0 (S), which implies that

(m; t�) = @1v1;� � ��v2;� � ��v3;� (5.12)

in the sense of the space L2(0; l;H�1(S)). Since @1V = m in the sense of the

space L
2(0; l;H�1(S)3) and thus (@1V; t�) = (m; t�) in the sense of the space

L
2(0; l;H�1(S)), we obtain from (5.12) the identity (5.7). The identities (5.8){(5.9)

can be derived analogously. 2

6 Variational equations for the curved rods and

their transformation

We consider e
� de�ned by the mapping �P� Æ R� (see (2.3){(2.4)) for � 2 (0; 1)

arbitrary but �xed as a three-dimensional homogeneous and isotropic elastic body
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with the Lam�e constants � � 0 and � > 0. Let eF� be the body force and eG� the

surface traction acting on the curved rod e
� such that eF� 2 L
2(e
�)

3 and eG� 2

L
2(( �P�ÆR�)((0; l)�@S))

3, for � 2 (0; 1). Let e
� be clamped on both bases �P�(f0g�

�S) and �P�(flg � �S). The equilibrium displacement eU� is the solution of the

variational equation Z
e
�

eAijkl
ekl(eU�)eij(eV) dey = Z

e
�

(eF�;
eV) dey

+

Z
( �P�ÆR�)((0;l)�@S)

(eG�;
eV) deS�dey1; 8eV 2 V (e
�); (6.1)

where eS� = (�P� ÆR�)((0; l)�@S), eAijkl = �Æ
ij
Æ
kl+�(ÆikÆjl+ ÆilÆjk) and (eij(eV))3

i;j=1

stands for the symmetric part of the gradient of the function eV.

From (2.3){(2.4) and from the regularization of the local frame constructed in Sec-

tion 3, it follows that the mapping �P� Æ R� is the parametrization of the smooth

three-dimensional curved rod.

We transform the equation (6.1) to an equation on the domain 
. We combine the

standard transformation from [4, pp. 27{32] and [10] with the idea from [2], which

enables us to exclude the Christo�el symbols.

Transformation: Since the detailed derivation of the following expressions can

be found in [4, pp. 30{31], we mentioned only the basic identities here. Let eV 2

H
1(e
�)

3, the mapping �P� be given by (2.4), �gk;� = ([�gk;�]1; [�g
k;�]2; [�g

k;�]3) be given

by (2.7) and �W� = ( �W1;�;
�W2;�;

�W3;�) = �rP�(eV ÆP�) be such that

eVi Æ �P� = �Wk;�[�g
k;�]i; i = 1; 2; 3:

Then

(e@j eVi) Æ �P� = (�@l �Wk;� �
�Wq;��

q

lk;�
)[�gk;�]i[�g

l;�]j;

where the Christo�el symbols �i

jk;�
are de�ned by

�i

jk;�
= (�gi;�; �@j�gk;�); i; j; k = 1; 2; 3:

Using the notation

eijjj( �W�) =
1

2
(�@i �Wj;� + �@j �Wi;�)� �Wp;��

p

ij;�
;

we obtain

eij(eV) Æ �P� = ekjjl( �W�)[�g
k;�]i[�g

l;�]j; i; j = 1; 2; 3:

Now, we de�ne the vector function �V� by

�V� = �Wi;��g
i;�(= eV Æ �P�):

17



Then
1

2
(�@i �Wj;� + �@j �Wi;�) =

1

2

�
�@i( �Wk;��g

k;�
; �gj;�) + �@j( �Wl;��g

l;�
; �gi;�)

�
=

1

2

�
�@i( �V�; �gj;�) + �@j( �V�; �gi;�)

�
:

Since the Christo�el symbols are symmetric in the indices i, j, we get, using the

identities
�Wk;��

k

ij;�
= �Wk;�(�g

k;�
; �@i�gj;�) = �@i( �V�; �gj;�)� (�@i �V�; �gj;�);

�Wk;��
k

ij;�
= �@j( �V�; �gi;�)� (�@j �V�; �gi;�)

and the notation

�!�

ij
( �V�) =

1

2

�
(�@i �V�; �gj;�) + (�@j �V�; �gi;�)

�
;

that

eijjj( �W�) = �!�

ij
( �V�):

Hence

eij(eV) Æ �P� = �!�

ij
( �V�)[�g

k;�]i[�g
l;�]j:

�

Using the above transformation, we can denote (see also [4, p.31])

�Aijkl

�
= ��gij;��gkl;� + �(�gik;��gjl;� + �gil;��gjk;�) (6.2)

and thus we can transform the left-hand side of the equation (6.1) asZ

�

�Aijkl

�
�!�

kl
( �U�)�!

�

ij
( �V) �d�(y) dy; 8 �V 2 V (
�): (6.3)

After the substitution y = R�(x) in (6.3) and using the transformation of the right-

hand side of (6.1), which is given by the mapping �P� ÆR� and by the relation

deS�dey1 = o�

p
�io

ij;��jdSdx1 = �
2
d�

p
�io

ij;��jdSdx1

see [4, p.19], and (2.13){(2.16), we getZ



A
ijkl

�
!
�

kl
(U�)!

�

ij
(V)d� dx =

Z



(F�;V)d� dx

+

Z
(0;l)�@S

(G�;V)d�
p
�io

ij;��j dSdx1; 8V 2 V (
); (6.4)

where �i, i = 1; 2; 3, are the components of the unit outward normal to (0; l)� @S.

The symmetric tensor !�(V) , obtained after composition with R� has the form

!
�(V) =

1

�
�
�(V) + �

�(V); (6.5)
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where the individual nonzero components of the symmetric tensors �� and �
� are

de�ned by

�
�

12(V) =
1

2
(@2V; g1;�); �

�

22(V) = (@2V;n�); �
�

33(V) = (@3V;b�); (6.6)

�
�

13(V) =
1

2
(@3V; g1;�); �

�

23(V) =
1

2

�
(@2V;b�) + (@3V;n�)

�
; (6.7)

�
�

11(V) = (@1V; g1;�); �
�

12(V) =
1

2
(@1V;n�); �

�

13(V) =
1

2
(@1V;b�) (6.8)

(compare with [2]), where g1;� ! t, n� ! n, b� ! b pointwisely in 
 n (S �D) or

[0; l] nD for �! 0. The other components of �� and �� are equal to zero.

Now, we check that the inequality

1

�2
k!

�(U�)k
2
2 �

C

�2

Z



A
ijkl

�
!
�

kl
(U�)!

�

ij
(U�)d� dx; (6.9)

with the constant C independent of �, holds. This inequality together with the Korn

inequality derived in the next section enable us not only to prove the existence of a

unique solutionU� for the equation (6.4) and to study the behaviour of the functions

U� and
1
�
!
�(U�) for � ! 0. In Corollary 3.3, we have proved that d�(x) � C0 > 0,

for all x 2 
 and � 2 (0; 1) and without loss of generality we can suppose that it

holds for all � 2 (0; 1] . Then the estimate (6.9) is a consequence of the proposition:

Proposition 6.1 Let � � 0, � > 0 and

A
ijkl

�
= �g

ij;�
g
kl;� + �(gik;�gjl;� + g

il;�
g
jk;�):

Then there exists a constant C > 0 such that the estimate

3X
i;j=1

jtijj
2
� CA

ijkl

�
(x)tkltij (6.10)

holds for all x 2 
, all � 2 [0; 1] and all symmetric matrices (tij)
3
i;j=1, with the

constant C being independent of � and x.

P r o o f: First, we verify that

g
ik;�(x)gjl;�(x)tkltij > 0 if tij 6= 0

for all � 2 [0; 1] and x 2 
. In case � 2 (0; 1] the proof proceeds in the same way

as in [4] Theorem 1.8-1. The case � = 0 is an obvious consequence of the fact that

g1;� ! t pointwisely in 
 n (S � D) for � ! 0 (see (2.5), (2.7), Proposition 3.2,

(3.44)). The mapping

(�; x; (tij)) 2 K = [0; 1]� 
� ftij;

3X
i;j=1

jtijj
2 = 1g ! g

ik;�(x)gjl;�(x)tkltij (6.11)
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is continuous. The only diÆculty could appear for � ! 0. We argue, for instance,

for the term

g
12;�(x) = �

�x3�(x1)

d2
�
(x)

; 8x 2 
;

(see (2.7){(2.9)), which converge to zero in C(
) for �! 0 because of Corollary 3.3.

Since, in addition, the domain in (6.11) is compact, we infer

C = inf
(�;x;tij)2K

g
ik;�(x)gjl;�(x)tkltij > 0:

Hence, we get the assertion of the proposition. 2

7 Korn's inequality for the curved rod

In this section, we derive a special form of the Korn inequality and we study the de-

pendence of the constant from this inequality on �. A similar problem was discussed

by Nazarov and Slutskij in [13]. The main result of this section can be summarized

into the following theorem.

Theorem 7.1 There exist constant C > 0, independent of �, such that

kVk1;2 �
C

�
k!

�(V)k2; 8V 2 V (
) and 8� 2 (0; 1): (7.1)

The proof of Theorem 7.1 is based on the following proposition.

Proposition 7.2 Suppose that f�ng
1
n=1 � (0; 1) and �n ! 0. Let, in addition, a

sequence fU�ng
1
n=1 � V (
) be such that

U�n * U in H1(
)3; (7.2)

1

�n
!
�n(U�n)* � in L2(
)9 (7.3)

for �n ! 0. Then the couple hU; �i 2 V
t;n;b

0 (0; l) (in the sense @jU = 0, j = 2; 3),

where the function � is such that

1

2�n

�
(@2U�n;b�n)� (@3U�n;n�n)

�
* �

in L
2(
) for �n ! 0. In addition, the couple hU; �i generates the function U� 2

H
1
0 (0; l)

3 which together with the function U satisfy the relations

(U0
; t) = 0 a.e. on [0; l]; (7.4)

(U0
�; t) = @3�12 � @2�13 in L

2(0; l;H�1(S)); (7.5)

(U0
�;n) = �@3�11 a.e. on [0; l]; (7.6)

(U0
�;b) = @2�11 a.e. on [0; l]: (7.7)

If the sequence f 1
�n
!
�n(U�n)g

1
n=1 converges strongly in L

2(
)9, then the convergence

in (7:2) is strong as well.

20



P r o o f of Theorem 7.1: Assume the contrary, i.e., there exist �n, �n 2 (0; 1=n),

and V�n
, kV�n

k1;2 = 1, such that

1

�n
k!

�n(V�n
)k2 �

1

n
:

Hence (passing to a subsequence if it is necessary),

V�n
* V in H1(
)3 and

1

�n
!
�n(V�n

)! 0 in L2(
)9:

Proposition 7.2 implies that the sequence V�n ! V strongly in H1(
)3 and

(V0
; t) = 0; (V0

�; t) = 0; (V0
�;n) = 0; (V0

�;b) = 0: (7.8)

Further, from Proposition 7.2 and from the de�nition (2.17) of the space V
t;n;b

0 (0; l),

it follows that the couple hV;  i 2 V
t;n;b

0 (0; l) and thus V 2 H
1
0 (0; l)

3 and V� 2

H
1
0 (0; l)

3. Hence we conclude using (7.8) that V� = 0 and thus V = 0, a contradic-

tion. 2

P r o o f of Proposition 7.2: The proof of Proposition 7.2 follows from Lemma 7.5,

7.10 and Corollary 7.9 and 7.11. 2

We will use � instead of �n to simplify the notation in these lemmas.

Lemma 7.3 Under the assumptions in Proposition 7:2 the following convergences

1

�q
�
�(U�)! 0 in L2(
)9; q 2 [0; 1); (7.9)�

1

�2
�
�(U�) +

1

�
�
�(U�)

�
* � in L2(
)9 (7.10)

hold.

P r o o f: We can observe that the weak convergences (7.2) and (7.3) together with

(6.5){(6.8) imply the boundedness of the set of the tensors f1
�
!
�(U�)g�2(0;1) and

f��(U�)g�2(0;1) in L
2(
)9. Using these facts, we can easily deduce (7.9). Relation

(7.10) immediately follows from (7.9) and (6.5). 2

Corollary 7.4 Under hypotheses (7:2){(7:3) we have:

1

�q
(@2U�; g1;�)! 0; (@2U; t) = 0; (7.11)

1

�q
(@3U�; g1;�)! 0; (@3U; t) = 0; (7.12)

1

�q
(@1U�; g1;�)! 0; (@1U; t) = 0; (7.13)
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1

�q

�
1

�
(@2U�; g1;�) + (@1U�;n�)

�
! 0; (7.14)

1

�q

�
1

�
(@3U�; g1;�) + (@1U�;b�)

�
! 0 (7.15)

in L2(
) for q 2 [0; 1) and �! 0,

@j
1

�q

�
1

�
(@2U�; g1;�) + (@1U�;n�)

�
! 0; j = 2; 3; (7.16)

@j
1

�q

�
1

�
(@3U�; g1;�) + (@1U�;b�)

�
! 0; j = 2; 3; (7.17)

in L2(0; l;H�1(S)) for �! 0 and q 2 [0; 1),

1

�q1
(@2U�;n�)! 0; (@2U;n) = 0; (7.18)

1

�q1
(@3U�;b�)! 0; (@3U;b) = 0 (7.19)

1

�q1

�
(@2U�;b�) + (@3U�;n�)

�
! 0; (@2U;b) + (@3U;n) = 0 (7.20)

in L2(
) for q1 2 [0; 2) and �! 0, and

1

�q2
(@jU�; t�)! 0 in L2(
); j = 2; 3; (7.21)

1

�q2
(@1U�; t�)! 0 in L2(
) (7.22)

for q2 2 [0; 1� r), r 2 (0; 1
3
), and �! 0.

P r o o f: We can easily derive from (7.9){(7.10) and (6.5){(6.8) the convergences

(7.11){(7.15) and (7.18){(7.20). It remains to prove the associated equalities. For

instance, that (@2U; t) = 0. The proof for the other functions proceeds in almost

the same way. Since t 2 L1(0; l)3 and g1;� ! t pointwisely in 
n (S�D) (see (2.6),

Proposition 3.2, (3.44)), we can easily derive from (7.2) that

(@2U�; g1;�)* (@2U; t) in L
q3(
); q3 2 (1; 2):

In addition, kg1;�k1 � C, where C is independent of �, and thus

(@2U�; g1;�)* (@2U; t) in L
2(
):

Since (@2U�; g1;�)! 0 in L2(
), (@2U; t) = 0 a.e. in 
.

The convergences (7.16){(7.17) easily follow from (7.14){(7.15) (see also Proposi-

tion 5.1).
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Further, we can derive from (2.6) that

(@jU�; t�) = (@jU�; g1;�) + ���x2(@jU�; t�) + ���x3(@jU�; t�)

���x3(@jU�;n�) + ��x2(@jU�;b�); j = 2; 3; in 
:

Hence and from (3.44), we get the estimate

(1� C�
1�r)k(@jU�; t�)k2 � k(@jU�; g1;�)k2

+C�1�r(k(@jU�;n�)k2 + k(@jU�;b�)k2);

which together with (7.2), (7.11){(7.12) and the fact that r 2 (0; 1
3
) lead to (7.21).

The convergence (7.22) can be proved analogously and we omit its proof. 2

Lemma 7.5 Under the assumptions of Proposition 7:2, we have U 2 H
1
0 (0; l)

3 (in

the sense @jU = 0, j = 2; 3) and satis�es the relation (7:4).

P r o o f: Since U� 2 V (
), 8� 2 (0; 1), the convergence (7.2) implies that the

function U 2 V (
) as well. Hence we can see that it is enough to show that the

function U depends only on x1. But the identity

U = (U; t)t+ (U;n)n+ (U;b)b

enables us to reduce this problem to the problem to check the dependence on x1

only for the terms (U; t), (U;n) and (U;b).

The equalities (7.11){(7.12) enable us to conclude that (U; t) depends only on x1.

Using (7.18){(7.19), we can assert that

(U;n)(x1; x2; x3) = b�1(x1; x3) and (U;b)(x1; x2; x3) = b�2(x1; x2);
where b�i 2 L

1(0; l;L2(S)) \ L2(0; l;H1(S)), i = 1; 2. Let the point hx02; x
0
3i 2 S.

Since S is open, there exists a square S0 � S such that the point hx02; x
0
3i is the

corner of this square satisfying x02 � x2 and x
0
3 � x3 for hx2; x3i 2 S0. Integrating

the equality in (7.20) on the set [x02; x2]� [x03; x3] yields the identity�b�1(x1; x3)� b�1(x1; x03)�x2 = �

�b�2(x1; x2)� b�2(x1; x02)�x3:
If we �x x2 and then x3, we obtain a linear dependence of b�1 on x3 and of b�2 on x2.
Hence we get that b�1(x1; x3) = �

0
1(x1)x3+�

0
2(x1) and

b�2(x1; x2) = ��01(x1)x2+�
0
3(x1)

on S0 � (0; l). Take the point hx12; x
1
3i 2 S, which is the corner of the square S1,

x
1
2 � x2 and x

1
3 � x3 for hx2; x3i 2 S1 and jS0 \ S1j 6= 0. Analogously as above we

can derive the functions �1
i
(x1), i = 1; 2; 3, such that b�1(x1; x3) = �

1
1(x1)x3 + �

1
2(x1)

and b�2(x1; x2) = ��11(x1)x2 + �
1
3(x1) on S1 � (0; l). In addition, we obtain that

�
0
1(x1)x3 + �

0
2(x1) = �

1
1(x1)x3 + �

1
2(x1); ��

0
1(x1)x2 + �

0
3(x1) = ��

1
1(x1)x2 + �

1
3(x1)
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a.e. on (S0\S1)�(0; l), which implies that �0
i
(x1) = �

1
i
(x1), i = 1; 2; 3, a.e. on (0; l).

Since S is a connected domain and thus any two points from S can be connected

with some curve lying in S, we can easily obtain that the functions �i, i = 1; 2; 3,

satisfy b�1(x1; x3) = �1(x1)x3 + �2(x1) and b�2(x1; x2) = ��1(x1)x2 + �3(x1) in 
 and

hence

(U;n) = �1(x1)x3 + �2(x1); (U;b) = ��1(x1)x2 + �3(x1) in 
: (7.23)

Since, in addition, the functions n and b 2 L
1(0; l)3, the functions �i 2 L

2(0; l),

i = 1; 2; 3.

Now, we prove that the functions (U;n) and (U;b) depend only on x1, which

together with the fact, that (U; t) depends on x1, imply that the functionU depends

only on x1.

Taking into account the de�nition (2.6) of the function g1;� and changing the position

of the derivative @3 with @2 in the �rst term, we �nd

1

�

�
@3(@2U�; g1;�)� @2(@3U�; g1;�)

�
=

1

�

�
@3@2(U�; g1;�)� @3(U�; @2g1;�)� @2(@3U�; g1;�)

�
=

1

�

�
@3@2(U�; g1;�)� @3(U�;����t� � ��b�)� @2(@3U�; g1;�)

�
= ��(@3U�; t�) + �(@3U�;b�) +

1

�

�
@2(@3U�; g1;�)

+@2(U�; @3g1;�)� @2(@3U�; g1;�

�
= ��(@3U�; t�)� ��(@2U�; t�) + �

�
(@3U�;b�) + (@2U�;n�)

�
(7.24)

in L2(0; l;H�1(S)). Further, from the identities (2.2), we can derive (\changing the

position of the derivatives @j, j = 2; 3, with @1") that

@3(@1U�;n�)� @2(@1U�;b�) = @3@1(U�;n�)� (@3U�;n
0
�
)

�@2@1(U�;b�) + (@2U�;b
0
�
) =

�
@1(@3U�;n�)� @1(@2U�;b�)

�
+��(@3U�; t�)� ��(@2U�; t�) + �

�
(@3U�;b�) + (@2U�;n�)

�
(7.25)

in H�1(
). Now, we add (7.25) to (7.24) and from (3.44), (7.16){(7.19), (7.21), it

follows that the functions @1(@3U�;n�) � @1(@2U�;b�) converge to zero strongly in

L
2(0; l;H�1(S)). In an analogous way as in the veri�cation of (7.11), we can check

that (@3U�;n�) � (@2U�;b�) converge to (@3U;n) � (@2U;b) weakly in L2(
) and

thus

@1(@3U�;n�)� @1(@2U�;b�)* @1(@3U;n)� @1(@2U;b) in H
�1(
);
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which yields @1(@3U;n)�@1(@2U;b) = 0 in the space L2(0; l;H�1(S)). Substituting

(7.23) to the term @1(@3U;n)� @1(@2U;b) yields

@1(@3U;n)� @1(@2U;b) = 2�01 = 0:

We have proved that �1 2 L
2(0; l) and �

0
1 = 0 in the sense of distributions, which

implies that �1 is a constant. Thus we will write �1 instead of �1(x1). Now, we want

to prove that �1 = 0. After substitution (7.23) to the identity

U = (U; t)t+ (U;n)n + (U;b)b;

we get

U(x1; x2; x3) =
�
(U; t)t

�
(x1)+(�1x3+�2(x1))n(x1)+(��1x2+�3(x1))b(x1): (7.26)

Since U 2 V (
), Proposition 5.1 implies that @jU 2 C0(0; l;H
�1(S)3), j = 2; 3.

Taking ' 2 H1
0 (S) such that

R
S
' dx2dx3 = 1, we get from (7.26)Z

S

@2U(x1)' dx2dx3 = ��1b(x1); x1 2 [0; l]:

Since the function
R
S
@2U(x1)' dx2dx3 belongs to C0(0; l), the function ��1b 2

C0(0; l) as well, which implies that the function b must be continuous for �1 6= 0. If

not, then �1 must be equal to zero. Let us suppose that b is a continuous function.

We know that

0 = lim
x1!0

Z
S

@2U(x1)' dx2dx3 = ��1b(0);

because @2U 2 C0(0; l;H
�1(S)3). Since jb(0)j = 1, �1 = 0. Therefore (U;n) and

(U;b) depend only on x1. The equation (7.4) follows immediately from the equality

in (7.13). 2

In the following lemmas and corollaries, we construct the function � from Propo-

sition 7.2, we show that hU; �i 2 V
t;n;b

0 (0; l) and we derive the equations (7.5){

(7.7). But �rst we introduce the following notation. Let the functions U� 2 V (
),

� 2 (0; 1), be the functions from Proposition 7:2. We de�ne auxiliary functions ��,

� 2 (0; 1), by the relation

�� =
1

2�

�
(@2U�;b�)� (@3U�;n�)

�
: (7.27)

Further, we de�ne the vector functions u�;� = (u��;1; u
�

�;2; u
�

�;3) by

u
�

�;1 = ���; u
�

�;2 = �
1

�
(@3U�; g1;�); u

�

�;3 =
1

�
(@2U�; g1;�) (7.28)

and the vector functions U�;�, � 2 (0; 1), by

U�;� = ���t� �
1

�
(@3U�; g1;�)n� +

1

�
(@2U�; g1;�)b�: (7.29)
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Lemma 7.6 We have

@j�� ! 0 in L2(0; l;H�1(S)); j = 2; 3; (7.30)

for � ! 0 and ��jx1=0 = ��jx1=l = 0 for all � 2 (0; 1) in the sense of the space

C([0; l];H�1(S)).

P r o o f: Since U� 2 V (
), then Proposition 5.1 together with the fact that n�,

b� 2 C
1([0; l])3 imply that ��jx1=0 = ��jx1=l = 0 for all � 2 (0; 1) in the sense of the

space C([0; l];H�1(S)).

Further, we can express the functions @2�� in this way

@2�� =
1

2�

�
@2(@2U�;b�)� @2(@3U�;n�)

�
=

1

2�

�
@2(@2U�;b�) + @2(@3U�;n�)

�
�

1

�
@3(@2U�;n�)

in L2(0; l;H�1(S)) (see Proposition 5.1). Applying now (7.18){(7.20) for q1 = 1, we

obtain the convergence (7.30) for j = 2. The proof of the convergence (7.30) for

j = 3 proceeds in almost the same way. 2

Lemma 7.7 Let the assumptions of Proposition 7:2 be ful�lled. Then

(@1U�;�; t�)* @3�12 � @2�13 in L
2(0; l;H�1(S)); (7.31)

(@1U�;�;b�)* @2�11 in L
2(0; l;H�1(S)); (7.32)

(@1U�;�;n�)* �@3�11 in L
2(0; l;H�1(S)) (7.33)

and thus

@1U�;� * (@3�12 � @2�13)t� @3�11n + @2�11b (7.34)

in L2(0; l;H�1(S)3) for �! 0.

P r o o f: From (7.10) and (6.5){(6.8), it follows that

1

�2
@3�

�

12(U�) +
1

�
@3�

�

12(U�)�
1

�2
@2�

�

13(U�)�
1

�
@2�

�

13(U�)* @3�12 � @2�13 (7.35)

and
@j�

�

11(U�)

�
* @j�11; j = 2; 3; (7.36)

in L2(0; l;H�1(S)) for �! 0. Thus to prove (7.31){(7.34) it is enough to check that

(@1U�;�; t�)�
� 1
�2
@3�

�

12(U�) +
1

�
@3�

�

12(U�)

�
1

�2
@2�

�

13(U�)�
1

�
@2�

�

13(U�)
�
! 0 in L2(
); (7.37)
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(@1U�;�;b�)�
@2�

�

11(U�)

�
! 0 in L2(
); (7.38)

(@1U�;�;n�) +
@3�

�

11(U�)

�
! 0 in L2(
): (7.39)

First, we �nd the expressions for the terms (@1U�;�; t�), (@1U�;�;n�) and (@1U�;�;b�).

Using the de�nition (6.5){(6.8) of the tensors �� and ��, it is easy to see that it is

enough to add (7.24) to (7.25) and to multiply this sum with 1
2�
to obtain

1

�2
@3�

�

12(U�) +
1

�
@3�

�

12(U�)�
1

�2
@2�

�

13(U�)�
1

�
@2�

�

13(U�)

=
1

2�

�
@1(@3U�;n�)� @1(@2U�;b�)

�
+
1

�

 
��(@3U�; t�)� ��(@2U�; t�) + �

�
(@3U�;b�) + (@2U�;n�)

�!
:

By rewriting the above mentioned expression in such a way that it involves the

terms 1
�
��(@3U�; g1;�) and

1
�
��(@2U�; g1;�) instead of 1

�
��(@3U�; t�) and

1
�
��(@2U�; t�),

we conclude that

1

�2
@3�

�

12(U�) +
1

�
@3�

�

12(U�)�
1

�2
@2�

�

13(U�)�
1

�
@2�

�

13(U�)

=

�
�@1�� +

1

�
��(@3U�; g1;�)�

1

�
��(@2U�; g1;�)

�
+
�
(�2

�
x2 + ����x3)(@3U�; t�)� (����x2 + �

2
�
x3)(@2U�; t�)

�
+
�
(���x2 +

�

�
)(@3U�;b�) + (���x3 +

�

�
)(@2U�;n�)

�
�

�
���x3(@3U�;n�) + ���x2(@2U�;b�)

�
: (7.40)

in H�1(
). In addition, since all terms except @1�� belong to L
2(0; l;H�1(S)) then

@1�� 2 L
2(0; l;H�1(S)) as well. From (7.29), (7.40), it follows that

(@1U�;�; t�) =

�
1

�2
@3�

�

12(U�) +
1

�
@3�

�

12(U�)�
1

�2
@2�

�

13(U�)�
1

�
@2�

�

13(U�)

�

�

�
(�2

�
x2 + ����x3)(@3U�; t�)� (����x2 + �

2
�
x3)(@2U�; t�)

�
�

�
(���x2 +

�

�
)(@3U�;b�) + (���x3 +

�

�
)(@2U�;n�)

�
+
�
���x3(@3U�;n�) + ���x2(@2U�;b�)

�
(7.41)

in L2(0; l;H�1(S)).
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Further, using (2.6) and (6.8), we get (in the sense of L2(0; l;H�1(S)))

@2�
�

11(U�)

�
=

1

�
@2(@1U�; t�) + @2(@1U�;�x2��t�) + @2(@1U�;�x3��t�)

+@2(@1U�; x3�n�) + @2(@1U�;�x2�b�) =

5X
j=1

Ij:

Now, we express the terms Ii, i = 1; : : : ; 5, individually. Changing the position of

the derivatives @2 with @1 in the terms above and using (2.2) lead (in the sense of

the space H�1(
)) to

I1 =
1

�
@2@1(U�; t�)�

1

�
(@2U�; t

0
�
) =

1

�
@1(@2U�; t�)�

1

�
(@2U�; ��b� + ��n�)

=
1

�
@1(@2U�; g1;�)�

��

�
(@2U�;b�)�

��

�
(@2U�;n�)

+ @1

�
x2��(@2U�; t�) + x3��(@2U�; t�)� x3�(@2U�;n�)

+ x2�(@2U�;b�)
�
=

1

�
@1(@2U�; g1;�)�

��

�
(@2U�;b�)�

��

�
(@2U�;n�)

+ x2�
0
�
(@2U�; t�) + x2��@1(@2U�; t�) + x3�

0
�
(@2U�; t�)

+ x3��@1(@2U�; t�)� x3
0
�
(@2U�;n�) + x3�@1(@2U�;n�)

+ x2
0
�
(@2U�;b�) + x2�@1(@2U�;b�)

I2 = ���(@1U�; t�)� x2��@2(@1U�; t�) = ���(@1U�; t�)

� x2��@2@1(U�; t�) + x2��(@2U�; t
0
�
) = ���(@1U�; t�)

� x2��@1(@2U�; t�) + x2����(@2U�;b�) + x2�
2
�
(@2U�;n�);

I3 = �x3��@2@1(U�; t�) + x3��(@2U�; t
0
�
)

= �x3��@1(@2U�; t�) + x3�
2
�
(@2U�;b�) + x3����(@2U�;n�);

I4 = x3�@2@1(U�;n�)� x3�@2(U�;n
0
�
)

= x3�@1(@2U�;n�) + x3���(@2U�; t�) + x3
2
�
(@2U�;b�);

I5 = ��(@1U�;b�)� x2�@2@1(U�;b�) + x2�@2(U�;b
0
�
)

= ��(@1U�;b�)� x2�@1(@2U�;b�)� x2���(@2U�; t�)

+ x2
2
�
(@2U�;n�)

Then we get

@2�
�

11(U�)

�
=

5X
j=1

Ij =
1

�
@1(@2U�; g1;�)�

��

�
(@2U�;b�)�

��

�
(@2U�;n�)
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+x2�
0
�
(@2U�; t�) + x2��@1(@2U�; t�) + x3�

0
�
(@2U�; t�) + x3��@1(@2U�; t�)

�x3
0
�
(@2U�;n�)� x3�@1(@2U�;n�) + x2

0
�
(@2U�;b�) + x2�@1(@2U�;b�)

���(@1U�; t�)� x2��@1(@2U�; t�) + x2����(@2U�;b�) + x2�
2
�
(@2U�;n�)

�x3��@1(@2U�; t�) + x3�
2
�
(@2U�;b�) + x3����(@2U�;n�) + x3�@1(@2U�;n�)

+x3���(@2U�; t�) + x3
2
�
(@2U�;b�)� �(@1U�;b�)� x2�@1(@2U�;b�)

�x2���(@2U�; t�) + x2
2
�
(@2U�;n�) =

1

�
@1(@2U�; g1;�)�

��

�
(@2U�;b�)

�
��

�
(@2U�;n�) + x2�

0
�
(@2U�; t�) + x3�

0
�
(@2U�; t�)� x3

0
�
(@2U�;n�)

+x2
0
�
(@2U�;b�)� ��(@1U�; t�) + x2����(@2U�;b�) + x2�

2
�
(@2U�;n�)

+x3�
2
�
(@2U�;b�) + x3����(@2U�;n�) + x3���(@2U�; t�) + x3

2
�
(@2U�;b�)

��(@1U�;b�)� x2���(@2U�; t�) + x2
2
�
(@2U�;n�)

in H�1(
). Using (5.9) and (7.28){(7.29) yield (after rearrangement)

(@1U�;�;b�) = @1

�
1

�
(@2U�; g1;�)

�
� ���� + �

1

�
(@3U�; g1;�)

=

�
@2�

�

11(U�)

�
+
��

�

�
(@2U�;b�) + (@3U�;n�)

2

��
+�

�
1

�
(@3U�; g1;�) + (@1U�;b�)

�
�

�
(�
��

�
+ �

2
�
x2 + ����x3 � 

0
�
x3 + 

2
�
x2)(@2U�;n�)

�
�

�
(� 0

�
x2 + �

0
�
x3 + ���x3 � ���x2)(@2U�; t�)

�
�

�
(����x2 + �

2
�
x3 + 

2
�
x3 + 

0
�
x2)(@2U�;b�)� ��(@1U�; t�)

�
(7.42)

in L2(0; l;H�1(S)). In an analogous way applied to
@3�

�
11(U�)

�
, we can derive that

(@1U�;�;n�) =

�
�
@3�

�

11(U�)

�
+
��

�

�
(@2U�;b�) + (@3U�;n�)

2

��

+�

�
1

�
(@2U�; g1;�) + (@1U�;n�)

�
+
�
(�
��

�
+ �

2
�
x3 + ����x2 + 

0
�
x2 + 

2
�
x3)(@3U�;b�)

�
+
�
(� 0

�
x2 + �

0
�
x3 + ���x3 � ���x2)(@3U�; t�)

�
+
�
(����x3 + �

2
�
x2 + 

2
�
x2 � 

0
�
x3)(@3U�;n�)� ��(@1U�; t�)

�
(7.43)
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in L2(0; l;H�1(S)).

Now, we check the convergence (7.37). The convergences (7.38){(7.39) can be proved

analogously. From (7.41) and the facts that U� 2 V (
), ��, ��, � 2 C
1([0; l]),

g1;� 2 C
1(
)3, t�, n�, b� 2 C

1([0; l])3, it follows that the di�erence

(@1U�;�; t�)�
� 1
�2
@3�

�

12(U�) +
1

�
@3�

�

12(U�)�
1

�2
@2�

�

13(U�)�
1

�
@2�

�

13(U�)
�

is well-de�ned in L2(
) for all � 2 (0; 1) and satis�es for r 2 (0; 1
3
) the estimate

k(@1U�;�; t�)� (
1

�2
@3�

�

12(U�) +
1

�
@3�

�

12(U�)�
1

�2
@2�

�

13(U�)�
1

�
@2�

�

13(U�))k2

(7:41)

� k(�2
�
x2 + ����x3)(@3U�; t�)k2 + k(����x2 + �

2
�
x3)(@2U�; t�)k2

+k(���x2 +
�

�
)(@3U�;b�)k2 + k(���x3 +

�

�
)(@2U�;n�)k2

+k���x3(@3U�;n�)k2 + k���x2(@2U�;b�)k2

(3:44)

� C

� 1

�2r
k(@3U�; t�)k2 +

1

�2r
k(@2U�; t�)k2 +

1

�1+r
k(@3U�;b�)k2

+
1

�1+r
k(@2U�;n�)k2 +

1

�2r
k(@3U�;n�)k2 +

1

�2r
k(@2U�;b�)k2

�
= C(�) +

1

�2r

�
k(@3U�;n�)k2 + k(@2U�;b�)k2

�
; (7.44)

where C(�) ! 0 for � ! 0 as a consequence of (7.18){(7.19), (7.21). It remains to

study the behaviour of the terms

1

�2r
k(@3U�;n�)k2;

1

�2r
k(@2U�;b�)k2:

The estimate

k
1

�2r
(@3U�;n�)k2 + k

1

�2r
(@2U�;b�)k2 � k

1

�2r
((@3U�;n�) + (@2U�;b�))k2

+k
1

�2r
((@3U�;n�)� (@2U�;b�))k2

(7:27)
= C1(�) + 2�1�2r

k��k2

(5:1); Lemma 7.6
� C1(�) + C�

1�2r

3X
j=1

k@j��kL2(0;l;H�1(S))

(7:30)
= C1(�) + C2(�) + C�

1�2r
k@1��kL2(0;l;H�1(S))

(7:40);(3:44)

� C1(�) + C2(�) +
C

�2r

�
k
1

�
@3�

�

12(U�) + @3�
�

12(U�)kL2(0;l;H�1(S))

+k
1

�
@2�

�

13(U�) + @2�
�

13(U�)kL2(0;l;H�1(S))

�
30



+
C

�3r

�
k(@3U�; g1;�)k2 + k(@2U�; g1;�)k2

�
+C�1�4r

�
k(@3U�; t�)k2 + k(@2U�; t�)k2

�
+
C

�3r

�
k(@3U�;b�)k2 + k(@2U�;n�)k2

�
+C�1�2r

�
k
1

�2r
(@2U�;b�)k2 + k

1

�2r
(@3U�;n�)k2

�
=

6X
j=1

Cj(�) + C�
1�2r

�
k
1

�2r
(@2U�;b�)k2 + k

1

�2r
(@3U�;n�)k2

�
;

leads to the estimate

k
1

�2r
(@3U�;n�)k2 + k

1

�2r
(@2U�;b�)k2 � C

6X
j=1

Cj(�)

for � 2 (0; 1), where C1(�) ! 0 see (7.20), C2(�) ! 0 as a consequence of (7.30),

C3(�) ! 0 see (7.16){(7.17), because r 2 (0; 1
3
), C4(�) ! 0 and C6(�) ! 0 as a

result of (7.11){(7.12), (7.18){(7.19) and the fact that r 2 (0; 1
3
), C5(�) ! 0 as a

consequence of (7.21), because 4r� 1 < 1� r for r 2 (0; 1
3
). Hence, we can conclude

that
1

�2r

�
k(@3U�;n�)k2 + k(@2U�;b�)k2

�
! 0 (7.45)

for r 2 (0; 1
3
), which together with (7.44) imply (7.37) and thus (using (7.35)) (7.31).

Now, it remains to prove (7.34). Since

@1U�;� = (@1U�;�; t�)t� + (@1U�;�;n�)n� + (@1U�;�;b�)b�;

it is enough to show that

(@1U�;�; t�)t� * (@3�12 � @2�13)t in L
2(0; l;H�1(S)3); (7.46)

(@1U�;�;n�)n� * �@3�11n in L2(0; l;H�1(S)3); (7.47)

(@1U�;�;b�)b� * @2�11n in L2(0; l;H�1(S)3) (7.48)

for �! 0. We check only (7.46). The convergences (7.47) and (7.48) can be proved

in almost the same way. Since t is a bounded function depending only on x1, then

(7.31) yields

(@1U�;�; t�)t* (@3�12 � @2�13)t in L
2(0; l;H�1(S)3):

It remains to show that

(@1U�;�; t�)t� � (@1U�;�; t�)t* 0 in L2(0; l;H�1(S)3)

for �! 0, which follows from the estimate����Z



(@1U�;�; t�)(t� � t)' dx

����
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� C

�Z
l

0

jt�(x1)� t(x1)j
2
k'(x1)k

2
1;2;S dx1

� 1
2

! 0; (7.49)

for � ! 0 and for arbitrary but �xed function ' 2 L
2(0; l;H1

0(S)), because jt�j =

jtj = 1, 8� 2 (0; 1), t� ! t pointwisely in [0; l]nD and thus we can use the Lebesgue

theorem. 2

To derive the equations (7.5){(7.7), we must describe more precisely the limit state

of the functions U�;� for � ! 0. This will be done in the following lemma and

corollary.

Lemma 7.8 Let the assumptions of Proposition 7:2 be ful�lled. Then

@jU�;� * 0 in L2(0; l;H�1(S)3); j = 2; 3; (7.50)

and U�;�jx1=0 = U�;�jx1=l = 0 in the sense of the space C([0; l];H�1(S)3).

P r o o f: Since ��jx1=0 = ��jx1=l = 0 for all � 2 (0; 1) in the sense of the space

C([0; l];H�1(S)3) (see Lemma 7.6), U� 2 V (
) and since the functions g1;�, t�,

n�, b� belong to C1(
)3, we can use the de�nition (7.29) of the function U�;� and

applying Proposition 5.1, we get that U�;�jx1=0 = U�;�jx1=l = 0 in the sense of the

space C([0; l];H�1(S)3).

It remains to show (7.50). Using the de�nition (7.29) of the function U�;�, we obtain

the identity

@jU�;� = �@j��t� � @j
1

�
(@3U�; g1;�)n� + @j

1

�
(@2U�; g1;�)b�

= �@j��t� + @j(@1U�;b�)n� � @j(@1U�;n�)b�

�@j

�1
�
(@3U�; g1;�) + (@1U�;b�)

�
n� + @j

�1
�
(@2U�; g1;�) + (@1U�;n�)

�
b� (7.51)

in L2(0; l;H�1(S)3), j = 2; 3. From (7.16), (7.17), (7.30) and from the fact that the

functions t�, n�, b� are bounded in L1(0; l)3, it follows that

@j��t� ! 0 in L2(0; l;H�1(S)3); j = 2; 3; (7.52)

@j

�1
�
(@3U�; g1;�) + (@1U�;b�)

�
n� ! 0 in L2(0; l;H�1(S)3); j = 2; 3; (7.53)

@j

�1
�
(@2U�; g1;�) + (@1U�;n�)

�
b� ! 0 in L2(0; l;H�1(S)3); j = 2; 3; (7.54)

for �! 0. We can see from (7.51) that it remains to prove that

@j(@1U�;b�)n� * 0 in L2(0; l;H�1(S)3); j = 2; 3; (7.55)

@j(@1U�;n�)b� * 0 in L2(0; l;H�1(S)3); j = 2; 3 (7.56)
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for � ! 0. From (7.2), it follows that (@1U�;n) * (@1U;n) in L
2(
); because n is

a bounded function. Further, we have the estimate����Z



(@1U�;n� � n)' dx

���� � C

�Z
l

0

jn�(x1)� n(x1)j
2
k'(x1)k

2
2;S dx1

� 1
2

! 0;

where ' 2 L
2(
) is arbitrary but �xed, n� ! n pointwisely in [0; l] nD for � ! 0

and thus we can use the Lebesgue theorem. Hence we can deduce that

(@1U�;n�)* (@1U;n) in L
2(
):

The proof that

(@1U�;n�)b� * (@1U;n)b in L2(
)3

is almost the same as the proof that

(@1U�;�; t�)t� * (@3�12 � @2�13)t in L
2(0; l;H�1(S)3);

because we take only ' 2 L2(
) instead of ' 2 L2(0; l;H�1(S)) in the estimate (7.49)

modi�ed for the functions (@1U�;n�)b�. The analogous result can be obtained for

(@1U�;b�)n�. Hence we get that

@j(@1U�;n�)b� * @j(@1U;n)b in L2(0; l;H�1(S)3); j = 2; 3;

@j(@1U�;b�)n� * @j(@1U;b)n in L2(0; l;H�1(S)3); j = 2; 3:

In Lemma 7.5 we have proved that the function U depends only on x1 and hence

@j(@1U;n)b = 0; @j(@1U;b)n = 0; j = 2; 3:

Thus we have proved (7.55) and (7.56). 2

Corollary 7.9 Let the assumptions of Proposition 7:2 be ful�lled. Then

@iU�;� * @iU� in L
2(0; l;H�1(S)3); i = 1; 2; 3; (7.57)

U�;� * U� in L
2(
)3; (7.58)

U�;� ! U� in C0(0; l;H
�1(S)3) (7.59)

for �! 0, and U� 2 H
1
0(0; l)

3, where

U�(x1) =

Z
x1

0

[(@3�12(z1; x2; x3)� @2�13(z1; x2; x3))t(z1)

�@3�11(z1; x2; x3)n(z1) + @2�11(z1; x2; x3)b(z1)] dz1 (7.60)

for (x1; x2; x3) 2 (0; l)� S. In addition,

�� * � = (U�; t) in L
2(
) (7.61)

for �! 0 and � is piecewise continuous.
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P r o o f: Lemma 7.7 and 7.8 enable us to use Proposition 5.1 and 5.2 to prove

(7.57){(7.60) and U� 2 H
1
0 (0; l)

3. From (7.29), it follows that �� = �(U�;�; t�).

Then (7.61) easily follows from (7.58) using the pointwise convergence on [0; l] nD

of the functions t�. 2

Lemma 7.10 Let the assumptions of Proposition 7:2 be ful�lled. Let the function

U be determined by (7:2) and the function � by (7:61). Then the couple hU; �i 2

V
t;n;b

0 (0; l).

P r o o f: To prove that hU; �i 2 V
t;n;b

0 (0; l), it is enough to check that U = bU,

where bU(x1) =

Z
x1

0

[�(U�;b)n + (U�;n)b] dz1; x1 2 [0; l]

(see (2.17) and Proposition 4.1). We de�ne the function bU� by

bU�(x1; x2; x3) =

Z
x1

0

[�(U�;�(z1; x2; x3);b�(z1))n�(z1)

+(U�;�(z1; x2; x3);n�(z1))b�(z1)] dz1; (x1; x2; x3) 2 [0; l]� S: (7.62)

The de�nition (7.29) of the function U�;� together with (7.62) enable us to express

the function bU� by

bU� = �

Z
x1

0

�
1

�
(@2U�; g1;�)n� +

1

�
(@3U�; g1;�)b�

�
dz1; (7.63)

where we omit to write the points (z1; x2; x3) and (z1) in the right-hand side to

simplify the notation. Using (7.63), we can deduce that

U� =

Z
x1

0

@1U� dz1 =

Z
x1

0

[(@1U�; t�)t� + (@1U�;n�)n� + (@1U�;b�)b�] dz1

= bU� +

Z
x1

0

"
(@1U�; t�)t� +

�1
�
(@2U�; g1;�) + (@1U�;n�)

�
n�

+
�1
�
(@3U�; g1;�) + (@1U�;b�)

�
b�

#
dz1: (7.64)

As a result of (7.64) and (7.14){(7.15), (7.22), we get

@1
bU� � @1U� ! 0 in L2(
)3

and bU� �U� ! 0 in C([0; l];L2(S)3)

for �! 0. Since, in addition,U� * U inH1(
)3 andU 2 H1
0 (0; l)

3, we can conclude

that U = bU a.e. in [0; l] and thus

U(x1) =

Z
x1

0

[�(U�;b)n+ (U�;n)b] dz1; x1 2 [0; l];
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and

U(l) =

Z
l

0

[�(U�;b)n+ (U�;n)b] dx1 = 0:

Hence, from (2.17) and Proposition 4.1, we get that hU; �i 2 V
t;n;b

0 (0; l). 2

Corollary 7.11 Let the function U� be de�ned by (7:60). Then the function U�

satis�es the equations (7:5){(7:7).

P r o o f: The proof immediately follows from (7.60). 2

Lemma 7.12 Let the assumptions of Proposition 7:2 be ful�lled. Let, in addition,
1
�
!
�(U�)! � in L2(
)9. Then

U� ! U in H1(
) (7.65)

for �! 0.

P r o o f: From (7.18) and (7.19) for q1 = 0 and from (7.21) for q2 = 0, it follows

(@jU�; t�)! 0; j = 2; 3; (@2U�;n�)! 0 and (@3U�;b�)! 0 (7.66)

in L2(
). To prove that @2U� and @3U� converge strongly in L
2(
)3, we must verify

the strong convergence of the functions (@2U�;b�) and (@3U�;n�) to zero in L2(
),

which follows from (7.45). The rest of the proof is a consequence of the identity

@jU� = (@jU�; t�)t� + (@jU�;n�)n� + (@jU�;b�)b�; j = 2; 3;

because jt�j = jn�j = jb�j = 1 for all � 2 (0; 1).

It remains to investigate the functions @1U�. We have proved in (7.22) for q2 = 0

that

(@1U�; t�)! 0 in L2(
):

Since

@1U� = (@1U�; t�)t� + (@1U�;n�)n� + (@1U�;b�)b�;

it remains to study the strong convergences

(@1U�;n�)n� ! (@1U;n)n and (@1U�;b�)b� ! (@1U;b)b

in L2(
)3. Let us suppose �rst that we know that

(@1U�;n�)! (@1U;n); (@1U�;b�)! (@1U;b) in L
2(
): (7.67)

Now, we get

k(@1U�;n�)n� � (@1U;n)nk2 �

�Z



����(@1U�;n�)� (@1U;n)
�
n�

���2 dx� 1
2

35



+

�Z



j(@1U;n)(n� � n)j2 dx

� 1
2

� k(@1U�;n�)� (@1U;n)k2

+

�Z
l

0

jn� � nj2k(@1U;n)(x1)k
2
2;S dx1

� 1
2

! 0

for � ! 0 using (7.67), the facts that n� ! n pointwisely in [0; l] n D and jn�j =

1, which enables us to use the Lebesgue theorem. Hence, we can see that the

convergence of the terms (@1U�;n�)n� and (@1U�;b�)b� can be replaced with the

problem to check (7.67). Further, from (7.14) and (7.15) for q = 0, it follows that

this problem is equivalent to the problem to show that

1

�
(@2U�; g1;�)! �(@1U;n) in L

2(
); (7.68)

1

�
(@3U�; g1;�)! �(@1U;b) in L

2(
); (7.69)

and these convergences are equivalent (using the de�nition (7.29) of the functions

U�;� and the fact that hU; �i 2 V
t;n;b

0 (0; l), i.e. the de�nition of the function U� in

(2.17)) to the problem to verify that

(U�;�;b�)! (U�;b) in L
2(
); (7.70)

(U�;�;n�)! (U�;n) in L
2(
): (7.71)

The estimate

k(U�;�;n�)� (U�;n)k2 �

�Z



j(U�;� �U�;n�)j
2
dx

� 1
2

+

�Z



j(U�;n� � n)j2 dx

� 1
2

� kU�;� �Uk2

+

�Z
l

0

jn� � nj2kU�(x1)k
2
2;S dx1

� 1
2

(7.72)

and the similar arguments as in (7.49) enable us to assert that if we prove that

U�;� ! U� in L
2(
)3; (7.73)

then the convergences in (7.67) immediately follow from (7.68){(7.72). To check

(7.73), we use the inequality (C is independent of v)

kvk2 � C(kvk�1 + krvk�1); 8v 2 L
2(
) (7.74)

(see [14, p. 189]). In the �rst step, we show that

rU�;� ! rU� in H
�1(
)9: (7.75)
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Since we suppose that 1
�
!
�(U�) ! � in L2(
)9, @j

1
�
!
�(U�) ! @j� for � ! 0 in the

space L2(0; l;H�1(S)9), j = 2; 3, and using (6.5){(6.8) together with (7.37){(7.39)

and (7.60), we can deduce that

(@1U�;�; t�)! (@1U�; t) in L
2(0; l;H�1(S)); (7.76)

(@1U�;�;n�)! (@1U�;n) in L
2(0; l;H�1(S)); (7.77)

(@1U�;�;b�)! (@1U�;b) in L
2(0; l;H�1(S)): (7.78)

Since

@1U�;� = (@1U�;�; t�)t� + (@1U�;�;n�)n� + (@1U�;�;b�)b�

and since

k(@1U�;�; t�)t� � (@1U�; t)tkL2(0;l;H�1(S))

� k((@1U�;�; t�)� (@1U�;; t))t�kL2(0;l;H�1(S))

+

�Z
l

0

jt� � tj2k(@1U�; t)(x1)k
2
H�1(S) dx1

� 1
2

! 0 (7.79)

for �! 0 as a consequence of (7.76) and the fact that t� ! t pointwisely in [0; l]nD,

and since we can easily modify the estimate (7.79) for the functions (@1U�;�;n�)n�
and (@1U�;�;b�)b�, then we can conclude that

@1U�;� ! @1U� in L
2(0; l;H�1(S)3) (7.80)

and thus strongly in H�1(
)3.

Further, we want to show that

@jU�;� ! 0 in H�1(
)3; j = 2; 3; (7.81)

for � ! 0. From (7.51){(7.54), it follows that to prove (7.81) it remains to show

that

@j(@1U�;b�)n� ! 0 in H�1(
)3; j = 2; 3; (7.82)

@j(@1U�;n�)b� ! 0 in H�1(
)3; j = 2; 3; (7.83)

for �! 0. The relations in (2.2) provide

@j(@1U�;n�)b� = @j@1(U�;n�)b� � @j(U�;n
0
�
)b�

= @1(@jU�;n�)b� + ��(@jU�; t�)b� + �(@jU�;b�)b� (7.84)

and analogously

@j(@1U�;b�)n� = @1(@jU�;b�)n� + ��(@jU�; t�)n� � �(@jU�;n�)n�; (7.85)

j = 2; 3. We get from the convergences (7.18){(7.19), (7.21) and (7.45) together

with (3.44) and with the fact that jn�j = jb�j = 1, that

��(@jU�; t�)b� ! 0; �(@jU�;b�)b� ! 0 in L2(
)3;
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��(@jU�; t�)n� ! 0; �(@jU�;n�)n� ! 0 in L2(
)3:

Now, we prove for instance that

@1(@jU�;n�)b� ! 0 in H�1(
)3; j = 2; 3: (7.86)

Then the proof of the convergence

@1(@jU�;b�)n� ! 0 in H�1(
)3; j = 2; 3; (7.87)

proceeds analogously.

Let ' 2 H
1
0 (
) be an arbitrary function. Then (since b� 2 C

1([0; l])3) using (3.44)

and (2.2), we deduce the estimate����Z



(@jU�;n�)@1(b�') dx

���� � ����Z



(@jU�;n�)b
0
�
' dx

����
+

����Z



(@jU�;n�)b�@1' dx

���� � C

�r
k(@jU�;n�)k2k'k2 + k(@jU�;n�)k2k@1'k2

for � 2 (0; 1), r 2 (0; 1
3
), j = 2; 3. Then the convergence (7.86) easily follows from

(7.18) for j = 2 and from (7.45) for j = 3. Hence we get (7.81), which together with

(7.80) yields (7.75). The convergences (7.58) and (7.75) together with (7.74) lead

to the strong convergence

U�;� ! U� in L
2(
)3:

2

8 The main result

In this section, we pass from the three-dimensional model to the asymptotic one-

dimensional model and our main result is stated and proved.

We suppose that F� = �
2F, F 2 L

2(
)3, and G� = �
3G, G 2 L

2(0; l;L2(@S)3),

for � 2 (0; 1) in the scaled equation (6.4). Using (2.15) and (3.44), we deduce the

convergence

�

p
�io

ij;��j !

q
�
2
2 + �

2
3 = 1 in C(
); (8.1)

because �1 = 0 (the domain is [0; l] � S). Here we \use" one power of � from the

above assumption on the function G�. Dividing by �
2 in (6.4) after substitution of

the assumptions F� = �
2F andG� = �

3G, (3.47), (6.4), (6.9), (8.1) and Theorem 7.1,

we obtain the estimate

kU�k
2
1;2 �

C
2

�2
k!

�(U�)k
2
2 �

C
2

C0�
2

Z



A
ijkl

�
!
�

kl
(U�)!

�

ij
(U�)d� dx

=
C

2

C0

�Z



(F;U�)d� dx+

Z
l

0

Z
@S

(G;U�)d��
p
�jo

ij;��j dSdx1

�
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�
C

2
C1

C0

�
kFk2kU�k1;2 + kGk2;[0;l]�@SkU�kL2(0;l;L2(@S)3)

�
� C3kU�k1;2;

for all � 2 (0; 1), because U� 2 V (
) and thus U� 2 L
2(0; l;L2(@S)3) in the sense of

the trace. By the above relations (passing to a subsequence), we have that

U�n
* U in H1(
)3; (8.2)

1

�n
!
�n(U�n

)* � in L2(
)9 (8.3)

for �n ! 0, where U 2 H1
0 (0; l)

3 according to Proposition 7.2.

To �nd the form of the tensor �, we must obtain the corresponding equations for its

components.

Proposition 8.1 Let the tensor � be the limit determined by (8:3). Then it satis�es

the equation Z



A
ijkl

0 �kl�
0
ij
(V) dx = 0; 8V 2 L

2(0; l;H1(S)3); (8.4)

where the tensor �0(V) is de�ned by

�
0(V) =

0B@ 0
(@2V;t)

2

(@3V;t)

2
(@2V;t)

2
(@2V;n)

(@2V;b)+(@3V;n)

2
(@3V;t)

2

(@2V;b)+(@3V;n)

2
(@3V;b):

1CA : (8.5)

P r o o f: In the proof, we will use � instead of �n to simplify the notation. Letting

�! 0, we want to pass from the equationZ



A
ijkl

�

1

�
!
�

kl
(U�)�!

�

ij
(V)d� dx = �

2

Z



(F;V)d� dx

+�2
Z

l

0

Z
@S

(G;V)d��
p
�jo

ij;��j dSdx1; 8V 2 V (
);

to the equation Z



A
ijkl

0 �kl�
0
ij
(V) dx = 0; 8V 2 V (
); (8.6)

where the tensor �0(V) is de�ned by (8.5). We show that the tensor �0(V) is the

limit state of the tensors ��(V) + ��
�(V) for � ! 0 (see (6.5){(6.8)). Since the

functions g1;�, n� and b� are bounded in L1(
)3 or L1(0; l)3, it is easily seen that

��
�(V)! 0 in L2(
)9 (see (6.8)). Thus it remains to show that ��(V) ! �

0(V) in

L
2(
)9 for �! 0. Since we know that g1;� ! t and n� ! n, b� ! b pointwisely in


 n (S � D) or in [0; l] nD, respectively, and are bounded in L1(
)3 or L1(0; l)3,

respectively, we can combine (6.6){(6.7) with the technique we have used in (7.72)

to prove the above mentioned strong convergence and thus we omit the detailed

proof.
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Using the de�nition (see (2.10) and (6.2)) of the tensor (Aijkl

�
)3
i;j;k;l=1, we can easily

check by (2.6){(2.12) that

A
ijkl

�
! A

ijkl

0 in C(
); where A
ijkl

0 = �Æ
ij
Æ
kl + �(ÆikÆjl + Æ

il
Æ
jk) (8.7)

for i; j; k; l = 1; 2; 3. The rest of the proof follows from density of the space V (
) in

L
2(0; l;H1(S)3) and from (8.5) and (8.6). 2

Now, we introduce the following notation:

�
H

22 = �22 +
1

2

�

�+ �
�11; �

H

33 = �33 +
1

2

�

�+ �
�11; �

H

23 = �23: (8.8)

Corollary 8.2 We haveZ
S

�12 =

Z
S

�13 =

Z
S

�12x2 =

Z
S

�13x3 =

Z
S

[�12x3 + �13x2] = 0; (8.9)

Z
S

�
H

23 =

Z
S

�
H

23x2 =

Z
S

�
H

23x3 = 0 (8.10)

and Z
S

(�H22 + �
H

33) =

Z
S

(�H22 + �
H

33)x2 =

Z
S

(�H22 + �
H

33)x3 = 0: (8.11)

P r o o f: Let v 2 L
2(0; l) be arbitrary but �xed function and V = vt. Testing

equation (8.4) with functions Vx2, Vx3, Vx
2
2=2, Vx

2
3=2 and Vx2x3, we can derive

(8.9).

Let us take now some arbitrary function V 2 L
2(0; l;H1(S)3) such that (V; t) =

(V;b) = 0. Then we can derive from (8.4) and (8.5) thatZ



[(�(�11 + �22 + �33) + 2��22)(@2V;n) + 2��23(@3V;n)] dx = 0: (8.12)

Analogously we deduce for arbitrary functions V 2 L
2(0; l;H1(S)3), which satisfy

(V; t) = (V;n) = 0, thatZ



[(�(�11 + �22 + �33) + 2��33)(@3V;b) + 2��23(@2V;b)] dx = 0: (8.13)

After substitution of (8.8) we can transform (8.12) and (8.13) asZ



[(�(�H22 + �
H

33) + 2��H22)(@2V;n) + 2��H23(@3V;n)] dx = 0 (8.14)

and Z



[(�(�H22 + �
H

33) + 2��H33)(@3V;b) + 2��H23(@2V;b)] dx = 0; (8.15)
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respectively. Taking Vx3, Vx
2
3=2 and Vx22=2, where V = vn or V = vb, as test

functions in (8.14) and (8.15), respectively, yields (8.10). In an analogous way,

we substitute the functions Vx2, Vx3, Vx
2
2=2, Vx2x3 and Vx2x3, Vx

2
3=2, where

V = vn or V = vb, to (8.14) and (8.15), respectively, to derive (8.11). 2

If we de�ne the vector ��� 2 L
2(
)2 by ��� = h�12; �13i, then the equations (8.4) after

putting V = 't, ' 2 L2(0; l;H1(S)), and (7.5) can be rewritten in the formZ



(���;r23')2 dx = 0; 8' 2 L2(0; l;H1(S)); (8.16)

Z



(���; rot23 )2 dx =

Z



(U0
�; t) dx; 8 2 H

1
0 (
); (8.17)

where we have denoted r23' = h@2'; @3'i, rot23 = h�@3 ; @2 i and (�; �)2 means

the scalar product in the usual two dimensional Euclidean space R2 .

Lemma 8.3 Let S be a simply connected domain and let @S 2 C
1. The system

(8:16), (8:17) has unique solution in L2(
)2, given by

��� = h�12; �13i = �
1

2
(U0

�; t)h@2p� x3; @3p+ x2i (8.18)

where the function p 2 H1(S) is the unique solution to the Neumann problemZ
S

[(@2p� x3)@2r + (@3p+ x2)@3r] dx2dx3 = 0;

Z
S

p dx2dx3 = 0; (8.19)

for all r 2 H1(S).

P r o o f: After substitution of (8.18) to (8.16) and (8.17), we obtain using (8.19)

thatZ



(���;r23')2 dx = �
1

2

Z



(U0
�; t)(@2p� x3)@2' dx�

1

2

Z



(U0
�; t)(@3p+ x2)@3' dx

= �
1

2

Z
l

0

(U0
�; t)

Z
S

[(@2p� x3)@2'+ (@3p+ x2)@3'] dx2dx3dx1
(8:19)
= 0

andZ



(���; rot23 )2 dx =
1

2

Z



(U0
�; t)(@2p� x3)@3 dx�

1

2

Z



(U0
�; t)(@3p+ x2)@2 dx

= �
1

2

Z
l

0

(U0
�; t)

"Z
S

@3p@2 � @2p@3 dx2dx3 +

Z
S

x3@3 + x2@2 dx2dx3

#
dx1

=

Z



(U0
�; t) dx;
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for all  2 C
1
0 (
), which implies that  (x1; �; �) 2 C

1
0 (S) for all x1 2 (0; l). Thus

by density the relation remains valid for all  2 H1
0 (
).

To prove uniqueness, we assume that there exist two solutions ���
i
2 L2(
)2, i = 1; 2.

Taking ' = sb' in (8.16) and  = s b in (8.17) for all s 2 C
1
0 (0; l), b' 2 H

1(S) andb 2 H
1
0 (S), it is easy to verify that the function ���

s
= h�1;s; �2;si =

R
l

0
s��� dx1, where

��� = ���1 � ���2, satis�es the equationsZ
S

(���
s
;r23 b')2 dx2dx3 = 0 and

Z
S

(���
s
; rot23 b )2 dx2dx3 = 0: (8.20)

Let us de�ne the vector functions b���
s
= (0; �1;s; �2;s) and b   = (� � ;  1;  2), where the

functions � ,  1,  2 2 C
1
0 (
) are arbitrary. Since the function b���

s
is de�ned only on

S, we can deduce from (8.20) thatZ
l

0

Z
S

(b���
s
; rot b   ) dx = Z l

0

Z
S

(���
s
; rot23 � (x1))2 dx2dx3dx1 = 0:

Hence, we can easily derive that rotb���
s
= 0 in D0(
). Since S is simply connected,

then 
 = [0; l]�S is simply connected as well and there exists a function hs 2 H
1(
),

unique up to a constant, such that b���
s
= rhs (see [5]), which means

@1hs = 0; @2hs = �1;s; @3hs = �2;s;

and hence we get that hs 2 H
1(S) and ���s = r23hs. After substitution b' = hs to

(8.20), it follows that kr23hsk2 = 0. Hence ���
s
= 0 for all s 2 L2(0; l) which implies

��� = 0. 2

Now, we derive the asymptotic one-dimensional model. First we introduce some

constants:

Ix22
=

Z
S

x
2
2 dx2dx3; Ix23

=

Z
S

x
2
3 dx2dx3; (8.21)

E = �
3�+ 2�

�+ �
; K =

Z
S

[(@2p� x3)
2 + (@3p+ x2)

2] dx2dx3; (8.22)

where p 2 H1(S) is the unique solution of the Neumann problem (8.19).

Lemma 8.4 Let fU�ng
1
n=1, �n ! 0, be a subsequence of the solutions of the problem

(6:4) with F�n = �
2
n
F, G�n = �

3
n
G, satisfying (8:2) and (8:3). Then the limit hU; �i 2

V
t;n;b

0 (0; l) obtained in Proposition 7:2 generates the function U�, which satis�es the

equation Z
l

0

E[Ix22(U
0
�;b)(V

0
�;b) + Ix23

(U0
�;n)(V

0
�;n)] dx1

+

Z
l

0

�K(U0
�; t)(V

0
�; t) dx1 =

Z
l

0

(�FF+G;V) dx1 (8.23)

for all functionsV� 2 H
1
0 (0; l)

3 generated by any arbitrary couple hV;  i 2 V
t;n;b

0 (0; l)

(see (2:17)), where �FF+G(x1) =
R
S
F(x1) dx2dx3 +

R
@S
G(x1) dS, x1 2 [0; l].
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P r o o f: In the proof, we will use � instead of �n to simplify the notation. Let hV;  i

be an arbitrary couple from the space V
t;n;b

0 (0; l) and let the function W 2 L
2(
)3

be de�ned by

W(x1; x2; x3) = �

�
(V0(x1);n(x1))x2 + (V0(x1);b(x1))x3

�
t(x1)

�x3 (x1)n(x1) + x2 (x1)b(x1) for (x1; x2; x3) 2 
: (8.24)

Proposition 4.2 enables us to approximate the couple hV;  i with couples hV�;  �i 2

V
t�;n�;b�

0 (0; l) satisfying V� 2 C
1
0 (0; l)3 and  � 2 C

1
0 (0; l). In an analogous way as

in (8.24), we de�ne the functions W� 2 C
1(
)3 by

W�(x1; x2; x3) = �

�
(V0

�
(x1);n�(x1))x2 + (V0

�
(x1);b�(x1))x3

�
t�(x1)

�x3 �(x1)n�(x1) + x2 �(x1)b�(x1) (8.25)

for (x1; x2; x3) 2 
.

Let us de�ne the function bV� bybV� = V� + �W� 2 C
1(
)3 \ V (
):

After substitution to (6.5){(6.8) we get by using (V0
�
; t�) = 0 (see (2.17))

!
�

11(
bV�) = �

�

11(V�) + ��
�

11(W�)

=
�
(1� �x2�� � �x3��)(V

0
�
; t�) + �x3�(V

0
�
;n�)� �x2�(V

0
�
;b�)

�
+�
�
(1� �x2�� � �x3��)(@1W�; t�) + �x3�(@1W�;n�)� �x2�(@1W�;b�)

�
=
�
�x3�(V

0
�
;n�)� �x2�(V

0
�
;b�)

�
+�
�
(1� �x2�� � �x3��)(@1W�; t�) + �x3�(@1W�;n�)� �x2�(@1W�;b�)

�
= Z

(new notation). Since

�(1� �x2�� � �x3��)(@1W�; t�) = ��(1� �x2�� � �x3��)(x2(V
0
�
;n�)

0 + x3(V
0
�
;b�)

0)

��(1� �x2�� � �x3��)x3 �(n
0
�
; t�) + �(1� �x2�� � �x3��)x2 �(b

0
�
; t�)

(2:2)
= ��(1� �x2�� � �x3��)(x2(V

0
�
;n�)

0 + x3(V
0
�
;b�)

0)

+�(1� �x2�� � �x3��)��x3 � � �(1� �x2�� � �x3��)��x2 �

= �

�
�x2(V

0
�
;n�)

0
� x3(V

0
�
;b�)

0 + ��x3 � � ��x2 �

�
+�2(��x2 + ��x3)(x2(V

0
�
;n�)

0 + x3(V
0
�
;b�)

0
� ��x3 � + ��x2 �):

Then

Z = �

�
�x3(V

0
�
;n�)� �x2(V

0
�
;b�)

�
+ �

�
�x2(V

0
�
;n�)

0
� x3(V

0
�
;b�)

0 + ��x3 �
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���x2 �

�
+ �

2
�
(��x2 + ��x3)(x2(V

0
�
;n�)

0 + x3(V
0
�
;b�)

0
� ��x3 � + ��x2 �)

+�x3(@1W�;n�)� �x2(@1W�;b�)
�
= �x2

�
�(V0

�
;n�)

0
� �� � � �(V

0
�
;b�)

�
+�x3

�
�(V0

�
;b�)

0 + �� � + �(V
0
�
;n�)

�
+B

11
�
;

where

B
11
�
= �

2
�
(��x2 + ��x3)(x2(V

0
�
;n�)

0 + x3(V
0
�
;b�)

0
� ��x3 � + ��x2 �)

+�x3(@1W�;n�)� �x2(@1W�;b�)
�
:

Since hV�;  �i 2 V
t�;n�;b�

0 (0; l), (2.17) and (5.5){(5.6) enable us to introduce the

notation

v
�

�;1 = (V�;�; t�) = � �; v
�

�;2 = (V�;�;n�) = (V0
�
;b�);

v
�

�;3 = (V�;�;b�) = �(V0
�
;n�):

Then

Z
(5:8); (5:9)

= �(x2(V
0
�;�;b�)� x3(V

0
�;�;n�)) +B

11
�
:

Since V� 2 C
1
0 (0; l), then from (6.6) it follows that 1

�
�
�

12(V�) = 0 and thus

!
�

12(
bV�)

(6:5)
= �

�

12(V�) + �
�

12(W�) + ��
�

12(W�)

(6:6){(6:8)
=

1

2

�
(V0

�
;n�) + (1� �x2�� � �x3��)(@2W�; t�) + �x3�(@2W�;n�)

��x2�(@2W�;b�) + �(@1W�;n�)
�
= bZ

(new notation). We compute each term

(1� �x2�� � �x3��)(@2W�; t�) = �(1� �x2�� � �x3��)(V
0
�
;n�);

�x3�(@2W�;n�) = 0; ��x2�(@2W�;b�) = ��x2� �;

�(@1W�;n�) = ��

 �
x2(V

0
�
;n�) + x3(V

0
�
;b�)

�
(t0

�
;n�)

�x3 
0
�
+ x2 �(b

0
�
;n�)

!
= ����

�
x2(V

0
�
;n�) + x3(V

0
�
;b�)

�
� �x3 

0
�
+ �x2� �;

and we can conclude that

bZ =
1

2

�
(V0

�
;n�) +�(V0

�
;n�) + �x2��(V

0
�
;n�) + �x3��(V

0
�
;n�)

��x2� � � �x2��(V
0
�
;n�)� �x3��(V

0
�
;b�)� �x3 

0
�
+ �x2� �

�
=
�x3

2

�
� 

0
�
+ ��(V

0
�
;n�)� ��(V

0
�
;b�)

�
:
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Using the functions v��;i, i = 1; 2; 3, de�ned above, we get from (5.7)

bZ =
�x3

2
(V0

�;�; t�):

Analogously we can derive that 1
�
�
�

13(V�) = 0 and thus

!
�

13(
bV�) = �

�

13(V�) + �
�

13(W�) + ��
�

13(W�)

=
1

2

 
(V0

�
;b�) +

�
�(V0

�
;b�) + �x2��(V

0
�
;b�) + �x3��(V

0
�
;b�)

��x3� �

�
�

�
�x2��(V

0
�
;n�) + �x3��(V

0
�
;b�)

�
+ �x2 

0
�
+ �x3� �

!

=
�x2

2

�
 
0
�
� ��(V

0
�
;n�) + ��(V

0
�
;b�)

�
(5:7)
= �

�x2

2
(V0

�;�; t�):

We leave to the reader the veri�cation of

!
�

i;j
(bV�) = 0; i; j = 2; 3:

Denoting B� = (Bij

�
)3
i;j=1, where B

ij

�
= 0 except for i = j = 1 and

B
11
�
= �

2
�
(��x2 + ��x3)(x2(V

0
�
;n�)

0 + x3(V
0
�
;b�)

0
� ��x3 � + ��x2 �)

+�x3(@1W�;n�)� �x2(@1W�;b�)
�
;

we can write

!
�(bV�) = ��(V�;�) + B�; (8.26)

where

�11(V�;�) = �(V0
�;�;n�)x3 + (V0

�;�;b�)x2; (8.27)

�12(V�;�) = �21(V�;�) =
x3

2
(V0

�;�; t�); (8.28)

�13(V�;�) = �31(V�;�) = �
x2

2
(V0

�;�; t�) (8.29)

and

�ij(V�;�) = 0; i; j = 2; 3: (8.30)

Since we know that t� ! t, n� ! n, b� ! b pointwisely in [0; l] n D, we can use

(4.9) and the technique we have used in (7.72) to prove that

�ij(V�;�)! �ij(V�) in L
2(
); i; j = 1; 2; 3:

Moreover, using (3.4), (4.11) and (8.25) we can easily check that

kB�k2 = kB
11
�
k2 � C�

2(1�r)
; r 2 (0;

1

3
):
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These convergences and estimates together with (8.1) and (8.3), (8.7) enable us to

pass to the limit in the equation (since bV� 2 C
1(
)3 \ V (
))Z




A
ijkl

�

1

�
!
�

kl
(U�)

1

�
!
�

ij
(bV�)d� dx =

Z



(F; bV�)d� dx

+

Z
l

0

Z
@S

(G; bV�)�d�
p
�jo

ij;��j dSdx1

and to establishZ



A
ijkl

0 �kl�ij(V�) dx =

Z



(F;V) dx+

Z
l

0

Z
@S

(G;V) dSdx1 (8.31)

for all hV;  i 2 V
t;n;b

0 (0; l), which generate the functions V� (see (2.17)).

Let the point hx02; x
0
3i 2 S. Since S is open, there exists a square S0 � S such that

the point hx02; x
0
3i is the corner of this square satisfying x02 � x2 and x

0
3 � x3 for

hx2; x3i 2 S0. Integrating the equality (7.6) on the interval [x03; x3] we get

�11(x1; x2; x3) = �(U0
�(x1);n(x1))x3 + (U0

�(x1);n(x1))x
0
3 + �11(x1; x2; x

0
3)

for arbitrary but �xed x1 2 (0; l) and hx2; x3i 2 S0. After derivation according to

the second variable we �nd from (7.7) that

(@2�11(x1; x2; x3) =)(U
0
�(x1);b(x1)) = @2�11(x1; x2; x

0
3):

Integrating on the interval [x02; x2] we get

�11(x1; x2; x
0
3) = (U0

�(x1);b(x1))x2 � (U0
�(x1);b(x1))x

0
2 + �11(x1; x

0
2; x

0
3):

We denote

Q0(x1) = �11(x1; x
0
2; x

0
3)� (U0

�(x1);b(x1))x
0
2 + (U0

�(x1);n(x1))x
0
3 2 L

2(0; l):

Analogously as in the derivation of (7.23) we can prove that Q0 does not depend on

the choice of the point from S and thus

�11 = Q0 + (U0
�;b)x2 � (U0

�;n)x3 in 
: (8.32)

By the form of the tensor (A
ijkl

0 )3
i;j;k;l=1 (see (8.7)), we have after the substitution

(8.27){(8.30) to (8.31)Z



A
ijkl

0 �kl�ij(V�) dx =

Z



[�(�11 + �22 + �33)(�11(V�) + �22(V�) + �33(V�))

+2�(�11�11(V�) + �22�22(V�) + �33�33(V�)

+2�12�12(V�) + 2�13�13(V�) + 2�23�23(V�))] dx
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=

Z



[�(�11 + �22 + �33) + 2��11]�11(V�) dx+

Z



[4�(�12�12(V�) + �13�13(V�))] dx:

Hence using (8.27){(8.29), we can rewrite (8.31) as

I1 + I2 =

Z



(F;V) dx +

Z
l

0

Z
@S

(G;V) dSdx1; (8.33)

where

I1 =

Z



[�(�11 + �22 + �33) + 2��11][(V
0
�;b)x2 � (V0

�;n)x3] dx;

I2 = 2�

Z



[�12(V
0
�; t)x3 � �13(V

0
�; t)x2] dx:

Using (8.8), we �nd that

�(�11 + �22 + �33) + 2��11 = (�+ 2�)�11 + ��
H

22 + ��
H

33 �
�
2

�+ �
�11

= (�+ 2��
�
2

�+ �
)�11 + �(�H22 + �

H

33):

Hence using (8.22) we can rewrite the integral I1 to the form

I1 =

Z



[E�11 + �(�H22 + �
H

33)][(V
0
�;b)x2 � (V0

�;n)x3] dx: (8.34)

The terms involving function �H22 + �
H

33 disappear from (8.34) because of (8.11) and

the dependence of the terms (V0
�;b) and (V0

�;n) only on x1. After the substitution

(8.32) to (8.34), we can conclude using (2.1) and (8.21){(8.22) that

I1 =

Z
l

0

E[Ix22(U
0
�;b)(V

0
�;b) + Ix23

(U0
�;n)(V

0
�;n)] dx1: (8.35)

After the substitution ��� = h�12; �13i from (8.18) to I2, we obtain

I2 =

Z



� (�(@2p� x3)x3 + (@3p+ x2)x2) (U
0
�; t)(V

0
�; t) dx; (8.36)

where p is the unique solution to the Neumann problem (8.19) and it is easy to

verify from (8.36) (using (8.22) and (8.19) with the test function r = p) that

I2
(8:19)
=

Z



�(�@2px3 + x
2
3 + @3px2 + x

2
2)(U

0
�; t)(V

0
�; t) dx

+

Z
l

0

(U0
�; t)(V

0
�; t)

Z
S

�[(@2p)
2
� @2px3 + (@3p)

2 + @3px2] dx2dx3dx1

=

Z
l

0

�K(U0
�; t)(V

0
�; t) dx1: (8.37)

Thus after adding (8.35) to (8.37) we obtain (8.23). 2
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Lemma 8.5 The sequence f 1
�n
!
�n(U�n

)g1
n=1 converges strongly to � in L

2(
)9 for

�n ! 0.

P r o o f: In the proof, we will write � instead of �n to simplify the notation. Let us

de�ne

�� =

Z



A
ijkl

�

�
1

�
!
�

kl
(U�)� �kl

��
1

�
!
�

ij
(U�)� �ij

�
d� dx:

According to Proposition 6.1, there exists a constant C > 0 independent of � such

that 1
�
!
�(U�)� �

2
2

� C��: (8.38)

Equation (6.4) implies for F� = �
2F and G� = �

3G that

�� =

Z



(F;U�)d� dx +

Z
l

0

Z
@S

(G;U�)d��
p
�io

ij;��j dSdx1

+

Z



A
ijkl

�

��
�kl �

1

�
!
�

kl
(U�)

�
�ij � �kl

1

�
!
�

ij
(U�)

�
d� dx:

As a result of (8.1){(8.3) and (8.7), we obtain the convergence of the sequence ��,

i.e.

� = lim
�!0

�� =

Z
l

0

(�FF+G;U) dx1 �

Z



A
ijkl

0 �kl�ij dx: (8.39)

Using (8.7) leads after substitution of (8.8) to the identityZ



A
ijkl

0 �kl�ij dx =

Z



[�(�11 + �22 + �33)
2 + 2�

3X
i;j=1

�
2
ij
] dx

(8:8)
=

Z



"
�

�
�11 + �

H

22 �
�

�+ �
�11 + �

H

33

�2

+ 2��211 + 4�
�
�
2
12 + �

2
13 + (�H23)

2
�

+2�

�
�
H

22 �
1

2

�

�+ �
�11

�2

+ 2�

�
�
H

33 �
1

2

�

�+ �
�11

�2
#
dx

=

Z



"
(�+ 2�)�211 + 4�(�212 + �

2
13) + 4�(�H23)

2 + 2��11�
H

22 �
�
2

�+ �
�
2
11

+2��11�
H

33 �
�
2

� + �
�
2
11 + 2��H22�

H

33 �
�
2

�+ �
�11�

H

22 �
�
2

�+ �
�11�

H

33 +
1

2

�
3

(�+ �)2
�
2
11

+�(�H22)
2
�

�
2

�+ �
�
H

22�11 +
1

4

�
3

(�+ �)2
�
2
11 + �(�H33)

2
�

�
2

�+ �
�
H

33�11

+
1

4

�
3

(�+ �)2
�
2
11 + 2�(�H22)

2
�

2��

�+ �
�
H

22�11 +
1

2

��
2

(�+ �)2
�
2
11
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+2�(�H33)
2
�

2��

�+ �
�
H

33�11 +
1

2

��
2

(�+ �)2
�
2
11

#
dx

=

Z



"
(�+ 2��

2�2

�+ �
+

�
3

(�+ �)2
+

��
2

(�+ �)2
)�211 + 4�(�212 + �

2
13)

+�(�H22 + �
H

33)
2 + 2�((�H22)

2 + (�H33)
2 + 2(�H23)

2)

+(2��
2�2

�+ �
�

2��

�+ �
)�11�

H

22 + (2��
2�2

�+ �
�

2��

�+ �
)�11�

H

33

#
dx

(8:22)
=

Z



[E�211+4�(�212+ �
2
13)+�(�

H

22+ �
H

33)
2+2�((�H22)

2+(�H33)
2+2(�H23)

2)] dx: (8.40)

The expressions for �11, �12 and �13, i.e (8.32) and (8.18), imply (together with (8.23)

and (2.1)) after substitution to (8.40) thatZ



A
ijkl

0 �kl�ij dx =

Z



"
E�

2
11 + 4�(�212 + �

2
13) + �(�H22 + �

H

33)
2

+2�((�H22)
2 + (�H33)

2 + 2(�H23)
2)

#
dx =

Z



"
E

�
Q0 + (U0

�;b)x2 � (U0
�;n)x3

�2
+4�

�
�
1

2
(U0

�; t)(@2p� x3)
�2

+ 4�
�
�
1

2
(U0

�; t)(@3p+ x2)
�2

+ �(�H22 + �
H

33)
2

+2�((�H22)
2 + (�H33)

2 + 2(�H23)
2)

#
dx

(8:23);(2:1)
=

Z
l

0

[(�FF+G;U) + EQ
2
0] dx1

+

Z



�
�(�H22 + �

H

33)
2 + 2�

�
(�H22)

2 + (�H33)
2 + 2(�H23)

2
��

dx;

and substituting to (8.39) leads to

� = �

Z



�
EQ

2
0

jSj
+ �(�H22 + �

H

33)
2 + 2�

�
(�H22)

2 + (�H33)
2 + 2(�H23)

2
��

dx:

The sequence �� consists of non-negative numbers by (8.38) and so � = 0. Hence

Q0 = �
H

22 = �
H

23 = �
H

33 = 0:

In addition, the estimate (8.38) yields the strong convergence in (8.3). Hence by

Proposition 7.2, the convergence (8.2) is also strong. 2

Since we have proved that Q0 = �
H

22 = �
H

23 = �
H

33 = 0, and we have denoted ��� =

h�12; �13i, we obtain

�11
(8:32)
= (U0

�;b)x2 � (U0
�;n)x3;

�12
(8:18)
= �21 = �

1

2
(U0

�; t)(@2p� x3);
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�13
(8:18)
= �31 = �

1

2
(U0

�; t)(@3p+ x2); (8.41)

�22
(8:8)
= �

1

2

�

�+ �

�
(U0

�;b)x2 � (U0
�;n)x3

�
;

�23 = �32 = 0;

�33
(8:8)
= �

1

2

�

�+ �

�
(U0

�;b)x2 � (U0
�;n)x3

�
:

We have proved that the asymptotic one-dimensional model for the curved rods has

the form

a(hU; �i; hV;  i) = F(V) (8.42)

for all hV;  i 2 V
t;n;b

0 (0; l), where

a(hU; �i; hV;  i) =

Z
l

0

E[Ix22(U
0
�;b)(V

0
�;b) + Ix23

(U0
�;n)(V

0
�;n)

+�K(U0
�; t)(V

0
�; t)] dx1

=

Z
l

0

h
EIx22

�
(��t+ (U0

;b)n� (U0
;n)b)0;b

��
(� t+ (V0

;b)n� (V0
;n)b)0;b

�
+EIx23

�
(��t+ (U0

;b)n� (U0
;n)b)0;n

��
(� t+ (V0

;b)n� (V0
;n)b)0;n

�
+�K

�
(��t+(U0

;b)n�(U0
;n)b)0; t

��
(� t+(V0

;b)n�(V0
;n)b)0; t

�i
dx1 (8.43)

and

F(V) =

Z
l

0

(�FF+G;V) dx1 (8.44)

is de�ned in Lemma 8.4. The convergences (8.2){(8.3) ensure the existence of the

solution to (8.42).

Remark 8.6 The existence of the strong limit U� ! U in H1(
) for � ! 0 (see

Proposition 7.2 and Lemma 8.5 for the strong convergence on some subsequence) is

equivalent to the existence of the unique solution to the equation (8.23), which will

be studied in the following proposition under more general assumptions.

Proposition 8.7 Let F 2 H
�1(0; l) and t, n, b 2 L

1(0; l)3. Then the solution

hU; �i 2 V
t;n;b

0 (0; l) to the equation (8:42) is unique.

P r o o f: Let us suppose that there exist two solutions hUi; �ii 2 V
t;n;b

0 (0; l), i = 1; 2

of the equation (8.42). Then the couple of functions hbV; b�i de�ned by bV = U1�U2

and b� = �1 � �2 is the solution of the equation

a(hbV; b�i; hV;  i) = 0; 8hV;  i 2 V
t;n;b

0 (0; l):
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The uniqueness follows from the next estimate (using zero boundary conditions of

the functions bV and bV�, (2.17), (5.5){(5.6) for the functions t, n, b instead of t�,

n�, b�)

a(hbV; b�i; hbV; b�i) = Z l

0

h
EIx22

(bV0
�;b)

2 + EIx23
(bV0

�;n)
2 + �K(bV0

�; t)
2
i
dx1

� minfEIx22 ; EIx23; �Kg

Z
l

0

h
(bV0

�; t)
2 + (bV0

�;n)
2 + (bV0

�;b)
2
i
dx1

= C2

Z
l

0

jbV0
�j
2
dx1 � C3

Z
l

0

jbV�j
2
dx1 = C3

Z
l

0

h
(bV�; t)

2 + (bV�;n)
2 + (bV�;b)

2
i
dx1

= C3

Z
l

0

hb�2 + (bV0
;n)2 + (bV0

;b)2
i
dx1 = C3

Z
l

0

hb�2 + (bV0
; t)2

+(bV0
;n)2 + (bV0

;b)2
i
dx1 = C3

Z
l

0

hb�2 + jbV0
j
2
i
dx1 � C4

Z
l

0

hb�2 + jbVj2i dx1:
2

The proof of the main theorem of this article is now complete and we can state it:

Theorem 8.8 Let the function � be the parametrization of a unit speed curve such

that � 2 C([0; l])3 and �0 is piecewise continuous. Let, further, F 2 L
2(
)3, G 2

L
2(0; l;L2(@S)3) and �FF+G be de�ned as in Lemma 8:4. Then, there is a unique

pair hU; �i 2 V
t;n;b

0 (0; l) and satisfying the boundary value problem (8:42) with a(�; �)

given by (8:43). Moreover, the constant extension to 
 = (0; l) � S of hU; �i may

be approximated by the solutions U� 2 V (
) of the equation (6:4) as follows

U = lim
�!0

U� strongly in H1(
)3;

� = lim
�!0

1

2�

�
(@2U�;b�)� (@3U�;n�)

�
weakly in L2(
):

9 Applications and examples

We suppose now that the couples of functions hU; �i, hV;  i 2 V
t;n;b

0 (0; l) and the

functions t, n, b are smooth enough such that the following transformations have

sense. First, we introduce the notation

v1 = (V; t); v2 = (V;n); v3 = (V;b): (9.1)

From (2.2), (9.1) with the functions t, n, b, �, �,  instead of t�, n�, b�, ��, ��, �,

and from (2.17), it follows that

V0
� = (� t+ (V0

;b)n� (V0
;n)b)0 =
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� 
0t� (�b+�n)+ (V0

;b)0n+(V0
;b)(��t�b)� (V0

;n)0b� (V0
;n)(��t+n)

= � 
0t� � b� � n+ v

00
3n� (V;��t+ n)0n+ (v03 � (V;��t+ n))(��t� b)

�v
00
2b+ (V;��t� b)0b+ (�v02 + (V;��t� b))(��t+ n)

= � 
0t�� b�� n+(v03+�v1�v2)

0n��(v03+�v1�v2)t�(v
0
3+�v1�v2)b

�(v02 + �v1 + v3)
0b + �(v02 + �v1 + v3)t� (v02 + �v1 + v3)n: (9.2)

Using (2.2), (2.17) and (9.2) we get that

(V0
; t) = v

0
1 � �v3 � �v2 = 0; (9.3)

(V0
�;b) = �� � (v03 + �v1 � v2)� (v02 + �v1 + v3)

0
; (9.4)

(V0
�;n) = �� + (v03 + �v1 � v2)

0
� (v02 + �v1 + v3); (9.5)

(V0
�; t) = � 

0
� �(v03 + �v1 � v2) + �(v02 + �v1 + v3): (9.6)

Let us suppose that the vectors t, n, b are obtained as the Frenêt basis, i.e.

�00(x1) 6= 0; x1 2 [0; l]; t = �0
; n =

�00

j�00j
; b = t� n: (9.7)

Let, further, � = j�00j be the curvature and � = 1
�2
(�0

;�00 � �000) be the torsion.

From (2.2), it follows that

� = (t0;b) = (�00
;�0

�
�00

j�00j
) = 0; (9.8)

� = (t0;n) = (�00
;
�00

j�00j
) = �; (9.9)

 = (b0;n) = (�00
�

�00

j�00j
;
�00

j�00j
) + (�0

�
�000j�00j � (�00

;�000) �
00

j�00j

j�00j2
;
�00

j�00j
)

=
1

j�00j2
(�0

��000
;�00) = ��: (9.10)

We denote after substitution of (9.8){(9.10) to (9.3){(9.6)

Q1(v) = v
0
1 � �v2 = 0; (9.11)

Q2(v) = �(v02 + �v1 � �v3)
0 + �(v03 � �v2); (9.12)

Q3(v;  ) = (v03 + �v2)
0 + �(v02 + �v1 � �v3)� � ; (9.13)

Q4(v;  ) = � 
0
� �(v03 + �v2); (9.14)

where v = (v1; v2; v3). Then (8.42) can be transformed for G = 0 asZ
l

0

[EIx22Q2(u)Q2(v) + EIx23
Q3(u; �)Q3(v;  ) + �KQ4(u; �)Q4(v;  )] dx1
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=

Z
l

0

(�f ;v) dx1; (9.15)

where �f = ( �f1; �f2; �f3) and

�f1 = (�F; t); �f2 = (�F;n); �f3 = (�F;b):

Let us notice that from hU; �i 2 V
t;n;b

0 (0; l) and from the regularity of t, n, b, we

see that hu; �i 2 fhw; b i 2 H1
0 (0; l)�H

2
0 (0; l)�H

2
0 (0; l)�H

1
0 (0; l) : w

0
1��w2 = 0g,

where the function u = (u1; u2; u3) is de�ned as in (9.1). For instance, the relation

w
0
1 � �w2 = 0 is ful�lled by (9.3) and from (2.17) it follows that

u
0
2 = (U;n)0 = (U0

;n) + (U;n0) = �(U�;b) + (U;n0) 2 H
1
0 (0; l)

and thus u2 2 H
2
0 (0; l), because U� 2 H

1
0 (0; l)

3, � = �(U�; t) 2 H
1
0 (0; l), etc.

The equation (9.15) is nothing but the asymptotic one dimensional equation for

curved rods, as derived in [10].

Consider now the case of smooth arches b� : [0; 1]! R
2 and let

c = �
0 = (arctan(

b�0
2b�0
1

))0 =
b�00
2
b�0
1 �

b�00
1
b�0
2

jb�0j2
(9.16)

denote its curvature. Then under the conditions that l = 1, EIx22 = 1, EIx23 = 1,

�K = 1, �f3 = 0, � = 0,  = 0, u3 = 0, v3 = 0, � = 0 and � = c, we get from

(9.11){(9.15) Z 1

0

(u02 + cu1)
0(v02 + cv1)

0
dx1 =

Z 1

0

(�f ;v)2 dx1; (9.17)

for all v 2 fw 2 H
1
0 (0; 1) � H

2
0 (0; 1) : w

0
1 � cw2 = 0g, which is nothing but the

asymptotic one dimensional \exural" model for arches from [6].

A Appendix

In this section, we construct a local frame for the unit speed curve C generated by a

Lipschitz function, and its regularization. Finally, we show that slight modi�cations

of the previous arguments enable us to derive the same asymptotic one dimensional

model as in Theorem 8.8, when t, n and b 2 L1(0; l)3.

Proposition A.1 Let � 2 W
1;1(0; l)3 be a parametrization of a unit speed curve.

Then there exist the tangent vector t, the normal vector n, the binormal vector b,

which belong to L1(0; l)3, satisfying

jtj = jnj = jbj = 1; t?n?b a.e. on (0; l): (A.1)

Further, there exist functions ��, t�, n� and b�, � 2 (0; 1), such that

�0
�
= t�; t� ! t; n� ! n; b� ! b in measure on (0; l) (A.2)
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for � ! 0,

jt�j = jn�j = jb�j = 1; t�?n�?b� in [0; l] nD� (A.3)

for all � 2 (0; 1), �� 2 W
1;1(0; l)3 and �0

�
, t�, n�, b� are piecewise continuous

functions with a �nite set D� of points of discontinuity.

The proof of the proposition is a consequence of Lemmas A.2{A.6.

Lemma A.2 Let � 2 W
1;1(0; l)3. Then there exist the tangent vector t, the normal

vector n and the binormal vector b, which belong to L1(0; l)3, and satisfy (A:1).

P r o o f: This construction is based on the solvability with respect to bn = (bn1; bn2; bn3)
of the equation bn1t1 + bn2t2 + bn3t3 = 0; (A.4)

where the tangent vector t is de�ned by t = �0. Let us denote Iti , i = 1; 2; 3, the

Lebesgue measurable sets such that

jtij �

r
1

3
a.e. on Iti ; i = 1; 2; 3: (A.5)

Since jtj = 1 then at least one of these sets must be nonempty and in addition

j[0; l] n
S3

i=1 Iti j = 0. Using (A.4) we can de�ne the functions bni, i = 1; 2; 3, in this

way bn2 = 1; bn3 = 1; bn1 = �t2 � t3

t1
a.e. on It1 ; (A.6)

bn1 = 1; bn3 = 1; bn2 = �t1 � t3

t2
a.e. on It2 n (It2 \ It1); (A.7)

bn1 = 1; bn2 = 1; bn3 = �t1 � t2

t3
a.e. on It3 n [(It3 \ It1) [ (It3 \ It2)]: (A.8)

Hence we get that jbnj � 1 a.e. in [0; l] and from (A.5), it follows that bn 2 L1(0; l)3.
Thus we can put

n =
bn
jbnj (A.9)

and

b = t� n; (A.10)

which completes the de�nition of the local frame in L1(0; l)3. 2

Lemma A.3 Let I � (0; l) be a Lebesgue measurable set and let fI�1g�12(0;1) be an

arbitrary family of measurable sets such that I�1 � I for all �1 2 (0; 1), and

jI n I�1 j ! 0 for �1 ! 0: (A.11)

Then there exist the open intervals JI�1 ;k � (0; l) and m(�1) 2 N, m(�1) ! 1 for

�1 ! 0, such that

I�1 �

1[
k=1

JI�1 ;k
; 8�1 2 (0; 1); j(I�1 n

m(�1)[
k=1

JI�1 ;k
) [ (

m(�1)[
k=1

JI�1 ;k
n I�1)j ! 0 (A.12)
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and

j(I n

m(�1)[
k=1

JI�1 ;k
) [ (

m(�1)[
k=1

JI�1 ;k
n I)j ! 0 (A.13)

for �1 ! 0.

P r o o f: From the de�nition of the (outer) Lebesgue measure, it follows that

jI�1 j = inf
P;I�1

�P
jP j; P bounded open sets; �1 2 (0; 1):

Hence we can construct for arbitrary but �xed �1 2 (0; 1) the sequence fPn�1g
1
n�1

=1

consisting of bounded open sets such that I�1 � Pn�1
, n�1 = 1; 2; : : :, and

lim
n�1

!1
jPn�1 n I�1 j = 0

or equivalently 8b�1 9n0(�1;b�1) 2 N0 : 8n�1 � n0(�1;b�1)
jPn�1 n I�1 j < b�1: (A.14)

Since Pn�1 are open bounded sets,

Pn�1
=

1[
k=1

JPn�1
;k; n�1 = 1; 2; : : : ;

where JPn�1
;k are bounded open intervals. We obtain

lim
m�1

!1
jPn�1 n

m�1[
k=1

JPn�1
;kj = 0

or equivalently 8b�2 9m0(b�2; n�1) 2 N0 : 8m�1
� m0(b�2; n�1)

jPn�1 n

m�1[
k=1

JPn�1
;kj < b�2 (A.15)

for �1 2 (0; 1) arbitrary but �xed. We notice that the sets of indices fb�j(�1)g�12(0;1),
j = 1; 2, may be chosen such that b�j(�1)! 0 for �1 ! 0 and j = 1; 2. From (A.14),

it follows the existence of n(�1) = n0(�1;b�1(�1)) 2 N0 such that for all n�1 � n(�1)

and �1 2 (0; 1)

jPn�1 n I�1 j < b�1(�1): (A.16)

We can suppose without loss of generality that n(�1) ! 1 for �1 ! 0. From

(A.15), it follows the existence of m(�1) = m0(b�2(�1); n(�1)) 2 N0 such that for all

m�1
� m(�1) and �1 2 (0; 1)

jPn(�1) n

m�1[
k=1

JPn(�1)
;kj < b�2(�1): (A.17)
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We can suppose without loss of generality that m(�1)!1 for �1 ! 0. Combining

(A.16) and (A.17) leads to

jPn(�1) n I�1 j ! 0 and jPn(�1) n

m(�1)[
k=1

JPn(�1)
;kj ! 0;

which together with (A.11) imply

j(I�1 n

m(�1)[
k=1

JPn(�1)
;k) [ (

m(�1)[
k=1

JPn(�1)
;k n I�1)j ! 0 (A.18)

and

j(I n

m(�1)[
k=1

JPn(�1)
;k) [ (

m(�1)[
k=1

JPn(�1)
;k n I)j ! 0 (A.19)

for �1 ! 0. Since we suppose that I�1 � I � (0; l) for all �1 2 (0; 1), we can de�ne

JI�1 ;k
= JPn(�1)

;k \ (0; l) and now it is easy to verify (A.12) and (A.13). 2

Lemma A.4 Let I � (0; l) be a Lebesgue measurable set and let fI�1g�12(0;1) be an

arbitrary family of measurable sets such that I � I�1 � (0; l) for all �1 2 (0; 1), and

jI�1 n Ij ! 0 for �1 ! 0: (A.20)

Then there exist the open intervals JI�1 ;k � (0; l) and m(�1) 2 N, m(�1) ! 1 for

�1 ! 0, such that

I�1 �

1X
k=1

JI�1 ;k
; 8�1 2 (0; 1); j(I�1 n

m(�1)[
k=1

JI�1 ;k
) [ (

m(�1)[
k=1

JI�1 ;k
n I�1)j ! 0 (A.21)

and

j(I n

m(�1)[
k=1

JI�1 ;k
) [ (

m(�)[
k=1

JI�1 ;k
n I)j ! 0 (A.22)

for �1 ! 0.

P r o o f: Since the proof is analogous to the proof of Lemma A.3, we omit it. 2

Lemma A.5 Let the functions t, n 2 L
1(0; l)3 be as constructed in the proof of

Lemma A:2. Then for any � > 0 there exist piecewise continuous functions t�, n�,

� 2 (0; 1), with �nite sets bD� of points of discontinuity such that

jt�j = jn�j = 1 in [0; l] n bD� (A.23)

and

t� ! t and n� ! n in measure on (0; l) (A.24)

for � ! 0.
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P r o o f: Let the sets I+
ti;�1

and I�
ti;�1

be determined by

x1 2 I
+
ti;�1

, ti(x1) � �1 and x1 2 I
�
ti;�1

, ti(x1) � ��1; i = 1; 2; 3; (A.25)

for �1 2 [0; 1]. It is easy to see that

(0; l) = I
+
ti;0

[ I
�
ti;0

(A.26)

and

I
+
ti;�1

� I
+
ti;0
; 8�1 2 (0; 1); jI+

ti;0
n I

+
ti;�1

j ! 0; (A.27)

I
�
ti;�1

� I
�
ti;0
; 8�1 2 (0; 1); jI�

ti;0
n I

�
ti;�1

j ! 0 (A.28)

for �1 ! 0 and i = 1; 2; 3. From Lemma A.3, it follows the existence of the open

intervals J
I
+
ti;�1

;k
and mi(�1), i = 1; 2; 3, such that m(�1) = maxi=1;2;3fmi(�1)g ! 1

for �1 ! 0, and
m(�1)[
k=1

J
I
+
ti;�1

;k
� (0; l); m(�1) = 1; 2; : : : ; (A.29)

j(I+
ti;�1

n

m(�1)[
k=1

J
I
+
ti;�1

;k
) [ (

m(�1)[
k=1

J
I
+
ti;�1

;k
n I

+
ti;�1

)j ! 0 (A.30)

and

j(I+
ti;0

n

m(�1)[
k=1

J
I
+
ti;�1

;k
) [ (

m(�1)[
k=1

J
I
+
ti;�1

;k
n I

+
ti;0

)j ! 0 (A.31)

for �1 ! 0 and i = 1; 2; 3.

The functions ti, i = 1; 2; 3, are de�ned for almost all x1 2 (0; l) and we extend these

functions by zero outside of (0; l). This enables us to de�ne the functions

t
+
i;�1

(x1) = maxf�1; ti(x1)g and t
�
i;�1

(x1) = �maxf�1;�ti(x1)g; x1 2 R
1
: (A.32)

We can deduce from (A.26){(A.28) and (A.32) that

t
+
i;�1

= ti on I
+
ti;�1

and t�
i;�1

= ti on I
�
ti;�1

(A.33)

and

t
+
i;�1

! ti on I
+
ti;0

and t�
i;�1

! ti in measure on (0; l) n I+
ti;0
; (A.34)

for �1 ! 0 and i = 1; 2; 3. Further, we can easily see that

t
+
i;�1

�#�2 ! t
+
i;�1

on

m(�1)[
k=1

J
I
+
ti;�1

;k
and t�

i;�1
�#�2 ! t

�
i;�1

on (0; l)n

m(�1)[
k=1

J
I
+
ti;�1

;k
(A.35)

in measure for �xed �1, i = 1; 2; 3 and for �2 ! 0 (it follows from the conver-

gence of molli�ers in L
p-spaces, p 2 [1;1)), where # 2 C

1
0 (�1; 1), 0 � # � 1,R 1

�1
#(x1) dx1 = 1 and #�2(x1) =

1
�2
#(x1

�2
). Now, we de�ne the functions

bti;�1 =
(
t
+
i;�1

on
S

m(�1)

k=1 J
I
+
ti;�1

;k

t
�
i;�1

on (0; l) n
S

m(�1)

k=1 J
I
+
ti;�1

;k

(A.36)
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and bti;�1;�2 =
(
t
+
i;�1

� #�2 on
S

m(�1)

k=1 J
I
+
ti;�1

;k

t
�
i;�1

� #�2 on [0; l] n
S

m(�1)

k=1 J
I
+
ti;�1

;k
:

(A.37)

We get from (A.35) that

bti;�1;�2 ! bti;�1 in measure on (0; l) (A.38)

for �xed �1, i = 1; 2; 3 and for �2 ! 0, and from (A.26), (A.31), (A.34), (A.36) that

bti;�1 ! bti in measure on (0; l) for �1 ! 0 and i = 1; 2; 3: (A.39)

In addition, we can deduce from (A.1), (A.32) and (A.36){(A.37) that

1 � jbti;�1;�2 j � �1 and 1 � jbti;�1 j � �1 a.e. on [0; l] (A.40)

for all �2 2 (0; 1).

Let us take arbitrary but �xed b�1 > 0. Let, further, E
b�1;�1

=
S3

i=1Eb�1;�1;i
and

E
b�1;�1;�2

=
S3

i=1Eb�1;�1;�2;i
, where jti;�1� tij � b�1 on Eb�1;�1;i

and jti;�1;�2� ti;�1 j � b�1 on
E
b�1;�1;�2;i

, �j 2 (0; 1), j = 1; 2 and i = 1; 2; 3. Then we conclude from (A.38){(A.39)

that

jE
b�1;�1;i

j ! 0 for �1 ! 0; jE
b�1;�1;�2;i

j ! 0

for �2 ! 0 and �1 arbitrary but �xed, or equivalently 8b�2 9�01(b�1;b�2; i) > 0 : 8�1 2

(0; �01(b�1;b�2; i))
jE

b�1;�1;i
j < b�2 (A.41)

and 8b�3 9�02(b�1;b�3; �1; i) > 0 : 8�2 2 (0; �02(b�1;b�3; �1; i))
jE

b�1;�1;�2;i
j < b�3 (A.42)

for i = 1; 2; 3. Now, we can take the family of indices fb�j(�)g�2(0;1) such thatb�j(�)! 0 for � ! 0 and j = 1; 2; 3. Then there exist �01(b�1(�);b�2(�); i) > 0 : 8�1 2

(0; �01(b�1(�);b�2(�); i))
jE

b�1(�);�1;ij < b�2(�): (A.43)

Let �1(�) 2 (0;mini=1;2;3f�
0
1(b�1(�);b�2(�); i)g) be such that �1(�) ! 0 for � ! 0.

Further, there exists �02(b�1(�);b�3(�); �1(�); i) > 0 : 8�2 2 (0; �02(b�1(�);b�3(�); �1(�); i))
jE

b�1(�);�1(�);�2 ;ij < b�3(�) (A.44)

for i = 1; 2; 3. Let, now, �2(�) 2 (0;mini=1;2;3f�
0
2(b�1(�);b�3(�); �1(�); i)g) be such

that �2(�)! 0 for � ! 0. We de�ne the functions

ti;� =
bti;�1(�);�2(�)
jbt�1(�);�2(�)j ; i = 1; 2; 3: (A.45)

Since

jbti;�1(�);�2(�)j � �1(�) > 0 on (0; l) (A.46)
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as a result of (A.40), the estimate

jbt�1(�);�2(�)j2 (A:1)
= jtj2 + jbt�1(�);�2(�)j2 � jtj2

= 1 +

3X
i=1

(bti;�1(�);�2(�) � ti)(bti;�1(�);�2(�) + ti) � 1� 6b�1(�) (A.47)

on (0; l) n (E
b�1(�);�1(�) [ Eb�1(�);�1(�);�2(�)) enables us to deduce from (A.45) that

t� ! t in measure on (0; l): (A.48)

We can easily deduce from (A.37), (A.45) and (A.46) that the functions t� are

piecewise continuous with �nitely many points of discontinuity, because the number

of intervals J
I
+
ti;�1

;k
is for all �1 2 (0; 1) �nite . Analogously we can de�ne the

function n�. 2

In the next lemma, we discuss the orthogonality of the approximating vectors.

Lemma A.6 Let the functions t, n, b 2 L
1(0; l)3 be constructed in the proof of

Lemma A:3. Then there exist piecewise continuous functions �t�, �n�, �b�, � 2 (0; 1),

with a �nite set D� of points of discontinuity such that

j�t�j = j�n�j = j�b�j = 1; �t� ? �n� ? �b� in [0; l] nD� (A.49)

for all � 2 (0; 1) and

�t� ! t; �n� ! n; �b� ! b in measure on [0; l] (A.50)

for � ! 0.

P r o o f: Let us de�ne the set E 1
12
;�
=
S3

i=1E 1
12
;�;ti

[ E 1
12
;�;ni

, where jti;� � tij �
1
12

on E 1
12
;�;ti

and jni;� � nij �
1
12

on E 1
12
;�;ni

, where the functions ti;� and ni;� are

constructed in the previous lemma. From (A.24), it follows that

jE 1
12
;�
j ! 0 for � ! 0: (A.51)

We can easily see that then

sup
�2(0;1)

k(t�;n�)kL1([0;l]nE 1
12

;�
) � sup

�2(0;1)

k(t� � t;n�)kL1([0;l]nE 1
12

;�
)

+ sup
�2(0;1)

k(t;n� � n)kL1([0;l]nE 1
12

;�
) �

1

2
: (A.52)

(A.51) enables us to use Lemma A.4 with I = ; and to construct the open intervals

JE 1
12

;�
;k � (0; l) such that

E 1
12
;�
�

1[
k=1

JE 1
12

;�
;k; (A.53)
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where JE 1
12

;�
;k = (aE 1

12
;�
;k; bE 1

12
;�
;k) and

j

1[
k=1

JE 1
12

;�
;kj ! 0 for � ! 0: (A.54)

We can suppose without loss of generality that the intervals JE 1
12

;�
;k are mutually

disjoint and that

dist(JE 1
12

;�
;k1
; JE 1

12
;�
;k2
) = minfjaE 1

12
;�
;k1
� bE 1

12
;�
;k2
j; jaE 1

12
;�
;k2
� bE 1

12
;�
;k1
j > 0

for k1 6= k2 arbitrary. Further, we take a family of positive indices fb�k(�)g1k=1,

� 2 (0; 1), such that
1X
k=1

b�k(�)! 0 (A.55)

for � ! 0. We de�ne the intervals J�
E 1
12

;�
;k
= (aE 1

12
;�
;k�b�k(�); bE 1

12
;�
;k+b�k(�))\(0; l).

From (A.53){(A.55), it follows that

jE 1
12
;�
j � j

1[
k=1

JE 1
12

;�
;kj � j

1[
k=1

J
�
E 1
12

;�
;k
j

= j

1[
k=1

JE 1
12

;�
;k [

1[
k=1

(aE 1
12

;�
;k � b�k(�); aE 1

12
;�
;k) [

1[
k=1

(bE 1
12

;�
;k; bE 1

12
;�
;k + b�k(�))j

� j

1[
k=1

JE 1
12

;�
;kj+ 2

1X
k=1

b�k(�)! 0 (A.56)

for � ! 0.

Now, using Proposition 3.1 we can construct the piecewise continuous normal and

binormal vector functions �n� and �b� to the curve ��, where we put

��(x1) =

Z
x1

0

t�(z1) dz1 +�(0); x1 2 [0; l]:

It is easy to see that the functions �n� and �b� have the same points of discontinuity

as t�.

Let us denote bn0
�
= ni;� � (n�; t�)ti;� on (0; l). Now, we de�ne the function bnk+1

�
in

this way bnk+1
i;�

=8>>>><>>>>:
bnk
i;�

on [0; l] n [aE 1
12

;�
;k � b�k(�); bE 1

12
;�
;k + b�k(�)]

(1� bli;1;�;k)bnki;� + bli;1;�;k�ni;� on [aE 1
12

;�
;k � b�k(�); aE 1

12
;�
;k]

�ni;� on [aE 1
12

;�
;k; bE 1

12
;�
;k]

(1� bli;2;�;k)�ni;� + bli;2;�;kbnki;� on [bE 1
12

;�
;k; bE 1

12
;�
;k + b�k(�)]

(A.57)
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where bli;m;�, i = 1; 2; 3, m = 1; 2 and k = 1; 2; : : :, are linear functions such that

bli;1;�;k(aE 1
12

;�
;k � b�k(�)) = 0; bli;1;�(aE 1

12
;�
;k) = 1;

bli;2;�;k(bE 1
12

;�
;k) = 0; bli;2;�;k(bE 1

12
;�
;k + b�k(�)) = 1:

The de�nition (A.57) together with (A.55) enable us to deduce that 8b� > 0 9k1(b�; �) 2
N0 : 8k2 � k1(b�; �) and for arbitrary but �xed �

���x1 2 (0; l) : jbnk1(b�;�)
�

(x1)� bnk2� (x1)j > 0
��� = j

k2�1[
k=k1(b�;�)

J
�
E 1
12

;�
;k
j

� j

k2�1[
k=k1(b�;�)

JE 1
12

;�
;kj+ 2

k2�1X
k=k1(b�;�)

b�k(�) < b�: (A.58)

Then, from boundedness kbnk
�
k1 � 2, we conclude that the sequence fbnk

�
g1
k=1 is for

arbitrary but �xed � 2 (0; 1) a Cauchy and thus convergent sequence in Lp(0; l)3,

p 2 [1;1), which implies the convergence in measure, i.e. there exits a function bn�
such that bnk

�
! bn� in measure on (0; l) (A.59)

for k !1.

It is easy to see from (A.52) and (A.57) that the vector bn� is orthogonal to t� and

all functions bni;�, i = 1; 2; 3, cannot be equal to zero at the same point, if

bnk
i;�
(aE 1

12
;�
;k �

b�k(�)
2

) 6= ��ni;�(aE 1
12

;�
;k �

b�k(�)
2

)

(A.60)

bnk
i;�
(bE 1

12
;�
;k +

b�k(�)
2

) 6= ��ni;�(bE 1
12

;�
;k +

b�k(�)
2

)

for some i, i = 1; 2; 3, and k = 0; 1; : : :. We refer the reader to (3.17){(3.19) for the

idea of the modi�cation of the de�nition (A.57) in the case that one of the conditions

in (A.60) does not hold. It is obvious from (A.57) that the function bn� has again

�nitely many points of discontinuity, because the functions n� � (n�; t�)t� and �n�
have �nitely many points of discontinuity.

From (A.24), (A.56), (A.57) and (A.59), it follows that

t� ? bn�; jbn�j > 0 and bn� ! n (A.61)

in measure on (0; l) for � ! 0. Taking

�n� =
bn�
jbn�j (A.62)
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and denoting �t� = t�, we get from (A.24), (A.52), (A.56), (A.57), (A.59), (A.61)

and (A.62) that
�t� ! t and �n� ! n in measure on (0; l) (A.63)

and the function �n� is piecewise continuous with �nitely many points of discontinu-

ity.

De�ning the functions

�b� = �t� � �n�; ���(x1) =

Z
x1

0

t�(z1) dz1 +�(0); x1 2 (0; l);

the proof is �nished. 2

Remark A.7 To obtain the smooth approximation of the functions t, n, b 2

L
1(0; l)3, we can use Proposition 3.2 and we get again (3.2){(3.5) with the con-

vergence in measure instead of the pointwise convergence.

Remark A.8 Theorem 8.8 remains valid for t, n, b 2 L
1(0; l)3. The only thing

we must change in the previous proofs, is the application of the Lebesgue theorem,

for instance in (7.79). But it is easy to check that�Z
l

0

jt� � tj2k(@1U�; t)(x1)k
2
H�1(S) dx1

� 1
2

! 0

for t� ! t in measure and for �! 0, because we have the estimate�Z
l

0

jt� � tj2k(@1U�; t)(x1)k
2
H�1(S) dx1

� 1
2

� b�k(@1U�; t)(x1)kL2(0;l;H�1(S)) + 2

 Z
I
b�;�

k(@1U�; t)(x1)k
2
H�1(S) dx1

! 1
2

;

where jt� � tj > b� on I
b�;� and jIb�;�j ! 0 for � ! 0. We can replace analogously the

application of the Lebesgue theorem in (7.72), etc. Therefore, one can obtain the

same results for W 1;1(0; l)3 curved rods.
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