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Abstract

In this paper we show that the asymptotic methods provide an advanta-
geous approach to obtain models of thin elastic bodies under minimal regu-
larity assumptions on the geometry. Our investigation is devoted to clamped
curved rods with a nonsmooth line of centroids and the obtained model is a
generalization of results already available in the literature.

1 Introduction

The asymptotic methods in modelling thin elastic bodies like plates, beams, arches
or shells have a long history. The recent treatise of Ciarlet [4] together with the
previously published volumes provide a unitary and modern mathematical treatment
of the contemporary research in elasticity. In the case of elastic curved rods, the
book of Trabucho and Viano [16] and the articles of Jurak and Tambaca [10] and
[11] demonstrate the application of asymptotic approaches in a general geometric
setting.

In the papers of Blouza and Le Dret [2], Ignat, Sprekels and Tiba [6], [7], the
possibility of relaxing the regularity assumptions on the shape of the elastic body
is examined for polynomial-type models. It turns out that the most advantageous
way in reaching minimal regularity hypotheses on the geometry is the asymptotic
modelling method.

We discuss this for curved elastic rods, but many of the ideas seem possible to
be further applied to shells. As announced in the title, we study (for the line of
centroids) unit speed curves in R® which admit Lipschitz parametrization. However,
by the standard reparametrization with respect to the arc length, one may consider
general absolutely continuous regular parametrization (i.e. with nonzero tangent
vector a.e.).

The basic idea is rather simple and natural. If we denote by € > 0 the “thickness”
parameter specific to asymptotic methods, we also introduce another small param-
eter d =€ (0 < r < %) associated to a regularization procedure applied to the
nonsmooth line of centroids. A careful examination of the convergence properties of
the arising smooth coefficients and sharp estimates in the corresponding variational
formulation of the linear elasticity system (after scaling) allows to pass to the limit
€ — 0 and to obtain the asymptotic model. In the smooth case, this is similar to

the model of Jurak and Tambaca [10] and [11].

An important ingredient in our argument is the construction of a local frame (dif-
ferent than the classical Frenét basis) applicable for Lipschitzian parametrizations.
This is a generalization of the ideas developed in Ignat, Sprekels and Tiba [7]. Let us
also mention other related works discussing asymptotic models: Aganovi¢ and Tutek
[1] (for beams), Nazarov and Slutskij [12], Jamal [8], Jamal and Sanchez-Palencia [9]
(for curved rods). The very recent work of Tambaca [15] discusses a regularization
procedure for piecewise C' parametrizations and in the absence of surface tractions,
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directly in the setting of ordinary differential equations (with different boundary
conditions) obtained as the asymptotic model in the smooth case. Our work is more
general from these points of view and our arguments are constructive and certainly
different.

Finally, we mention a brief outline of the paper. In Section 2, we introduce the basic
notations and notions that will be further needed. Section 3 deals with the construc-
tion of a local frame for piecewise C' parametrizations and its regularization. This
will be later refined (in the Appendix) to the case of Lipschitzian parametrizations.
In Section 4 we study the functional space which plays the essential role in our ap-
proach. Section 5 contains several auxiliary results, some of them collected from the
existing literature. Section 6 is devoted to the formulation of the linear elasticity
equations and their transformation. Section 7 gives the basic estimates including
a Korn-type inequality with explicit constants with respect to the thickness € > 0.
In Section 8 the passage to the limit ¢ — 0 is performed and the main existence
and uniqueness result is proved. Section 9 provides a short comparison with other
results available in the literature.

2 Basic notation

We denote by R® the usual three dimensional Euclidean space with scalar product
(+,+) and norm |-|. By “- x -” we shall denote the vector product in R* and by (,-)
any ordered pair. In the text the symbol “x” is also used for the Cartesian product
of two spaces and |A| will also denote the Lebesgue measure of some measurable
set A, without danger of confusion. The summation convention with respect to
repeated indices will be also used, if not otherwise explicitly stated.

Let S C R? be a bounded simply connected domain of class C! satisfying the
“symmetry” condition

/.’132 d$2d.’133 = / I3 d.’L‘Qd.’Eg = / Tol3 d.’Egd.’L‘3 = 0. (21)
S S S

We denote by Q = (0,1) x S, Q. = (0,1) x €S open “cylinders” in R?, where [ > 0
and € > 0 “small”, are given.

Let C be a unit speed curve of length [ in R® defined by its parametrization ® :
[0,]] — R3, and let t, n, b denote its tangent, normal and binormal vectors. As we
shall assume less regularity for @ as for instance in [3], the local frame t, n, b is not
necessarily the Frenét one. Alternative ways to construct local frames under low
regularity assumptions may be found in [7] and in Appendix. Let ®, : [0,!] — R® be
a smoothing of ® such that it remains a unit speed curve (i.e. |®.(y1)| =1, Yy, €
[0,1]) and t, n, b, be the associated local frame. The regularization parameter will
be of the form €", r € (0, %), and we just write ®,, t., n., b, to simplify notation.
More details on the construction of t, n, b and their regularizations are given in
Section 3 and in Appendix.



Further, we define the auxiliary functions a., (., 7. (corresponding to the usual
notions of curvature and torsion) by

Qe = (tle’bf)’ ﬂf = (t,e’ nE)a 76 — (blga ne)a

where t! is the derivative of t. with respect to z;, etc. To obtain this relations,
we use the assumed orthonormality of the local basis t., n., b, which gives the
orthogonality properties (t.,t.) = 0, (n.,n!) = 0, (b.,b’) = 0, that is t. may be
expressed via n., b, and so on. We obtain the “laws of motion” of the local frame

t:.: - aebe + ﬂenea

n,e = _ﬂete - 76b6, (2.2)
b, = —a.t, + yen..

We introduce the mappings R,
R.: Q — Q. Rz, 22, 23) = (21, €22, €3), (2.3)

and P, . )
P.: Q. — RS, PE(y) = {)e(yl) + y2n6(yl) + y3b£(y1)a (2'4)

(y1,y2,93) € (0,1) x €S, which gives the parametrization of the curved rod Q. =
P.(Q). Further,

de(y) = det(VP(y)) = 1 — Be(y1)y> — ac(y1)ys for all y € Q.. (2.5)

We can suppose that d.(y) # 0 for all y € Q. (see (2.10) and Corollary 3.3) and for
¢ “small”. Then P, : Q. — Q, is a C’l diffeomorphism, Ciarlet [4], Theorem 3.1-1.
In the sequel, we shall write 8; = 3—~, where ¥ = (¥1,92,93) € Q., 6; = aiyi’ for
y = (Y1,Y2,Y3) € Q, and 9; = Ti’ where z = (z1,z3,23) € Q. Thus, in (2.5)
V = (81, 02, 05). In an analogous way, we denote by V a function defined on ﬁe, Va
function defined on €2, and V a function defined on 2. We suppose throughout this

subsection that all derivatives, that we need, exist, which will follow from Section 3
later.

The covariant basis at point P.(y), y € Q, of the curved rod is defined by g; .(y) =
0;P.(y) and (using (2.2)) these vectors are given by

81,(y) = (1 — y2Be(y1) — yse(y1))te(y1) + ysve(yr)ne(y1) — y2ve(y1)be(y1),

B2(y) = 0e(41), Bse(y) = be(tn)- (2.6)

The vectors g7 defined by the relations (g; ., g7¢) = 6, constitute the contravariant
basis of the curved rod at the point P(y). They have the form

y)te(y1)
(y)

) = g, g) - ) ),



1
= + be(y1). 2.7
i 0
Further, we define the covariant and contravariant metric tensors (gij.);;—; and
(993, where

gij,e — (gi,ea gj,e)a gz],e = (gz,e, g]’ﬁ)' (28)

After substitution y = R(z), we adopt the notation
g7 () = 7 (Re(2)), gije(z) = Gije(Re(2)), 8ie(2) = 8ie(Re(2)), (2.9)
g(z) = 8"°(Re(2)), de(z) = de(Re(2)), A" (z) = ATM(R.(2)), (2.10)

where z € Q and (A¥*(y))? ., ,_, is a fourth-order tensor to be defined later in (6.2).

In an analogous way, we can derive the covariant basis at the point (P, o R.)(z),

z € Q. Thus o;(z) = 9;(P. o R.)(z) and these vectors are given by
01,(z) = (1 — ez2B(z1) — ex3ae(z1))te(21) + €x37e(T1)nc(71) — €Z2Ve(21)be(21),

0o (z) = en (z1), 03.(z) = ebe(z1). (2.11)

The vectors o’ defined by the relations (o0; ., 0”¢) = §, constitute the contravariant

basis at the point (P.oR¢)(z), z € 2. They have the form

01’6(.’13) . tﬁ(xl), 02,5(1.) _ —:L'3’yﬁ($1)t5(.’131) + IIE(.’El)

—3,¢ .’1?2’)/6(.’131)1]6(1'1) be(.’L'l)
"\Z) = : 2.12
0"“(z) d.(x) + ; ( )
We can define the covariant and contravariant metric tensors (oij7£)?,j:1 and (0%)
where

3
1,5=1»

0ije = (0i¢,0j¢), oe = (oi’f, oj’f). (2.13)
These tensors have the form

2 2,2.2 | 2,22 2 2
d: 4 e*x5ys + e“x5ys €T3y —€°TaYe

3 _ 2 2
(0ij.e)ij—1 = | €237 € 0 (2.14)
— €229, 0 €
and
1 —Z3%e 27,
d2 d2 dz
.. 2.2 2
17,€\3 _ —z3Ye 1 3% —T2T3Y¢
(o )i,j:l = a2 et z | (2.15)
T2, —T2T3Y¢ 1 + TyYe
2 2 T2

0u(z) = \/det(oij,ﬁ(x))?’jzl — &d,(z). (2.16)



We use for constants the symbols C' or C;, for i € Ny = {0,1,2,...}. Constant
vectors will be denoted by C or C; for i € Nj.

The symbols H*(Q2), H}(Q2) and LP(Q), respectively, denote (for p € [1,00]) the
standard Sobolev and Lebesgue spaces endowed with the norms || - ||y 2 or || - ||, We
will use the same notation of the norms also for vector or tensor functions in the case
that all their components belong to above mentioned Sobolev or Lebesgue spaces.
H~1(Q) stands for the dual space to H}(2). The notation C™(Q2), with m € N,
means the usual spaces of continuous functions whose derivatives up to the order m
are continuous in Q. The symbols L?(0,1; X), p € [1,00), and C([0,1]; X), where X
is a Banach space, stand for the Bochner spaces endowed with the norms

l 1/p
ol ooy = ( | ot dxl) and [[o]logo 0 = max [[o(e)]]x.

The definitions of the domains QE, Q. and ) enable us to introduce the following
notation:

V(Q) ={V € H'(2)® : V|p_(oyxes) = VIp.({1yxes) = 0},

V(Q) ={V € H' () : V]oyxes) = Vl{yxes) = 0},
V(Q) = {V & Hl(Q)3 : V|({0}X5) = V|({l}><3) = 0}
and further we introduce the space
VerP(0,1) = {(V,9) € H)(0,1)* x L*(0,1) : (V',t) =0

and V, = —¢t + (V',b)n — (V/,n)b € H}(0,1)%}. (2.17)
The properties of the space vg’“"’(o, [) will be studied in Section 4.

3 Construction of the local frame for the unit
speed curve C and its regularization

We start by recalling the result established in [7]:

Proposition 3.1 If ¥ € C'([0,1])? then the tangent vector tg € C([0,1])? is defined
by tg = ¥’ and there exists a normal vector ng € C([0,1])® such that |ng(z;)| =1,
(ng(z1),te(z1)) =0, z1 € [0,1]. The vector bg = tg X ng has the same regularity
properties and completes the local frame.

In this section, we extend and complete Proposition 3.1 as follows



Proposition 3.2 Let the function ® € C([0,1])® be such that its tangent vector t =
®' is a piecewise continuous function with a finite set D of points of discontinuity.
Then there exists the functions n and b piecewise continuous such that

|t| =|n|=|b|=1, tlnlb in [0,{]\ D. (3.1)
In addition, there exist the functions

{®c}ec0,1), {tetec01), {Metec(1), {Petec(o,ny € C([0, 1)?

such that
® =t |t =|n]=|b|=1, tcLln.Lb, on [0,]] (3.2)
te — t, n. —» n, b, — b pointwisely in [0,]\ D, (3.3)
1
[Eelloos [1nlloos [IBelloo ~ O() (3.4)
and )
€elloo, IInelloo, [1Belloc ~ O(7) (3.5)

forr e (0,3).

P r oo f: First, we denote by D;,, ¢« = 1,2,3, the sets given by the points of
discontinuity for the functions ¢;, « = 1,2,3. Further, we have D = U?Zl D;,.
The existence of the functions n and b satisfying (3.1) immediately follows from
Proposition 3.1 after application on the intervals forming the set [0,[] \ D.

In the first step, we construct the continuous approximation of the functions t, n,
b. As D has a finite number of elements, its points are isolated and we denote them
in increasing order by z;, 7 =1,..., k. The approximation will be demonstrated on
some points T; < Zj;1 < Zj42 € D. We define the functions

t; on [/x\j+o-,/x\j+l_o-]
tic =19 lic on[ZTjy —0,Tjp+0] (3.6)

t;  on [Tj1+0,Tj — 0],

where o > 0 is arbitrary and sufficiently small and the functions [; , are continuous
and such that

lio(Zjr1 — 0) = ti(Tj11 — 0), (3.7)
lio(Tj1 + 0) = i(Tj41 + 0) (3.8)

and there is no point z € [Zj11 — 0, %41 + o] such that simultaneously
lis(2) =0, Vi=1,2,3. (3.9)
Thus we have constructed the continuous vectorial function jc\,, such that

t, — t pointwisely in [0,1] \ D (3.10)



for 0 — 0 and
|t;| > 0 on [0,] (3.11)

for all o sufficiently small. Then the functions

t,
t, = —— (3.12)
[to]
are continuous and satisfy the convergence
t, — t pointwisely in [0,{] \ D (3.13)

for ¢ — 0.

Now, using Proposition 3.1 we can construct the continuous normal and binormal
vector functions n, and b, to the curve ®,, where we put

®,(r,) = /Om1 ty(z1) dzy + ®(0), z; € [0,1].

Let us define the function n, in this way

n; n [Z; + 20,%41 — 20]
(1= lio)ni +linehiy on [$J+1 = 20,Tj41 — 0]
Nig =1 Nio on [Zj11 — 0,Zj41 + 0] (3.14)

[;
(1 — li’g,g)ﬁi,g + li,Q’J’I’Li on [.’L'H_l + g, .’13]+1 + 20’]
n; on [Zj41 + 20,%42 — 20,

where E,m,a, 1 =1,2,3 and m = 1,2, are linear functions such that
lite(@jy1 —20) =0, li1,(Tj1 —0) =1,

Z;,Z,a(:/v\jJrl +0) =0, E,Q,a(fjﬂ +20) = 1.

It is easy to see from (3.6) and (3.14) that the vector n, is orthogonal to t, and all
functions 7, ,, ¢ = 1,2, 3, cannot be equal to zero at the same point, if

~ 3 o 3
ni(Zj1 = 50) # ~io(Tj — 50) (3.15)
and
~ 3 o 3
ni(Tjr1 + 50) # —Nio(Tj1 + 50) (3.16)

for some i, i =1, 2, 3.

Now, we show how to modify the definition (3.14) of the function n, in the case
that (3.15) or (3.16) do not hold. We suppose for instance that

~ 3 SN 3
ni($j+1 - 50’) = —ni,a(:z:jﬂ — 50’) (317)



for all 7,2 =1,2,3, and

’n,,'(/f]url + 50') 7£ _ﬁi,a(?fjJrl + 50-)

for some 4, i = 1,2, 3. In this case, we define the functions n;,, i = 1,2, 3, by

/

n; on [Z; + 20,Z;41 — 20]
(1-— E,l,a)ni — E,l,oﬁi,o on [ZTjy1 — 20,Tj41 — 0]
= 4 —(1 :E,g,z)ﬁi,ai—ﬁ&oéi,a on [ZTjy1 — 0,Zj41]
’ (1 —=1liz0)bip+lis0oMio on [Zji1,Tjt1 + 0]
(1— 2;4,,,)731-,0 +lA,~,4,an,~ on [Zj41 + o, xJH + 20|
[ 7 on [Zj41 + 20,%49 — 20,

(3.18)

(3.19)

where IV),-,U are the components of the binormal B,, and E,m,o, for 2 = 1,2,3 and

m = 1,2, 3,4, are linear functions such that

E,l,a(?ﬂ\j—i—l - 20) =0, E,l,a(?ﬂ\j—i—l - U) =1, E,2,o(§j+1 - U) =0, E,z,o(@ﬂ) =

L,

z;7370—(/'T;\]"‘l) = 0’ Z7370(/x\]+1 + 0) = ]" E7470(/x\j+1 + 0) = 07 z;7470'(/'7;\]-"‘1 + 20—) = ]'

We can derive from (3.6) and (3.19) that
t,1n,, [0, >0 on [0,(]
for all o sufficiently small and
n, — n pointwisely in [0,1] \ D

for 0 — 0. We can easily check using (3.19) and (3.20) that the functions

are continuous, orthogonal to t, on [0,![] for all o € (0,1) and
n, — n pointwisely in [0,1] \ D

for ¢ — 0.

Defining the function b, by
b, =t, X n,

we can complete the local frame. It is easy to verify that |b,| = 1 and
b, — b pointwisely in [0,[] \ D

for ¢ — 0.

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)



Now, we construct C*°-approximation of the local frame. Let us define the functions

t,, * 195
tys = , 3.26
76 |ta- * 195| ( )

n; x 195 - (no * ,19(5; to‘,é)to,(s

L) (327)

- |n0' * 195 - (no * ,19(5; to,é)to,6|,

where ¥ € C{°(—1,1), f_ll I(z1) dzg =1, 0 <9 < 1 and 95(z1) = $9(L). From the
convergence
t, x 95 — t, in C([0,1])* (3.28)

for § — 0, which imply that
|to * Us5(z1)| > Ci(0,6), V1 € ]0,1], (3.29)
where C;(0,6) — 1 for 6 — 0, we see that (3.26) makes sense and
t,s — t, in C([0,1])? (3.30)
for fixed o and § — 0. Similarly, we deduce that
n,; — n, in C([0,1])* (3.31)
for fixed o and § — 0. Defining, now, the function bs by
bss =tos X Doy (3.32)

completes the approximating local frame and the convergences (3.30)—(3.31) imply
that
b,; — b, in C([0,1])? (3.33)

for fixed o and § — 0. The fact that t,s, n,s and b,s € C>([0,1])® follows from
(3.26)—(3.27), (3.29) and from the definition of mollifiers.

From (3.6), (3.12), (3.19), (3.22) and (3.24), it follows that
t, =t on [Z; + 0,Zj11 — 0], n, =n, b, =bon [Z; + 20,Z;:1 — 20|, (3.34)

which implies that
Ty € [Z5,Zj41] ¢ [to(21) — t(z1)] + [0y (21) — n(zy)]

+|bs(z1) — b(z1)| > €| = 4o, (3.35)

where o is independent of €;. Further we deduce from (3.30), (3.31) and (3.33) that
Vo € (0,1) Yea > 0 Fdy(0, €2) : V6 € (0, 6p(o, €2))

||tc,,5 - tg||c([aj,aj+1]) + ||nc,,5 - nUHC([ﬁjﬁjH]) + ||bc,,5 - bUHC([@',@'HD <e. (3.36)



Let now €3 = €3(0), where e3(0) — 0 for 0 — 0, then we conclude from (3.36) that
3(50(0’) 1 Vo & (0,(50(0’))

1.5 = tollogz; o541 + 105 = Dolloqa; 2;11) + IPes = bolles; 2551 < €2(0)- (3.37)
From (3.34) and (3.37) it follows that

60,5 = tllcz+20.8;11-20) + 0o — nllc(g; 420, 41-20)

+[[bes — blle(;420,8;41—20]) < €2(0) (3.38)
and
Ty € [@‘a@ﬂ] : |tcr,6($1) —t(zy)| + |na,6($1) —n(zy)|

+|bos(z1) — b(z1)| > €(0)] = 40 (3.39)

for all § € (0,d0(c)). It is clear that the choice of § depends on o. Now, we
reformulate the argument in such way that o depends on §. We suppose for simplicity
that we have two decreasing sequences {o,}o>; and {0(0,)}5>,, where §(c0,) — 0
for o,, — 0, such that

Iton.b(on) = tllo(@;+20m,8;01—200)) T (Mo 5(00) — Dl (8420085 1—20a]) T

1bo, 6(em) — Bllc(@;+20m.8)11-20a]) < €2(0n) (3.40)
and
Itons = tllcz;+20m,8;41—200) T [Non,s — 0lc(8;420m,8,11—200])
+|bo,.s — bllc((@4+20m,8,41—200) < €2(Tn) (3.41)

for all 6 € (6(ons1),d(0n)) see (3.38). Now, we can put d,, = §(0,,) and we can define
the function
o(6) =0, for 6 € (0ny1,0n], n=1,2,.... (3.42)

This enables us rewrite (3.40) using (3.41) and (3.42) as
[to(3)6 = tllcz; +200)201-200)) + [Bo(3),5 — Bllo(z; 42009311 -20 (1)
+[[bo(s).6 — bllc(s, +200)8,41-206)) = 0 (3.43)
for § — 0. We denote
ts = to(s),6, Ns = Ny(5)5, bs = bys)s
and

q’g(.’l?l) = Aml t5(z1) dzy + q’(O), T € [O,Z]

In the sequel, we fix § =¢€", r € (0, %), and redenote simply ®;, ts, ns, bs by ®, t,,
n., b.. Analogously as we have obtained (3.43), we get from (3.37) using the above
mentioned notation

||te - to‘(eT)

(7)) T M = Noen)[le(@; 201 T [Pe = bo(en)llo(z; ;401 < €2(0(€7)),

which together with the definition of mollifiers and (3.26), (3.27) and (3.32) give
(3.4) and (3.5). O
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Corollary 3.3 Let the function ®., t., n. and b, have the properties given by Propo-
sition 3.2. Then the functions o, Be, Y. defined by (2.2) belong to C*°([0,1]), have
the following behaviour

1
loellr 1Bl1oer IPelloo ~ O () , (3.44)
/ !/ !/ 1
lerelloo, 1Belloo, [17elloo ~ O { =7 ) (3.45)
forr € (0,3). In addition,
sup ( sup |Be(y1)yz+ae(y1)y3|> <1 (3.46)
y1€[0,] \ (y2,y3)€eS

for € sufficiently small and thus the mapping P, defined by (2.4) is injective and
there exist constants C;, 7 = 0,1, independent of € and x such that

0<Cy<dz)<Cy, Yee (0,1) and Yz € Q. (3.47)

P roof: From (2.2), it follows that
ac = (b, be), a = (t/,b) + (t;, bo),
(te,

Be = (e, o), 5 (£, me) + (b, mp),
= (b, no), v = (b, me) + (b, 1)
Hence and from Proposition 3.2, we get (3.44) and (3.45).

(3.44) yields (3.46) for ¢ sufficiently small, because y, = exy and y; = ez; for
(zg,z3) € S (see (2.3)). (3.46) together with (2.5) imply that the mapping P,
defined by (2.4) is injective and that (3.47) holds. 0

Remark 3.4 Without loss of generality, by rescaling the domain S, we can suppose
that (3.46) remains valid for € € (0,1).

4 Properties of the space thb(O,l)
Proposition 4.1 Let the space Vi™"(0,1) be defined by (2.17). Then
Y =—(V,,t) and V(z;) = /m[—(V*,b)n + (V.,n)b] dz; (4.1)
0
for z1 € [0,1], where 1 is a piecewise continuous function, and
V() = /Ol[—(V*,b)n + (V,,n)b| dz; = 0. (4.2)

VS’“"’(O, [) is a nontrivial Hilbert space endowed with the norm

KV, )7 = (VI + 1911z + [Vl - (4.3)
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P r o o f: The relations in (4.1) follow from (2.17), since (V’,b) = (V,,n) and
—(V')n) = (V,,b). Relation (4.2) is a consequence of the assumed boundary con-
ditions for the function V.

Using the embbeding theorem, we obtain from the definition of the functions V,, t
(see (2.17) and Proposition 3.2) and from (4.1) that 1 is piecewise continuous.

It is obvious that the set V™ (0,1) is linear and the norm (4.3) is induced by the

scalar product

(V. 9), (V. ))) = / (V. V) + (V!, V)] da,

l
0

l ~ A~ A~
+ /0 Vi dzy + / (V., V) + (V, V)] dz (4.4)

for arbitrary couples (V, ), ({\7, 1Z> € Vg’"’b(O, [). It remains to show that the space
VE™P(0,1) is complete in the norm introduced in (4.3). Using completeness of
the spaces H}(0,1)® and L?(0,l) and taking a Cauchy sequence {{V,,%,)}>>, in
VE™P(0,1), we can find such functions V, V, € H}(0,1)* and ¢ € L?(0,1) that

V,—V, V,,—V,in Hy(0,]) (4.5)
and
Yn — ¢ in L*(0,1), (4.6)

where {(V,,,%,)}22, C V¥™P(0,1). One can pass to the limit in the definition of
VE™P(0,1) and the completeness is proved.

Now, we want to show that the space VS’"’b(O,l) also contains nontrivial couples.
To prove this we take an arbitrary function V, € H}(0,1)* such that the functions
Vii, © = 1,2, 3, are not identically zero. Then the function V defined by

A~

V(o) = / (V. b)n + (V2,n)b] dar, @1 € [0,1],
0
satisfies l
V@) = / —(V.,b)n + (V,,n)b] day = C,
0

for some constant vector C;. Now, we take another function h € H}(0,1)3, which is
not proportional with V, and whose components are not identically zero, such that

/l[—(h, b)n + (h,n)b] dz; = C,,

where C2 = (02’1, 02’2, 02’3), Cg’i §£ 0 for 7z = 1, 2, 3. We define the function V* by
(we do not use the summation convention here)

. Cy;
Vii(z1) = Vii(zr) — Cl’
2,

hi(z1), z1 € [0,1]. (4.7)

’
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Then V., € H}(0,1), the functions V., ¢ = 1,2, 3, are not identically zero and
I
V() = / [—(V,,b)n+ (V,,n)b] dz; = 0.
0
This implies that the function V defined by
Vie) = [ (Vo bn+ (Vomb] o, a1 € 0,1 (18)
0

belongs to H}(0,1)%, (V',t) =0, ¥ = —(V,, t) is piecewise continuous and thus the
nontrivial couple (V, %) belongs to V&™(0,1). O

Now, we construct “approximating spaces” to the space vg’“"’(o, l).

Proposition 4.2 Let t., n. and b, be the functions from Proposition 3.2 and let
the space Vi (0,1) be defined by (2.17) using the functions t., n., b, instead
of t, n, b. Let, further, (V, ¢) € VS’"’b(O,l). Then there exist couples (V, 1) €
VOE’"E’bE(O, l) generating the functions V., . such that

{Ve}ee(O,l) C C(C))o(oal)37 {we}ee([],l) C CSO(O,Z); {V*,E}EE(O,I) C C(C))o(oal)37

V.—V, V,.— V,in H;(0,1)? (4.9)
e — ¥ pointwisely in [0,1] \ D and in LP(0,1), Vp € (1, 00), (4.10)

for e — 0 and
V2l ~ O, [l ~ O(3), 7 e (0,5). (111)

P roof: In the definition (2.17) of the space Vi™P"(0,1), we have defined the
function V, with the help of the function V. But we can use the inverse procedure
as in Proposition 4.1. We can easily construct by regularization the set of functions
{V.cteeo,n) C C5°(0,1)® such that

V..— V, in H}(0,1) (4.12)
for ¢ — 0. We know from Proposition 3.2 that t, — t, n. - n and b, — b

pointwisely in [0,1] \ D and strongly in LP(0,1)3, p € (1,00), and thus, using the
Lebesgue theorem,

)
/ —(V..,b)n. + (V..,n)bd] dz; = Cs(e) — 0, (4.13)
0

for € — 0. Let h be some vector function from C§°(0,1)*, which is not proportional
with V, and whose components are not identically zero, such that

!
/ [—(h,b)n + (h,n)b] dz; = C4 = (Cy,1, Csp,Cug),
0
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with 04,1' §£ 0, 1= ]_, 2,3 Then

[ - bm + (onb] day = 04+ (0 (414)

where Cs(e) — 0 for € — 0. Now, we define the function V, . by (we do not use the
summation convention here)

=~ 03,1'(6)

‘/*,E,i(x].) = ‘/*,E,i(x].) — al—l——cg(e)hz(xl), 1 € [0,[], ’L = 1, 2,3 (415)

Then V, . € C§°(0,1)3, the functions V,;, ¢ = 1,2, 3, are not identically zero and

!
/ [—(Vie, bo)ne + (Vie,n)b,] dzy = 0. (4.16)
0
Then analogously as in Proposition 4.1 we define the functions
T1
V.(z1) = / —(V.o,bn. + (V.. n.)bl da, (4.17)
0

Ye = —(V., to) (4.18)

and thus (V.,¢.) € Vi™P<(0,1) for ¢ € (0,1). Since t,, n. and b, € C=([0,1])3,
we get easily from (4.15) and from the properties of the functions \Af*,e and h that
V.. € C(0,1)® and thus using (4.17)—(4.18), V. € C§°(0,1)* and ¢, € C§°(0,1) for
all e € (0,1).

The verification of (4.9) and (4.10) is left to the reader. From (4.17), it follows the
estimate

IVl = [| = (Vi bene = (Vie, bone — (Ve be)ng + (V7 , no)be

*,€7 € *,€) 7€

(Voo )b + (Ve m)Bl s < 2( [ VL + IV

(1B o + 0 10) )

which together with (3.4) yields the first relation in (4.11). The second relation in
(4.11) easily follows from the fact that . = —(V., t.) and from (3.4). O

5 Auxiliary propositions

Proposition 5.1 [11] Let w € H*(Q2). Then 8;0;w € L*(0,1; H*(S)) for i, j =
1,2,3 except for i = j = 1. If, in addition, w|,—9 = W|z= = 0, then Jjw|z =0 =
Ojwlg,=1 = 0, for j = 2,3, in the sense of the space C([0,1]; H *(S)). Furthermore,
if v e L*(0,1; L*(S)), 01v € L*(0,1; H1(S)) and v|s,—0 = v|s,—1 = 0 in the sense of
the space C([0,1]; H*(S)), then there is a constant C' independent of v such that

||U||L2(0,Z;L2(S)) S C||Vv||L2(0,l;H—1(S))- (51)
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Proposition 5.2 [11] Let {v,}2, C L*(0,1; L*(S)), {O1va}>>, C L?(0,1; H1(S))
and let vy |p,—0 = Vn|zs,—1 = 0, for alln € N, in the sense of the space C([0,1]; H 1(S)).
Assume, in addition, that this sequence satisfies

v, — &, 8;v, — 0 in L*(0,1; H(9)), j = 2,3, (5.2)

where £ € L*(0,1; H'(S)). Then & € L?(0,1) and there exists a unique function
v € H}(0,1) such that v' = € and

v, — v in L*(0,1; L*(9)), (5.3)
v, — v in C([0,1]; H~1(S)). (5.4)

If the convergences in (5.2) are strong then the convergence (5.3) is also strong.

Every function V € H*(2)® may be represented in the local frame generated by the
vectors t,., n., b,:

V(z) = v1 (z)te(z1) + voe(z)nc(21) + v3(2)be(1), (5.5)
where the components of the vector v, = (v, Vo, Us¢) € HI(Q)3 are defined by
(Va te) = U1,e (Va ne) = V2, (V7 be) = U3,e- (56)

Using (2.2) together with (5.5) we get similar relations for the derivative 9; of V
)

(01 V(2),te(21)) = 01v1,e(T) — ac(71)v3,(2) — Be(T1)v2,e(7), (5.7)
(1 V(z),ne(z1)) = O1v2e(x) + Be(1)v1.e(T) + V(1) v3.(2), (5.8)
(01V(z), be(z1)) = 311)3,5(3?) + O‘E(xl)vl,e(x) - 76(3?1)712;(15) (5.9)

for a.a. z € Q. The following proposition shows that the relations (5.7)—(5.9) remain
valid under weaker assumptions on the function V.

Proposition 5.3 Let V € L?(Q)? and let the vector function ve = (v, V2.e, U3.c)
from (5.6) be such that &,v. € L*(0,1; H*(S)?). Then the function V of the form
(5.5) is such that &,V € L*(0,1; H 1(S)*) and fulfills the relations (5.7)—(5.9) in the
sense of the space L*(0,1; H~(S)) for all € € (0,1).

P r oo f: We must find the functions m; € L?(0,1; H(S)), i = 1,2, 3, such that

Vz( +h, -, ) — Vz(a K )

li
1m h

h—0

—0,i=1,2,3, (5.10)
L2(0]—0;H1(5))

where o is arbitrary small and h satisfies |h| < 0. We can substitute the expression
(5.5) in the fraction in (5.10), which leads to the expression

‘/;Z(xl + h’a T2, x3) - ‘/i(xla T2, x3)
h
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V1e(T1 + b, T2, 23)ti (21 + h) — v1 (@1, T2, 23)8i (1)

h
+Uz,e(:1:1 + h, T2, T3)Ni e (T1 + h) — V,e(T1, T2, T3)Mi,c(T1)
h
. h, , bie h) — € ) L2 bif ;
L Yse(@1 A o B, B)bie (@ + ) — Ve, B2, B)bielm1) Ly g

h
The first term may be rewritten as

(Ul,e(flh + h, 29, x3) — v1(1, T2, $3)>ti,e($1 + h)
h

(ti,e(ﬂh +h) — ti,e($1)>v1,e($1, T2, T3)

h
for i = 1,2,3 and a.a. z € Q and similarly the last two terms. Using (2.2),
the fact that the functions ¢;., n;., bie, @ = 1,2, 3, belong to C*([0,[]) and that

oyv € L*(0,1; H *(S)®), we can deduce that the relation (5.10) is fulfilled for the
vector function m = (my, my, m3) € L2(0,1; H~(S)3) defined by

+

m = 6lvl,et6 + Ul,e(aebe + ﬂene) + 61v2,6n6 + UZ,E(_/BEtE - Vebe)

+01v3,be + V3. (—ate + ven,). (5.11)

Since the function V does not depend on ¢, then the function m is an independent
function of € as well. Since o is arbitrary, using the relations (5.10), (5.11), we can
conclude that 8V = m in the sense of the space L*(0,1; H~'(5)3). We get from
(5.11) that

/(m, te)SO dzodrs = /(31111,5 - /BEUZ,G - Olevs,e)SO dzydzs
S S

for arbitrary ¢ € H}(S), which implies that
(m’ te) = 8lvl,e - /BEUZ,E — (U3 e (512)

in the sense of the space L?(0,l; H~'(S)). Since &,V = m in the sense of the
space L*(0,l; H7*(S)?) and thus (0,V,t.) = (m,t.) in the sense of the space
L2(0,1; H1(S)), we obtain from (5.12) the identity (5.7). The identities (5.8)—(5.9)
can be derived analogously. O

6 Variational equations for the curved rods and
their transformation

We consider . defined by the mapping P. o R. (see (2.3)—(2.4)) for ¢ € (0,1)
arbitrary but fixed as a three-dimensional homogeneous and isotropic elastic body
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with the Lamé constants A > 0 and u > 0. Let F. be the body force and G the
surface traction acting on the curved rod Q. such that F, € LZ(QE)3 and G, €

L2((P.oR.)((0,1) x 8S))3, for € € (0,1). Let Q. be clamped on both bases P.({0} x

eS) and P.({I} x €S). The equilibrium displacement U, is the solution of the
variational equation

/~ Z"jklekl(ﬁf)eij({f) dg: /'~ (f‘e,{/—) dg
Qe

Qe
+ / (G, V) dS.dijy, VV € V(), (6.1)
(P.oR.)((0,1)xdS)

where S, = (P oR.)((0,1) x 8S), Akl = \§iigh 4 1,(6%* 53t 4 §7157%) and (e;;(V))2

2,j=1
stands for the symmetric part of the gradient of the function V.

From (2.3)—(2.4) and from the regularization of the local frame constructed in Sec-
tion 3, it follows that the mapping P, o R, is the parametrization of the smooth
three-dimensional curved rod.

We transform the equation (6.1) to an equation on the domain Q. We combine the
standard transformation from [4, pp. 27-32] and [10] with the idea from [2], which
enables us to exclude the Christoffel symbols.

Transformation: Since the detailed derivation of the following expressions can
be found in [4, pp. 30-31], we mentioned only the basic identities here. Let Ve
H'(Q,)%, the mapping P, be given by (2.4), g = ([g*]1, [8"», [8*]s) be given
by (2.7) and W, = (W, W, W3,) = ?PE({/ o P.) be such that

"71' o Pe = Wk,e[gk’e]h 1= 17 2) 3.
Then . ) o )
(0;Vi) o Pe = (O Wy,e — Wy If, ) (8" i85,

where the Christoffel symbols I'

‘1 are defined by

[ipe=(8",0;8ke), 4,5,k =1,2,3.

Using the notation

we obtain _ ) )
ei;(V) o P. = eyu(Wo)[g™ilg™);, 4,5 = 1,2,3.

Now, we define the vector function V. by

V.= Wi,egiye(: {} © PE)
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Then )
(87:Wj,e + 8]VT/z,E) = 5 (87:(Wk,egk,€) gj,e) + 8j(VT/l,Egl,E) gi,e))

— (Ve + B(Var).
Since the Christoffel symbols are symmetric in the indices 7, j, we get, using the

identities ) ) o o
Wk,eri‘gj,e - Wk,e(gkyea igj,e) - 6@'(V£a _j,e) - (8iV6) gj,e)a

and the notation

that

Hence

[ ]
Using the above transformation, we can denote (see also [4, p.31])
A?kl — )\gij,egkl,e + 'ul(gik,egjl,e + gil,egjk,e) (62)
and thus we can transform the left-hand side of the equation (6.1) as
/ A, (0,)a%(V)(y) dy, YV € V(R,). (6.3)

€

After the substitution y = R.(z) in (6.3) and using the transformation of the right-
hand side of (6.1), which is given by the mapping P, o R, and by the relation

d§edg1 = 0/ V0% v;dSdz, = CQdE\/ViOij’erde.’El
see [4, p.19], and (2.13)—(2.16), we get

/ A (U, ) (V)d, do = / (F.,V)d, dz
Q Q

—I—/ (Ge, V)de/vi0i¢y; dSdxy, YV € V(Q), (6.4)
(0,))x3S

where v;, i = 1,2, 3, are the components of the unit outward normal to (0,1) x 9S.

The symmetric tensor w®(V) , obtained after composition with R, has the form

W(V) = L05(V) 4 w5(V), (6.5)

€
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where the individual nonzero components of the symmetric tensors 6° and k¢ are

defined by

1
eiz(v) = 5(82V’ gl,f)’ QSZ(V) = (82V’ nﬁ)’ Ggs(V) = (63V’ bf)’ (6'6)

Ua(V) = 505V, 1), 05s(V) = 3 (@V,b) +(BV,m)), (67

€ € 1 € 1
K11 (V) = (01V, 81,), £12(V) = 5(81V,n6), k13(V) = 5(81V,b6) (6.8)
(compare with [2]), where g; . — t, n. — n, b. — b pointwisely in Q \ (S x D) or
[0,1] \ D for ¢ — 0. The other components of #¢ and ¢ are equal to zero.

Now, we check that the inequality

€2

1 € C i € €
Sl U < 5 [ APMug (Ut (U, do, (6.9

with the constant C' independent of €, holds. This inequality together with the Korn
inequality derived in the next section enable us not only to prove the existence of a
unique solution U, for the equation (6.4) and to study the behaviour of the functions
U. and 1w(U,) for ¢ — 0. In Corollary 3.3, we have proved that d.(z) > Cy > 0,

for all z € Q and € € (0,1) and without loss of generality we can suppose that it
holds for all € € (0,1] . Then the estimate (6.9) is a consequence of the proposition:

Proposition 6.1 Let A >0, u > 0 and
Aijkl — )\gij,egkl,e 4 u(gik,egjl,e + gil,egjk,e).
Then there exists a constant C > 0 such that the estimate
3
3t < CATH ()bt (6.10)
i,j=1

holds for all z € Q, all € € [0,1] and all symmetric matrices (t;;)? with the

i,j=1s
constant C' being independent of € and x.

P r o o f: First, we verify that
gik’e(x)gjl’e(x)tkltij > 0 if ti]’ 7é 0

for all € € [0,1] and z € Q. In case € € (0,1] the proof proceeds in the same way
as in [4] Theorem 1.8-1. The case € = 0 is an obvious consequence of the fact that
gl — t pointwisely in Q \ (S x D) for ¢ — 0 (see (2.5), (2.7), Proposition 3.2,
(3.44)). The mapping

3
(6,.’L‘, (t,])) e K= [0, ]_] X ﬁ X {t,], Z |ti]'|2 = ]_} — gik’e(x)g‘jl’e(.’ﬂ)tklti]‘ (611)

1,7=1
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is continuous. The only difficulty could appear for ¢ — 0. We argue, for instance,

for the term ()
12,¢ €T3Ye\T1 =
’ =———— 2 Ve
g (x) dg(x) ) z )

(see (2.7)—(2.9)), which converge to zero in C(2) for ¢ — 0 because of Corollary 3.3.
Since, in addition, the domain in (6.11) is compact, we infer

C= inf ¢*%2)g""(z)trt;; > 0.
ol (2)g"" (z)trti; >

Hence, we get the assertion of the proposition. O

7 Korn’s inequality for the curved rod

In this section, we derive a special form of the Korn inequality and we study the de-
pendence of the constant from this inequality on €. A similar problem was discussed
by Nazarov and Slutskij in [13]. The main result of this section can be summarized
into the following theorem.

Theorem 7.1 There exist constant C > 0, independent of €, such that

C
V]2 < ?||w6(V)||2, YV € V(Q) and Ye € (0,1). (7.1)

The proof of Theorem 7.1 is based on the following proposition.

Proposition 7.2 Suppose that {€,}2°>, C (0,1) and ¢, — 0. Let, in addition, a
sequence {U,, }>°, C V() be such that

U, — U in H(Q)?, (7.2)

1

—w™(U,,) — ¢ in L*(9)° (7.3)

€n

for €, — 0. Then the couple (U, ¢) € VE™(0,1) (in the sense 8,U = 0, j = 2,3),
where the function ¢ is such that

1

5 (@:Ua.be) = (00 n.)) = 6

in L2(Q) for ¢, — 0. In addition, the couple (U, ¢) generates the function U, €
H}(0,1)® which together with the function U satisfy the relations

(U',t) =0 a.e. on[0,1], (7.4)

(U;, t) = 83(12 — 82(13 m LZ(O, l, Hﬁl(S)), (75)
(U.,n) = —85¢11 a.e. on [0,1], (7.6)
(UL, b) = 85(q1 a.e. on [0,1]. (7.7)

If the sequence { =w™(U,,)}2, converges strongly in L*(Q2)°, then the convergence
in (7.2) is strong as well.

20



P r oo fof Theorem 7.1: Assume the contrary, i.e., there exist €,, ¢, € (0,1/n),

and V., [|[Ve,|l12 = 1, such that
1 1
o (Ve < =
o (Vo <
Hence (passing to a subsequence if it is necessary),

1
V., — Vin H(Q)® and —w™(V,,) — 0 in L*(Q)°.

€n o
Proposition 7.2 implies that the sequence V., — V strongly in H'(Q2)3 and
(V',;t) =0, (V.,t)=0, (Vi,,n)=0, (V.,b)=0. (7.8)

Further, from Proposition 7.2 and from the definition (2.17) of the space VE™®(0, 1),
it follows that the couple (V,%) € V&¥™®(0,1) and thus V € H(0,1)® and V, €
H}(0,1)%. Hence we conclude using (7.8) that V, = 0 and thus V = 0, a contradic-
tion. O

P r o o f of Proposition 7.2: The proof of Proposition 7.2 follows from Lemma 7.5,
7.10 and Corollary 7.9 and 7.11. O

We will use ¢ instead of ¢, to simplify the notation in these lemmas.

Lemma 7.3 Under the assumptions in Proposition 7.2 the following convergences

1
—0°(Ue) — 0in L*(Q)°, g €[0,1), (7.9)
€

<61296(UE) + %mf(Ue)> — ¢ in L*(Q)° (7.10)

hold.

P r o o f: We can observe that the weak convergences (7.2) and (7.3) together with
(6.5)—(6.8) imply the boundedness of the set of the tensors {fw®(Ue)}ec(o,1) and
{k°(Ue)}eeo,y in L*(Q)°. Using these facts, we can easily deduce (7.9). Relation
(7.10) immediately follows from (7.9) and (6.5). 0

Corollary 7.4 Under hypotheses (7.2)—(7.3) we have:

1
6—q(62U£, gl,ﬁ) — 0, (62U,t) = 0, (711)
1
6—q(63U£, gl,ﬁ) — 0, (63U,t) = 0, (712)
1
G—q(alUE, gl,ﬁ) — 0, (81U,t) = 0, (713)
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1/1
q <E(62UE, gl,e) + (81U6) ne)) — 0, (714)

€

1 /1
g <E(83UE, gl,e) + (81U5, b5)> — 0 (715)
in L*(Q) for ¢ € 0,1) and € — 0,
1 /1 .
a]g <E(82UEJ glyf) + (81U6) n6)> — O’ ] = 27 3) (716)
1 /1 .
04 <E(63U6,g1,6) + (81U6,b6)> =0, j=2,3, (7.17)
in L*(0,1; H*(S)) for e — 0 and q € [0, 1),
1
I(agUe, IIE) — 0, (82U, Il) = 0, (718)
€
1
T(agUe, be) — 0, (63U, b) =0 (719)
e

1

€1

in L*(Q) for q; € [0,2) and € — 0, and

((aQUE, b.) + (8; UL, n6)> 50, (B,U,b)+ (8U,n)=0  (7.20)

1
—(9Uc,te) = 0 in L*(Q), j =2,3, (7.21)
€
1
5(31U6’ t.) — 0 in L*(Q) (7.22)

for g €]0,1—71), re (0,%), and € — 0.

P r oo f: We can easily derive from (7.9)—(7.10) and (6.5)—(6.8) the convergences
(7.11)—(7.15) and (7.18)—(7.20). It remains to prove the associated equalities. For
instance, that (0,U,t) = 0. The proof for the other functions proceeds in almost
the same way. Since t € L*°(0,)% and g; . — t pointwisely in Q\ (S x D) (see (2.6),
Proposition 3.2, (3.44)), we can easily derive from (7.2) that

(82U6,g1’6) — (82U,t) in LqS(Q), g3 € (]_, 2)
In addition, ||g1,l|cc < C, where C' is independent of €, and thus
(8:U, g1,c) — (8:U, t) in L*(1).

Since (0;U, g1,c) — 0 in L*(2), (05U, t) =0 a.e. in Q.

The convergences (7.16)—(7.17) easily follow from (7.14)—(7.15) (see also Proposi-
tion 5.1).
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Further, we can derive from (2.6) that
(8]'UE, te) = (8]'UE, gl,e) + Cﬁﬁxg(ajUE, te) + EO{E.’E3(8]'UE, tﬁ)

—ev.23(0;Uc, n.) + €y.22(0; U, be), j =2,3, in Q.

Hence and from (3.44), we get the estimate
(1= CNII(0;Ue t)ll2 < [[(0;Ue, g1l

+CET (I3 U n)lla + 18U, b)),

which together with (7.2), (7.11)-(7.12) and the fact that r € (0, 3) lead to (7.21).
The convergence (7.22) can be proved analogously and we omit its proof. O

Lemma 7.5 Under the assumptions of Proposition 7.2, we have U € H}(0,1)® (in
the sense 0;U = 0, j = 2,3) and satisfies the relation (7.4).

P roof: Since U, € V(Q2), Ve € (0,1), the convergence (7.2) implies that the
function U € V(Q) as well. Hence we can see that it is enough to show that the
function U depends only on z;. But the identity

U= (U,t)t+ (U,n)n+ (U,b)b

enables us to reduce this problem to the problem to check the dependence on xz;
only for the terms (U, t), (U,n) and (U, b).

The equalities (7.11)—(7.12) enable us to conclude that (U, t) depends only on z;.
Using (7.18)—(7.19), we can assert that

~

(U, n) (21, 23, 3) = & (21, 23) and (U, b)(z1, 5, 23) = & (21, T2),

where & € L>(0,1; L2(S)) N L*(0,1; H(S)), i = 1,2. Let the point (z9,2%) € S.
Since S is open, there exists a square Sy C S such that the point (z3,z9) is the
corner of this square satisfying z3 < x5 and z3 < z3 for (zs,73) € Sp. Integrating
the equality in (7.20) on the set [z9, 5] x [z, z3] yields the identity

~

(gl(ﬂ?l,l's) - 51(-’151,373))372 = —(22(-’1?1,372) - g\z(xl,xg))xii-

If we fix z; and then z3, we obtain a linear dependence of 21 on z3 and of 52 on zs.
Hence we get that & (z1,z3) = &) (z1)z3+£3(z1) and &(z1, 22) = —&)(z1) 22+ €5 (71)
on Sy x (0,1). Take the point (x}, z3) € S, which is the corner of the square S,
r3 < x5 and z} < 3 for (z9,x3) € S; and | Sy N S;| # 0. Analogously as above we
can derive the functions £!(z;), i = 1,2, 3, such that & (z1,z3) = & (z1)zs + & (1)
and & (z1, T2) = —€X(z1) 22 + £1(z1) on Sy x (0,1). In addition, we obtain that

& (z1)zs + & (1) = & (z1)zs + & (21), —&1(21)72 + (1) = =& (z1) T2 + &5 (1)
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a.e. on (SyNSy) x (0,1), which implies that £2(z;) = €}(z1), 1 = 1,2,3, a.e. on (0,1).
Since S is a connected domain and thus any two points from S can be connected
with some curve lying in S, we can easily obtain that the functions &;, i = 1,2, 3,

satisfy & (z1,23) = &1(21)zs + E(21) and E(z1,z) = —&(21)z2 + &(21) in Q and
hence

(U, Il) = 61(1'1).’133 + fg(.’L‘l), (U, b) = —gl(.’L'l).’L'g + 53(.’131) in Q. (723)

Since, in addition, the functions n and b € L*°(0,1)3, the functions & € L?(0,1),
i=1,2,3.

Now, we prove that the functions (U,n) and (U,b) depend only on z;, which
together with the fact, that (U, t) depends on z;, imply that the function U depends
only on z;.

Taking into account the definition (2.6) of the function g; . and changing the position
of the derivative 03 with 0, in the first term, we find

1
~(05(82U,, 81) = 02(0 U, 1))

= %(asag(UE, g1c) — 05(Us, dog.) — (U g1.0))
=~ (88:(U, g1,) ~ (U, ~efit, — exb) ~ B(OU, g1,))
= 603U, £) + (U, b) + - (52(85U., 81,)
+0,(Ue, 0581,e) — 05(05 U, 1.

= BBV, t) — a(®Us t) + 7% (U b) + (U ny))  (7.24)

in L2(0,1; H '(S)). Further, from the identities (2.2), we can derive (“changing the
position of the derivatives 9;, j = 2,3, with 0,”) that

93(01Ue,n,) — 82(0, U, be) = 9301 (Ue, n,) — (85U, m)
—~0:01(U,,b,) + (3;U., b)) = (81(8U,,n.) — 81(8,U,, b))

+6.(BsUc ) — (U t) + 7% (35U, b)) + (BUn))  (7.25)

in H}(Q). Now, we add (7.25) to (7.24) and from (3.44), (7.16)—(7.19), (7.21), it
follows that the functions & (93U, n.) — 9;(8,U,, b,) converge to zero strongly in
L*(0,1; H *(S)). In an analogous way as in the verification of (7.11), we can check
that (83U, n.) — (8, U, b,) converge to (3U,n) — (6,U,b) weakly in L?*(2) and
thus

61 (83U6) ne) - 81 (62U£a be) - 61(63Ua Il) - 81 (62U’ b) in Hﬁl(Q)’
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which yields 8; (83U, n) —8;(8,U, b) = 0 in the space L?*(0,l; H *(S)). Substituting
(7.23) to the term 8; (05U, n) — 0,(9;U, b) yields

61(83U, 1’1) — 81(62U, b) = 25; =0.

We have proved that & € L?(0,1) and & = 0 in the sense of distributions, which
implies that &; is a constant. Thus we will write & instead of &;(x1). Now, we want
to prove that & = 0. After substitution (7.23) to the identity

U = (U,t)t + (U,n)n + (U, b)b,

we get
Uz, 29, 23) = ((U,t)t)(xl)+(§1x3+§2(x1))n(:1:1)—|—(—§1:1:2+§3(:1:1))b(x1). (7.26)

Since U € V(Q), Proposition 5.1 implies that ;U € Cy(0,l; H *(S)?), 7 = 2,3.
Taking ¢ € H{(S) such that [, ¢ dzodrs =1, we get from (7.26)

/azU(.’El)QO d.’l?gd.’l?g = —§1b(x1), T € [0,[]
S

Since the function fs 0,U(z1)p dzodzs belongs to Cy(0,1), the function —&b €
C(0,1) as well, which implies that the function b must be continuous for & # 0. If
not, then & must be equal to zero. Let us suppose that b is a continuous function.
We know that

0 = lim 82U(.’131)Q0 d.’Egd.’L‘3 = —glb(O),

x1—0 S

because 9,U € Cy(0,1; H*(S)?). Since |b(0)| = 1, & = 0. Therefore (U, n) and
(U, b) depend only on z;. The equation (7.4) follows immediately from the equality
in (7.13). O

In the following lemmas and corollaries, we construct the function ¢ from Propo-
sition 7.2, we show that (U,¢) € V&™P(0,1) and we derive the equations (7.5)-
(7.7). But first we introduce the following notation. Let the functions U, € V(2),

€ (0,1), be the functions from Proposition 7.2. We define auxiliary functions ¢,
€ € (0,1), by the relation

6.= o ((B:U.b) ~ (U, ). (7.27)

1 — € € €
Further, we define the vector functions u, . = (ug,us 5, us 3) by

. 1
u*,l — ¥e U’*,Z - _E

1
(83U67 gl,e)’ U’i,3 - 2(82U6’ gl,ﬁ) (7'28)

and the vector functions U, € € (0,1), by

1 1
U* e = —(ﬁﬁte — 2(83U6, gl,e)ne + 2(82UE, gl’e)bﬁ. (729)

)
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Lemma 7.6 We have
8;¢. — 0 in L*(0,1; H-(S)), j = 2,3, (7.30)

for € = 0 and @¢lz,=0 = @ele,=1 = 0 for all € € (0,1) in the sense of the space
C([o,; H71(S)).

P r oo f: Since U, € V(Q), then Proposition 5.1 together with the fact that n.,
b. € C*=([0,1])? imply that ¢¢|s;—0 = Pe|s,—1 = 0 for all € € (0,1) in the sense of the
space C([0,1]; H 1(S)).

Further, we can express the functions dx¢,. in this way
1
2522—6 2\02V¢, De) — 02(03U¢, I¢
By 8,(8,U., b.) — 85(85U., m,)
1 1
= (02020, b) + (35U, m0) ) = ~05(8:Uc, )
2e €
in L?(0,1; H'(S)) (see Proposition 5.1). Applying now (7.18)—(7.20) for ¢; = 1, we

obtain the convergence (7.30) for j = 2. The proof of the convergence (7.30) for
j = 3 proceeds in almost the same way. O

Lemma 7.7 Let the assumptions of Proposition 7.2 be fulfilled. Then

(61U*7E, te) — 83(12 — 82(13 mn LZ(O, l, Hﬁl(S)), (731)
(81U*7E, be) — 82(11 mn LZ(O, l, Hﬁl(S)), (732)
(81U*,6, IIE) — —83<‘11 m LQ(O, l, H_I(S)) (733)
and thus
WU, e = (0512 — 02Ci3)t — O3¢in + 02Ci1b (7.34)

in L?(0,1; H7(S)3) for € — 0.

P roo f: From (7.10) and (6.5)—(6.8), it follows that

1 € 1 € 1 € 1 €
2001(Ue) + —03k15(Ue) — 58015(Uc) — —02ri13(Ue) = 9512 — 8Cas (7.35)

and

0;k5, (U, .
%() - 8jCll; J= 2) 37 (736)

1n 0 H™ or e — 0. us to prove (7.31)—(7. 1t 1s enough to check that
in L2(0,1; H=Y(S)) f 0. Th 7.31)—(7.34) it i gh to check th
1 € 1 €
(B 8) — (50605:(U) + —Bsri,(U)
1 € 1 € : 2
—50a035(U.) - 282513(U6)> 0 in L2(9), (7.37)
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92k5,(Ue)

(01U, be) — — 0 in L*(9), (7.38)
€
93k, (U -
(01 Uy, n¢) + 9ria(Ue) — 0in L*(Q). (7.39)
€

First, we find the expressions for the terms (6, U, , t.), (01U, (, n.) and (6, U, , b.).
Using the definition (6.5)—(6.8) of the tensors #¢ and k¢, it is easy to see that it is
enough to add (7.24) to (7.25) and to multiply this sum with o to obtain

1 1 1 1
63639;2(U6) + 283"3?2(U6) - 6_2629i3(U6) - 262ﬁi3(U6)

1
= > (818U, - 8:(8:U,, b))

+% (ﬁe(asue, t) — ac(B U, t.) + %((asue, b,) + (8, U., nﬁ))> .

By rewriting the above mentioned expression in such a way that it involves the
terms %ﬁe(ag,Ue, g1 ) and %a6(82UE, g1 ) instead of %/66(83UE, t.) and %a6(82UE, te),
we conclude that

1 1 1 1
6_283952(Ue) + EaSﬁiz(Ue) - 6_282953(Ue) - 282'9;3([}6)

= <—31¢e + éﬂe(asUe, gle) — %ae(aﬂje, gl,e))
+((8222 + auB.2) (U, ) = (acfizs + ) (B, U, )
+ ((ﬁgyexg + %)(83U6, b.) + (acyers + %)(%UE, n€)>
— (,BE’YEIE;;(agUE, n.) + acYex2 (0. U, be)). (7.40)

in H~*(Q2). In addition, since all terms except d;¢. belong to L?(0,l; H~'(S)) then
016 € L*(0,1; H71(S)) as well. From (7.29), (7.40), it follows that

1 1 1 1
(01Ut =  SOW05(0) + 0u(U) — 500055(U.) ~ L0 (U))

— (8222 + auBxs) (U, ) — (acbizs + aZ2s) (82U, )
- ((ﬂeVexZ + %)(63U6) be) + (a£76x3 + %)(82U6) ne))
+ (ﬁgyex3(83Ue, n.) + ay.z2(U,, b6)> (7.41)
in L2(0,1; H1(S)).
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Further, using (2.6) and (6.8), we get (in the sense of L%(0,l; H 1(9)))

02Ky (Ue)

€

1
= 282(31Ue, te) + 02(01Ue, —z28cte) + 02(01 Ue, —z302c L)

+02(01Ue, £37e0,) + 02(0,Ue, —2277.b,) Z I;.

Now, we express the terms [;, ¢ = 1,...,5, individually. Changmg the position of
the derivatives 0y with 9; in the terms above and using (2.2) lead (in the sense of
the space H *(2)) to

1 1 1
[1 - 28261(Ue,t ) (82Uea E) - 281(82U5, tf) o E(azUEa aEbE + Bfnﬁ)

B

1
— Eal (82U6) gl,e) - ?(82U6) be) (62Uea ne)

+ 81 (x2/85(62U6a te) + x3a6(82U6) te) — x376(82U6a ne)

Be

1 Q
+ x?’)/e(aQUe; be)) — Eal (82Ue; gl,e) - ?(82U6) be) (aZUE; ne)

+ x2ﬁ2(82U67 te) + x?ﬁeal (82Ue; te) + x3a’e(82Ue; te)
+ -’153%31(32Ue, te) - $372(82Ue, ne) + 23701 (32Ue, ne)
+ £97.(82Ue, be) + 227.01 (0, U¢, b,)

]2 = _ﬁe(aer;te) - x?/BeaQ(aer; te) = _/Be(aer; te)
— 2200501 (Uq, te) + 220.(0: U, tle) = —B(0,U,, t.)
- xzﬂeal (32Ue, te) + xzaeﬂe(aﬂje, be) + xzﬁf(ate, ne)a

I = —z30.0:0,(Ug, t.) + z30.(0,U,, t)
— —1'301681 (aZUe; te) + $3a3(82U6; be) + $3a5ﬁ5(82U5, ne);

14 = .’133’)/68281 (Ue, IIE) — 1‘3’)/582(U6, IIIE)
- x37£81 (82Uea ne) + x3/8676(82U6) te) + x3752(82U6a be)a

[5 = _75(61U6a be) — x2766281 (Uea be) + x27£82(U6a ble)
- _76(81U67 be) - 1'2’)/681 (82Ue; be) - x2ae7e(82Ue; te)
+ x2752(62U6a ne)

Then we get

02Ky (Ue)

€

B
€

5
1 (o
= Z]j = 281(82Ue; g1,c) — ?(ate, b.) —

i=1

(82UEJ ne)
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+298.(Uq, to) + 22801 (8. U, t.) + 30, (02U, te) + 23001 (U, t.)
—237:(0:Ue, ne) — 237:01(02Ue, nie) + 227,(02Ue, be) + 227:01 (0. U, be)
—Be(D1Uq, te) — 22801 (9, U, te) + 220 0c(0;Ue, be) + 2262 (8, U, n,)
—z30.0, (0, Uq, t) + 2302 (0, Uq, be) + 230 0:(0: U, 1) + 237,01 (0. U, n)
+238:7 (0 U, te) + 2372 (0, U, be) — 7.(0: U, b) — 29761 (.U, b,)
220 (BU, ) + 22 (U m) = 0B,V g1) — (3,0, b)

_B
€
+297. (8, Ue, b,) — Be(0,Uq, te) + 220 8:(8; U, be) + 2232 (U, )
+7302(0: U, b,) + 230.8.(8, U, ) + 7387 (02U, te) + 7372(02 U, be)
—7e(01Uc, be) — 2207e(32 U, te) + 2272(0, U, )
in H71(Q2). Using (5.9) and (7.28)—(7.29) yield (after rearrangement)

(aZUe; ne) + "1;2/82(82UE) te) + .’13304’6(82UE, tﬁ) - 1'3’)/2(82U6, nﬁ)

1 1
(alU*,e; be) - a1 <E(82Ue; gl,e)> - ae¢e + 762(83U67 gl,e)

_ <825§1(UE) L ((82U6,b6) + (35U, n6)>>

€ € 2

1
+76 <E(83Uea gl,e) + (61Uea be))

— ((—& + B2y + acfexs — vixs + 7212) (0, U, n€)>

€
- <(ﬁéx2 + a:{x3 + ﬁef)/ex?) - aeerx?)(a?Ue; te))

—((@eBers + 0225 + 7225 +7/2) (B U b) — AU, t))  (7.42)

9367, (Ue)
€

in L?(0,1; H '(S)). In an analogous way applied to , we can derive that

04y (U) | B <(82U6,b6) + (83Ue,ne)>>

€ € 2

(alU*,e; ne) — <

1
+76 <2(82UE) gl,e) + (61Uea ne)>
Qe 2 / 2
+ ((_? + a5x3 + aE/BExZ + /yExz + 75x3)(83U6) bE))
+ ((/BQIQ + alex3 + /66761.3 - a676$2)(83U6; te))
+((@Beas + B22 + 7722 — 7/2s)(BUon) — (B U, t))  (743)
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in L?(0,1; H1(S)).

Now, we check the convergence (7.37). The convergences (7.38)—(7.39) can be proved
analogously. From (7.41) and the facts that U, € V(), a., B, 7. € C=([0,1]),
g1 € C*(Q)3 t, n, b, € C([0,1])3, it follows that the difference

1 € 1 € 1 € 1 €
(O1Un ) — (505052(U.) + ~05kin(UL) — 02055(U.) — ~05xiy(U))
is well-defined in L?(£2) for all € € (0, 1) and satisfies for r € (0, 1) the estimate

1 1 1 1
101U t) = (5 0603a(U0) + ~03mia(UL) = —0033(UL) — ~Boriy (U)o

(7.41)
(8222 + aeﬂews)(asUe,t Mz + || (ceBexz + 04251?3)(32Ue, te)l]2
+||(Bevexs + )(33Ue,b Mz + [[(cevexs + )(32Ue,ne)||2

+||/Be7ex3(a3Ue; ne)”? + ||ae7ex2(82Ue; be)||2
(3.44

)
< c( BT bl + 51120, )2 +

(GRS

1+r

(82U m) o t ||(33Ue, n)|2 + —||(32Ue, bo)ll2 )

1+7‘

= () +— (||<83Ue, 0l + 19U, bol2), (7.44)

where C(e) — 0 for ¢ — 0 as a consequence of (7.18)—(7.19), (7.21). It remains to
study the behaviour of the terms

1 1
—- 103U, ne) |2, E7||(32Ue,'06)||2-

The estimate
1 1 1
15 (OsUemo)llz + [ 5 (82Uc, o)l < [ 5, (85U, ne) + (8:Ue, bo)) 2

27)

1 (7.2 —2r
|5 (BUn) = (32U b)) = Ca(e) + 26|62

(5.1), Lemma 7.6 19 3
< G +CET Y1108l osms)
j=1
(7.30)

Cl( ) 4+ Ca(€) + Ce"(|O1e] | 12(0,151-1(5))

(7.40),(3.44)

IN

C /1
Ci(e) + Ca(€) + - (I1-05052(U.) + mia(U) | 2o ()

1
1200014 (U) + 0y (U 59
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C
+ 5 (U g0l + 122U 81, 2
1—4r C
+Ce (118U £ + 118U, €)l2) + =5 (118U Oz + 11(8: U m) )

1 1
+Ce 7 (1|5 (82Us, b 2 + |5 (85U ) 2

6
o/ 1 1
=" Ci(9) + 0 (58U B)la + | 5 (05U, w2,
j=1

leads to the estimate

6
1 1
157 (0sUe, me) 2 + [ 5 (82U, be) |2 < CY Cie)

i=1

for € € (0,1), where Ci(e) — 0 see (7.20), Cy(e) — 0 as a consequence of (7.30),
Cs(€) — 0 see (7.16)—(7.17), because r € (0,3), Cy(e) — 0 and Cg(e) — 0 as a
result of (7.11)—(7.12), (7.18)—(7.19) and the fact that r € (0,3), Cs(¢) — 0 as a
consequence of (7.21), because 4r —1 < 1—r for r € (0, 3). Hence we can conclude
that

1
& (@002 + (132U, b)) — 0 (7.45)
for r € (0, 3), which together with (7.44) imply (7.37) and thus (using (7.35)) (7.31).

Now, it remains to prove (7.34). Since
8I.U-*,e - (81U*,£a te)te + (61U*,6a ne)ne + (61U*,6a be)bea

it is enough to show that

(61U* € )tE — (63(12 — 62(13)t in LZ(O, l, Hﬁl(S)S), (746)
(6]_U*’6, IIE)IIE — —63C11n in LZ(O, l, Hﬁl(S)S), (747)
(61U, ., b )b, — 0x(iin in L*(0,1; H'(S)%) (7.48)

for € — 0. We check only (7.46). The convergences (7.47) and (7.48) can be proved
in almost the same way. Since t is a bounded function depending only on z;, then
(7.31) yields

(01 Uy, te)t — (03C12 — Oa(i3)t in L*(0,1; HH(S)%).
It remains to show that
(01U, t)te — (01U, t)t — 0 in L?(0,1; H™'(S)?)

for € — 0, which follows from the estimate

/Q(alU“, )(te —t)p dz
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1
2

1
sc( (1) — tan) Pllo(en) o s dxl) o, (7.49)
0

for ¢ — 0 and for arbitrary but fixed function ¢ € L?(0,1; Hy(S)), because [t.| =
|t| =1, Ye € (0,1), t. — t pointwisely in [0, ]\ D and thus we can use the Lebesgue
theorem. O

To derive the equations (7.5)—(7.7), we must describe more precisely the limit state
of the functions U, for ¢ — 0. This will be done in the following lemma and
corollary.

Lemma 7.8 Let the assumptions of Proposition 7.2 be fulfilled. Then
0;U, . — 0 in L*(0,l; H'(5)%), j = 2,3, (7.50)

and U, |4 —0 = U, ([0,1]; H71(S)?).

P roof Since ¢¢lyy;—0 = @e|sy—t = 0 for all € € (0,1) in the sense of the space
C([0,1]; H*(S)?) (see Lemma 7.6), U, € V() and since the functions g, t.,
n,, b, belong to C*°(Q2)3, we can use the definition (7.29) of the function U, . and
applying Proposition 5.1, we get that U, (|z,—=0 = U |s;= = 0 in the sense of the
space C([0,1]; H1(S)3).

It remains to show (7.50). Using the definition (7.29) of the function U, ., we obtain
the identity

8jU*,6 = 8 ¢£ € (63U£a g1 E)nﬁ + 8 (82U5’ glaf)bf

—0;¢cte + 0;(0, U, be)n, — 0;(0, U, n.)b,

1 1
_8]' (E(83U67g1,6) + (aer;b )ne +8]<_ 82U67g16 (aer;ne)>be (751)

in L2(0,1; H1(S)?), j = 2,3. From (7.16), (7.17), (7.30) and from the fact that the
functions t., n., b, are bounded in L>(0,1)3, it follows that

m

8;¢t. — 0 in L*(0,1; H'(S5)?), 7 =2,3, (7.52)
1
0;(-(8:Us g1) + (81U, b)) Jn. — 0 in L2(0,; H(S)"), j=2,3,  (7.53)

1
8]-(—(82U6,g1,6) + (81U6,n6)>b6 5 0in L2(0,, HTY(S)), j=2,3,  (7.54)
€
for ¢ — 0. We can see from (7.51) that it remains to prove that
9;(6,U,b)n, — 0 in L*(0,1; H '(S)*), j =2,3, (7.55)

9;(6,U,n )b, — 0 in L*(0,1; H *(S)%), j =2,3 (7.56)
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for € — 0. From (7.2), it follows that (8;U,,n) — (8,U,n) in L?(Q), because n is
a bounded function. Further, we have the estimate

2

<0 ([ Inda) - nGe0PlletenlBs e ) o

/(81UE, n. —n)p dz
Q

where ¢ € L?*(Q) is arbitrary but fixed, n, — n pointwisely in [0,1] \ D for € — 0
and thus we can use the Lebesgue theorem. Hence we can deduce that

(0,U,, n.) — (6,U,n) in L*(Q).

The proof that
(0,U,,n. )b, — (6,U,n)b in L*(Q)?

is almost the same as the proof that
(61U*,6a te)te — (63<12 - 62(13)t in LQ(Oa l1 H_I(S)3)a

because we take only ¢ € L?(Q) instead of ¢ € L*(0,1; H *(S)) in the estimate (7.49)
modified for the functions (0;U,, n.)b.. The analogous result can be obtained for
(01U, be)n.. Hence we get that

9;(6:U,, n.)b, — 9;(6,U,n)b in L*(0,1; H*(5)?), j =2,3,
9;(6,U,, b )n, — 9;(6,U,b)n in L*(0,1; H '(S)?), j = 2,3.

In Lemma 7.5 we have proved that the function U depends only on z; and hence
8]-(81U, n)b = 0, 8]-(81U, b)Il = 0, _] = 2, 3.

Thus we have proved (7.55) and (7.56). O

Corollary 7.9 Let the assumptions of Proposition 7.2 be fulfilled. Then

O;U,. — 6;U, in L*(0,1; H'(S)?), i = 1,2,3, (7.57)
U..— U, in L*(Q)%, (7.58)
U..— U, in Cy(0,1; H 1(S)?) (7.59)

for e — 0, and U, € H}(0,1)3, where
U.(o) = / (BsCia (21, T, 35) — DaCrs (21, T2, 3))t(21)
0

—05C11(21, T2, T3)0(21) + 0211 (21, T2, 73)b(21)] d2 (7.60)
for (z1,z2,23) € (0,1) X S. In addition,
¢ — ¢ = (U,,t) in L*(Q) (7.61)

for e — 0 and ¢ is piecewise continuous.
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Proof Lemma 7.7 and 7.8 enable us to use Proposition 5.1 and 5.2 to prove
(7.57)—-(7.60) and U, € Hg(0,1)>. From (7.29), it follows that ¢, = —(U.,p,t).
Then (7.61) easily follows from (7.58) using the pointwise convergence on [0,1] \ D
of the functions t.. O

Lemma 7.10 Let the assumptions of Proposition 7.2 be fulfilled. Let the function
U be determined by (7.2) and the function ¢ by (7.61). Then the couple (U, ) €
Vo0, 1).

P r oo f: To prove that (U, ¢) € Vg’n’b(O,l), it is enough to check that U = fj,
where

A~

U(zy) = /Om[—(U*,b)n—Ir (Us,n)b] dzy, z1 € [0,1]

(see (2.17) and Proposition 4.1). We define the function U, by

A~

U1, 22, 73) = /0 I (Us (21, 29, 35), be(21))ne(21)

+ (U (21, 22, x3), ne(21))be(21)] d21, (21,22, 23) €[0,1] X S. (7.62)

The definition (7.29) of the function U, . together with (7.62) enable us to express
the function U, by

~ il 1
U, =-— / |:_ (82Ue; gl,e)ne + 2(83U67 gl,ﬁ)bﬁ dz1, (763)
0

€

where we omit to write the points (21,2, 23) and (z;) in the right-hand side to
simplify the notation. Using (7.63), we can deduce that

Ue = / 61U£ le = / [(81U£a te)te + (81U€a ne)ne + (61U€a be)be] le
0 0
~ 1 1
— Ue + / (aer; te)te + (E(aZUE; gl,e) + (81Ue; ne)>ne
0

1
+(- (U, 81.) + (01U, b)) be | dan. (7.64)

As a result of (7.64) and (7.14)—(7.15), (7.22), we get
6166 — 81U6 — 0in LZ(Q)S

and R
U, - U, — 0in C([0,1]; L*(S)?)

for ¢ — 0. Since, in addition, U, — U in H*(2)* and U € H}(0,1)3, we can conclude
that U = U a.e. in [0,!] and thus

U(z,) = /Om[—(U*,b)n—Ir (Us,n)b] dz1, z1 € ]0,1],
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and
u(l) = / —(U.,b)n + (U., n)b] day = 0.

Hence, from (2.17) and Proposition 4.1, we get that (U, $) € V&™P(0,1). O

Corollary 7.11 Let the function U, be defined by (7.60). Then the function U,
satisfies the equations (7.5)—(7.7).

P r o o f: The proof immediately follows from (7.60). 0

Lemma 7.12 Let the assumptions of Proposition 7.2 be fulfilled. Let, in addition,
Lw(U) — ¢ in L*(Q)°. Then

U, — U in H(Q) (7.65)

for e — 0.

Proof From (7.18) and (7.19) for ¢; = 0 and from (7.21) for g = 0, it follows
(0;Ue, te) = 0, 5 =2,3, (0:Ue,n.) = 0 and (95U, b.) =0 (7.66)

in L2(Q2). To prove that 8, U, and 85U, converge strongly in L*(Q2)3, we must verify
the strong convergence of the functions (8, U, b,) and (83U, n.) to zero in L?(£2),
which follows from (7.45). The rest of the proof is a consequence of the identity

8]Ue = (8]UE) te)te + (a]Uey ne)ne + (8]UE) be)bey .] = 27 3)

because |t.| = |n¢| = |b¢| = 1 for all € € (0, 1).

It remains to investigate the functions 0;U.. We have proved in (7.22) for ¢ = 0
that
(0,U,,t.) — 0 in L*(Q).

Since

8er — (aer; te)te + (aer; ne)ne + (81Ue; be)be;

it remains to study the strong convergences
(01U, n)n, — (0;U,n)n and (6, U, b.)b, — (6;U,b)b
in L?(Q2)3. Let us suppose first that we know that

(0,U,,n,) — (6,U,n), (8,U,b,) — (8,U,b) in L*(Q). (7.67)

1
2 2
d:c)

Now, we get

(81U, n)n, — (8,U, n)nls < (/Q‘((aer,nE) ~ (®U,n))n,
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n </Q (8, U, n)(n. — n)|? dx)z < [[(&:1Ue,n) = (61U, n)|

1
2

1
+( in, — nP}|(8,U, n)(z1) s dxl) S0
0

for ¢ — 0 using (7.67), the facts that n. — n pointwisely in [0,!] \ D and |n.| =
1, which enables us to use the Lebesgue theorem. Hence, we can see that the
convergence of the terms (0;U,, n.)n, and (6, U, b,)b, can be replaced with the
problem to check (7.67). Further, from (7.14) and (7.15) for ¢ = 0, it follows that
this problem is equivalent to the problem to show that

L6,U., 81 — —(6,U,n) in I2(9), (7.68)
€

L6,U., 81.) — —(6,U,b) in I2(9), (7.69)
€

and these convergences are equivalent (using the definition (7.29) of the functions
U, and the fact that (U, ¢) € V&™(0,1), i.e. the definition of the function U, in
(2.17)) to the problem to verify that

(U,e,b.) = (U,,b) in L3(9), (7.70)

(Use,ne) — (Uy,n) in LZ(Q). (7.71)
The estimate

1
2

|(Usern) — (U, < ( AT d:z:>

</ |(Us,ne — |2 dx) < ||Use — U2

)
T ( JAE R CACAIE dxl) (7.72)
0

and the similar arguments as in (7.49) enable us to assert that if we prove that

N

U. . — U, in L*(Q)%, (7.73)

then the convergences in (7.67) immediately follow from (7.68)—(7.72). To check
(7.73), we use the inequality (C' is independent of v)

[vll2 < C(llvll-1 + [[Vv]l-1), Vv € L*(Q) (7.74)
(see [14, p. 189]). In the first step, we show that

VU,.— VU, in H'(Q)°. (7.75)
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Since we suppose that fw®(U.) — ¢ in L*(Q)?, 9;2w(U.) — 9;¢ for € — 0 in the
space L2(0,1; H1(S)%), j = 2,3, and using (6.5)—(6.8) together with (7.37)—(7.39)
and (7.60), we can deduce that

(01U, ., t.) — (6,U,, t) in L*(0,1; H7'(S)), (7.76)
(01U, e, n) — (6,U,,m) in L?(0,1; H (S)), (7.77)
(61U, ., b,) — (6:U,,b) in L*(0,1; H'(S)). (7.78)
Since
U, = (01U, te)te + (01U, (,nc)n. + (61U, be) b,
and since

[(B1U. 6, to)te — (01U, t)t| 20 5s5-1(5))
< ||((81U*,e;te) - (alU*y’ t))tf||L2(07l?H71(S))

! 2
0

for e — 0 as a consequence of (7.76) and the fact that t. — t pointwisely in [0,]\ D,
and since we can easily modify the estimate (7.79) for the functions (0,U, ., n.)n.
and (0,U,., be)b, then we can conclude that

O U, — 0,U, in L*(0,1; H '(S)?) (7.80)
and thus strongly in H 1(Q)3.
Further, we want to show that
0,U,. — 0in H '(Q)*, j=2,3, (7.81)

for ¢ — 0. From (7.51)—(7.54), it follows that to prove (7.81) it remains to show
that
9;(6,U,, b )n, — 0 in H'(Q)3, j =2,3, (7.82)

9;(6,U,n,)b, — 0 in H *(Q)?, j=2,3, (7.83)

for € — 0. The relations in (2.2) provide

8]' (81U6, Ilﬁ)bE = 8]-81 (UE, Ilﬁ)be — 8]' (UE, Ill)be

€

= 01(0;Uc,n.)b, + B:(9; U, tc)be + 7.(9;Ue, b) b, (7.84)

and analogously
0;(01U, be)n, = 0,(0;Ue, be)n, + a.(9;Ue, te)n, — v.(9; U, ne)ne, (7.85)

j = 2,3. We get from the convergences (7.18)—(7.19), (7.21) and (7.45) together
with (3.44) and with the fact that |n.| = |b| = 1, that

B.(8;U, t)b. — 0, 7.(0;U,, b )b, — 0 in L*(Q)?,
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a.(0;U, teo)n, — 0, 7.(9;Ue,n.)n, — 0 in L2(Q)3.

Now, we prove for instance that

81(8;U,,n, )b, — 0 in H'(Q)3, j =2,3. (7.86)
Then the proof of the convergence

81(8;U, b )n, — 0 in H'(Q)3, j =2,3, (7.87)

proceeds analogously.

Let ¢ € H}(2) be an arbitrary function. Then (since b, € C*([0,1])®) using (3.44)
and (2.2), we deduce the estimate

/(8erane)8l(ng0) dz| <
Q

/(8 U, n )bl dz
Q

C
+ /(@'Ue,ne)beal@ dz| < —[(8;Uc, ne) [zl 0ll2 + 11(8;Ue, 1e) |2]| 01012
Q

for e € (0,1), r € (0,%), j = 2,3. Then the convergence (7.86) easily follows from
(7.18) for j = 2 and from (7.45) for j = 3. Hence we get (7.81), which together with
(7.80) yields (7.75). The convergences (7.58) and (7.75) together with (7.74) lead
to the strong convergence

U, — U, in LZ(Q)3.

8 The main result

In this section, we pass from the three-dimensional model to the asymptotic one-
dimensional model and our main result is stated and proved.

We suppose that F, = 2F, F € L?(Q)3, and G, = G, G € L*(0,l; L*(8S5)?),
for € € (0,1) in the scaled equation (6.4). Using (2.15) and (3.44), we deduce the

convergence
e\/vi0u; — v +1v2 =11in C(Q), (8.1)

because v; = 0 (the domain is [0,{] x S). Here we “use” one power of € from the
above assumption on the function G.. Dividing by €® in (6.4) after substitution of
the assumptions F, = ¢F and G, = €3G, (3.47), (6.4), (6.9), (8.1) and Theorem 7.1,
we obtain the estimate

02 ijkl €

— / A (U, )y (U,)d, de

2 02 2
ellt,2 = _2 ¢ elllg =
IO < 5l (Ull2 <

02

= </(F U,.)d. dx—i—/ (G, U.)d.e/vjoliey; dex1>
0 as
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C?C,
< == (Il Uiz + |G 2,008 [Uellzzoazziosys) ) < CsllUelvey
0

for all € € (0, 1), because U, € V(2) and thus U, € L?(0,[; L?(85)3) in the sense of
the trace. By the above relations (passing to a subsequence), we have that

U, — Uin H'(Q)?, (8.2)
1 € : 2 9
—w™(U,,) — (¢ in L*(Q) (8.3)
€n
for ¢, — 0, where U € H}(0,1)3 according to Proposition 7.2.

To find the form of the tensor (, we must obtain the corresponding equations for its
components.

Proposition 8.1 Let the tensor ¢ be the limit determined by (8.3). Then it satisfies
the equation

/Q Agf’“’gklog’j(V) dz =0, YV € L*(0,1; H*(S)?), (8.4)

where the tensor 0°(V) is defined by

0 (62V t) (63V,t)
(V) =| & 8,V n) —@2%”");(83"’“) : (8.5)
(a3v7t) (

5 82V b) (83V,n) (83V, b)

P r oo f: In the proof, we will use ¢ instead of ¢, to simplify the notation. Letting
€ — 0, we want to pass from the equation

_—
/ ATMZ i (U )ews; (V)d, dz = € / (F,V)d, dz
Q € Q

1
€ / (G, V)d.er/v;0'v; dSdz,, YV € V(Q),
0 JoSs
to the equation
/ AFM 0% (V) dz =0, YV € V(9Q), (8.6)
Q

where the tensor 6°(V) is defined by (8.5). We show that the tensor 6°(V) is the
limit state of the tensors 6°(V) + ex*(V) for ¢ — 0 (see (6.5)—(6.8)). Since the
functions g; ., n. and b, are bounded in L*=(Q)* or L>=(0,1)3, it is easily seen that
ek (V) — 0 in L*(Q)° (see (6.8)). Thus it remains to show that (V) — 0°(V) in
L*(Q)? for € — 0. Since we know that g; . — t and n, — n, b, — b pointwisely in
Q\ (S x D) orin [0,{] \ D, respectively, and are bounded in L>(Q2)* or L>(0,1)3,
respectively, we can combine (6.6)—(6.7) with the technique we have used in (7.72)
to prove the above mentioned strong convergence and thus we omit the detailed
proof.
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Using the definition (see (2.10) and (6.2)) of the tensor (A¥*)3. ., we can easily
check by (2.6)—(2.12) that

AURL_y AR i 0(Q), where ATF = A§USF 4 (6767 + 6757F) (8.7)

for i,4,k,1 = 1,2,3. The rest of the proof follows from density of the space V() in
L?(0,1; H*(S)?) and from (8.5) and (8.6). O

Now, we introduce the following notation:

1 1

Cog = Co2 + =——Cu1, C33 C33 + =

2)\+ 2)\+ —C11, Co3 = Cas (8.8)

Corollary 8.2 We have

/@_/@_/gm /gm /gm+@m_o (8.9)
[ cti= [ o= [ chioa=o0 (8.10)

Jich+ct = [+ o= [+ m=o (8.11)

and

Proof Let v € L?0,l) be arbitrary but fixed function and V = vt. Testing
equation (8.4) with functions Vi, Vs, Vz2/2, Vz2/2 and Vz,z3, we can derive
(8.9).

Let us take now some arbitrary function V. € L?(0,l; H'(S)?) such that (V,t) =
(V,b) = 0. Then we can derive from (8.4) and (8.5) that

/[(A(Cn + Co2 + (33) + 20(22) (92 V, m) + 2u(23(05V, n)] dz = 0. (8.12)
Q

Analogously we deduce for arbitrary functions V € L?(0,1; H'(S)3), which satisfy
(V,t) = (V,n) =0, that

[0+ G+ ) + 20600) @3V, b) + 2uGes(@V, b)] do 0. (8.13)
Q
After substitution of (8.8) we can transform (8.12) and (8.13) as

/Q[()\(Cg + Y 4+ 2ucE) (0, V,n) + 2u¢E (05V,n)] dz =0 (8.14)

and
/Q (OCE + ) + 20CE) 3V, b) + 2uCE(@,V, b) de =0,  (8.15)
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respectively. Taking Vzs, Vz3/2 and Vz2/2, where V = vn or V = vb, as test
functions in (8.14) and (8.15), respectively, yields (8.10). In an analogous way,
we substitute the functions Vzy, Vzs, V2/2, Vzyrs and Vzezrs, Vz3/2, where
V =ovn or V =ub, to (8.14) and (8.15), respectively, to derive (8.11). O

If we define the vector g € L*(2)? by n = ((i2, (13), then the equations (8.4) after
putting V = ot, ¢ € L?(0,1; H'(S)), and (7.5) can be rewritten in the form

/(n, Vasp)e dz =0, Yo € L*(0,1; H(S9)), (8.16)
Q

/(17, rotes))s dz = /(U;,t)w dz, Vi € Hy (), (8.17)
Q Q

where we have denoted Vazp = (G2, O3¢), rotesth = (—03¢, 021)) and (-, )2 means
the scalar product in the usual two dimensional Euclidean space R2.

Lemma 8.3 Let S be a simply connected domain and let S € C'. The system
(8.16), (8.17) has unique solution in L?(Q)?, given by

n = (Ci2, C13) = —%(U;, t){0ap — z3, 03p + T2) (8.18)
where the function p € H'(S) is the unique solution to the Neumann problem
/S[(agp — £3)0s1 + (O3p + x2)037| dzodzs =0, /Sp drodzs = 0, (8.19)
for all T € H'(S).

P r oo f: After substitution of (8.18) to (8.16) and (8.17), we obtain using (8.19)
that

1 1
[ 1.Vs0)s do == [ (UL )0~ 20)0up do— 5 [ (UL 0)(00p+ 22)00 do
Q Q Q

8.19)

Lt
- / (U, 1) / [(85p — 3)02¢p + (05 + 22)ayp] deadasda; *2 0
0 S

/Q('l’], I'Ot23’lp)2 dr = %/Q(U;,t)(@p — .’133)83’(# dr — % /Q(U;,t)(33p—|— .’132)82’(# dzx

1 l
= —5/ (U;,t) [/ 33p32¢ — 32p33’¢ d.’EQd.’Eg + / $383¢ + .’13282’¢ diL‘gd.’Eg] d.’El
0 S S

- [ o de
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for all ¥ € C§°(2), which implies that ¢(zq,-,-) € C§°(S) for all z; € (0,1). Thus
by density the relation remains valid for all ¢ € H} ().

To prove uniqueness, we assume that there exist two solutions 5, € L?(Q)?%,i = 1, 2.
Taking ¢ = s in (8.16) and ¢ = st in (8.17) for all s € C°(0,1), € H*(S) and
¥ € HL(S), it is easy to verify that the function 5, = (M.sy o5y = fol sn dz,, where
17 =1, — 15, satisfies the equations

/(ns, Vgg@)z diL‘zd.’Eg =0 and /('I’]S, I'Otzg’[ﬁ\)z diL‘zdiI?g =0. (820)
S S

Let us define the vector functions N, = (0,M15,M2,5) and @ = (=1, 11, ¥2), where the
functions v, 91, ¥, € C$°(Q) are arbitrary. Since the function 7, is defined only on
S, we can deduce from (8.20) that

1 1
/ /(ﬁs,rotil)) dz = / /(ﬂs,rotzw(ﬂh))z dzydzsdz, = 0.
0 S 0 JS

Hence, we can easily derive that rotn, = 0 in D'(Q2). Since S is simply connected,
then Q = [0,1]x S is simply connected as well and there exists a function h, € H*(f),
unique up to a constant, such that 9, = Vh, (see [5]), which means

61h's - 0, 62h's = Th,s) 63h's = T2,s,

hence we get that h, € H'(S) and , = Vash,. After substitution = h, to
), it follows that ||Vash,||2 = 0. Hence 5, = 0 for all s € L?(0,1) which implies
0.

nd
.20
= O

(8
n

Now, we derive the asymptotic one-dimensional model. First we introduce some
constants:

I3 = /ng dzodrs, I3 = /ng dzodzs, (8.21)
3A+2
= U ﬂ, K= /[(82[) — .’Eg)z + (83[) + .’EQ)Z] d$2d.’l?3, (822)
A+ s

where p € H*(S) is the unique solution of the Neumann problem (8.19).

Lemma 8.4 Let {U. }>,, €, — 0, be a subsequence of the solutions of the problem
(6.4) withF,, = €F, G, = €2 G, satisfying (8.2) and (8.3). Then the limit (U, ¢) €
V;’n’b(O, [) obtained in Proposition 7.2 generates the function U,, which satisfies the
equation

[
/ B[T,3(UL, b)(V., b) + L,a(U', m)(V", n)] de,
0

I I

0 0
for all functions V, € H}(0, l) genemted by any arbitrary couple (V1) € VE™P(0,1)
(see (2.17)), where Fric(z1) = [ F(21) dradzs + [, G(z1) dS, 71 € [0,1].
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P roo f: In the proof, we will use € instead of €, to simplify the notation. Let (V1))
be an arbitrary couple from the space VE™P(0,1) and let the function W € L2(2)?
be defined by

W (21, 22,25) = —((V/(21), n(21))2z + (V(@1), ba1))zs ) (21)

—z3¥(z1)n(zy) + 22 (z1)b(z1) for (z1, 25, 23) € Q. (8.24)

Proposition 4.2 enables us to approximate the couple (V, ¢} with couples (V,9.) €
VeerePe(0,1) satisfying V. € C3°(0,1)® and . € C$°(0,1). In an analogous way as

in (8.24), we define the functions W, € C*=(Q)? by
W(z1,22,25) = = ((Viler), nel@))a + (Vi(e1), b(an))as ) (1)

—Z3Ye(T1)0(71) + Toe(21)be(1) (8.25)
for (z1, s, z3) € Q.

Let us define the function {/6 by
V.=V.+eW, € C®(Q)>nV(Q).
After substitution to (6.5)—(6.8) we get by using (V,t.) = 0 (see (2.17))
wil(vf) = r11(Ve) + exi; (We)
= (1 = @B — ew300) (VL 8) + €297:(VE, ) — ex7e(VL, b))

+6<(1 - E:L.?/Be — 6$3a6)(alwe; te) + 6x37e(8lwe; ne) - 6$27&(81W6a be))

= (63?3’)’5(\[27 n.) — exyy.(Vy, be))

—I—e((l — exafe — €x30) (01 W, te) + €237 (01 We, ne) — €xay. (01 W, bﬁ)) =7

(new notation). Since
€(1 — ez 8. — ex3a,) (01 W, t.) = —€(1 — ez — exsza.)(z2( V., n.) + z3(V., b))
—€(1 — exof8. — exza)z3h(nl, t.) + (1 — ez 8. — exza )Tt (b, t,)

22) —€(1 — ex2f. — exza)(z2(VL,n.) + z3(V.,b.))
+e(1 — exofe — exza;)fBexsthe — €(1 — €xof — €Tz ) ZTate

= 6(—.’L‘2(V2, n.) — z3(V.,b.) + Bz3th. — aexﬂpe)

+2(Bexa + aexs)(z2(V, n.) + z3(V., b.) — Besthe + aezat)e).
Then

Z = 6(76"”3(\[;7 HE) - 76x2(V27 b6)> + 6(—.’L‘2(V;, ne)’ - .’L‘3(V;, bE)’ + Bexr3tpe
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_aexﬂpe) + 62 ((,851172 + aex3)(x2(vlea ne), + xS(V, ) ﬁex3¢e + a6x2¢6)
+7.23(01 W, n.) — vz2 (01 W, b6)> = €I (—(V;, n.) — atp. —v.(V., b6)>
tews (—(Vibe) + Betpe +7(Viong) ) + B,
where

Bell = 62 ((ﬂe.’ﬂg + Olefﬂg)(xz(VL, ne)l + £E3(V’ ) BexS'lpe + o x2¢€)

+7.23(01 W, n) — ve2 (01 W, be))-

Since (V.,¥) € Vio™P<(0,1), (2.17) and (5.5)(5.6) enable us to introduce the
notation

Ui,l = (V* €) e) ¢e, Uy 2 (V*,ea ne) — (V;, be)a
Uiz = (Vie be) = =(Vi, no).

Then
2 "% 2V b)) — wa(V) o n) + BL.

Since V. € C§°(0,1), then from (6.6) it follows that 2605,(V.) = 0 and thus
wfz({/}) =" £12(Ve) +01,(We) + eriy (W)
(6:6168) %((V'e, n.) + (1 — ez — exsa,) (0o We, te) + ex37. (0 W, 1)
—€x27. (W, b,) + ¢(0; W, n6)> -7
(new notation). We compute each term
(1 — exaf3 — €x30) (W, te) = —(1 — exof8 — exza)(VL, 1),

€3V (W, n.) =0, —exy7. (W, b,) = —exav.1,

(OW,,n.) = — ((@(vg, n,) + z3(V', b6)> (t', n.)

—$3¢2 + $2¢e(bly ne)) = _Eﬁe ($2(V2; ne) + $3(V’57 be)) - 6$3¢2 + 6$27&¢67

and we can conclude that

1
5 ((Vin) +=(Vin) + @2.(Vi,n.) + zsa(Viyn,)

7 =

_EfoYewe - ExQﬁe(Véa ne) - €$3/BE(V2, be) - 6$3¢2 + 6x27e¢e>

€T3

= SH(—vt + aVin) = BV b))
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Using the functions v¢;, i = 1,2, 3, defined above, we get from (5.7)

*,27

7 =23V _t.).

2 *,€7 €
Analogously we can derive that 10{;(V.) = 0 and thus

wiz(Ve) = ki3(Ve) + 013(We) + eriz (W)

1
=5 ((V'e, b.) + (—(V'e, b.) + ex28.(V., b,) + exsa.(V., b,)

_6x376¢6> - <6$2066(V2, ne) + ex3a6(V,5) be)) + foZ"ﬁ; + 6$3’Y€’lﬁ£>

€Ty (5.7) €T

= 22 (g — alVim) + A.(Vi b)) & -2V t.)

We leave to the reader the verification of

wi; (Vo) =0, i,j =2,3.
Denoting B, = (B¥)?._,, where BY = 0 except for i = j = 1 and

ij=1>

Bell = 62 ((ﬁﬁx? + OZG(L'3)(.’IT2(V;, ne), + $3(V’ea be), - ﬁex3¢e + aex2¢e)

+76x3(8lwea ne) - 76x2(8lwea be)) )

we can write

w (V.) = €X(V,.) + B, (8.26)

where
T11(Vie) = =(Viendzs + (Vi ., be)zs, (8.27)

T
T12(Vie) = To1 (Vi) = ?S(V;,Utﬁ)? (8.28)
T
T13(Vee) = Tar(Vie) = = (Vi te) (8.29)
and

Tij(Vie) =0, 4,5 =2,3. (8.30)

Since we know that t. — t, n. — n, b, — b pointwisely in [0,1] \ D, we can use
(4.9) and the technique we have used in (7.72) to prove that

Tij(Vie) = Ti(V.) in L*(Q), i,5 =1,2,3.
Moreover, using (3.4), (4.11) and (8.25) we can easily check that

1

I1Bcll2 = 1Bl < C477), v € (0, 3)
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These convergences and estimates together with (8.1) and (8.3), (8.7) enable us to
pass to the limit in the equation (since V. € C*(Q)3 NV (Q))

o] 1 ~ ~
/ Agf’“’—w;,(UE)—w;j(vﬁ)de dr = / (F,V.)d, dz
Q € € Q

!
+//(G’,VE)Ed6\/Vj0ij’EV]' dSdz,
o Jas

and to establish
l
/ AFH G5 (V,) do = / (F,V) dz + / / (G, V) dSdz, (8.31)
Q Q 0 JoSs

for all (V,4) € V¥™P(0,1), which generate the functions V, (see (2.17)).

Let the point (z9,z3) € S. Since S is open, there exists a square Sy C S such that
the point (x5, z3) is the corner of this square satisfying x5 < z, and z§ < z3 for
(Ty,z3) € Sy. Integrating the equality (7.6) on the interval [z3, T3] we get

Ciu(z1, 2, 23) = —(Ul(z1), n(21))z3 + (UL (21), n(21)) 23 + C11 (71, To,y 3)

for arbitrary but fixed z; € (0,1) and (z3,z3) € Sp. After derivation according to
the second variable we find from (7.7) that

(02G11(21, 72, 73) =) (UL (21), b(21)) = 0211 (21, T2, 23)-
Integrating on the interval [z3, z5] we get
Cui(21, T, 73) = (UL(z1),b(z1))z2 — (Ul(21), b(21)) 25 + (11 (21, T, T3).
We denote
Qo(z1) = Cu (@1, 75, 73) — (Ul(21), b(21))75 + (U (21), n(21))a3 € L*(0,1).

Analogously as in the derivation of (7.23) we can prove that Q, does not depend on
the choice of the point from S and thus

Ci1 = Qo + (UL, b)zy — (U, n)z3 in Q. (8.32)

By the form of the tensor (Aéjkl)?,j’k,lzl (see (8.7)), we have after the substitution
(8.27)~(8.30) to (8.31)

/ Af)jleleij(V*) dr = /P\(Cn + Coa + (33)(T11(Vi) + Taa( Vi) + T33(Vs))
Q Q

+20(C11 Y11 (Vi) + (222 (V) + (33 Y33( V)
+2¢12T12( V) +2¢13 T 13(Vi) + 203 23( V)] da
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= /P\(Cu + (o2 + C33) + 2pC11| Y11 (V) dz + / [4p(C12Y12(Vi) + (13 Y13(Vy))] dz.
Q Q
Hence using (8.27)—(8.29), we can rewrite (8.31) as
I

where

I, = /Q[)‘(Cn + G2 + G33) + 20Cu][(V3, b)z — (VI n)zs] da,

Ig = 2/,1,/[<'12(V;,t)$3 — C13(V>,|<; t).’]?g] dl‘
Q

Using (8.8), we find that

)\2
A(Cir + Coo + Ca3) + 2uCin = (A +2p) G + A+ MG — m(m
2 H , +H
=(A+2u— Py M)Cn + MG + G33)-
Hence using (8.22) we can rewrite the integral Z; to the form
7= [ (B + M+ VL, blaa — (Vi,n)a] da. (8.34)
Q

The terms involving function ¢ + (£ disappear from (8.34) because of (8.11) and
the dependence of the terms (V,,b) and (V’,n) only on z;. After the substitution
(8.32) to (8.34), we can conclude using (2.1) and (8.21)—(8.22) that

1
7, = / E[Ls(U, b)(V, b) + I,z (UL, n)(V!, n)] da. (8.35)
0

After the substitution n = ((i2, (13) from (8.18) to Z,, we obtain
I, = / p (—(02p — z3)x3 + (O3p + 72)72) (UL, £)(V, t) da, (8.36)
Q

where p is the unique solution to the Neumann problem (8.19) and it is easy to
verify from (8.36) (using (8.22) and (8.19) with the test function r = p) that

7, ®19 / 1(—Bops + 2 + Bapmy + 22)(U, £) (V' t) da
Q

1
+/ (UL, t)(V., t) / p[(02p)? — Oapxs + (O3p)? + Bapzs] drodrsdr;
0 s

I
:/ pK (UL, t)(V.,t) dz;. (8.37)
0
Thus after adding (8.35) to (8.37) we obtain (8.23). O
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Lemma 8.5 The sequence {+w™(U,, )}, converges strongly to ¢ in L*()° for
€, — 0.

P r o o f: In the proof, we will write € instead of ¢, to simplify the notation. Let us

define
A= / Awkl(l (U,) - ckl) (1 i]-(Ua—@j)dedx-
Q € €

According to Proposition 6.1, there exists a constant C' > 0 independent of € such

that
2

< CA.. (8.38)

2
Equation (6.4) implies for F, = ¢F and G, = €*G that

l
Aﬁ = /(Fa Ue)de dz + / (G, Ue)deﬁ\/ ViOij’EVj de.’El
Q 0 Jos

—i—/QAijkl <<Ckl - lwk,( )) Gij — Ckl%wiej(Ue)> d dz.

As a result of (8.1)—(8.3) and (8.7), we obtain the convergence of the sequence A,
Le.

_we(Ue) —¢

€

l
A =limA, = / (Fp.g,U) dz, — / ATM s de. (8.39)
0 Q

e—0

Using (8.7) leads after substitution of (8.8) to the identity

/ A GGy dz = /[ (Cu1 + Co2 + C33) + 2u Z ¢l d
Q

=1

A
A+

1 A ? A ?
+2p <ng - ian) (ng 2>\+ —G )

)\2
(>‘ + 2#)(121 + 4#((122 + C123) + 4#(@%)2 + 2)\C11<2g - mel

2
A (Cll + Gy —+———Cu+ <33> + 2uCh + 4p (C122 +(h+ (Cg)Q)

dz

),

+2X(11Ch — . Ch 4 2X(aaCas — —)\2 Cung — —)\2 Ci1Cas + LA &
A+ A4 2(A+p)2t
—i-)\(Cg)z C22C11 al C (CH)Z - —)\2 CHCH
()\ MAE 11 T A(G33 33

1 A 2uA 1 u)\Z

Zm(i +2u(¢33)? — m(gCn + = 200+ 1) Cn
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1 p)?

2(A+n)?

2)2 it PN
+ +
Atp o (A+p)? o (A+p)?

+A(G + C:fé)Z +2u((Co2)* + (¢35)% + 2(C§§)2)
2 2
2 2 ) 5 ng]

2uA
+2N(C?g)2 - %ﬂ(ﬁ(ﬂ + - C11

(A +2p —

-,

(oA —

)C121 + 4#((122 + C123)

2\ —
Ap /\+ )C”C” ( A+ p )\+

2 [ 1B+ au(Ghy G-+ A+ G+ 20(( G+ (G +2(C))] . (8.40)

The expressions for (j1, (12 and (13, i.e (8.32) and (8.18), imply (together with (8.23)
and (2.1)) after substitution to (8.40) that

/Af)jleleij dz :/
Q Q

+20((Gas)? + (G35)% +2(¢28)%)

EC121 + 4#((122 + C123) + A(Cg + C?g)z

d:c:/
Q

1 2 1 2
(=5 (UL, 6)(0p —2)) -+ 4 (=5 (UL, 0)(8op +22)) + M(chh + Gi)?

B(Qu+ (UL, b)zs — (U, n)x3>2

1
+2u((CE)? + (CB)* + 2((5%)2)] do F#LY / (Friq, U) + EQY dz,

+ /Q MG + G + 20 () + (G)? + 2(¢)?)] de,

and substituting to (8.39) leads to

EQ?
A=- /Q [|TIO + MGz + Gz)* + 20 ((G2)* + (G)* +2(C)°) | o
The sequence A, consists of non-negative numbers by (8.38) and so A = 0. Hence

Qo = (o = Co3 = (33 = 0.

In addition, the estimate (8.38) yields the strong convergence in (8.3). Hence by
Proposition 7.2, the convergence (8.2) is also strong. 0

Since we have proved that Qo = ¢ = (£ = (L = 0, and we have denoted g =

(C12, C13), we obtain
(8.32)

Cu1

C12 629 C21 = —i(U;,t)(azp — r3),

(U.,b)zy — (U, n)z3,
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. 1
Ci3 (425) 51 = —= (U, t)(0sp + x2), (8.41)
2
({)_EL / . /
G 55 (UL )z = (UL mzs)
C23:C32:0a
88 1 A /. i
G2 55 (UL bz — (U n)a)

We have proved that the asymptotic one-dimensional model for the curved rods has
the form

a((U, ), (V,4)) = F(V) (8.42)
for all (V) € VE™P(0,1), where

o((U,0),V,0) = [ BIL(UL VL b) + 150, m)(VEon)
+uK (U, t)(V,, t)] dz,
— /Ol Ly (=6t + (U, b)n — (U, m)b),b) (—vt + (V/,b)n — (V/,)b)’,b)
+BL; (=gt + (U, b)n — (U, n)b),n) (4t + (V/,b)n — (V/,m)b)’, n)

+uK((—¢t+(U’,b)n—(U’,n)b)’,t) ((—¢t+(v',b)n_(v',n)b)',t)] dz, (8.43)
and

F(V) = /0 I(Fnc, V) dz, (8.44)

is defined in Lemma 8.4. The convergences (8.2)—(8.3) ensure the existence of the
solution to (8.42).

Remark 8.6 The existence of the strong limit U, — U in H'(Q2) for ¢ — 0 (see
Proposition 7.2 and Lemma 8.5 for the strong convergence on some subsequence) is
equivalent to the existence of the unique solution to the equation (8.23), which will
be studied in the following proposition under more general assumptions.

Proposition 8.7 Let F € H '(0,]) and t, n, b € L>(0,1)®. Then the solution
(U, ¢) € VE™P(0,1) to the equation (8.42) is unique.

Proof: Let us suppose that there exist two solutions (U, ¢;) € VE™P(0,1), i = 1,2
of the equation (8.42). Then the couple of functions (V, ¢) defined by V = U; — U,
and ¢ = ¢ — ¢ is the solution of the equation

~

a((V,8), (V%)) =0, V(V,9) € V&™"(0,1).
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The uniqueness follows from the next estimate (using zero boundary conditions of

the functions V and V,, (2.17), (5.5)(5.6) for the functions t, n, b instead of t,
n,, b)

~ ~

l
o((V, ), (V,9) = [ [BLyVL DY + BLy(Vw)? + uk (V1,0?] doy
0

> min{ELs, Bl uk} / +(V/,n)? +(\A’i,b)2] dxy

A~

_cz/ VP de, >03/ VP do, = 03/ (Vo) + (Vorn)? + (V. b)) day
0
[
:c3/ |+ (V',n)? + (V',b)?| da :03/ (7 + (V1)
0 0

l l
(V' n)? + (V’,b)z] dzy = 03/ [52 + |V’|2] dz, > 04/ [52 + |V|2] dz,.
0 0
O

The proof of the main theorem of this article is now complete and we can state it:

Theorem 8.8 Let the function ® be the parametrization of a unit speed curve such
that ® € C([0,1])® and ®' is piecewise continuous. Let, further, F € L?(Q)3, G €
L2(0,1; L?(0S)?) and Fp,q be defined as in Lemma 8.4. Then, there is a unique
pair (U, ¢) € Vo™(0,1) and satisfying the boundary value problem (8.42) with a(-, ")
given by (8.43). Moreover, the constant extension to Q = (0,1) x S of (U, ¢) may
be approzimated by the solutions U, € V(Q) of the equation (6.4) as follows

U= lirré U, strongly in H'(Q)?,
€E—>

¢ = lim 2% ((82UE, b.) — (83U, n6)> weakly in L*(Q).

e—0 2€

9 Applications and examples

We suppose now that the couples of functions (U, @), (V,v) € Vg’"’b(O, [) and the
functions t, n, b are smooth enough such that the following transformations have
sense. First, we introduce the notation

vy = (V,t), v = (V,n), vz = (V,b). (9.1)

From (2.2), (9.1) with the functions t, n, b, «, 8, 7y instead of t., n., b, a., B, Ve,
and from (2.17), it follows that

V. = (¢t + (V' ,b)n — (V',n)b) =
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—¢'t —¢(ab+fn)+ (V',b)n+ (V',b)(—Bt —vb) — (V',n)'b — (V',n)(—at + yn)
= —9't — ayb — Byn + vyn — (V, —at +yn)'n + (v; — (V, —at + yn)) (-Gt — vb)
—vyb + (V, =0t — yb)'b + (—vs + (V, =Gt — vb))(—at + yn)
= 't —ayb — ByYn + (v; + av; — Yvs)'n — B(vs + avy — yv2)t — v (vy + avy — yvz)b

—(vg + 1 + yv3)'b + vy + Bur + yv3)t — (v + Buy + yvs)n. (9.2)
Using (2.2), (2.17) and (9.2) we get that

(V',t) = v; — avz — Bu; =0, (9.3)
(VL,b) = —atp — (v + avy — yva) — (vy + Bvr + yv3)', (9.4)
(Vi,n) = =By + (v + avy — yv2)" — v(vy + Bog + yvs), (9.5)
(VL,t) = —¢' — B(vy + avy — yv2) + a(vy + Bu; + yvs). (9.6)
Let us suppose that the vectors t, n, b are obtained as the Frenét basis, i.e.
"
®"(z1) #£0,2, € [0,l], t=®', n =t xn. (9.7)

—— b
@)’

Let, further, x = [®"| be the curvature and 7 = 5(®’,®” x ®") be the torsion.
From (2.2), it follows that

"

o= (t,b) = (®", ' x |<I>”|) =0, (9.8)
B (t)n) = (8", o) =k, (9.9)
|®"|
3" 3" ‘I‘"’|‘I’"| . (‘I’", ‘I"") ;x| &
Y= (b,an) = ({)” X |<I>”|’ |.1)u|) + ( ' x |<I)"|2 ) |<I)”|)
1
- |(I>,,|2(11>' X ®" ") = —1. (9.10)

We denote after substitution of (9.8)—(9.10) to (9.3)—(9.6)

Q1(v) =v] — kv =0, (9.11)

Q2(v) = —(vy + kv — Tv3) + T(v3 — TU2), (9.12)
Q3(v,v) = (v5 + Tve) + 7(vh + Kvy — TU3) — K, (9.13)
Qu(v,¥) = —¢' — K(vy + Tv3), (9.14)

where v = (v, v2,v3). Then (8.42) can be transformed for G = 0 as

!
/0 [E]ngz(u)Q2(V) + E[ngs(U, $)Q3(v, %) + pKQa(u, $)Qu(v, ¥)] dzy
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_ / ) da, (9.15)
0
where f = (f1, f2, f3) and
fl = (Fat)a .f2 = (Fan)a f3 = (F7b)

Let us notice that from (U, @) € VE™P(0,1) and from the regularity of t, n, b, we
see that (u, @) € {(w,9) € HL(0,1) x H2(0,1) x H2(0,1) x H}(0,1) : w] — kwy = 0},
where the function u = (uq, us,u3) is defined as in (9.1). For instance, the relation
w) — kws = 0 is fulfilled by (9.3) and from (2.17) it follows that

uy = (U,n) = (U',n) + (U,n') = —(U,,b) + (U,n’) € H;(0,])
and thus uy, € H2(0,1), because U, € H}(0,1)3, ¢ = —(U,,t) € H}(0,1), etc.

The equation (9.15) is nothing but the asymptotic one dimensional equation for
curved rods, as derived in [10].

Consider now the case of smooth arches ® : [0,1] — R? and let

EN
¢2

6//&5/ N 6//&5/
c=0" = (arctan(<))" = -2l 12

3 e (9.16)

denote its curvature. Then under the conditions that [ = 1, Elz; =1, El;; =1,
uK:l,fg:0,¢:0,1ﬁ:0,u3:0,v3:0,T:0andf<a:c,wegetfrom
(9.11)—(9.15)

1 1
/ (dh + cur)/ (v + evr) doy = / (F,v)s da, (9.17)
0 0

for all v € {w € H}(0,1) x H2(0,1) : w} — cwy = 0}, which is nothing but the
asymptotic one dimensional “flexural” model for arches from [6].

A Appendix

In this section, we construct a local frame for the unit speed curve C generated by a
Lipschitz function, and its regularization. Finally, we show that slight modifications
of the previous arguments enable us to derive the same asymptotic one dimensional
model as in Theorem 8.8, when t, n and b € L>(0,1)3.

Proposition A.1 Let ® € Wh>°(0,1)® be a parametrization of a unit speed curve.
Then there exist the tangent vector t, the normal vector n, the binormal vector b,
which belong to L>(0,1)3, satisfying

|t|=|n|=|b|=1, tlnlb a.e. on (0,l). (A.1)
Further, there exist functions ®,, t,, n, and b,, o € (0,1), such that

& =t,, t, >t, n, > n, b, — b in measure on (0,) (A.2)
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for o — 0,
|ta'| = |n0.| = |b0.| = 1, taJ_n,,J_b,, n [0,[] \ Do. (A3)

for all o € (0,1), ®, € WH*(0,1)* and ¥/, t,, n,, b, are piecewise continuous
functions with a finite set D, of points of discontinuity.

The proof of the proposition is a consequence of Lemmas A.2—-A.6.

Lemma A.2 Let ® € W'>(0,1)%. Then there exist the tangent vector t, the normal
vector n and the binormal vector b, which belong to L°°(0,1)3, and satisfy (A.1).

P roof: This construction is based on the solvability with respect to n = (71, N, 1i3)
of the equation
ﬁltl + ﬁgtg + ﬁ3t3 - 0, (A4)

where the tangent vector t is defined by t = ®’. Let us denote I;;, i = 1,2, 3, the
Lebesgue measurable sets such that

1
|ti| > \/; a.e. on Iy, i=1,2,3. (A.5)

Since |t| = 1 then at least one of these sets must be nonempty and in addition
10,0] \ U2, I.,| = 0. Using (A.4) we can define the functions 7;, s = 1,2,3, in this

way
—ty—t
ﬁg = ]_, ﬁ3 = ]_, ﬁl = % a.e. on Itl, (A6)
1
~ ~ ~ _ —li—13
n=1n3=1, ny = —,— ae.on I, \ (I, N I,), (A.7)
2
~ ~ ~ —ti—1
ny = 1, Ng = 1, ng = ti a.e. on [t3 \ [([tS N [tl) U ([tS N [tZ)]' (AS)
3

Hence we get that [n] > 1 a.e. in [0,(] and from (A.5), it follows that n € L>(0,1)3.
Thus we can put

n
n]
and
b=t x n, (A.10)
which completes the definition of the local frame in L*>(0,1)3. O

Lemma A.3 Let I C (0,1) be a Lebesgue measurable set and let {I,,},c(0,1) be an
arbitrary family of measurable sets such that I,, C I for all o1 € (0,1), and

I\ I,,| = 0 for o1 — 0. (A.11)

Then there exist the open intervals Ji, » C (0,1) and m(o1) € N, m(o1) — oo for
o1 — 0, such that

00 m(oy) m(oy)
L, €| J It 0 Yo € (0,1), |Ie,\ U Y, ) V(U T a\I)| =0 (A12)
k=1 k=1

= k=1 =
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and
)

(1) (o1
I(1'\ U Jr, ) U ( U I s\ )| =0 (A.13)
k=1 k=1
for oy — 0.

P r oo f: From the definition of the (outer) Lebesgue measure, it follows that

|1, | = Plinf R |P|, P bounded open sets, o; € (0,1).

vlog

Hence we can construct for arbitrary but fixed o1 € (0,1) the sequence {F,, }7° _;
consisting of bounded open sets such that I,, C P, , n,, =1,2,..., and

lim |P,

Ng, —00

\Io,| =0

a1
or equivalently Ve; ng(oy,€) € Ny @ Vn,, > ng(o1,€1)

1P, \L,| <. (A.14)

71

Since P,, are open bounded sets,

oo
P, =J7r k> Moy =1,2,...,
k=1

where J, Puy, ok A€ bounded open intervals. We obtain

Mg,
mlil{)loo |Pn"1 \ ]‘,L_Jl JP"!H ’k| =0

or equivalently Ve, Img(€2,n,,) € Ny : Vmgy, > mo(€2, 1y, )

mgl

Py \ U 7P,
k=1

< € (A.15)

for o4 € (0, 1) arbitrary but fixed. We notice that the sets of indices {€;(01)}o,c(0,1),
j = 1,2, may be chosen such that €;(o;) — 0 for 6y — 0 and j = 1,2. From (A.14),
it follows the existence of n(o1) = ng(o1,€1(01)) € Ny such that for all n,, > n(oy)
and o7 € (0,1)

|P,,. \ I, | <€ (01). (A.16)

We can suppose without loss of generality that n(oy) — oo for oy — 0. From
(A.15), it follows the existence of m(oy) = mo(€x(01),n(01)) € Ny such that for all
my, > m(oy) and oy € (0,1)

o1

Mgy

1Paiony \ | Tpuiory il < @(00). (A.17)
k=1

95



We can suppose without loss of generality that m(oy) — oo for oy — 0. Combining
(A.16) and (A.17) leads to

m(o1)
|Pagey \ Loy | = 0 and |Pooy \ | Jp ikl = 0,
k=1
which together with (A.11) imply
(o1) m(o1)
|([0'1 \ U JPn(al)yk) U ( U JPn(a'l)yk \ [0'1)| — 0 (AIS)
k=1 k=1
and
(o1) (o1)
[(1\ U JPn(a'l)yk) U ( U Jpn(o'l)7k \I)[ =0 (A.19)
k=1 k=1

for o1 — 0. Since we suppose that I,, C I C (0,!) for all oy € (0,1), we can define
I,k = Jp, 0k 1 (0,1) and now it is easy to verify (A.12) and (A.13). O

Lemma A.4 Let I C (0,1) be a Lebesgue measurable set and let {I,,},c(0,1) be an
arbitrary family of measurable sets such that I C I,, C (0,1) for all o1 € (0,1), and

|I,, \ I| = 0 for o1 — 0. (A.20)

Then there erist the open intervals Jr, 1 C (0,1) and m(oy) € N, m(0o1) — oo for
o1 — 0, such that

00 m(o1) m(o1)
Iy CY Tk Yor € (0,1), [(In,\ |J T, o) U({J Jn, s\ 1) =0 (A21)
k=1 k=1 k=1
and
m(o1) m(o)
I\ U T, 0 (U o, s\ D=0 (A.22)
k=1 k=1
for oy — 0.

P r o o f: Since the proof is analogous to the proof of Lemma A.3, we omit it. O

Lemma A.5 Let the functions t, n € L>(0,1)® be as constructed in the proof of
Lemma A.2. Then for any o > 0 there exist piecewise continuous functions t,, n,,
o € (0,1), with finite sets D, of points of discontinuity such that

lt,| = n,| =1 in [0,]]\ D, (A.23)

and
t, =t and n, — n in measure on (0,1) (A.24)

for o — 0.
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Proof: Let the sets I;, and I, be determined by
z €I, ©ti(z1) >0y and 2y € I, & ti(x1) < —01, i =1,2,3, (A.25)

for o1 € [0,1]. It is easy to see that

(0,1) = t+0 Ul (A.26)

and
[t o C It 0> Vo1 € (0,1), |I;;0\[;;Ul| — 0, (A.27)
I, 5, C 1y, Vo, € (0,1), |It:’0 \ It:m| —0 (A.28)

for oy — 0 and ¢ = 1,2,3. From Lemma A.3, it follows the existence of the open

intervals J;+ , and m;(oy), @ = 1,2, 3, such that m(oy) = max;—y 2 3{mi(01)} — oo
t;,01?

for o1 — 0, and

m(o1)
U i x € (0,0), m(o) =1,2,..., (A.29)
k=1
m(oy) m(
([;,01\ kL_J Jljal, U Jljal, I 0'1)| —0 (A.30)
and )
(Tt \ U I3 V(U i\ B =0 (A31)

foroy > 0andi=1,2,3.

The functions ¢;, 1 = 1,2, 3, are defined for almost all z; € (0,1) and we extend these
functions by zero outside of (0,1). This enables us to define the functions

ti, (z1) = max{oy, t;(z1)} and ¢, (z1) = —max{oy, —t;(z1)}, 71 € R'. (A.32)

1,01

We can deduce from (A.26)—(A.28) and (A.32) that

ti,, =t;on I} andt;, =t;on I, (A.33)
and
tiy, — tion I and t;, — t; in measure on (0,1) \ I}, (A.34)
for oy — 0 and ¢ = 1,2, 3. Further, we can easily see that
1)
tiy, *9g, — ti,, on U Jre o and £ #0g, — 1, on (0,1)\ U Jrs w (A.35)

in measure for fixed o1, i = 1,2,3 and for 0o — 0 (it follows from the conver-
gence of mollifiers in LP-spaces, p € [1,00)), where ¢ € C§°(—1,1), 0 < d < 1,
fjl ¥(z1) dzy =1 and Jy,(z1) = (}219(“;—1) Now, we define the functions

~ t;"a on +
- 1 Uk 1 I: Gl,k (A.36)
tig, O (0,0)\ Uk I+

t; a']_’

tiyo'l =

o7



and

—~ tig, ¥ Uy 0N U +
ti,tn,o'z - _ ' i " ’i:t:ll’k (A37)
tig, * s, on [0, l]\U t ok
We get from (A.35) that
Lioy.co — tig, in measure on (0,1) (A.38)

for fixed o1, ¢ = 1,2,3 and for 05 — 0, and from (A.26), (A.31), (A.34), (A.36) that

~

tis, — t; in measure on (0,1) for oy — 0 and i = 1,2, 3. (A.39)
In addition, we can deduce from (A.1), (A.32) and (A.36)—(A.37) that
1> [tigr.n| > 01 and 1> [tis,| > oy a.e. on [0,]] (A.40)

for all o3 € (0,1).

Let us take arbitrary but fixed & > 0. Let, further, Ez ,, = U?Zl FE:, -, ; and
Egl,gl,gz = U?:l Egl’ol,gz,i, where |ti’01 — t,| 2 /6\1 on Egl,ol,i and |ti’01’02 — ti,gl| 2 /6\1 on
Ez 61,000, 05 € (0,1), j =1,2 and i = 1,2, 3. Then we conclude from (A.38)—(A.39)
that

|Ee, 004l = 0 for oy — 0, |Ez 51.0,i| = 0

for 0o — 0 and o, arbitrary but fixed, or equivalently Ve, J0?(€;,6,4) > 0: Vo, €
(0’ 0'?(/6\1,/6\2, 7’))
| By 1| < (A.41)

and V’e}, 30'3(/6\1,/6\3,0'1,’1:) >0: VO'Z € (0,0’3(/6\1,/6\3,0'1,7;))

|E€170—170—27i| < /6\3 (A'42)

for i = 1,2,3. Now, we can take the family of indices {e]( )}oc(,1) such that

)

€(o )—>0f0r0—>0and]—1 2,3. Then there exist o) (€;(0), € (o), )>0 Vo, €

(0, 01(@(0),&(0),1))
| Bev(0),01i] < &(0)- (A.43)

Let 01(0) € (0, min;—123{0}(€1(0),€(0),7)}) be such that o1(c) — 0 for o — 0.
Further, there exists o9 (€;(0), €3(0), 01(0),7) > 0 : Voo € (0,03(€1(0),€3(0), 01(0),1))

| B (0).01(0).02,i] < €3(0) (A.44)

for i = 1,2,3. Let, now, o2(0) € (0,min;—; »3{05(€1(0),3(c),01(c),4)}) be such
that o9(0) — 0 for 0 — 0. We define the functions

Sl

)

tp = 220720 193, (A.45)

tal (0),02(0) |

Since
|tio1(0).02(0) | 2 01(0) > 0 on (0,1) (A.46)
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as a result of (A.40), the estimate

~ (A1) ~
toi@)oa@) ) = [6* + [toy()oaio) | — £

3
= 1 + Z(tiaa—l(a—)yo—z(a—) - ti)(tiyo—l(o—)aa—Z(o—) + tl) Z ]' - 6/6\1 (0-) (A'47)

=1

on (0,1) \ (Ee (0),01(s) U E,(0),01(0),02(+)) €nables us to deduce from (A.45) that
t, — t in measure on (0,). (A.48)

We can easily deduce from (A.37), (A.45) and (A.46) that the functions t, are

piecewise continuous with finitely many points of discontinuity, because the number

of intervals J,+ , is for all oy € (0,1) finite . Analogously we can define the
t;,01°

function n,. O

In the next lemma, we discuss the orthogonality of the approximating vectors.

Lemma A.6 Let the functions t, n, b € L*(0,1)® be constructed in the proof of
Lemma A.3. Then there exist piecewise continuous functions t,, n,, b,, o € (0,1),
with a finite set D, of points of discontinuity such that

t,| = |,| = |b,| =1, t, L1, L b, in[0,1]\ D, (A.49)
for allo € (0,1) and

t, > t, n, - n, b, — b in measure on [0, ] (A.50)

for o — 0.

P roof: Let us define the set E1 , = U?—1Eiot- UFE: where |t; , — ;]| > %
127 - 129 )

12 O, )
1

on E1 ., and |nj, —ny| > 55 on B ., where the functions ¢;, and n;, are
1277 ’ 129,10 5 y

constructed in the previous lemma. From (A.24), it follows that
|E1_12,U| — 0 for 0 — 0. (A.51)

We can easily see that then

sup ||(to, no) || z=(oape, ) < sup [[(ts — t,10)|[=qonmE, )
o€(0,1) 12 oe(0,1) iz

. (A.52)

N | —

+ sup [|(t,n, — n)|l~ope, ) <
oe(0,1) 12

(A.51) enables us to use Lemma A.4 with I = () and to construct the open intervals
Je, & C(0,1) such that
1209

o (A.53)

o~

1

(¥

oo
Es,cC s
k=1
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where JE 1 k= (CLE 1 ,kabE 1 ,k) and
150 ivild 129

1 J 7z, &l—0foro—o. (A.54)
o

We can suppose without loss of generality that the intervals Jg, ; are mutually
1309’
disjoint and that

diSt(JEl—lz,a’kl’ JETIT"’kZ) = rnin{|aET12’U,k1 — bET127"’k2|, |CLET12’U’]‘,2 — bEflz"”k1| >0

for ki # ko arbitrary. Further, we take a family of positive indices {o%(c)}%2,,

€ (0,1), such that
> Gi(o) =0 (A.55)
k=1

for 0 — 0. We define the intervals J*i k= (ag, x—0k(0),bg, x+0k(0))N(0,1).
From (A.53)—(A.55), it follows that B

E
| le,o- k=1 = k=1 1
= | U Je, U U(aE;,, kT ak(a)’aE;,g,k) J U(bE;, k’bEL, k1 0k(0))|
k1 12 k1 12 12 k1 12 12
< e, okl + 2> Gr(o) >0 (A.56)
k=1 k=1

for o — 0.

Now, using Proposition 3.1 we can construct the piecewise continuous normal and
binormal vector functions fi, and b, to the curve ®,, where we put

®,(r,) = /Om1 ty(z1) dzy + ®(0), z; € [0,1].

It is easy to see that the functions n, and b, have the same points of discontinuity
as t,.

Let us denote 0% = n; , — (n,,t,)t, on (0,1). Now, we define the function n**! in
this way
nrit =
nt_on [0,1]\ [aEﬁ,a’k —ox(0), bE%,g’k + a1(0)]
(1 - li,l,a’,k)ﬁﬁg + li,l,a’,k'ﬁ'i,a on [a’Ei &k a'\k(O'), CI,EL ,k]
= 2 (A.57)

N; o ON [CLE 1 ,k,bE 1 ,k]
127 127

(1— E,z,a,k)ﬁi,a +E,2,a,kﬁﬁg on [bEi kbe, gk +0ok(0)]

1
12° 7"
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where E,m,o, 1=1,2,3, m=1,2and k =1,2,..., are linear functions such that

~ ~

Ljok(as, x—0k(0) =0, liis(ar, &) =1,
12> 12>

~

li,Z,a,k(bEflz’a,k) =0, E,Z,a,k(bEi _ktox(0)) =1

12°

The definition (A.57) together with (A.55) enable us to deduce that Ve > 0 Jk; (€, 0) €
No: Vko > k1(€,0) and for arbitrary but fixed o

ko—1
z € (0,0): [BE (o) Ak (@) >0/ =] {J Jp, .
k=ki(60)
ko—1 ko—1
<l U Je, gkl +2 Y o) <® (A.58)
k=ki(60) k—F: (6,0)

Then, from boundedness ||n¥||,, < 2, we conclude that the sequence {n*}$° , is for
arbitrary but fixed o € (0,1) a Cauchy and thus convergent sequence in LF(0,1)3,
p € [1,00), which implies the convergence in measure, i.e. there exits a function n,
such that

n* — 1, in measure on (0,1) (A.59)

for £k — oo.

It is easy to see from (A.52) and (A.57) that the vector 1, is orthogonal to t, and
all functions n;,, ¢ = 1,2, 3, cannot be equal to zero at the same point, if

~ or(o N or(o
ny,(am, & — k; )) # —Mig(ap, &k — k; ))
12> 12>
(A.60)
Ek(a)

) # —fig(be, &+ M)
13 2

for some 7,7 =1,2,3, and k =0, 1,.... We refer the reader to (3.17)—(3.19) for the
idea of the modification of the definition (A.57) in the case that one of the conditions
in (A.60) does not hold. It is obvious from (A.57) that the function n, has again
finitely many points of discontinuity, because the functions n, — (n,, t,)t, and i,
have finitely many points of discontinuity.

From (A.24), (A.56), (A.57) and (A.59), it follows that

=~k
ni,o‘ (bETIZ’U’k +

t, L fi,, |fy| >0 and i, — n (A.61)

in measure on (0,[) for ¢ — 0. Taking

N, = — (A.62)



and denoting t, = t,, we get from (A.24), (A.52), (A.56), (A.57), (A.59), (A.61)
and (A.62) that
t, — t and 1, — n in measure on (0,1) (A.63)

and the function n, is piecewise continuous with finitely many points of discontinu-
ity.

Defining the functions

T
ba- = Ea- X fla-, (I)a(xl) = / ta-(Zl) le + @(0), T € (O,Z),
0
the proof is finished. O

Remark A.7 To obtain the smooth approximation of the functions t, n, b €
L>(0,1)3, we can use Proposition 3.2 and we get again (3.2)—(3.5) with the con-
vergence in measure instead of the pointwise convergence.

Remark A.8 Theorem 8.8 remains valid for t, n, b € L>(0,1)3. The only thing
we must change in the previous proofs, is the application of the Lebesgue theorem,
for instance in (7.79). But it is easy to check that

1
2

[
( [ = 710U 0@ dxl) S0
0

for t. — t in measure and for € — 0, because we have the estimate

1
2

[
( / b — 2B,V 6)(@) [y 15 dxl)

N

< €01 U, t)(@1)l 201:5-1(5)) +2 (/ 101U, t) () 1 515 dl‘l) :

IE,E

where |t. — t| > €on It and |Iz| — 0 for ¢ = 0. We can replace analogously the
application of the Lebesgue theorem in (7.72), etc. Therefore, one can obtain the
same results for W1*°(0,1)® curved rods.
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