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Abstract 

 

 

This article gives a review of our latest results on the self-pulsation and excitability 

properties of blue-violet lasers. A number of investigations of the phenomena in InGaN 

lasers with different designs are described. The bifurcations, which are the origin of the 

phenomena, are identified and the effects of the lasers parameters on device dynamics 

are discussed. It is shown how different laser structures can be used to control device 

behaviour and the dependence of self-pulsation and excitability behaviour on laser 

geometry is discussed. Finally, agreement between the results of numerical calculations 

and experimental measurements on self-pulsation is demonstrated.  

 

1    Introduction  

 

Blue-violet semiconductor lasers are very attractive for high-density optical 

storage applications [1]. In particular, laser diodes operating at 400nm are required for 

CD or DVD systems to increase the disk storage capacity up to 25 Gbytes. A number 

of other applications, such as full colour electroluminescent displays, laser printers, 

detectors, sources for undersea communications, and many others in biology and 

medicine have increased the interest in such lasers. In recent years, numerous 

fabrication methods have been proposed and developed for blue lasers with CW 

operation. However, recently, specific interest has been focused on the self-pulsating 

operation of blue-emitting devices. Self-pulsation (SP) can significantly increase laser 

performance for certain applications and is considered, for example, to be important 

for the reduction of feedback noise [2]. In our previous work we have reported self-

pulsation for a blue InGaN laser with a saturable absorber (SA) [3,4] and for tandem 

blue lasers [5]. The theoretical description of the device was based on the Yamada 

model for a laser with a SA [6,7] adapted to the specific case of a blue InGaN laser. In 

that work it was demonstrated that lasers with small carrier lifetime in the SA 

produced self-pulsation. The small carrier lifetime was attributed to piezoelectric and 

the tunnelling effects in the AlGaN layer, with the carrier recombination dominated by 

nonradiative processes.  
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Excitability is a rapidly expanding topic in optics, having been initially studied 

in biology [8] and chemistry [9]. Recently the phenomenon of excitability has been 

predicted to occur in optical devises such as cavities [10,12], different types of lasers 

[13-14] etc.. Convincing experimental evidence of excitability in a laser with a short 

external cavity is reported in [15]. In addition, an experimental investigation of the 

excitable properties of a solid-state laser with an intracavity saturable absorber is 

reported by Larotonda et al [16]. 

   In this paper we present an investigation of self-pulsation and excitability in 

blue-violet lasers with different designs, which extends and complements our previous 

study of blue laser dynamics [3-5]. The structure of the paper is as follows: section 2 is 

devoted to a presentation of results on the InGaN laser with a SA incorporated as a 

layer parallel to the active region. Section 3 contains a presentation of the model, the 

associated equations, the results of simulations and a discussion of tandem blue lasers 

with different designs. The conclusions are given in Section 4.     

 

2      Blue InGaN laser with saturable absorber   

 

Fig. 1 shows the structure of the InGaN laser (lasing wavelength 395 nm) with 

saturable absorber that has been considered; it consists of a three-quantum well InGaN 

active layer and a saturable absorber in the form of a single p-type InGaN quantum 

well. Saturable absorber layers with thicknesses varying from 1 nm to 3 nm have been 

used with a view to maintaining a low threshold current. The AlGaN layer prevents 

significant carrier overflow from the active region. In the fabrication process, the 

saturable absorber layer was grown as a layer parallel to the active region. Other 

details of the fabrication method are given by Ohno et al [17]. The laser structure in 

Fig. 1 can be considered to be made up of a central active region 1 and a saturable 

absorber 2 as well as the outer regions 3 

and 4. The other regions have been 

taken into account for the calculation of 

the effective refractive index, near field 

patterns and confinement factors. 

Region 5 is a cap layer, which is 

electrically connected to the external 

current source.  The field distribution in 

the transverse cross-section is analyzed 

by the effective refractive index 

method, where the spatial variation of 

the refractive indices and the gain-loss 

properties of the media are taken into 

account. Each region of the device shown in Fig. 1 is taken to have a refractive index 

Fig.1  Schematic view of the InGaN laser 
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that is dependent on its alloy composition and the wavelength of the radiation. The 

field confinement factors iξ  of the regions 1 - 4 are not constant and have been 

evaluated during the pulsations. The equivalent volumes of the outer regions 3 and 4 

also vary and were evaluated from the electron distribution width in these regions [7]. 

To model the laser properties, we used the Yamada model [6, 7] adapted to the 

specific case of the InGaN laser with saturable absorber incorporated as a layer 

parallel to active region. The equations of laser operation are 
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where S is the photon number, Ni  is the injected carrier number in the ith region, ai is 

the differential gain coefficient, iξ  is the field confinement ratio, Ngi is the carrier 

number at transparency. siτ  is the carrier lifetime, Tij  is an equivalent lifetime giving 

the carrier diffusion from region j to i. Iij gives the carrier injection from region j to i. 

The second term in the photon rate equation describes the spontaneous emission and M 

is the equivalent total number of longitudinal modes, which is evaluated from the half 

width of the linear gain spectrum. Vi is the volume expressed by LdWV iii = where L is 

the laser length, and di and Wi are the thickness and width respectively of the relevant 

region. The term involving B describes the self-saturation of the gain and implies a 

nonlinearity of the system. The coefficient B is given by
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and nr is the refractive index, 0λ  is the central wavelength of the laser, Rcv is the dipole 

moment, and inτ  is the intraband relaxation time.  The threshold gain level Gth is given 

by  
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where Rf and Rb are the reflectivies of the front and the back facets, respectively and κ  

is the loss coefficient. The back facet has a high-reflection (HR) coating consisting of 

four pairs of quarter-wave TiO2/SiO2 dielectric multilayers to reduce the threshold 

current of the laser diodes, and we take Rf=0.25, Rb=0.95. The values of many of the 

above parameters are obtained from experimental measurements.  
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A typical example of a bifurcation diagram for periodic solutions is shown in 

Figure 2. A stability analysis shows that the limit cycle is created at a current of 

125mA by a Hopf bifurcation (marked by a solid circle).  This bifurcation diagram is 

completely different from that obtained in GaAs lasers that have been studied 

previously with a SA [6,18,19], where the self-pulsations appear just after the 

threshold due to a homoclinic bifurcation. In contrast, the bifurcation diagram in 

Figure 2 shows that a substantial region of CW operation exists after the threshold 

before SP occurs due to a Hopf bifurcation. Both Hopf bifurcation points in Figure 2 

are subcritical. The carrier life time in the SA of the laser shown in Figure 1 was 

estimated from experiment to be about 0.1 ns, and this small value was attributed to 

piezoelectric and the tunnelling effects in the AlGaN layer, with the carrier 

recombination dominated by nonradiative processes. Our calculations show that the 

carrier lifetime in the SA strongly influences the bifurcation diagram. An increase of 

SA carrier lifetime shifts the lower Hopf point towards the threshold, and its 

bifurcation to a homoclinic one. 

 

Fig.2 A bifurcation diagram for a laser with a 500 

µm cavity length. The other parameters are as in 

Table 1. The thin solid lines show the stable 

stationary solutions (CW or non-lasing operation). 

The thin dotted line shows the unstable stationary 

solutions (SP operation).  The thick solid line 

shows the periodic solutions.  The circles mark the 

Hopf bifurcation points 

 
         

 

Table 1  Parameters used in numerical calculations 
 

Symbol Definition Value & units 

  Active region SA 

   a Differential gain 

coefficient 

1.85 ×10-12 m3s-1 13.0 ×10-12m3s-1 

   Ng Transparency carrier 

density 

1.4×1025m-3 2.6×1025m-3 

   Sτ  Carrier lifetime 2.0 ns 0.1 ns   

   d Thickness 18nm 3 nm   

   W Width   2.0µm 2.0µm 

 

The region of self-pulsation in the plane of different parameters is shown in 

Figure 3. The first example is the SP region in the plane cavity length vs injected 
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current (Fig.3 a).  For a laser with a small cavity length, the range of self-pulsation is 

narrow.  As the cavity length is increased the SP range becomes wider. However, this 

spread is accompanied by a shift of the operating point to higher injected currents. We 

note that in the case of a laser with a 650 µm cavity length, the current injection was 

limited at 220mA due to the upper bias limit of the pulse current oscillator. Figure 3a 

also shows quite good agreement between the experimental data (dotted lines 

terminated by squares) and the regions of SP predicted by numerical calculation. The 

second example shows the influence of carrier lifetime on the laser dynamics. Fig 3b 

shows the SP region in the plane of carrier lifetime in the SA vs that of the active 

region for two values of SA thickness.  This figure confirms once again the idea that a 

large carrier lifetime in the active region requires a short carrier lifetime in the SA to 

get self-pulsating operation. A decrease of SA thickness leads to the disappearance of 

the SP region. We found that in the case of a large carrier lifetime of the active region, 

SP operation can only be achieved with very small values of SA carrier lifetime.  

 

       
Fig. 3.a) The region of self-pulsation in the plane of cavity length vs. injected current. b) 

The region of self-pulsation in the plane of carrier lifetime in the SA vs. that in the active 

region for saturable absorber thicknesses of 2 nm and 3 nm.  The cavity length is 500 µm 

and the injected current is 100mA.  The lines denote the Hopf bifurcation points. 

 

As was shown in [5], an approach to obtain excitability is to choose a suitable 

value for the absorption level in order to keep a low value for carrier lifetime in the 

SA. Fig. 4 shows a bifurcation diagram in the plane of SA differential gain coefficient 

versus injected current for a laser with a cavity length of 650 µm and carrier lifetimes 

of 2 ns and 0.5 ns in the active and SA regions respectively.  For aSA < 12×10-12 m3s-1 

the laser shows either CW or non-lasing operation for any value of injected current.  

However, an increase of the differential gain coefficient of the SA causes the system to 

cross the Hopf-bifurcation line indicated by the solid thick line in Fig. 4. Further 

increase of the differential gain coefficient of the SA results in a homoclinic 

bifurcation, which is shown by the solid circle in Fig. 4. Between the dotted and 
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dashed lines, excitability is predicted to occur. The message from this figure is that to 

achieve excitability in practice by this approach we need a sufficiently high value of 

SA differential gain coefficient. However, increasing the SA differential gain 

coefficient increases both the absorption level and the injected current.  

 

Fig.4. The bifurcation diagram in the plane of 

saturable absorber differential gain coefficient 

vs. injected current for a laser with a cavity 

length of 650 µm and a saturable absorber 

thickness of 2 nm. The carrier lifetimes in the 

active region and in the saturable absorber are 2 

ns and 0.5 ns respectively. The other parameters 

are as in Table 1.  The laser behaviour in the 

different regions is denoted by: excitable (EX), 

self-pulsating (SP) and CW or non-lasing. The 

solid line represents a Hopf bifurcation  line.  

 

3   Tandem blue lasers  

     

Now we examine tandem InGaN lasers with different designs, which are shown 

schematically in Fig. 5 [5].  The devices consist of two regions, 1 and 2. Fig. 5(a) 

shows a laser in which both regions are active as a result of the two injected currents I1 

and I2. In contrast, Fig. 5(b) shows a laser structure in which the region 1 is active 

while region 2 acts as a saturable absorber. Note that saturable absorber is grown next 

to the active region in the longitudinal direction, which is a completely different 

structure from that investigated in Section 2. 

 
 

Fig. 5:  Schematic illustration of the tandem blue-violet InGaN laser. 
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The laser dynamics have been investigated using the single mode rate equations 
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The subscripts 1 and 2 refer to regions 1 and 2, respectively; n1(2) is the injected carrier 

density. Td is the effective diffusion lifetime induced by the shutting of switch K. The 

other notations are kept as in (1)-(4). However, the refractive index from (4) is 

calculated by the first-order Sellmeier equation )/( 2

22

1 bbnr −+= λλ , where b1 and 

b2 are the fitting parameters (  4.371 =b and 4

2 108.76×=b  m2). The parameters values 

20=κ cm-1, a1=1.5×10-12m3s-1, a2=9.0×10-12m3s-1, 1Sτ =1ns, ridge width 2µm, and 

active regions thickness 16nm were used for calculating the results that are shown in 

figures 6-8.   

We consider three cases determined by the injected current I2 and the position 

of the switch K for the devices in Fig. 5. The first case is the configuration shown in 

Fig. 5a where injected currents are supplied to the regions 1 and 2. In this case both 

regions are active. The results are shown in fig. 6 where the current injected into 

region 2  

 

Fig. 6: The stationary dependence of 

photon number S on the current injected 

into region 1 for different values of the 

current injected into region 2 (Fig.5a). The 

cavity lengths are 500µm and 200µm for 

regions 1 and 2, respectively. The other 

parameters used in the calculations are: 

ng1 = 1.8×10
25

m
-3

, ng1 = 1.0×10
25

m
-3

, 2Sτ  

= 1.0ns. 
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varies from 0 up to 20 mA. For no current supply to region 2, the calculations predict 

that there is hysteresis in the stationary dependence of photon number S on the injected 

current of region 1. In this case the experimental data show that switching occurs but 

pulsation does not. As the injected current in region 2 is increased, the threshold 

current of region 1 is lowered and the hysteresis disappears. For a 20mA current 

injected into region 2, the threshold current of region 1 is reduced to 50mA. However, 

only CW operation can be achieved in this case. 

  Now consider the second case where the switch K of Fig.5b is closed, so that 

there is carrier transport through it and a consequent reduction of the carrier life time 

in region 2. As was mentioned previously, the reduction of carrier life time in the SA 

can result in the appearance of self-pulsating operation. The region of SP in the plane 

region 2 cavity length vs. injected current of region 1 for two values of carrier life time 

of region 2 is plotted in Figure 7. For a 0.1ns carrier lifetime in region 2, the region of 

SP is wide and is in a good agreement with the experimental data marked by the 

dashed line terminated by solid squares. Increasing the carrier lifetime of region 2 

makes the SP region smaller and shifts it to higher cavity lengths (dotted line in Fig. 

7).  

The above results provide clear evidence of the presence of hysteresis and the 

first indication that the phenomenon of excitability might be possible. Now, we will 

focus on the study of the laser behaviour in the case when the switch K of Fig.5b is 

open.   

 

Fig.7: The region of self-pulsation in the 

plane of cavity length vs. injected current of 

region 1 for different values of carrier 

lifetime in the region 2. The parameters are 

2Sτ = 0.1ns, Td = 0.1ns, a1 = 1.5×1025m3s-1, 

a1 = 9.0×1025m3s-1
, 1ξ  = 0.05, 2ξ  = 0.02, ng1 

= 2.3×1025m-3, ng1 = 2.3×1025m-3 and L1 = 

490µm. The dotted line terminated by 

squares shows the range of self-pulsation 

observed experimentally.  

 

 

Figure 8 shows the bifurcation diagram in the plane region 2 cavity length vs. 

injected current of region 1. The solid line shows the Hopf bifurcation points and is 

terminated by a saddle node bifurcation marked by a solid circle. A linear stability 

analysis shows that in the region EX a node, a saddle and an unstable focus coexist and 

the system behaves as an excitable one. The numerical calculations also confirm the 
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three characteristics of excitability: the existence of a threshold above which an 

excitation can occur; a response independent of the magnitude of a perturbation above 

threshold; and the existence of a refractory period.  

 

 

 

     Fig. 8 Bifurcation diagram in the L2 - I1 

plane when the switch K in Fig. 5b is open. The 

parameters are L1 = 500µm, ng1 = 1.8×1025m-3, 

ng1 = 1.0×1025m-3, 2Sτ = 1.0ns. The circle 

denotes the point of saddle node bifurcation.  

 

 

 

 

 

Although the experimental achievement of excitable behaviour in InGaN lasers 

is unlikely to be straightforward, it should be possible in practice to observe 

excitability both in lasers with a large cavity length and a saturable absorber 

incorporated as a layer parallel to the active region, and also in tandem lasers. We 

believe that our work provides a good basis for future study and, in particular provides 

some pointers for more detailed investigations of excitability, and the associated 

phenomenon of coherence resonance, in InGaN lasers and of their possible practical 

applications. 

 

4. Summary and conclusions 

   

In this paper we have investigated the CW, self-pulsating and excitable 

behaviour of blue-violet InGaN lasers with different designs.  The ways in which the 

properties of the SA determine the laser output characteristics have been considered. It 

was found that a short carrier lifetime in the SA is conducive to SP while lasers with a 

large SA carrier lifetime are more suited to excitability. Also, we have shown that an 

increase of SA absorption level leads to the appearance of a homoclinic bifurcation and 

can result in excitability. For tandem lasers, an injected current into one region produces 

a low threshold current in the other but results only in CW operation. However, self-

pulsating operation of tandem InGaN lasers is possible with an external circuit. Finally, 

we have presented a bifurcation diagram, which suggest that excitability in tandem 

InGaN lasers is possible.      
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