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Conventions and Notation 

Conventions 

Criticality of the Hopf Bifurcation 

We call the Hopf bifurcation supercritical if the bifurcating periodic solutions 
exist on the side of the bifurcation curve for which the real parts of the critical 
eigenvalues of the linearization of the vector field at the rest point are positive. 
Similarly, it is called subcritical if the bifurcating periodic solutions exist on the 
side of the bifurcating curve for which the real parts of the critical eigenvalues 
are negative. 

Order Symbols 

In the definitions which follow </>(x; e) and 'if;(x; e) are real-valued functions of the 
variable x contained in some domain D and a small positive parameter e. The 
behaviour of these functions as e goes to zero can be compared by using the Lan-
dau order symbols 0, o and Os. 

Large 0 
We say</> = 0( 'if;) fore~ 0 if there exist constants Kand eo such that l</>I ~ Kl'l/JI 
for 0 < e < e0 and uniformly in D. 

Small o 
We say </> = o( 'if;) if limE--+O ~~:;:~ = 0 uniformly in D, provided that 'if; =f. 0. 

Sharp Os 
We say</>= Os('l/l) if</>= O('if;) and</>-/:- o('if;). 
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Chapter 0 

Introduction 

"Die Mathematiker sind eine Art Franzosen; 
redet man zu ihnen, so iibersetzen sie es in 
ihre Sprache, und dann ist es alsobald etwas 
ganz Anderes." 

Goethe 

This report is about the dynamics of excitable and oscillatory systems. 

So far there has been no general definition of excitability. We give a phenomeno-
logical description in that we call a system excitable if it exhibits an "all or 
none"-threshold behaviour. This means it has a stable rest state from which 
small disturbances get damped and rapidly die out. Disturbances, however, that 
exceed a certain threshold trigger the excitable medium into an abrupt and big 
excursion. This is followed by a spontaneous approach back towards the rest 
state during which it is typically refractory to further stimulation for some time 
before it recovers its full excitability. This sequence of events can be pictured by 
a phase plane diagram shown in Figure 0.1. 

The best known physical example of an excitable system is a nerve cell, which 
gives rise to a neural action potential depicting the propagation of an electrical 
impulse along the nerve axon. A neural action potential is only developed if 
the external stimulus is beyond a certain threshold. Sub-threshold stimuli of the 
nerve cell do not show a significant response. 
The gliding- and aggregation behaviour of the social amoebae "dictyostelium 
discoideum" shows a chemotactical1 reaction to the substance cAMP, in which 

1 Chemotazis is the chemically directed movement. 

1 
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self excitative 

Figure 0.1: Physiological state diagram 

waves of biochemical activity are observed during the aggregation of the amoe-
bae in slime molds. Here, too, excitability is at play. A single "social amoeba" 
wanders about the substrate voraciously consuming bacteria. As they feed, the 
amoebae divide by fission. Eventually the population outruns its food supply. 
During the next few hours an internal process takes place by which these for-
merly independent cells become more alert and responsive to their neighbours. 
Depending on conditions a cell may become spontaneously active whereupon it 
emits a pulse at fixed time intervals, or it may only emit a pulse when triggered 
by its neighbours through a sufficiently high cAMP concentration. The latter 
explains, of course, the excitability feature of the system. 

Other examples of excitable systems include certain chemical reactions, splecifi-
cally the famous Belousov-Zhabotinsky reaction,2 autocatalytic reactions etc. 

Oscillatory behaviour simply means the existence of a spontaneously oscillating 
"pacemaker" so that a persistent wave pattern can develop. Mathematically, 
this corresponds to the existence of a stable limit cycle solution of the associated 
differential equation model. 
Examples of biological oscillators are the so-called "circadian" 3 rhythms, the 
internal "biological clocks," which are supposed to underlie the persistent rhythm 
of physiological activity, compare [Win80]. A concrete example is given by the 
pacemaker neurons in the heart giving rise to the cardiac rhythm. 

Nerve cells can under certain conditions also exhibit oscillatory behaviour, which 
2 More precisely, what has been called by Winfree [Win72] the Z reagent. 
3 Latin: "roughly daily". 
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Figure 0.2: Spiral wave in a two dimensional excitable medium 

simply corresponds to spontaneous periodic "firing." The original reagent of 
the Belousov-Zhabotinsky reaction, discovered by Belousov, is oscillatory. The 
gliding and aggregation behaviour of social amoebae can also be oscillatory as 
implicit in the above description. 

Our approach to the study of these phenomena is deterministic by use of reaction-
diffusion equations. An alternative approach is by stochastic methods, specifically 
by cellular automata. We refer to the thesis of A. Stevens [Ste92] for an interest-
ing cellular automaton simulation of the aggregation behaviour of myxobacteria, 
the "true" slime mold [Rei86], as well as an approximation of the chemotaxis 
equations as limit dynamics of moderately interacting stochastic processes. 

We consider reaction-diffusion equations of the form 

(0.1) 

where U = ( u1 , • • • , un) is a vector of chemical concentrations or species in a 
population model etc.; U = U(x, t) , where t denotes time and the vector xis the 
spatial variable, which may have any number of dimensions. 

Ut = F(U) (0.2) 
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are the kinetic equations4 which give rise to the local dynamics desc_ribing homo-
geneous, i.e. spatially constant solutions. Finally, D is a positive definite matrix 
of diffusion coefficients and the term D '\72 U is the standard model for diffusion, 
where 

'\72 - ~ a2 -L....Ja 2 
j=l X; 

is the Laplace operator in the spatial coordinates. We remark that in population 
models diffusion is interpreted as migration of the species. 

In a pioneering paper in 1952 [Tur52], Turing suggests that some patterns that 
occur in biology result from an interaction between a chemical reaction and dif-
fusion. Turing concentrates on reaction-diffusion equations with linear reaction 
part and shows that they are capable of solutions which vary in space. 

In general, however, a nonlinear kinetics is needed to stabilize spatially non-
homogeneous patterns. 

Generally speaking, the pattern formation problem for a reaction-diffusion equa-
tion is to find solutions, attractors that are non-homogeneous in space and stable 
as a process of time. One of the possible spatio-temporal scenarios are travelling 
waves, which we shall encounter later. 

We focus on generic features captured by all excitable-oscillatory systems rather 
than giving a detailed exposition of numerous mathematical models. 
It is common for dynamical models, including the celebrated model of Hodgkin 
and Huxley [HH52] for the propagation of nerve signals in a squid giant axon, 
to exhibit either excitable or oscillatory behaviour, depending on the choice of 
parameters. 

In the following we concentrate on a particular nonlinear reaction-diffusion equa-
tion on the real line called the FitzHugh-Nagumo (FN) system 

Ut = U:z::z: + f ( U) - W (0.3) 
Wt - eU 

where 0 < e ~ 1 and f is the cubic nonlinearity 

f(u) = u(u - a)(l - u). (0.4) 
4 Also called reaction equations giving rise to the reaction flow. 
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In Chapter 1 we shall see that with respect to the kinetic equations a > 9 and e 
small corresponds to the excitable and a< 0 to the oscillatory regime. Here the 
perturbation parameter e needs to be small to get excitable behaviour. 

The FitzHugh-N agumo equations were originally formulated as a simplification 
of the four dimensional nonlinear system of the Hodgkin-Huxley equations, see 
FitzHugh [Fit61]. The most important change is the reduction of the number of 
"slow" variables from two to one. Since then they have become a central example 
in reaction-diffusion equations, because of their mathematical tractability and the 
rich structure they exhibit. 

For us the FitzHugh-Nagumo equations serve as a simple representative of a class 
of excitable-oscillatory systems. 

It is intuitively suggestive that for the excitable kinetics disturbances of the rest 
state propagate as "travelling pulses". A travelling wave (TW) is customarily 
taken to be a wave which travels without change of shape and with constant 
velocity in the direction of its propagation. 
Mathematically, we mean by travelling waves bounded non-constant solutions to 
(0.3) of the form 

(u(x,t),w(x,t))=(u(z),w(z)), wherez=x+Bt for 8>0. 

Differentiating with respect to z and introducing v = ii as a new variable we 
obtain the following system of three first order ODE's from (0.3) 

u - v, 
v 8v - f(u) + w, (0.5) 
w = 

h . d w ere =dz" 

The travelling wave moves to the left with time if the wave speed is positive; it 
travels to the right if() < 0. For this reason we shall only consider positive values 
of the wave speed () as otherwise waves simply travel in the opposite direction. 
Two types of solutions to the travelling wave equations (0.5) are of particular 
interest: Periodic wave trains and pulses. Solutions of (0.5) which are periodic 
with respect to z correspond to (periodic) wave trains. 
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Similarly, pulses correspond to homoclinic solutions of the travelling wave equa-
tions which are bi-asymptotic to a rest point with respect to the travelling wave 
variable z. Thus, for the FitzHugh-Nagumo system (0.5) homoclinicity to its 
unique rest point at the origin means the existence of a solution (u(z),v(z),w(z)) 
such that 

lim (u(z),v(z),w(z)) = (0,0,0). 
lzl-oo 

Travelling wave solutions to reaction-diffusion equations represent an asymptotic 
state5 to a wide class of initial value problems. This means an asymptotic equiv-
alence class of solutions, which ultimately approach the same solution, neglecting 
transient effects. Stable asymptotic states, e.g. travelling waves, are important 
as they show up in applied contexts. The stability of travelling pulses to the 
FitzHugh-Nagumo system as solutions of the partial differential equation (0.3) is 
investigated in [Jon84]. 

We want to examine the behaviour of the travelling waves to (0.5) near the 
transition from excitable to oscillatory behaviour. Our aim is to show that both 
oscillatory and excitable kinetics support travelling waves, the former wave trains 
and the latter pulses, as is expected from the excitability. Pulse solutions appear 
as limits of families of wave trains solutions existing in the excitable regime when 
their wavelength goes to infinity. Roughly speaking, our analysis suggests that a 
distinction between the excitable and oscillatory regime for the dynamics of the 
travelling wave equations is fairly arbitrary. 
The transition between the wave phenomena in the two regimes, however, de-
pends on the value of the wave speed and can be very complicated. 

The classic paper by Kolomogorov, Petrovsky and Piscounov [KPP37], published 
in 1937, was written at the beginning of the investigations of travelling waves in 
reaction-diffusion equations. The authors showed that the single reaction diffu-
sion equation 

Ut = Ua:a: + u(l - u) 

admits for () > 2 a wave front6 solution u(x - Bt). This reaction-diffusion equa-
tion, suggested by Fisher (Fis37], is meant to describe the spatial spread of an 
advantageous gene in a population. 

5 Compare Fife [Fif79]. 
6 Waves which approach distinct rest states in the limit as z-. ±oo. 
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The organization of this report is as follows: 
In Chapter 1 we give a thorough discussion of the periodic solutions to the ki-
netic equations (0.3) such as small amplitude periodic solutions from the Hopf 
bifurcation and relaxation oscillations as well as so-called "canard" and "phan-
tom ducks" trajectories. Phantom ducks, introduced by Braaksma [Bra93], are 
closely related to the excitability feature of the system. It is interesting to recall 
that FitzHugh [Fit61] was already in 1961 observing canard trajectories in ana-
log computer simulations of the Bonhoeffer-van der f'ol equation.7 He referred to 
them as "no man's land", as they are very hard to track. Canard type trajectories 
occur at the transition from excitable to oscillatory dynamics in the kinetic equa-
tions. The topic of this report is about the analogous behaviour when diffusion 
is added. 
In Section 1.2 we compute under general assumptions the stability of relaxation 
oscillations and canard type limit cycles for a class of differential equations in 
the plane of which the kinetic equations of the FitzHugh-Nagumo system are a 
specific example. 

In Chapter 2 we investigate the stability of the rest state, representing the trivial 
solution to travelling wave equations of the FitzHugh-N agumo system. This in-
volves determining the direction in which the periodic solution emanating from 
the Hopf bifurcation branches. Our analysis does not make use of any approxi-
mations and also incorporates the oscillatory regime with the kinetic equations 
in the limit as () tends to infinity. 

Chapter 3 deals with periodic travelling waves as perturbation from the infinite 
wave speed limit in the spirit of Kopell [Kop77]. It turns out that in the infinite 
wave speed limit the travelling wave equations correspond (up to a rescaling) 
to the kinetic equations discussed previously. It is then not surprising that if 
the diffusion coe:fficient8 is small as compared to the wave speed, structurally 
stable periodic solutions of the kinetic equations perturb into periodic travelling 
waves. For large wave speeds the dynamics of the kinetic equations occurs on a 
two dimensional "slow submanifold". Since all periodic solutions to the kinetic 
equations are stable this holds for all types of periodic solutions. This implies, 
in particular, the existence of periodic travelling waves with canard profile living 

7Basically the reaction part of the FitzHugh-Nagumo system. 
8 Which is here taken to be 1. 
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on a two dimensional invariant manifold. 

In Chapter 4 we exploit the singular perturbation nature of the travelling wave 
equations of the FitzHugh-Nagumo system to formally construct "singular solu-
tions." By separation of the time scales we are able to split the three-dimensional 
travelling wave equations into two lower dimensional systems corresponding to 
fast and slow time. The singular periodic and homoclinic travelling wave solu-
tions, obtained by setting e = 0, are then given as the piecewise smooth union 
of solution segments to the different systems. We recall work of Casten, Cohen 
and Lagerstrom [CCL 75], who derived an explicit expression for the connecting 
orbits between saddles in the fast time system, forming part of the si:lgular so-
lutions. We generalize their work, which is exclusively for the excitable regime, 
to the oscillatory one and also extend it in another direction, too. In that we 
consider "degenerate" singular connections, that is orbits of the "fast" system, 
which connect a rest point of saddle type to one of saddle-node type. 
We give a complete classification of all possible singular periodic and homoclinic 
solutions in the parameters a and f) connecting periodic travelling waves in the 
excitable regime with the homogeneous (spatially independent) oscillations of the 
kinetic equations, which exist for negative a in the limit as f) goes to oo. 

In the last chapter we deal with the persistence of the singular periodic and ho-
moclinic travelling waves, whose existence we established in the previous chapter. 
The method of proof is of topological nature and goes back to Conley [Con75) 
and Carpenter [Car77). It uses fairly sophisticated perturbation arguments. We 
begin by re-proving the results of Carpenter for the excitable regime, which serves 
as an introduction to the more complicated persistence result of the degenerate 
periodic solutions. We have also changed the proofs in that we have made use 
of the inherent symmetry of the cubic nonlinearity with respect to the inflection 
point, which is reflected in the construction of the blocks around the "slow sub-
manifold". In order to demonstrate the persistence of the degenerate periodics 
we stretch the method of proof applied to the standard periodics to its very lim-
its. Finally, we would like to point out that the persistence of the degenerate 
singular solutions is (to the best of our knowledge) not covered by any of the 
known persistence proofs. 



Chapter 1 

The Kinetic Equations 

1.1 Existence of Periodic Solutions 

The kinetic equations to (0.3) are 

~~ = f(u)-w, 
dw Tt eu, 

(1.1) 

where f(u) = u(u-a)(l-u) and e > 0 is small. They are obtained by disregarding 
the diffusion term in (0.3) and describe homogeneous, i.e. spatially constant 
solutions to the original system (0.3). 
We will discuss the dynamics of (1.1) by transforming them to a standardized 
form considered by W. Eckhaus (Eck83] and by applying results by him and 
B. Braaksma (Bra93] to establish the existence of periodic orbits. This will, in 
particular, show the existence of canard and phantom duck trajectories. 

We now describe in detail the necessary coordinate changes. 
Our first transformation is to shift the local minimum (Umin, Wmin) of the cubic 
f to the origin by means of u = u - Umin and w = w - Wmin· We also transform 
the nonlinearity to f (u) := f (u + Umin) - Wmin, from which it is clear that 
f(O) = /'(O) = 0. Expanding f(u+umin) around Umin shows that f(u) = Su2 -u3

, 

where S := Ja2 - a+ 1. With respect to the coordinates (u, w) the system (Ll) 
reads 

: = f(u)-w, 
~ = e(u-a), 

where a= -Umin and Umin= Ha+ 1 - S). 

9 

(1.2) 
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Thus a= a(a), where 
1 

a(a) := -3(a + 1 - S). (1.3) 

Next we set ii,:= -u, w :=wand introduce a new nonlinearity by 

Furthermore, we define functions g and h through 

]'(u) = ug(u) and ]'(u) = (u + l) h(u), 

where g( ii,) = 26 + 3u, l := -Umin = ~S and h( u) = 3u. 
Rescaling the time variable by s = et, we eventually obtain the equations in the 
form considered by Eckhaus 

e~; w-i(u), 
dw d; = -(u +a), 

(1.4) 

where the transformed cubic i( u) = Su2 + u3 depends also on the bifurcation 
parameter a, as Scan be expressed as a function of a. 

However, we investigate (1.4) for a fixed S > 0, disregarding its relation with 
(1.1) for a while. The only rest point of (1.4) is (-a, j(-a)). The eigenvalues of 
the linearization of (1.4) at the rest point are given by 

>.±(a) := ;e (-}'(-a)± J(]1(-a))2 - 4e) . (1.5) 

Note, that for a sufficiently close to 0 or l, the fl-values of the local extrema the 
j, the eigenvalues become complex. The rest point is unstable for 0 <a< land 
stable for a < 0 or a > l. 

For a = 0 and a = l we have a pair of purely imaginary eigenvalues given by 
±i Je. In order to make sure that they correspond to Hopf bifurcations we need 
to check that they cross the imaginary axis with non-zero speed. This is true in 
both cases as 

!£ReA±(a) =~-}"(-a)= { ~ for a= O, 
da 2e - §_ for a = l. e 

(1.6) 

Thus, as the parameter a crosses zero from the left and l from the right, the stable 
rest point becomes unstable and a branch of small amplitude periodic solutions 
bifurcates from the rest point in either case. 
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Under the change of coordinates ( u, w) = ( - ,.fix, y) the system ( 1. 4) tran~forms 
for a= 0 to 

where · = fa. Now we can apply the stability formula for two-dimensional systems 
given in [GH90] on page 152. The determining coefficient is easily computed to be 
-L1

2 so that the periodic solutions bifurcating from (0, 0) are (strongly) stable 
limit cycles by Theorem 3.4.2 of [GH90]. To analyze the Hopf bifurcation at 
a = l we need to shift (-£, j(-l)) to the origin which we combine with the 
above coordinate change, i.e. ( u, w) = ( -l - Jex,]( -l) + y ), to obtain 

( 
x ) ( 0 - ,.fi ) ( x ) _!_ ( e(2lE - 3£2)x + .Ji( E - 3l)x2 

- x3 
) 

iJ -j; 0 y + e2 0 ' 
(1.8) 

h . d w ere = ds· 

Again, by an application of the stability formula the determining coefficient turns 
out to be the same as above so that the periodic solutions bifurcating from 
( -l, j( -l)) are also (strongly) stable limit cycles. Thus, the Hopf bifurcations 
for a= 0 and a= l are both supercritical. 

We now come to discuss periodic solutions with large amplitude. We begin with 
the following observation. For e = 0 the cubic curve w = ]( u) consists entirely of 
rest points of (1.4). It is called slow submanifold. We refer to the outer branches 
of the slow submanifold, where ]' > 0 as its stable part and to the inner branch, 
where]' < 0, as its unstable part. Eliminating time in (1.4) we obtain 

- dw 
(w - f(u)) du = eu. (1.9) 

Fore= 0 (1.9) implies that either w = i{u) or that w is constant. Thus orbits 
are for small e almost constant except near the curve w = ]( u ). 

This gives rise to the definition of a singular solution which consists of arcs on 
the outer branches of the curve w = f( u) and horizontal fast flow segments at 
w = wmin and w = wmax, where wmin = 0, Wmax = j(-l), connecting the 
endpoints of these arcs with each other. In connection with canards we will also 
admit singular solutions, where the horizontal fast flow segment can jump at any 
WE [wmin, Wmax]· 
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Figure 1.1: Singular relaxation oscillation 
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For sufficiently small e > 0 there exist periodic solutions which approach the 
singular solution as e --+ 0, provided that the rest point is on the inner branch 
of the cubic curve. The character of this periodic solution is that of a relaxation 
oscillation, see Figure 1.1. This means that the velocity along the limit cycle is 
very far from being uniform, in that its velocity is along the horizontal segments 
very large compared with its velocity on the outer branches of the curve w = ]( u). 
This, of course, reflects the smallness of the parameter e. Thus the flow jumps 
almost instantaneously, i.e. in a very short time interval, from one outer branch 
of the cubic curve to the other. 

The existence of a periodic solution of relaxation oscillation type can be shown 
by a topological argument for any a E (0, £), with a, l - a #- o(l). For this one 
constructs an annulus around the singular solution, which is rest point-free and 
whose diameter can be made arbitrarily small and yet is for sufficiently small e 
positively invariant. Then by the Poincare-Bendixson theorem for planar vector 
fields this "trapping region" will contain the limit cycle. Clearly, the limit cycle 
can then be made to approximate the singular solution as closely as desired by 
choosing a small enough annulus. For a detailed construction of the annulus we 
refer to Hale [Hal80], Thm. 1. 7, p. 61. We remark that the cubic curve is there 
for simplicity taken to be symmetric with respect to the origin, which r..esults in 
the standard van der Pol oscillator. It is, however, possible to build in the same 
way an annular region around the singular solution of the shifted cubic curve. 
Observe that if for a (/. [O, l] the stable rest point is on one of the outer branches 
of the cubic curve, and periodic solutions, which are obtained as perturbations 



CHAPTER 1. KINETIC EQUATIONS 13 
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Figure 1.2: Hopf-canard -relaxation oscillation transition for the Eckhaus carica-
ture: (a) for a E (0, fr], (b) for a E [fr,£) 

of the singular solutions, can not exist. 

So far we have seen that there are small amplitude periodic solutions emanating 
from two Hopf bifurcation points existing to the right and left of a= 0, l, respec-
tively. We also have for a E (0, l) attracting limit cycles, which are already for 
small a, l - a of the type of fully developed relaxation oscillations. 

The "missing" transitional medium size periodic solutions in this scenario are 
the so-called canards, 1 see Figures 1.2, 1.3. The transition from small to large 
amplitude limit cycles, which in practice appears to be discontinuous, can indeed 
shown to be continuous [CDD78], [Eck83]. Canards are specific to singularly 
perturbed differential equations2 and have the defining property that they follow 
for some time the unstable part of the slow submanifold. They are confined to 
an exponentially small neighbourhood around some value ac( e) = 0( e) and 
l - ac(e) = O(e), respectively. The name canard refers to their duck-shaped 
appearance for a slightly beyond ac, compare Figure 1.3 ( e ). 

We restrict our discussion of canards to the ones in the vicinity of 0, as those 
which exist near l can be dealt with similarly. The above mentioned value ac( e) 
is given by 

(1.10) 

1 French: "Canard" not only means "duck", but also "false news". 
3That is, differential equations which involve a small parameter. See p.43 for a formal 

definition. 
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Figure 1.3: Canard transition: (a) excitable rest point for small a < 0 (b) small 
amplitude limit cycle born in a Hopf bifurcation at a = 0 ( c) canard without 
head (d) emergence of the head for a= ac (e) canard with head (f) relaxation 
oscillation for a~ e. Figure courtesy of B. Braaksma. 

There are two "breeds" of canards, sub- and supercritical ones according to the 
direction of branching in the Hopf bifurcation. In (1.4) we encounter the simpler 
case of a supercritical canard3 as g(O) = 26 > 0, g'(O) = 3 and therefore ac > 0. 
Here, canards exist while the rest point is unstable. 
The exponentially small neighbourhood of ac( e) is given by 

(1.11) 

where k determines the point at which the limit cycles leave the unstable part 
of the slow submanifold. For u < 0 we have a canard limit cycle without head, 
which shrinks as k is being decreased. At a = ac( e) the periodic solution passes 
through the local maximum of the cubic, a head is born, and finally for u > 0 
we obtain a canard type limit cycle with head, whose head shrinks again as k is 
increased. 

Because of the variability of the rest point (a,]( -a)) along the curve, w = 
]( u ), is the cubic's symmetry with respect to its inflection point reflected in the 

3 Termed subcritical by Eckhaus [Eck83]. 
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norm 

a: 
Figure 1.4: Bifurcation diagram: a: versus the norm of the periodic solutions 

dynamics of (1.4). This can easily be checked by means of the following coordinate 
transformation ( u, w) = (2uinfl - u, 2winfl - w ), describing the rotation of the 
( u, w) coordinates by 7r around the inflection point ( Uinfl, WinJl) = (-~6, 227 63 ) of 
the cubic, for which (1.4) transforms to 

du -
ds - w - f(u), 
dw Ts -t:( u + {3), 

(1.12) 

where {3 = l - a:. Thus we obtain exactly the same equations again but with {3 
replaced by a:. This means that iffor given fixed e, (u,w) is a solution to (1.4) 
for a: = a:o then its image under the coordinate transformation ( u, w) f--+ ( u, w) 
will also be a solution of the same equation for {3 = {30 , where {30 = l - a:0 • 

So the small amplitude periodic solutions growing in the Hopf bifurcation for 
a: = l out of the rest point (-a:, f( -a:)) are identical to the ones for a: = 0, up to 
rotation by 7r round the inflection point of the cubic. The same holds for canard 
solutions and relaxation oscillations. 

We summarize our findings about periodic solutions to (1.4) as follows: 
There is a branch of periodic solutions parametrized by a: E (0, l), consisting of 
small amplitude periodic solutions emanating from a supercritical Hopf bifurca-
tion at a:= 0 which grow for a:= O(e) in a canard type fashion to large amplitufle 
relaxation oscillations, which exist for sufficiently small e. The fully developed 
relaxation oscillations attain at a: = f their maximum amplitude before they 
shrink for a: > ~ and eventually vanish at a: = l in a (reverse) Hopf bifurcation. 
The approach a: / l for l - a: = 0( e) again involves canard type limit cycles. 
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Figure 1.5: Phantom duck trajectories for a variety of initial conditions depicting 
the threshold behaviour ( e = 1~0 , a = - 1

1
0 ) 

After having discussed the oscillatory regime of (1.4), corresponding to the ex-
istence of stable limit cycle solutions, we now come to discuss phantom ducks, 
which are closely related to the excitability feature of the system. Phantom ducks 
appear just before the Hopf bifurcation at a= 0, when a is negative and the sin-
gle rest point of (1.4) is stable. They are pictured in Figure 1.5. More precisely, 
they appear when the two small parameters e > 0 and a< 0 are related by 

a= 0( .Ji), e = o(a). 

Here, "phantom" refers to the fact that these duck-shaped trajectories are tran-
sient, i.e. they appear only once, before settling to rest. 

For this choice of parameters a particular trajectory of ( 1.4) is identified as a 
threshold with respect to an "all or nothing" law and surrounded by a family of 
trajectories that we shall refer to as phantom ducks, see Figure 1.5. 

The previous discussion of periodic solutions to ( 1.4) is also valid for the original 
kinetic equations (1.1), as (1.1) and (1.4) are related by a coordinate change. Thus 
we obtain qualitatively the same kind of periodic solutions for (1.1 ). In a sense 
this is to be expected since (1.1) and (1.4) have the same type of nonlinearity. 

We proceed to give a brief discussion of (1.1). The eigenvalues of its linearization 
around its unique rest point at the origin are given by 

(1.13) 
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Figure 1.6: Hopf-canard-relaxation oscillation transition for FN kinetic equations 

Thus the origin is stable for a > 0 and unstable for a < 0. There is a Hopf 
bifurcation for a = 0 , with purely imaginary eigenvalues ±iJe. The transversal-
i ty con di ti on is satisfied as dda Re A± (a) = - ~. Under the change of coordinates 
( u, w) = (y, -Jex) (1.1) becomes 

(1.14) 

where · = ft. Applying the stability formula from [GH90], we compute the rele-
vant coefficient to be - ~. Thus the small amplitude periodic solutions bifurcating 
from the origin are stable. Thus, we have a supercritical Hopf bifurcation. 
The existence of relaxation oscillations to ( 1.1) for a < 0 with a -=f:. o( e) can be 
shown in the same way as for (1.4). Furthermore, the existence of canard type 
limit cycles for negative a of the order a = 0( e) as transitional phenomenon 
between small amplitude limit cycles from the Hopf bifurcation at a = 0 and 
relaxation oscillations follows in analogy to our discussion for (1.4) from the fact 
that ( 1.1) and ( 1.4) are related by a coordinate change. The different types of 
periodic solutions are depicted in Figure 1.6. Phantom ducks to (1.1) are observed 
for positive a, just before the Hopf bifurcation, at a = 0( Je), e = o( a). 

Note that a(a) < l(a) for all a and that a(a) and l(a) have for a ~ -oo the 
same asymptotic behaviour governed by - ~a. Since l( a) is never attained by 
a( a), small amplitude periodic solutions and canard type trajectories existing in 
the vicinity of a= l do not show up in (1.4) with respect to the parametrization 
a = a( a) and thus do not exist with /respect to the original kinetic equations 
( 1.1 ). Indeed, numerical pathfollowing confirms that periodic solutions grow as 
relaxation oscillations to infinite amplitude for a~ -oo. 
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Henceforth, we refer to {a< O} as the oscillatory regime of the kin~tic equations 
(1.1) and define their excitable regime to be {a> O}, assuming that e is small. 

We summarize the previous analysis of (1.1) in the following proposition. 

Proposition 1.1 The kinetic equations ( 1.1) admit: 

{i} A branch of periodic solutions parametrized by a, existing for all a < 0. 
Small amplitude periodic solutions emanate in a supercritical Hopf bifur-
cation for a = 0 from the origin and grow via canards for a = 0( e) to 
relaxation oscillations, which exist for sufficiently small e. The amplitude 
of the relaxation oscillations is steadily increasing with !al and approaches 
infinity as a ---+ - oo. 

(ii) Phantom ducks, existing for a= 0( .Ji), e = o(a). 
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1.2 Stability of Canards and Relaxation 
Oscillations4 

We consider the two dimensional system of singularly perturbed ODE's given by 

1 
-(y - h(x)), 
c 

dx 
dt 
dy = -(x+a), dt 

(1.15a) 

(1.15b) 

where h is a sufficiently smooth "cubic-like" function with a local minimum lo-
cated at the origin, i.e. h(O) = h'(O) = 0, h"(O) > 0. Furthermore, we assume that 
g' ( 0) #- 0, where g is defined through h' ( x) = x g( x). 0 bserve that this last as-
sumption is equivalent to h111(0) #- 0. We may want to think of h(x) = x2(x + ,B) 
for some ,B > 0 as a concrete example with a view towards an application to ( 1.4) 
and hence to the kinetic equations of the FitzHugh-Nagumo system. 

We only need to determine the stability-type of canard trajectories and relax-
ation oscillations. The stability of small amplitude (i.e. o(l )-) periodic solutions, 
emanating from the Hopf bifurcation, has already been discussed in Section 1.1. 

The stability-type of a limit cycler to a planar dynamical system is determined 
by the sign of the nontrivial Floquet exponent. It is not hard to see, by applying 
Liouville's formula to the fundamental matrix solution of the corresponding linear 
T-periodic variational equation for time T, that the nontrivial Floquet exponent 
is given as the curve integral of the divergence of the vector field along the closed 
orbit f div G, (1.16) 

"'( 

where G denotes the planar vector field. In this section we compute this curve 
integral associated with the above vector field (1.15a,l.15b ), which we will denote 
by ae. 
We show that, except possibly for isolated values of a, 

4 Joint work with B. Braaksma. 
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Recall that singular periodic solutions are obtained by piecing together trajecto-
ries of the fast dynamics and segments along the slow curve. 
Let (xe(t), ye(t)) be a Te-periodic solution of (l.15a,l.15b ). We divide the interval 
[O, Te] into a finite number of subintervals 

with T~ = 0, T~ = Te, such that each of the corresponding segments of the 
periodic solution converges to either a trajectory of the fast dynamics, to a piece 
along the slow curve or to a transitional trajectory from one of the former to the 
other. The segments to be considered can be characterized as follows. 

• For trajectories in the fast field we have, cf. [Eck83], y - h( x) -=/= 0( e) for 
all t E [Tt_ 1 , Tt]. 

Our further characterization of segments is based on the quantity 

x+a 
z := y - h( x) + e h'( x) (1.17) 

which is a first-order approximation for the distance of the stable and unstable 
manifold from the slow curve. We distinguish two cases. 

• z = o( e) for all t E [Ti:.1 , Tt]. This corresponds to stretches so close to 
the slow curve that we can use the right hand side of (1.17) to obtain an 
estimate for the integral (1.16). 

• z = 0 0 (e) for some t E [Ti:.1 , Tt]. These are short transitional segments 
connecting the fast field-parts of the limit cycle to trajectories along the 
slow curve. 

Observe that the above characterization is complete, i.e. it covers all possible 
segments along the limit cycle. 

With respect to the above dissection the integral (1.16) is, if we recall that 
div ae = -! h', given as 

1 T• 
:£div ae = -- E h i h'(xe(t)) dt. 

"'f e i=l, ... ,n Ti'-1 
(1.18) 

We estimate the integrals on the right hand side of the above equation in different 
ways, depending on the part of the periodic solution along which we integrate. In 
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cases (A) and (B) below we use the following transformation of the independent 
variable. 
In segments where the periodic solution ( xe, ye) can be represented as a graph of 
some function we' i.e.' 

fort E [Tt, Ti~1 ], we have by putting s := xe(t) 

(1.19) 

Using equation (1.15a) to compute :! we obtain 

(1.20) 

where we have introduced the abbreviation xk := xe(Tk). 

Now let us compute the contributions to the integral (1.16) of the various seg-
ments in the above decomposition. 

(A) the fast field: ye - h(xe)-:/= O(e). This characterization of the fast field im-
plies that the fast field trajectories are almost horizontal, they can therefore 
clearly be expressed as the graph of some function we, cf. [Eck83]. Hence 

E'+i h'(s )/{h(s) - llt"(s)} ds = o(; ), 
' 

(1.21) 

since both h'(x) and lxi+i - xii are bounded on the domain under consid-
eration. 

(B) the slow curve: z = o( e). Close to the slow curve the limit cycle can be 
given as the graph of some function we with we( x) = h( x) + 0( e ), cf. 
[Eck83]. Therefore the following ansatz is justified: 

(1.22) 

for some family of functions { cpe}, which is bounded for all x between xj 
and xj+l as e -t 0. Differentiating the ansatz with respect to t gives 

(1.23) 
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where the primes denote derivatives with respect to x. From equations 
(1.15a,l.15b) we have ":t• = c,oe(xe), ¥, = -(xe +a) and so . 

(1.24) 

Hence h'( x0 )c,o0 ( x0 ) = -x0 + a and therefore 

e( e( )) xe(t) +a /"'( ) 
cp x t = - h'(xe(t)) + v e . (1.25) 

For a periodic solution of (l.15a, l.15b ), solution segments of type (B) occur 
in either of two ways. 

(i) Firstly, a segment may be chosen along the stable part of the slow 
curve. Substituting h(s) - we(s) = -ec,oe(s) = eh~:tc~>> + O(e2 ) in 
(1.20) yields 

- ! /Ti'+; h'(xe(t))dt = ! 1:z:j+i {h'(s)}
2 

ds + 0(1). 
e lT~ e :i:I! s +a 

J J 

(1.26) 

It can be easily seen that integrals of the form 

1:i:i+i { h'( s)} 2 ds. 
:z:I! s+a 

J 

(1.27) 

are negative and finite along these pieces. For example, in the case 
of h(x) = x2(x +{3) we can take for xj and xj+1 any two points of 
the limit cycle along the slow curve satisfying 0 < xj+l < xj and 
-{3 < xj < xj+l < Xma:i:, respectively, where h( -{3) = 0 and Xma:r: 

denotes the x-coordinate of the local maximum of h. 

(ii) Secondly, a segment may consist both of stretches along the stable part 
and stretches along the unstable part of the slow curve. Note, however, 
that this situation can only occur for canard type limit cycles. The 
critical parameter a:c( e) in whose exponentially small neighbourhood 
(1.1) admits canard type limit cycles satisfies ac(e) = O(e) by (1.10). 
Hence equation (1.25) changes to 

l"'(x'(t)) = - h'(~~~~)) + O(e). 

and we must consider 

1B(c) {h'(s)}2 
I(c) := ds 

A(c) S 
(1.28) 
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where A( c) and B ( c) denote the two largest roots of h( s) = c. Here 
we have implicitly assumed that c is such that there exist three real 
roots. This integral may take arbitrary values, depending on the spe-
cific choice of h and the value of c. For sufficiently small values of c, 
however, we can compute I( c) from local data at the origin. Using 
Taylor's formula for h', we have 

I(c) = [~h"(0)2s 2 + ~h"(O)h"'(O)s3 + C?(s4)]B(c), 
2 3 ~~ 

(1.29) 

which can be rewritten to 

I(e) = [h"(O)h(s) + ~h"(O)h"'(O)s3 + C?(s4)]B(c). 
6 A(~ 

(1.30) 

Now recall that, by definition, h( A( e)) = h( B( e)) = e. This shows 
that the first term in the above expression for J( e) vanishes. Using 
A(e) = {ilii fa+ O(e), B(e) = -{ilii fa+ O(e) we obtain 

(1.31) 

Thus, for sufficiently small values of e (which are independent of c) 
the sign of I(e) is determined by the sign of h"'(O) or, equivalently, the 
sign of g'(O). 

We want to extend this to larger values of e. For this note that 

dl 
de 

{h'(B)}2 dB 
B de 

{h'(A)}2 dA 
A de· 

From h(A) =ewe obtain h'(A)~ = 1 and similarly for B, so 

dl = h'(B) _ h'(A) = [g(s)]B 
de B A A' 

(1.32) 

(1.33) 

Since g'(O) -:f 0, g is a strictly monotone function in a neighbourhood 
of the origin, and therefore ~ -:f 0 for small e > 0. Together with 
equation (1.31) we have that J( e) has the sign of -h"'(O) as long a.s 
g' does not change sign. If g' changes sign it can happen that J( e) 
also changes sign for some e. This can, however, not be decided from 
local information near the origin, but depends on global features of 
the function h. 
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A short calculation shows that for h(s) = s2(s + {3) we h~ve g'(s) = 3 
for alls, independent of {3. Hence in this case J(c) < 0 for all possible 
c-values. 

(C) transitional trajectories: z = Os(e). We make a further distinction into the 
following two subcases of (C). 

(i) h'(xk) = 0 for some xk = x(Tk). This cares for the case when the flow is 
departing from the stable manifold close to the local extrema, reaching 
the fast field after time intervals of the order Tk+l - Tk = 0( d) 
according to [Eck83], p. 4 71. Thus, evaluating the integral along the 
present interval with respect to time yields 

(1.34) 

(ii) h'( x) =/:- 0 for all x in the interval. This takes care of the case when 
the flow reaches the stable manifold4 coming from the fast field. We 
evaluate the corresponding integral with respect to time. Let us start 
at time t = T{ at a point (xi, yi) with Yi - h(xi) = 0(1). This means 
that the starting point lies still in the fast field. In the following 
calculation we derive an estimate for the time it takes to enter an 
o( e )-neighbourhood of the stable manifold. We show that for T{+1 = 
T{ +; e log(:) we have z(T1~1 ) = o(e). Note that Yi - h(xi) = 0(1) 
at t = T{ implies z(Tt) = 0(1). Differentiation yields 

dz dy , dx - = - - (h (x) - d.(x))-dt dt dt' 
0 ( ) ·= h'(x) - (x + a.)h"(x) 
<- x . (h'(x))2 . 

Multiplying through withe and substituting e: = z-e~{tj we obtain 

dz 
e dt = -(h'(x) - el(x ))z + O(e2

). (1.35) 

Now we set 

K := min{h'(x) - el(x) : x = xe(t), t E [1t, T,~1 ], 0::; e::; co} 
4 The case where the fast flow leaves the unstable manifold can be treated similarly, by a 

time reversal. 
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for some sufficiently small co > 0. Since we assume that h'( x) =/= 0, 
throughout the interval, we have K > 0. We obtain the estimate 

1 
lz(t)I ~ lz(Tt)I exp{--K(t - Tt)} + O(c(t - Tt)) 

c 
(1.36) 

for t E [T{, Tl+1] and c ~co. 
In particular we have lz(T1+1 )1 ~ lz(T{)lc2 + O(c2 log(c)) with the 
above value for Tz+1 , or z(T,+1 ) = o(c). Hence 

1 hTt+i I 1 - - h (xe:(t)) dt = O(log(c)) = o(-), 
c ~ c 

(1.37) 

as T1+1 - T{ = 0( clog( e)) and h'( x) is bounded along the stretch from 
t: t t: x1 o xz+i · 

Let us summarize our results. Pieces corresponding to stretches along the slow 
curve contribute amounts of O .. (;) to the divergence integral (1.16), except pos-
sibly for isolated values of a. All other trajectories only contribute amounts of 
order o(l/ e ). Hence, except possibly for isolated values of a, 

1 T' 1 - - I h'((xt:(t)) dt = o .. (-) 
e lo e 

(1.38) 

or i div a· -+ ±oo as t: -+ 0. (1.39) 

For stretches along the stable part of the slow curve the contributions are strictly 
negative, independent of h and a. This shows that relaxation oscillations are 
always stable. 

For canard type limit cycles stretches along the unstable part of the slow curve 
give a positive contribution, which may cancel or even outweigh the negative 
contributions along the stable parts. This means that canards can be either 
stable or unstable. More precisely, for sufficiently small canard cycles we have 
shown that if e > 0 is sufficiently small, the nontrivial Floquet exponent has the 
sign of -h"'(O). Small canard cycles will therefore be asymptotically stable :for 
h"'(O) > 0 and unstable for h"'(O) < 0. Note that small canard cycles have the 
same stability type as the limit cycles born in the Hopf bifurcation, cf. Section 
1.1. 
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However, we can not a priori determine the stability for larger canard cycles. 
Depending on h several possibilities exist. In the case of a supercritical Hopf 
bifurcation the simplest possible scenario is that the Floquet exponent remains 
negative when a: changes and the small canard cycle grows smoothly to a fully 
developed relaxation oscillation, without additional bifurcations. In fact, this 
scenario occurs for the Eckhaus caricature h(x) = x2(x + (3). 

In the case of a subcritical Hopf bifurcation the small cycles have a positive 
Floquet exponent, while relaxation oscillations always have a negative Floquet 
exponent. Now the simplest possible bifurcation scenario is that of a gradually 
shrinking relaxation oscillation and a growing unstable limit cycle, coalescing at 
the point where the nontrivial Floquet exponent changes sign and subsequently 
disappearing. Eckhaus also discusses this case in [Eck83]. Note that our integral 
I( c) coincides with the function Q that he uses. 



Chapter 2 

Linear Stability Analysis and 
the Hopf bifurcation 

2.1 Linear Stability Analysis 

The travelling wave equations to the FitzHugh-Nagumo system are given by 

where we have split the linear from the nonlinear part. As usual · denotes differ-
entiation with respect to the travelling wave variable z = x + 8t. Note that the 
origin is the only rest point of (2.1 ). 

The characteristic equation of the linearization of the TW - equations around the 
origin, which is given by the linear part of (2.1), is 

a 2 e .A - 8 .A - a.A - - = 0. 
() 

(2.2) 

We want to discuss the asymptotic stability of the unique rest point of (2.1) at the 
origin. This is determined by the the roots of the characteristic equation (2.2). 
The condition D = 0, where D denotes the discriminant of the cubic equation 
(2.2), determines when the roots change from three distinct real roots to one real 
root and a pair of complex conjugate roots. In other words, when we have three 
real roots, of which two are equal, 

a 2 
4 ( 3 9 ) 2 27 2 D = ( 4 - e )8 + a - 2ae 8 - 4 e = 0. 

27 
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We may write the latter as the following bi-quadratic equation in 8 

84 + 2a(2a2 - 9e) 82 _ 27e2 = 0 
a2 - 4e a2 - 4e 

(2.3) 

with roots 
Bi( a)~ 2 

1 
{a(9e - 2a2) ± 2.j(a2 - 3c;)3 }. 

a -4£ 
(2.4) 

Alternatively, we can transform (2.4) to get 

Bi(a) = -27£2 . 
a(9e - 2a2) =i= 2.j(a2 - 3e)3 

(2.5) 

We are only interested in positive 8 -values and will therefore only consider the 
following three branches of 8~, namely 8! on (-oo, -v'3e] U (2..ji, oo) and e:_ on 
(-2..ji, -v'3e], since all other branches of 8i(a) are either not defined or take 
negative values. 
Note that B! and e:_ have poles at a= -2..ji and a= 2..ji, respectively. How-
ever, a = -2..ji is a removable singularity of 8! as 8!(-2../i) = 2

; .Ji by (2.5). 
Additionally, e:_(a) > ei(a) for all a E (-2yl£, -v'3e) and Bi(-v'3e) = 3v'3e. 
In Appendix A we prove there is a cusp at a = -v'3e. All three positive branches 
of Bi are strictly monotonically decreasing, where they are defined. 
We expand (2.4) in order to study the asymptotic behaviour as a -7 ±oo to 
obtain 

1 { 2 3 ( 9 e 27 e
2 

) } a(9t: - 2a ) + 2 lal 1 - -- + -- + ... 
a2 - 4e 2 a2 8 a4 (2.6) 

{ 
-4a + ... -7 oo for a -7 -oo, 

- 27 e2 0 £ 
4 -;- + ... -7 or a -7 oo, 

(2.7) 

where ... denotes higher order terms in e. 

The system ( 2.1) has a curve of Hopf bifurcation points 

a= :2' for a> 0, (2.8) 

along which we have a simple pair of purely imaginary eigenvalues, where a ~ -a. 
On this curve we can factorize the characteristic polynomial to obtain for (2.2) 

(A2 +a)(.\ - 8) = 0. 
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e • co <kinetic equatlonll > -·········-·--···----·~·-···· -·-·-··---···-------------------. 

Figure 2.1: Eigenvalue structure of the linearization of (2.1) at the origin. Posi-
tion of the eigenvalues in the complex plane is indicated by black dots. 

Hence the eigenvalues on the Hopf curve are given by 

..\1,2 = ±ivfa and ..\3 = 8. (2.9) 

Note that the magnitude of the imaginary pair of eigenvalues is of order O(~), 
in accordance with a general result of Baer & Erneux [BE86] on singular Hopf 
bifurcation. 
Differentiating (2.2) implicitly with respect to a, and changing from a to a, gives 

..\'(") -..\ 
a = 3..\2 - 28..\ +a. 

With..\= ±iv'a in the latter we have 

(2.10) 

Consequently, all the conditions of the Hopf bifurcation theorem are satisfied, 
whence periodic solutions emanate from the origin for a > 0 with period Ta 
along the Hopf curve (2.8). 
Let us now summarize the eigenvalue structure of the linearization at the origin 
in the following theorem. 
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Theorem 2.1 The origin is as rest point of (2.1) always unstable. More pre-
cisely, the eigenvalue structure is as follows: {compare Figure 2.1} 

{i} In the interior of the region bounded by the branch of B~(a) on a < -.JJe 
and e:.(a) in -2ve <a< -.JJe there are three positive eigenvalues. 

{ii) In the region to the left of the branch of B~(a) on (2v1£", oo), i.e. for 
B > B! (a) and a > 2ve, there are three real eigenvalues of which two 
are negative. 

{iii) In the complement of the regions defined above there exists a pair of complex 
conjugate eigenvalues and a single positive eigenvalue, which is divided by 
the Hopf curve B = A into two parts. In the subregion to the left of the 
Hopf curve the real parts of the complex conjugate pair of eigenvalues is 
positive and negative to the right. 

2.2 Nonlinear Analysis of the Hopf bifurcation 

We proceed to determine the direction of branching of the Hopf bifurcation from 
the nonlinear terms of the vector field using the results in [HKW81]. In order to 
carry out these calculations we have to find a basis, with respect to which the 
matrix of the linear part of (2.1) has the form 

( 
o -va o) 
~ 0 0 . 
0 0 B 

We calculate a complex eigenvector of the linear part of (2.1) corresponding to 
the eigenvalue i~ to be 

( i.~.)=(~)+i( ~.)' 
-iB~ 0 -8~ 

(2.11) 

and a real eigenvector to the eigenvalue () is given by 

Ul· (2.12) 
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We introduce a transformation matrix P whose columns are the imaginary and 
real part of (2.11) together with (2.12), i.e., 

P=( :a ~a~)· -ova o 
With respect to the new coordinates 

the TW equations (2.1) transform to 

(! ) = ( ~ -: ~ )( : ) + (y + z)a -4(~ ~24)(y + z)
2 

( ~ ) 
(2.13) 

Observe that all higher derivatives which involve x are zero. Also, the higher 
derivatives with respect toy and z are equal since the nonlinear part of (2.13) is 
a function of y + z. We are now in a position to apply the formulae in [HKW81] 
to determine the direction of branching. 
We expand a, which parametrizes the bifurcating branch of periodic solutions, in 
a Taylor series around a given but arbitrary point on the Hopf curve ac := a(c:, B) 

" " 2 a - ac = µ2€ + ... (2.14) 

The determination of µ2 is of particular interest, when it is not zero, in that it 
indicates where the periodic solutions occur, whether for a > Ctc or for a < Ctc· It 
is given in [HKW81] on page 90 as 

Rec1(0) 
µ2 =-Re A'(O)' (2.15) 

where c1 ( 0) is some expression depending on higher order terms of the vector 
field. 
Of the Floquet exponents of the periodic solution branch, for small €, one will 
be close to the eigenvalue ,\3 = B of the linearization at the origin on the Hopf 
curve, one is zero, of course, and the last one is (3 = {32 €2 + · · · with (32 = 
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-2µ2Re .X'(O) = 2Re c1(0). Thus the periodic solutions emanating from any point 
on the Hopf curve will for small E always be unstable independent of the sign of 
f32 since 8 is positive. 
Let the bifurcation parameter a be close to the Hopf curve such that the linear 
part of (2.1) at the origin possesses a pair of complex conjugate eigenvalues .X(a) 
and .X(a). 

A tedious routine calculation yields 

-Rec1(0) = 2(1 - a)2 
- 6(1 - a) 2(B2 + 2a) + 3(62 + a)(B2 + 4a). 

Using the relation 62 = e/a we can eliminate 62 from the above formula to obtain 

- Re c1(0) = 8a5 + 8a4 + (2e - 4)a3 + 17ea2 
- 4ea + 3e2

• 

We define 

and look for roots of 

p(a, c:) = o, 
i.e., points where the direction of branching changes. 

(2.16) 

(2.17) 

We can solve (2.17) explicitly for c: = 0 to obtain a triple root at a = 0 and 
roots at a1,2 = ±/.\-1. We can disregard the negative root a2 , since a has to 
be positive for a Hopf bifurcation to occur. Since ~(a1 , 0) #- 0, by use of the 
Implicit Function Theorem, the root a1 perturbs for small c: into a root a1(e). 

The asymptotic expansion of a1 ( c:) for small e is 

where the coefficients a and (3 are determined by 

and 
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From Golubitsky-Schaeffer bifurcation theory [GS85] at p. 95, Prop. 9.2, it 
follows with a as a state variable and e as a bifurcation parameter that the 
normal form of the bifurcation diagram in e near the triple root of (2.17) at 
(a, e) = (0, 0) is the pitchfork -a3 - ea with three real roots for e < 0 and a pair 
of complex conjugate roots and a real root fore > 0. 

An application of Descartes' rule of signs [Mur89], p. 704, to the fifth order 
equation (2.17) shows that for e > 0 there is exactly one negative and an even 
number of positive roots. 

For e > 0 the pitchfork has two complex conjugate roots and so p must have 
exactly two positive roots, of which one stems from the triple root at e = 0 and 
the other is a1 ( e ). 

In order to compute the first order term of the Taylor series expansion in e of the 
unique positive branch of the pitchfork we make the ansatz 

This can be justified by an application of the Implicit Function Theorem to the 
function 

"( ) { 3 - 41 for e = 0 p1,e = t:\ p(Te, e) = 3 - 41 + e H(T, e) for e # 0 
(2.18) 

at (T,e) = (~,O), where His determined by p. This gives 1(e) = ~ + O(e). 
Since p takes positive values for a between ~e + 0( e2 ) and 4-1 + 0( e ), the Hopf 
bifurcation is subcritical in terms of a = -a, the root of the cubic nonlinearity 
(0.4), for a between -~e + O(e2 ) to -4-1 + O(e). 

Next, we can ask for which value(s) of e, the roots a1(e) and a3(e) come together 
to form a double root of p? Using the fact that a double root annihilates p~(a) 
and that the latter is linear in e, we can solve for e as a function of a, i.e., 

200,4 + 16a3 - 6a2 

e = - 3a2 + 17a - 2 
We substitute this expression for e in p to obtain 

24a6 
- 146a5 + 9340,4 + 2530,3 

- 4510,2 + 164a - 16 = o. 

' 
(2.19) 

(2.20) 



CHAPTER 2. LINEAR STABILITY & HOPF BIFURCATION 34 

There are two real roots satisfying (2.20) one of which is negative v:rhen substi-
tuted into (2.19); the other root which we require is e0 ~ 0.1. From this we 
conclude that for e > e0 the branch of periodic solutions from the Hopf bifurca-
tion is always supercritical. 
We can now formulate the following proposition. 

Proposition 2.2 Criticality of the Hopf bifurcation in (2.1). 

(i) There exists a unique value e0 = e(a)1 ~ 0.1, where a is the unique real root 
of (2.20) for which e(a) is positive. Then for all e > e0 the Hopf bifurcation 
is always supercritical independently of the value of the parameter a, a < 0. 

(ii) Let 0 < e < eo. Then the Hopf bifurcation is subcritical for a between 
-~e + V(e 2

) and -v1-1 + V(e) and supercritical otherwise. 

1Here e(a) denotes the R.H.S. of (2.19). 



Chapter 3 

Periodic Travelling Waves as 
Perturbations from () == oo 

3.1 Outline 

We will show that the travelling wave equations of the FitzHugh-N agumo system 
have for infinite wave speed a two dimensional manifold of rest points, which 
persists as a locally invariant manifold for sufficiently high wave speed indepen-
dently of £. Furthermore, the flow on this locally invariant manifold is a small 
perturbation of the reaction flow. It consists of the transition from small ampli-
tude periodic orbits from a Hopf bifurcation to relaxation oscillations via canard 
type trajectories as the variable root a is decreasing from 0. 

The main idea of the proof is to use for large values of() the singular perturba-
tion nature of the problem with respect to /3 := 6~ to look for solutions of the 
full system which are close to solutions of the reaction kinetics. We begin by 
reviewing some invariant manifold theory and its relation to the construction of 
invariant manifolds for singularly perturbed systems. Authors who have looked 
at perturbations from the () = oo limit include Kopell & Howard [KH73], Kopell 
[Kop77] and Schneider [Sch83]. Our presentation follows Kopell [Kop85]. 

35 
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3.2 Invariant Manifolds of Singularly P~rturbed 
Systems 

Consider a system of singularly perturbed ODE's of the form 

: - G1(x, Yi {3) 
~ = ~ G2(x, y; {3) 

(3.1) 

where (x,y) E lR.m x lR.n and 0 < {3 ~ 1. If G2(x,y(x); 0) = 0, for some function 
y( x) defined on a compact subset K of lR.m, then the equation 

dx 
dt = G1(x, y(x ); 0) (3.2) 

is called the reduced system of (3.1 ). We want to investigate the relationship be-
tween the dynamics of (3.1) and (3.2). In the following we state a theorem which 
gives conditions under which, for {3 sufficiently small, (3.1) has am-dimensional 
invariant submanifold £, representable as the graph of some function y(xi {3), 
such that, on this invariant manifold, the flow of 

dx 
dt = G1 ( x, y( x; {3); {3) (3.3) 

converges uniformly to (3.2) and y( x; {3) --+ y( x) as {3 --+ 0. Thus (3.1) contains a 
submanifold on which the flow of (3.3) is a regular perturbation of the flow of the 
reduced system (3.2). This has the consequence that every structurally stable 
feature of (3.2) such as a stable or unstable periodic orbit also exists for (3.1 ), 
provided that {3 is sufficiently small. 
The main hypothesis of the theorem concerns a rescaled version of (3.1 ). With 
respect to the "stretched" time scale T := ~ t, (3.1) is equivalent to 

{3 G1 ( x, y; {3), 
G2( x, Yi {3). 

(3.4) 

If we now set {3 = 0, we see that £0 = {(x,y(x)): x EK} is a manifold of rest 
points for (3.4). We shall require that this manifold be a normally hyperbolic 
submanifold of lR.m x lR.n. For a manifold of rest points this means the following: 
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Definition 3.1 Let K C 1Rm be a compact subset. 
Then £0 := {(x, y(x )) : x E K} is a normally hyperbolic invariant manifold on 
K if, for each x E K, all eigenvalues of the the matrix 

8G2 _ 
By (x, y(x ); 0) (3.5) 

lie off the imaginary axis. 

We remark that by compactness IRe.A(x,y(x))I is then uniformly bounded away 
from 0, for each .A(x,y(x)) an eigenvalue of (3.5), x EK. 
For a more general definition of normal hyperbolicity we refer to Hirsch, Pugh & 
Shub [HPS77]. 

Now we are in the position to state the following persistence result. 

Theorem 3.1 Suppose that £0 = {(x,y(x)) : x E K} is a normally hyperbolic 
invariant submanifold of (3.4) with (3 = 0, on K C 1Rm compact. Also assume 
that the vector field G = (G1 , G2) is C 00 -smooth. Then for any positive integer r 
and (3 > 0 sufficiently small, there is a neighbourhood N of the graph Eo of y( x) 
and a er function y(x;(3), such that if (x(T),y(T)) is a solution of (3.4) with 
y(O) = y(x(0);(3) for x(O) EK and (x(T),y(T)) EN for all ITI ~To, for some 
To< oo, then y(T) = y(x(T),(3) for all !Tl~ To. That is, the graph of y(x;(3), 
£13 := {(x,y(x;(3)): x EK}, is a locally invariant submanifold of (3.4) and hence 
also for (3.1). Furthermore, y(x;(3) ~ y(x) uniformly in K as (3 ~ 0. 

This theorem is contained in Theorem 9.1 of Fenichel's paper [Fen79], where £13 
is constructed as a centre manifold. It is in general not unique. 

We note that £13 is known as a slow submanifold, as the flow on £13 has a time 
derivative of order 0((3) by (3.4 ). 

3.3 Periodic Travelling Waves to the FitzHugh-
N agumo System 

Our aim is to demonstrate the existence of periodic travelling waves to the 
FitzHugh-Nagumo equations for sufficiently high wave speed. We shall prove 
this by a perturbation argument from () = oo. 
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Recall that the travelling wave equations to the FitzHugh-Nagumo system are 
given by 

u - v, 
v - Bv - J(u) + w, (3.6) 
w e - 9u, 

where · == fz with z == x + Bt and 0 < e ~ 1. 

We split the dynamics of (3.6) into a "slow" and a "fast" part. More precisely we 
introduce scalings by "squeezing" and "stretching" the travelling wave variable 
z. 
We transform the phase space variables by setting u :== u, v :== Bv and w :== w; 
and introduce {3 :== ~. As mentioned before we want to consider the case that 
8 ~ 1, or equivalently, that 0 < {3 ~ 1. Then with respect to the squeezed 
travelling wave variable r :== } z we obtain the "slow equations" corresponding to 
(3.1) 

v, ) v,.- f(u) +w, 
eu, 

(slow eqns.; {3) 

and with respect to the stretched travelling wave variable e :== ()z == {3r we obtain 
the "fast equations" corresponding to ( 3 .4) 

dii. == f3v, l cl( 
dv -0 - f(u) + w, de -

dw {3eu. de 

(fast eqns.; {3) 

In the slow equations, in the limit as {3 ~ 0, the middle equation is algebraic 
with no dynamics. In the fast equations, in the limit as {3 ~ 0, v == f ( u) - w 
describes a manifold of rest points, parametrized by ( u, w) E IR.2. 
The reduced system is given by the slow equations at {3 == 0, which turns out to 
be the kinetic equations of the FitzHugh-Nagumo TW equations 

dii. 
dt - f(u) - w, 

dw dt eu, 
(3.7) 

where we have replaced r by t as r == }x + t ~ t and 0 < e ~ 1. 
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In Section 1.1 we have seen that (3.7) possess in the oscillatory regime a unique 
branch of stable periodic solutions. The branch consists of small amplitude pe-
riodic solutions emanating in a Hopf bifurcation from the origin which grow via 
canards for a= O(c:) to relaxation oscillations. The latter exist for all a=/:. o(c:), 
their amplitude is increasing with lal and approaches infinity as a ~ -oo. 

From now on the variable root a of the cubic f is assumed to be in the oscillatory 
regime. 

We proceed to show that the manifold of rest points of the fast equations for 
{3 = 0 persists as an invariant manifold for {3 > 0 sufficiently small. 
For this we let K be a compact ball large enough to contain the fully developed 
relaxation oscillation of the reduced system (1.1) in its interior and define £0 := 

{(u,v,w): v = v(u,w), (u,w) EK}, where v(u,w) := f(u) - w. The manifold 
£0 is shown in Figure 3.1. 
The verification of the normal hyperbolicity condition with respect to the fast 
equations for {3 = 0 on K is trivial, since 

8G2 ((,. ,. ) _(,. ,. ) O) a-v u, w , v u, w ; = i. 
Thus by Theorem 3.1 there is a nearby er -smooth two dimensional locally in-
variant manifold £f3 for some integer r > 0 which can be represented as the 
graph of some function v( u, w; {3) for sufficiently small {3 > 0, £f3 = {( u, v, w) : 
v = v(u,w;{3), (u,w) EK}. This holds independently of c:. The flow on £f3 is 
governed by 

du 
dt 

dw 
dt 

v(u, w; {3) 
c:u 

(3.8) 

and thus is a small perturbation of the reaction flow as v( u, w; {3) ~ v( u, w) 
uniformly in K for {3 ~ 0 again by Theorem 3.1. 

Next we would like to show that the dynamics and in particular the periodic 
solutions on £0 persist for small {3 > 0. 
In order to give a precise formulation under which a periodic solution of tfie 
reduced system (3. 7) persists to a periodic solution of the full system for small 
{3 > 0 we introduce some more concepts from the stability theory of closed orbits. 
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Figure 3.1: Graph of the slow submanifold for (3 = 0 

3.3.1 Structural Stability of Closed Orbits to the Re-
duced System 

We state a theorem under which closed orbits of the reduced system persist under 
small perturbations of the vector field. First we need to define a few concepts. 
A closed orbit 'Y is called hyperbolic if 1 is a simple Floquet multiplier and no 
other Floquet multiplier of 'Y lies on the unit circle of the complex plane. We call 
an asymptotically stable closed orbit 'Y a periodic attractor. Similarly, a periodic 
repeller is a periodic attractor when the time is reversed. 
The precise formulation for the structural stability of closed orbits is then as 
follows: 

Theorem 3.2 Let u = G(u; A) be a parameterized system of ODE's, where 
(u; .:\) E W x A with W ~ IR.n, A ~ IR open, 0 E A and G(·; A) a C 1 vector 
field. Suppose that 'Y is a hyperbolic closed orbit of u = G( u; 0) with minimal 
period T > 0. Then there exists a Ao > 0 such that for each A, with 0 < .:\ ~ Ao 
there exists a fi = fi( A) > 0 so that, u = G( u; A) has a unique closed orbit T>. which 
lies entirely in a fi-neighbourhood of 'Y and whose minimal period T(A) ~ T as 
.:\ ~ 0. In addition, fi(A) ~ 0 as A ~ 0, i.e., the diameter of the neighbourhood 
around I>. goes with A to zero. 

This is a reformulation of Theorem 4.1, p.226, in Hale's book [Hal80]. Actually, 
the hyperbolicity of the closed orbit is not strictly necessary for the persistence, 
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Figure 3.2: Hopf-canard-relaxation oscillation transition on slow submanifold 

but merely the fact that 1 is a simple Floquet multiplier. 
When T is a periodic attractor the uniqueness of the perturbed periodic orbit TA 
can be guaranteed. For if T is a periodic attractor and .X > 0 is sufficiently small 
then TA will also be a periodic attractor; hence, every trajectory that comes near 
TA winds closer and closer to TA as t ~ oo and therefore can not be a closed 
orbit. Similarly, if T is a periodic repeller, so is TA> and again uniqueness holds. 
For hyperbolic closed orbits a weaker kind of uniqueness holds, as expressed in 
the above theorem. 

In Section 1.2 we have shown that the periodic solutions to reduced system (3. 7) 
are asymptotically stable. This includes the small amplitude periodic solutions 
from the Hopf bifurcation as well as the canard type trajectories and relaxation 
oscillations. Thus we can formulate the following corollary of Theorem 3.2. 

Corollary 3.3 The stable limit cycle solutions to the reduced equation (3. 7) per-
turb into locally unique periodic solutions of (slow eqns.; (3) for sufficiently small 
f3 . 
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3.4 Conclusions 

The travelling wave equations to the FitzHugh-Nagumo system w.r.t. the stretched 
travelling wave variable e = Bz, the fast equations have for {3 = 0 a two di-
mensional manifold of rest points £0 which perturbs into a locally invariant two 
dimensional manifold Cf3 independently of e. 
The dynamics of the slow equations of (3.6), i.e. w.r.t. the squeezed travelling 
wave variable T = ~z at f3 = 0 is that of the kinetic equations on £0 , discussed 
in section 1.1. It consists of the transition from small amplitude closed orbits 
emanating from a Hopf bifurcation to relaxation oscillations via canard type 
limit cycles as the variable root a is decreasing from 0. Each of these periodic 
solutions is a stable limit cycle. 

For small f3, on the other hand, the dynamics of the slow equations on Cf3 is a 
perturbation of the reaction flow. In particular, we obtain the existence of peri-
odic solutions to the slow equations on the slow submanifold £{3 as perturbation 
of those of the reduced system living on £0 for sufficiently small f3 > 0 . They 
are shown in Figure 3. 2. 
This proves, in particular, the existence of canard type trajectories of (3.6) on 
the perturbed two dimensional invariant manifold £(3. 

With respect to the original time scale, equations (3.6), these periodic solutions 
exist for sufficiently high wave speed. 



Chapter 4 

Construction of Singular 
Solutions 

4.1 Singular Periodic and Homoclinic Solutions 

The travelling wave equations to the FitzHugh-Nagumo equations are given by 

u - v 

v 8 v - f(u) + w ( 4.1) 
w -

where · = fz with z = x + Bt, 8 > 0 and 0 < e ~ 1 and f is the cubic nonlinearity 
f ( u) = u( u - a )(1 - u ). Throughout this chapter we shall refer to the travelling 
wave variable z as "time". We denote the local minimum, maximum and the 
inflection point of the cubic J by (Umin> Wmin), ( Uma:r:, Wma:r:) and ( Uinfl, WinJl), 

respectively. 

Carpenter [Car77] as well as Casten, Cohen & Lagerstrom [CCL 75] consider 
in their work exclusively the excitable regime. We extend the analysis to the 
oscillatory regime, when for negative a the projection of the rest point of the full 
system to the fast system moves to the inner branch of the cubic. 

The equations ( 4.1) constitute an example of a singularly perturbed system with 
respect to e in that they have two time scales; a slow time scale e and a fast 
time scale z. These are related by e := eZ. This difference in time scales, 
imposed by the smallness requirement one, can be exploited to formally construct 

43 
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approximate solutions, each piece of which satisfies some limiting v~rsion of the 
equations as the small parameter e goes to zero. 

With respect to the slow time scale equations ( 4.1) become 

where '= ~· 

eu' v 
ev' 
w' 

Bv-f(u)+w 
1 9u, 

( 4.2) 

From ( 4.2) it is immediate that for small e we have a slow submanifold S given 
by 

def S = {(u,v,w):w=f(u),v=O}, (4.3) 

see Figure 4.1. Observe that unless a point in phase space is close to this curve, 
u and v will change rapidly for small e. 

We introduce some notation at this point before we continue our discussion. 
Consider the subset {( u, 0, w) E S : f'( u) < O} of S consisting of two components, 
S1 and S2, with (0, 0, 0) E S1 when a > O; or (a, 0, 0) E S1 when a < O; and 
(1, 0, 0) E S2. Let ITi be the image of Si under the projection onto its third 
coordinate ( u, 0, w) ~ w. Then by the Implicit Function Theorem there exist 
uniquely determined smooth functions u1 : ITi ~ (-oo, Umin) and u2 : IT2 ~ 
(umax,oo), such that (u,0,w) E Si iff w E ITi and u = Ui(w). We can extend 
u1 and u2 continuously to functions on (-oo, Umin] and [umax, oo ), respectively. 
Defining IT := ITi n IT2, IT_ := IT n { w : w < WinJl} and 
IT+ := IT n { w : w > WinJl}, we have IT := cl(IT) = [wmin, Wmax] and moreover 
u1(w) < u2(w) for w E IT. This allows us to decouple (4.1) for the limiting case 
e = 0 into two lower dimensional problems. 

With respect to the slow time e we define the one dimensional slow flow on 
the outer branches of the slow submanifold, S1 and S2, where the w-coordinate 
evolves according to 

'th I d WI = de' 

w'=!ui(w), where u=ui(w) for wEITi 
() 

( 4.4) 
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w 

Figure 4.1: Slow submanifold Sin (u, w)-space for v = O; S1 and S2 in bold 

If one is off the slow submanifold the flow is more appropriately described in terms 
of the fast time scale z. For small c the dynamics is approximately governed by 
the first two equations of ( 4.1) with w regarded as a constant. This gives rise to 
the definition of the fast flow by setting c = 0 in ( 4.1) which results in the two 
dimensional system 

u = v, 
v - 8v - f(u) + w, 

(4.5) 

for time z, where w is treated as an additional parameter, with w E II. We may 
view the vertical w-axis as the "base space" and the horizontal ( u, v )-planes as 
the "fibres". 
For later use we denote the vector field of the fast flow ( 4.5) by Fw( u, v ). Note that 
for a fixed w E II (4.5) has three rest points (u1(w),O), (u(w),O) and (u2(w),O), 
which are roots of f ( u) - w = 0, i.e., 

f(u) = w = (u - u1(w)) (u - u(w)) (u2(w) - u), (4.6) 

with u1(w) < u(w) < u2(w). 
It is easily checked that for (u1(w),O) and (u2(w),O), where f' < 0, we have 
hyperbolic rest points (or saddle points). For the one in between, where f' > 0, 
we have a spiral source, if 82 < 4f'(u(w)), or an unstable node, if 82 > 4f'(u(w)), 
depending on the value of w. 

Thus, the right and left branch of the cubic curve, S1 and S2 respectively, consist 
of saddles and the inner branch of spiral source or unstable node points. 
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Figure 4.2: Singular periodic solution 

Our aim is to construct a singular periodic solution of ( 4.1) by piecing together 
the appropriate solution segments which satisfy the fast or the slow equations. 
We define a singular periodic solution of ( 4.1) to be the piecewise smooth union 
of: (compare Figure 4.2) 

(i) A heteroclinic solution of the fast equations (4.5) connecting (u1(w),O) to 
( u 2( w ), 0) for some w E IL existing for some positive speed B, say; 

(ii) a solution segment of the slow equation (4.4) (u2(w),w) in the {v = O}-
plane from w to w for some w E II+, 

(iii) a heteroclinic solution of the fast equations ( 4.5) from ( u 2( w ), 0) to ( u1( w ), 0), 
with the same speed Bas at w and 

(iv) a solution segment of the slow equation (4.4) (u1(w),w) in the {v = O}-
plane from w back to w. 

Clearly, a singular solution is not a proper solution of ( 4.1) for e = 0. Also the 
tangent to the singular solution is discontinuous at the points ( u1 ( w ), 0, w) and 
( u2(w ), 0, w). 
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Singular homoclinic solutions are defined similarly, with w = 0. Note that for 
a < 0 we can not construct a singular homoclinic solution, as u 1(0) < 0 for all 
a < 0 and therefore the rest point of the fast system ( u 1 ( 0), 0) can not be a 
projection of the origin in 1R3 , the rest point of the full system. 
For a > i there are neither singular homoclinic solutions nor singular periodic 
solutions. The former can immediately be ruled out by the fact that Winfl < 0 
for a > i, so that the way in which we constructed the singular solutions can 
not work. For the latter observe that the flow on 81 is both for { u < O} and for 
{ u > 0} directed towards the origin in the ( u, w )-space. 

Thus singular homoclinic solutions can only exist for 0 ::; a ::; ~. We treat the 
case a= 0, which corresponds to a degeneracy, later. 

It should be noticed that the relaxation oscillations of the kinetic equations are 
rather different from (singular) periodic travelling waves although the same cubic 
slow submanifold is involved in both cases. For the former the fast flow trajec-
tories leave the slow submanifold at the local extrema of the cubic, and indeed 
no other fast flow trajectories leave it except on the middle branch where they 
all do. For the latter, however, some fast flow trajectories everywhere are going 
away from the slow submanifold. 

4.1.1 Mechanical Interpretation 

In order to work out the dependence between B and w for which a saddle con-
nection in the fast system exists, we make use of the following mechanical in-
terpretation. We can rewrite the fast system ( 4.5) as a second order nonlinear 
differential equation 

ii - Bu + f ( u) - w = 0 (4.7) 

describing a particle in a force field J( u )-w with "negative friction" -Bu, as Bis 
positive. Note that the force is derivable from a potential with two local maxima 

Fw(u) = {U(s)- w)ds ( 4.8) 

where w E ( Wmin, Wmax)· In Figure 4.3 the potential is shown for different choices 
of w. 

In general the two local maxima will be of different height. The families of critical 
points of Fw, parametrized by w, form the branches of the slow submanifold S. 
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u 

Figure 4.3: Potential Fw varying with w E [wmin, Wmax], a= -1 

Note that the local maxima correspond to saddles in this interpretation and the 
trajectories connecting the local maxima to saddle connections. 

For () = 0 ( 4.5) forms a Hamiltonian system1 with Hamiltonian function 

( 
def 1 2 

H u,v) = 2v +Fw(u) ( 4.9) 

where w E ( Wmin, Wmaz)· Thus the phase portrait of ( 4.5) is determined by the 
level curves of the Hamiltonian. We choose the parameter w such that the two 
local maxima of Fw have the same height. This is determined by the condition 

/.

u2(w) 

u1(w) 
(! ( s) - w) ds = 0 (4.10) 

the so-called Maxwell line value w = w( a). Because of the symmetry of the cubic 
we have w = Winfl, the w-coordinate of the inflection point of the cubic, with 
Winfl = 2

1
7 (1 + a)(l - 2a)(2 - a). Thus for () = 0 and w = w there exis~t a pair 

of trajectories connecting the two local maxima in both ways. In other words, 
we have a heteroclinic cycle, i.e. a pair of saddle connections running in opposite 
directions shown in Figure 4.4. 

1Compare Conley (Con75). 
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Figure 4.4: Phase portrait () = 0, w = w 

For positive () the Hamiltonian is increasing along trajectories as the orbital 
derivative dJ{ = Ov2 is positive. Carpenter [Car77] proved the existence of some 
function B( w) for w E IT such that the fast system admits a saddle connection 
from (u1(w), 0) to (u2(w), 0) at fJ = B(w) if J~2c':lU(s) - w) ds ~ 0 and a saddle 
connection in the other direction from ( u2 ( w), w) to ( u1 ( w), w) for () = B( w) if 
J~2c'=>) (!( s) - w) ds ~ 0. The proof uses a shooting argument in () applied to a 
branch of the unstable manifold of the respective rest point. 

4.1.2 Derivation of the Saddle-Connection 

We recall a result of Casten, Cohen & Lagerstrom (CCL 75] who derived an explicit 
expression for the connecting orbit between (u1 (w), 0) and (u2(w), 0) for w E IT_ 
and its corresponding wave speed B( w ). Note that ( 4.5) after eliminating the 
time variable z becomes 

dv 
v du=() v - J(u) + w, ( 4.11) 

· u ·dv since ;:; = du. 

It is straightforward to check that 
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( 4.12) 

with .X = ±)2 is a polynomial solution of (4.11) through u 1(w) and u 2(w), which 
exists for 

8 = 8(w) = .X(u1(w) + u2(w) - 2u(w)). ( 4.13) 

Since the curve w = J( u ), being a cubic, is symmetric about its inflection point 
( Uinfl, Winfl) it follows that 8( Winfl) = 0. Recall that we require 8 to be non-
negative. For w E IL we have u1(w) + u2(w) - 2u(w) > 0 so we take .X = )2, 
but for w E II+ .X must be given the negative value, .X = - ~'since 

ui(w) + u2(w) - 2u(w) < 0. 

There exists a uniquely determined w E II+ such that ( u 2 ( w ), w) is the point 
on the curve w = f ( u) which is symmetric to ( u1 ( w ), w) with respect to the 
inflection point ( Uinfl, WinJz). 

Because of the symmetry 

1 
B(w) = - J2(u1 (w) + u2(w) - 2u(w)) 

- ~(u1(w) + u2(w) - 2ii(w)) 

- 8(w). 

Observe that (} is continuous on II, but not differentiable as it does not have a 
unique tangent at Winfl. Moreover 8( w) is monotonically decreasing on II_ and 
increasing, on II+, being zero at the Maxwell line value w = Winfl· 

In the limit as w -+ Wmin one of the humps becomes an inflectional plateau. For 
which value of the friction 8 is there a trajectory connecting the local maxima to 
the inflectional plateau ? Is the limit of the friction limw-+wm.in 8( w) finite ? 

We postpone the answer to these questions to the next chapter, but introduce 
meanwhile the following notation. 

For w E II_ we denote the branch of the unstable manifold of the rest point 
(u2(w),O) for (4.5) connecting it to (u1 (w),O) with respect to reversed2 time 

2We reverse time since we prefer to shoot away from the saddle node. 
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Figure 4.5: Typical graph of 8( w) for a = ~ 

r = -z by Ar(w, 8(w)). Observe that the connecting orbit corresponding tow 
and w satisfies u = v ~ 0 and u = v ~ 0 respectively by ( 4.12). So for w and w, 
u is an increasing and decreasing function of time z, respectively. 

4.2 Degenerate Singular Periodic and Homo--
clinic Solution 

We extend the theory to the oscillatory regime, where w can be taken down 
to Wmin = J(umin) and show that as T --+ oo, Ar(wmin, 8(wmin)) tends to the 
rest point (Umin, 0), being the merger of ( u1 ( w), 0) and (ii.( w), 0) in the limit as 
w --+ Wmin, and, more importantly, that this connection between ( u2( Wmin), 0) 
and (Umin, 0) exists for all 8 2:: 8*, for some 8* > 0. 

We shall prove this in two steps. Firstly, we will consider a fixed w E IT_, and 
construct for all 8 > 8( w) a positively invariant region R with respect to time ,,. , 
in order to show that Ar ( w, 8( w)) tends to the rest point ( u( w), 0) as ,,. --+ oo. 
Secondly, we will consider the limit when w tends to Wmin and the rest points 
(u1(w), 0) and (u(w), 0) merge in the single rest point (umin, 0). 
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v 

Figure 4.6: Trapping region R 

Let us begin by prescribing the boundary of the positively invariant region R of 
the phase space of the (time reversed) fast fl.ow, see Figure 4.6. 

The upper boundary for non-negative v is given by the aforementioned polynomial 
solution through (u2(w),O) and (u1(w),O) with 8 = B(w), 
v1(u) := ~(u - u1(w))(u2(w)- u) for u E (u1(w),u2(w)). 

We have seen that for 8 = 0, ( 4.5) is a Hamiltonian system with the Hamil-
tonian function H(u,v) = ~v2 + Fw(u), where Fw denotes the potential (4.8). 
Using the fact that a Hamiltonian function is constant on orbits, we can give 
an explicit expression for the negative branch of its level curve corresponding to 
the orbit homoclinic to (u1(w), 0), viz. v2(u) := -./2JFw(u1(w)) - Fw(u) for 
u E (u1(w),u*(w)). Moreover,u*(w)isgivenimplicitlyby J~*(';/(f(s)-w)ds = 0. 

For u E [u*( w ), u2 ( w)) the u-axis of the ( u, v )-space is the remaining part of the 
boundary. 

We define A1(u,v) = v1(u)-v, A2(u,v) = v-v2(u), A3(u,v) = v; and the region 
R to be 

3 

R = n Ai1([0, oo )). ( 4.14) 
i=l 

Note that each boundary point (u,v) E 8R satisfies Ai(u,v) = 0 for some i. 

Lemma 4.1 Let w E IT_ be fixed. Then R is a positively flow invariant region 
of the fast flow defined by ( 4.5) for each 8 > 8( w) and for reversed time T. 
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Proof: We show that the flow along the boundary of R is inward pointing, ex-
cept at the points ( u1 ( w ), 0) and ( u 2( w ), 0), where it is stationary. Denote by 
F:;,(u,v) = (-v, -8 v + f(u) - wf the time reversed vector field (4.5), and let 
v = v1(u) for u E (u1(w),u2(w)). Then 

( 4.15) 

since v1 satisfies ( 4.11) for 8 = 8( w) and is positive. Remember, the negative 
branch of the homoclinic to (u1(w),O), v2(u) is a solution to (4.11) for 8 = 0. 
Hence 

( 4.16) 

The inequality follows from the fact that v2( u) < 0 for u E ( u1 ( w ), u*( w) ). For 
the remaining part of the boundary, we have v3 ( u) = 0 for u E [u*( w ), u2( w) ), 
and therefore 

( 4.17) 

This shows that R is a positively invariant region. 1111 

Let for w E IL, Ar(w, 8) denote the branch of the unstable manifold of the rest 
point ( u 2( w ), 0) with positive half solution contained in { v ~ 0}. 

Lemma 4.2 Ar(w,8) tends to (u(w),O) for 8 > 8(w) as r ~ oo. 

Proof: By (4.1), Ar(w,8) can not escape R for 8 > 8(w). The only boundary 
point of R to which Ar(w, 8) can possibly tend is (u1(w), 0). But the connection 
between ( u2( w ), 0) and ( u1( w ), 0) exists only for the unique value of 8 = 8( w ). 
Furthermore, the slope of Ar( w, 8) at the rest point ( u2( w ), 0) is a decreasing 
function of 8, as can be seen from the linearization of the vector field F:;, at 
( u2( w ), 0). Therefore Ar( w, 8) is forced to tend to (ii.( w ), 0) for 8 > 8( w) as 
7"~00. Ill 

Finally, we consider the limit as w tends to Wmin, i.e. when the saddle point 
(u1(w), 0) and the stable node (u(w), 0) of (4.5) become the saddle-node (umin, 0) 
of ( 4.5) for w = Wmin· It is then clear from Lemma 4.2 that the heteroclinh: 
connection between ( u2( Wmin), 0) and (Umin, 0) exists for all 8 ~ 8( Wmin), where 
8( Wmin) = limw_w_,,,, 8( w ). We state this in the following proposition with respect 
to the non-reversed time z. 
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Figure 4. 7: Connecting orbit from saddle-node to saddle for B = 7a 

Proposition 4. 3 The heteroclinic orbit of ( 4.5) for w = Wmin connecting the rest 
points (umin,O) with (u2(Wmin),O) exists for all B ~ B(wmin)· Equally, for w = 
Wma:z: the heteroclinic orbit connecting the rest points ( Uma:z:, 0) with ( u1 ( Wma:z:), 0) 
exists for all B ~ B( Wma:z:). In addition, 8( Wm in) = B( Wma:z:). 

We can compute B( Wmin) in terms of a, the root of the cubic f. Set u2 = u2( Wmin) 
then from (4.13) we have B(wmin) = )2-(u2-Umin)· Expanding f(u2) around Umin 
we get after some algebraic manipulations u2 - Umin = ~ f"( Umin) = J a2 - a + 1, 
since J(u2) = Wmin = J(umin), J'(umin) = 0 and Umin= Ha+ 1- Va2 - a+ 1}. 
Thus, B(wmin) = 7aJa2 - a+ 1. Define 

B*(a) := { {a (1 - 2a) 
-Ja2 -a+ 1 ./2 

for 0 <a~~, 
for a~ 0 . 

( 4.18) 

We call singular periodic and homoclinic solutions degenerate if their fast flow 
segments consist of a saddle-node to saddle connection or vice versa, rather than 
simply saddle connections. See Figure 4.2. 
The conclusion of the previous analysis with respect to the original, non-reversed, 
time z is summarized in the following theorem. 
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Figure 4.8: Two parameter family of singular TW solutions in (a, 8)-parameter 
space 

Theorem 4.4 The travelling wave equations of the FitzHugh-Nagumo system 
( 4.1) admit singular solutions for the following choice of parameters: 

(i) Singular periodic solutions exist for all () E [O, ()*(a)) and a < ~. 

(ii) Singular homoclinic solutions exist for () = 8*( a) and 0 < a ::; ~. 

(iii) Degenerate singular periodic solutions .exist for all 8 2:': 8*( a) and a < 0. 

(iv) Degenerate singular homoclinic solutions exist for all () ~ ()* ( 0) = ~ at 
a= 0. 

It should be pointed out that diagram 9 in Figure 4.8 is qualitatively true for 
all () 2:': )2. In the previous chapter we have seen that as 8 tends to infinity 
the periodic travelling waves in the oscillatory regime, which are obtained as 
perturbation from the corresponding singular solutions, tend to homogeneous 
oscillations. Thus we have shown that there exists a continuous two-parameter 
family of singular periodic travelling waves connecting the excitable ones with 
the homogeneous oscillations existing in the limit as 8 goes to oo. 



Chapter 5 

Persistence of Singular Solutions 

We show that the singular solutions, which we have constructed in the previous 
chapter, perturb into genuine solutions, close to the singular ones, for small posi-
tive e. We prove that all but the degenerate singular homoclinic solutions persist. 
For the latter we provide reasons for their non-persistence. 

There exist a number of methods for systems of singularly perturbed ODE's 
which achieve this, e.g., [JK] & [JKL91], [Lan80], [MR80], [Sch92], [Smo82], 
[Szm91]. All of them use in one way or another invariant manifold theory, except 
[MR80], which uses asymptotic expansions. Our proof is based on the work of G. 
Carpenter [Car77], which is inspired by ideas of C. Conley outlined in [Con75]. 
Basically it consists of two steps: 

(a) Defining hypotheses on the dynamics of the ODE's under which topological 
methods (Wazewski's principle, Brouwer degree or, alternatively, the Con-
ley index) can be applied to prove the existence of homoclinic and periodic 
solutions. 

(b) Using the associated singular solution to construct the machinery, specifi-
cally (isolating) blocks, needed to apply the results of (a). 

Though this method has wide applicability, we merely use it as a tool to demon-
strate the existence of homoclinic and periodic solutions to the FitzHugh-Nagumo 
travelling wave equations, 

u v, l v Bv - J(u) + w, 
w e - 9u, 

(FN;B,e) 

56 
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where f(u) = u(u - a) (1 - u). Unlike in Carpenter's work [Car77], here _a, the 
root of the cubic, may also take non-positive values. 

5.1 Preliminaries 

To develop the requisite machinery, we need a number of concepts. Suppose we 
are given a system of ODE's, 

u = G(u), (5.1) 

with G of class C1 and u E n ~ JR.N, n open and connected. We assume that 
this system of ODE's generates a global flow </> : n x IR. ~ n, where global 
means that we assume solutions to exist for all time. Henceforth we shall write 
u · t for </>(u, t) and r+(u) for the positive semi-orbit of u under the flow, i.e. 
r+(u) "2f u · [O, oo). 
A set B c n will be called a block for </> if: 

(I) There exist N functions Ji, ... , fN from JR.N into IR. such that B def 
nf:1 fi-1((0, oo)) is homeomorphic to the unit cube in JR.N. 

(II) (Y' fi(u), G(u)) # 0 for u E fi- 1 (0) n B, where (·, ·) is the standard inner 
product on IR.N. 

Note that property (II) means that the trajectories cannot be tangent to the 
boundary of B. The property of being a block is preserved under perturbations 
of the flow. 
The entrance set of a block B is the set b+ c 8 B, such that for each u E b+ we 
have fi(u) = 0 and (Y' fi(u), G(u)) < 0 for some i. This means that trajectories 
point inward into B on b+. The exit set of a block, b-, is defined in a similar way, 
with the last inequality reversed. The corners of the block are contained in both 
the entrance- and the exit set. 

Let B be a block. We define the time it takes to reach various portions of 8B for 
an arbitrary point u E n by 

± cle_f { 0 if u E b±, T (u) 
sup { t > 0 : u. (0, t) n b± = 0} if u r/:. b±. 

(5.2) 
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If T±( u) is finite, we denote by ~±( u) the point in b± into which u i~ mapped by 
the flow after time T±( u ), that is, ~±( u) = u · T±( u ). We shall also need the sets 
n+ and n-, where n+ = {u E fl : 0 < T+(u) < oo, ~+(u) ~ b-} (excluding 
corners). n- is defined in similar way with all pluses replaced by minuses and 
vice versa. Thus n± is the set of points in fl\B, trajectories of which intersect 
b± transversely. 
The following result is Lemma 1.3 of [Car77]. 

Lemma 5 .1 If B is a block, then T±, ~± are continuous on D± . 

Consider now a parametrized system of ODE's 

(5.3) 

( u, A) E fl x A ~ lRN x lR\ where fl, A are open and connected, and G is of class 
C1 as a mapping of u and A. If B is a block for (5.3) for A = Ao, then it will 
remain a block for values of A close to A0 • The same will be true for b±. Below 
we shall denote dependence on A by subscripts. We often drop the subscripts, 
provided that there is no confusion involved. 

5.2 Homoclinic Solutions 

The hypotheses HOM used in [Car77] for the existence of a homoclinic solution 
are as follows: 

(A) There exist two blocks, B1 and B2 , where B1 is the one that contains the 
rest point u. 

(B) For all A E A, u is a rest point of (5.3), and if !+(u) C B1 , this means 
that u E W 8 (u) (lies on the stable manifold of the rest point u). That is, 
the flow is "gradient-like" , meaning that nothing can enter B 1 without 
eventually hitting u. Furthermore, for no u is !+( u) contained in B 2 • 

( C) There exists an open subset D. of b; n Di (points in the exit set of the block 
B2 which are going to enter B1 transversely) such that b2\.6. consists of two 
components, f3o and {31 • Let Si= f3i n cl(D.) (i = 0, 1). Then So U S1 c D1. 
This means that all points on the lower and upper boundary of ti will 
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Figure 5.1: Hypotheses for the existence of homoclinic solutions. bi: front, back, 
top and bottom face of B1 ; b2: front, back and top face of B2 

enter and then leave B1 and <.P!(So) and <.P!(S1 ) are contained in different 
components of b1 (this means that they leave through different components 
of the exit set of B1 ). This is to hold for all values of the parameter in some 
small interval. What changes as we change the parameter is the behaviour 
of the unstable manifold wu(u) of u. This is given by 

(D) There exists a path r = {(us; .As) : s E [-1, 1]} C Dt x A, such that 
Us E wu( u), i.e., lies for all s on the unstable manifold of the rest point u of 
(5.3,.As) and <.P2(u_1 ) E {30 and <.P2(ui) E f31. Note that this in conjunction 
with condition (C) means that <.P2(r) has to intersect both 60 and 61 . See 
Figure 5.1 to clarify the situation. 

Under these assumptions (5.3) has a homoclinic solution. Take our curve r and 
follow it along the flow till it exits B1 again. The curve is connected; its image on 
b1 is not. Wazewski's principle stated in Appendix D.l now clinches the existence 
proof, since the curve lies on the unstable manifold (of the product flow). 
We shall, however, in the proof of the following proposition not explicitly make 
use of Wazewski's principle. 
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Figure 5.2: Intersection of <P;(r) with Ii 

Proposition 5.2 The above hypotheses imply that (5.3, >i.) admits a homoclinic 
solution for some A8 , with s E [-1, 1]. 

Proof: If r is a path in Dt then it is also a path in D;, since by hypothesis (B) 
no positive semi orbit is contained in B2 • Then by Lemma 5.1, the continuity 
of <P± on n±, <P2 (I') is a path and hence connected in b2, whose endpoints are 
contained in {30 and (31 , respectively, by hypothesis (D). By restricting the domain 
of the path r to some closed subset, say, [so, s1 ] of the index-set [-1, 1], we may 
assume that T ~f <P;(r lr•o,•il) ~ cl(!i) and therefore in Di, where the endpoints 
of T (corresponding to A80 and >i.i) are contained in 60 and Si, respectively. This 
is shown inf Figure 5.2. 
Were T also contained in DJ: then its image under <P! would be connected by 
Lemma 5.1. However, T is mapped by <P! to distinct components of b! by 
hypothesis (C) and can therefore not be contained in D1. Thus there exists an 
orbit passing through some point of r, for some s E (so, s1 ), which enters B 1 , but 
does not leave it for positive time. This orbit is by hypothesis (B) on the stable 
manifold of the rest point u. This completes the proof. m 

Our next task is to see when these assumptions are satisfied for (FN; 8, e). To be 
able to construct a (non-degenerate) singular homoclinic solution, the rest point 
of the fast system (0, 0) (corresponding to the unique rest point of the full system 
at the origin) must be of saddle type. This only holds for 0 < a < !, where a 
denotes the root of the cubic f. 
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Figure 5.3: Blocks around St and S2 in the proof of homoclinic solutions 

There are other homoclinic solutions as well, which exist for values of B of the 
order Je as e ~ 0, whose existence can be proven using connectedness arguments 
from plane topology, compare [Has76). There is also an analytical proof of slow 
homoclinics given in [d092). However, these slow homoclinics are not perturba-
tions of singular solutions. Also, the fact that no singular homoclinic solutions 
can be constructed for a< 0, does, of course, not mean that the system does not 
admit any homoclinic solutions in this range. 

Theorem 5.3 Let a E (0, !) be fixed. Then there exist some eo > 0 such that 
for all 0 < e < eo (FN; Be,e) admits a homoclinic orbit to the origin (0,0,0) 
for some Be > 0. Moreover, Be tends to B = B*(a) fore ~ O; i.e., the singular 
solution perturbs into homoclinic solutions of the full system for nonzero e. 

Proof: Before we begin to verify the hypotheses HOM one by one, we recall 
some facts about the fast flow. Both ( Ut(O), 0) = (0, 0) and ( u2(0), 0) = (1, 0) 
are hyperbolic rest points, saddles, of the fast system (FN; B, 0) for w = 0. For 
fixed a, there exists a unique B = B*( a) for which there is a heteroclinic solution 
running from the former to the latter. Also, w uniquely determines w, for which 
there is a heteroclinic solution from ( u 2 ( w ), 0) to ( ttt( w ), 0) in the fast syste~ 
(FN; B,O). 

A: We construct blocks for the fast and the full system. We start by choosing 
Wt such that Wmin < Wt < w = 0 and define W2 symmetrical with respect 
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to Winfl, i.e., w2 - Winfl = Winfl -w1. For i = 1, 2 and each w .E [w1, w2] we 
define Bi(w) = n/=1 fi~j~w([O, oo)) and Bi= UwE[w1,w2] Bi(w) x {w}, where 
for some Ci > 0: 

/i,1;w(u,v) - -v - (B + l)(u - ui(w)) + (B + 1) c;,, 
- -v + (B + l)(u - ui(w)) + (8 + 1) c;,, fi,2;w ( u, V) 

/i,3;w(u,v) 
fi,4; w ( u, v) -

v + ( B + 1) ( u - Ui ( w)) + ( B + 1) Ci, 

v - ( B + 1) ( u - Ui ( w)) + ( B + 1) Ci. 

Note that Bi ( w) can be more conveniently expressed as 

Bi(w) = {(u,v): Iv± (8 + l)(u - ui(w))I ~ (8+1) c;,} (i = 1,2). 

Clearly, Bi( w) is homeomorphic to the unit square and Bi to the unit cube. 
The blocks B1 and B2 are depicted in Figure 5.3. 

We proceed to show that the appropriate flow cannot be tangent to any 
point on the boundary of Bi(w) and Bi. For a fixed w E [w1 , w2], we denote 
the vector field corresponding to (FN; 8, 0) by Fw. For example, we have 
for sufficiently small c1 > 0 

(\/ f1,t;w, Fw) = (28 + 1)(8 + l)(v - u1(w) - c1) + f(u) - w < 0, 

if (u,v) E /1~f;w(O). So f1~f;w(O) n B1(w) ~ b!(w). The calculation for the 
other faces are similar. 

For a given w E (wmin, Wma:i:), we denote the supremum of the diameters 
for which Bi(w) is a block for the fast system (FN; 8, 0) by ct(w). Note 
that c~( w) goes to zero for Wt tending to Wmin· Similarly, c;( w) approaches 
zero as W1 tends to Wma:i:. 

A computation analogous to the one for the fast system, with Ii,; ( u, v, w) ~f 
fi,i;w ( u, v ), shows that Bi is a block around the slow submanifold Si of the 
full system (FN;8,e), for some Ci:= c;,(wi), with 0 < c;,(w1) < cHw) and 
sufficiently small e > 0. Observe that both the bottom and top face of the 
block B1 are not contained in its exit set, which is therefore disconnected. 

B: Note that the positive semi orbit of a point in B1 can only be contained in B1 

if it is on the stable manifold of the origin. This holds by inspection of the 
slow flow. For the same reason no positive semi orbit is contained in B2 • 
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C: We construct the set ti and show that it is contained in Di and that its lower 
and upper boundaries, 60 and 61 , get mapped by <P1 to distinct components 
of b1. We show this in C.l for the fast system and generalize it in C.2 to 
the full system. We now proceed to define ti = U1w-wl</3 ti( w) x { w} for 
small f3, where 

ti(w) = {(u,v) E b2(w): -(8 + l)c2 < v < O} 

for fixed w. Clearly, ti is an open set and contained in b2. 

With respect to the fast system (FN; 8, 0) we define A1 (8, w) to be the 
branch of W8 (u1(w),O) beginning in {v < O} and A2(8,w) to be the branch 
of Wu( u 2( w ), 0) also beginning in { v < O}. We remark that the connecting 
orbit satisfies A1(8,w) = A2(8,w). 

C.1: Let c1 > 0 be chosen such that B1 is a block for sufficiently small e > 0. 

We define f3+ > 0 and f3- < 0 to be the values of f3 for which A2 ( 8, w + (3) 
passes through the the corners of the block B1 ( w + (3), ( u 1 ( w + f3) + c1 , 0) 
and (u1(w + (3), -(8 + l)c1), respectively. 

In the following we implicitly make use of the fact that the trajectories of 
(FN; 8, 0) depend monotonically on w. Meaning that the intersection point 
of trajectories of (FN; 8, 0) parametrized by w with two suitably chosen 
lines, { v = O} and { u = u 2 ( w)} depends monotonically on w, for w close to 
w. This is a consequence of the fact that A1 (8, w) and A2(8, w) pass with 
non-zero "speed" through the heteroclinic connection for w = w which can 
be shown in terms of a Melnikov integral that is non-zero. The Melnikov 
integral is an explicit expression for ~( w ), where Q( w) is a measure for the 
"distance" between A1(8,w) and A2(8,w). In [Den91] a formula for ~(w) 
is derived (in a different context), applied to (FN; 8, 0) and shown to be 
positive. 

Then the block B2( w) is for each lw - wl ~ /3, for some fixed /3 satisfying 
0 < /3 < min{f3+, lf3-1} constrained by: (compare Figure 5.4) 

(a) The intersection point of A1 ( 8, w-/3) with { v = O} and the v-coordinate 
of the backward orbit of (FN; 8, 0) through the point 
(u1(w - /3), -(8 + l)c1) at u = u2(w - /3). 
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Figure 5.4: Verification of the mapping condition on /:::,.: Phase portraits of the 
fast flow for B = 8(w) at (a) w = w - p, (b) w = w + p 

(b) The v-coordinate of A1 ( B, w + P) at u = u 2( w + P) and the inter-
section point of the backward orbit of (FN; 8, 0) through the point 
(u1(w + P) + c1, 0) with {v = O}. 

We set c2 = c2(w + P), for some c2(w + P) with 0 < c2(w + P) < c;(w + P) 
Then for all w, with lw -wl ~ p, /:::,.is contained in Dt under the family of 
fast flows (FN; 8, 0) parametrized by w. Also note that the lower and the 
upper boundaries of!:::,., 60 and 61 at w = w - P and w = w + p, respectively, 
leave the exit set of the block B1(w =F P) through {v < O} and {v > O}, 
respectively. 

C.2: By the classical theorem of continuous dependence of the flow on parame-
ters, there exists a r1 = r(c1 ,P) > 0 and an e1 = e(ci,P,r1) > 0 such that 
/:::,. C Dt, <I>t(6o U 61; 8, e) C D!; and <1>!(60; 8, e) and <1>!(61; 8, e), respec-
tively, leave b! through { v < O}, respectively { v > O}, under the flow of 
the full system (FN; 8, e) for all I 8 - Bl ~ r 1 and 0 < e < e1 • 

D: Recall from the linear stability analysis that dim wu(o) = 1 for (FN; 8, e) 
with 8 ~ 0 and e > 0. Let A':(B) be the branch of wu(o) beginning in 
{ v > O} and define A 0 ( B) to be the corresponding branch of wu(o, 0) of the 
fast system (FN; 8, 0) at w = 0. Note that A0 (8) stands for the singular 
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Figure 5.5: Shooting argument in B for w = 0: (i) B < B, (ii) B = B, (ii) B > B 

connection between the saddles (0, 0) to (0, 1). There exists an £2 > 0 and 
a T2 = T2 (c2) > 0 such that for fixed£, with 0 < £ < £2, N:(B) n B2 =/- 0 
for B with I B - Bl ~ T2, by continuous dependence on parameters from the 
singular connection for B =Band w = 0. We define the path for a fixed £, 
with 0 < £ < £2 , to be 

This determines, for a fixed £, a unique path. 

Clearly, re c Dt by construction. We prove the conditions on the end-
points of the path by a shooting argument in s applied to A 0 ( B + sT2 ) and 
extend it by continuous dependence on parameters to £ > 0. For this it 
is sufficient to state that the singular connection breaks up for B =/- B and 
that for s < o, A 0 ( B + ST2) undershoots W 8 (l, 0), the stable manifold of the 
saddle (1, 0) at w = O, i.e., A 0 ( B + sT2 ) n {30 =f- 0, together with the fact that 
for s > 0 it overshoots W 8 (l, 0) 'i.e., A0(8+sT2)nf31 =I- 0. This is illustrated 
in Figure 5.5. Analytically this "break up" of the saddle connection follows 
again from the fact that the Melnikov integral ~( B) =/- 0 at w = 0 proved 
in [Den91], where Q( B) serves here as "distance" between the appropriate 
branches of wu(o, 0) and W 8 (l, 0). 

Conclusion: Thus, all the hypotheses can be satisfied for small enough 0 < £ < 
co:= min{c1,c2} and I B - Bl ~ T, with 0 < T <To:= min{Ti,T2,c}. 
Therefore Proposition 5.2 implies that (FN; Be, e) admits a homoclinic so-
lution with Be = B +ST for some s. Clearly, by the choice of To, Be --+ 8 for 
£ --+ 0. II 
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Figure 5.6: Various phase portraits of the fast system in (a, 8)-parameter space 
for w = 0 

We remark that this proof can be generalized to case when the dimension of 
the slow submanifold is bigger than one. Furthermore, it does not imply local 
uniqueness of homoclinic solutions which comes out of Langer's [Lan80] proof, 
using invariant manifold theory a la Hirsch, Pugh & Shub [HPS77]. 

5.3 Reasons for the Non-Persistence of De-
generate Singular Homoclinic Solutions 

Rather than giving a formal non-existence proof we explain why the persistence 
proof for singular homoclinic solutions does not work for the degenerate singular 
homoclinic solutions existing along the line {(a, 8): a= 0, 8 ~ )2}. 

Examining the hypotheses on the existence of homoclinic solutions shows that 
this depends exclusively on whether or not the path condition (D) can be fulfilled. 
In light of the locus of degenerate singular homoclinic solutions in (a, 8)-parameter 
space we parametrize the curve r on the unstable manifold of the origin w .r. t. 
the full system by a rather than 8. 
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Recall that the path condition requires that for !al < T, for some T > 0, the 
endpoints of the path 

get mapped by <P2 to distinct components of b2\~ for each given fixed 8 2::: )2. 
With respect to the fast system (FN; a, 0) for w = 0 this amounts to show that 
A 0 ( a) under- and overshoots the appropriate branch of the stable manifold of the 
R.H.S. saddle (1, 0) for negative and positive values of a, respectively. 
However, the locus in (a, 8)-space across which this happens, i.e. where A 0 ( a) 
connects to the the saddle at (1, 0), is given by 8 = 8*( a) for 0 ~ a ~ ! and 8 = 
)2-(a+ 1) for -1 ~a~ 0, compare Figure 5.6. Thus, for any fixed 8 > )2, A0 (a), 
does for all a =J 0 overshoot the corresponding branch of the stable manifold of 
the saddle (1, 0) independently of the sign of a. Hence the path condition can 
not be satisfied this way. 
The bigger the value of 8 the more unlikely the persistence of the degenerate 
singular homoclinic solutions becomes. In particular, in the limit as 8 goes to in-
finity the full system tends to the two dimensional kinetic equations, for which the 
origin has a two dimensional unstable manifold for a < 0 and a two dimensional 
stable manifold for a> 0. 

5.4 Periodic Solutions 

We state our results concerning the existence of periodic solutions in two theo-
rems, for singular non-degenerate and degenerate periodic solutions. 

An existence proof for periodic travelling waves by means of the Conley index is 
sketched in Smoller [Smo82], Chapter 24. We are not using the Conley index here 
because it does not give any additional information, and requires a great deal of 
machinery. On the other hand, most of the work needed to pursue a proof along 
Carpenter's lines was already done in the homoclinic case. 

As in the homoclinic case, first we set out the hypotheses needed for periodic 
solutions to exist, and then we verify them for the FitzHugh-Nagumo equations. 
The hypotheses PER are: 
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(A) There exist two blocks, B1 and B2 , such that: 

(B) There are no positive semi orbits contained either in B1 or in B2. 

(C) There exist subsets !::,,. of b2 n Dt and Eof b1 n Dt such that b2\t::,,. consists 
of two components, {30 and {31 and b1\E consists of two components, a 0 and 
ai. In addition, if Si:= f3incl(!::,,.) and ei := aincl(E), then <I>1(Si) ~ int(ai) 
and <I>2 ( ei) ~ int(f3i) for i = 0, 1. As before, this is to hold for all values 
of the parameter in some small interval. (Here, there is no condition that 
varies as a parameter is varied, as periodic solutions exist for all a whole 
interval of parameter values.) 

(D) There exist homeomorphisms hi : bi --+ [O, 1] x [-1, 2] for i = 1, 2 such 
that h1 (E) = [O, 1] x (0, 1), h1(ei) = [O, 1] x {i} (i = 0, 1) and h2 (!::,,.) = 
[O, 1] x (0, 1), h2(Si) = [O, 1] x {i} (i = 0, 1). 

The above conditions are illustrated in Figure 5. 7. The above hypotheses mean 
that one can set up a return map from E through B2 into itself (conjugated to 
the homeomorphisms of hypothesis (D)), so that the Lemma D.2 can be invoked 
to show the existence of a fixed point giving rise to a periodic orbit. 

Proposition 5.4 ([Car77], Thm. 1.9) The above hypotheses imply thatu = G(u) 
admits a periodic solution. 

Proof: Recall that cl(!::,,.) is contained is contained in Dt by hypothesis (C) and 
hence in D! by hypothesis (B). In order to set up the return map we will have 
to restrict the image of E under <I>2 to cl(!::,,.), so that the composition with <I>1 is 
defined. We achieve this by means of c.p2 : cl(E) --+cl(!::,,.), such that 

l h21 
( ( F1 ( u), 0)) if -1 ::; F2 ( u) < 0, 

t.p2(u) = <I>2(u) if 0 ::; F2(u)::; 1, 
h21 

( ( F1 ( u), 1)) if 1 < F2 ( u) ::; 2, 
(5.4) 

with F1 ( u) and F2( u) denoting the coordinate functions of 
h2 o <I>2 : cl(E) --+ [O, 1] x [-1, 2]. Note that c.p2 is continuous, because the pro-
jections are continuous. Next we define the conjugated return map 

t.p : = hi 0 <I> 1 0 f2 0 h11 
: [ 0, 1] x [ 0, 1] --+ ( 0, 1) x [-1, 2] . 

The conditions on the lower and upper boundaries of E and !::,,. imply that t.p 
satisfies the hypothesis of Lemma D.2 and hence possesses a fixed point. Note 
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Figure 5. 7: Hypotheses for the existence of periodic solutions. bf: front, back, 
top face of B1 ; b2: front, back and top face of B 2 

that if F2(u) rt [O, 1] for some u E ~then ~1 o cp2(u) rt ~ and so h1(u) can not 
be a fixed point of <p. 111 

5.4.1 The Non-degenerate Case 

We have changed Carpenter's original construction slightly in that we have chosen 
the blocks around the stable parts of the slow submanifold symmetrically. Our 
proof accommodates the periodic solutions in the oscillatory regime as well, that 
is, the ones which exist for negative values of a. 

Now we can formulate the following theorem, which requires that there be only 
one slow variable. 

Theorem 5.5 Let a, the variable root of the cubic f, be less than ~· Then fo__r 
each() E (O,B*(a)) there exists es> 0, so that for all e E (O,ee) (FN;B,e) admits 
a periodic solution. 

Proof: Firstly, recall that singular periodic solutions exist for an interval of w-

and hence B-values, for a given fixed a. Secondly, note that the difference between 
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the cases a < 0 and a > 0 lies in the fact that for a < 0, w can be_ taken to be 
negative (down to Wmin = f(umin)). We define 

Wo = { 
0 for a 2::: 0, 
Wmin for a< 0. 

(5.5) 

Thus w may take values in ( w 0 , Winfz]. As in the preceding proof for homoclinic 
solutions B = 8( w ); and w is obtained by symmetry, such that there is a homo-
clinic connection in (FN; 8, 0) from (u2(w), 0) to (u1(w), 0). 

A: In order to define blocks compatible with the mapping properties of~ and fl. 
under the flow, we introduce a subdivision on II1 n II2 , such that 

for a ~ 0 : Wmin = Wo < W1 } < W < W4 < Winfl < 
for a > 0 : Wmin < Wo = 0 < W1 

< W5 < W < Ws < Wmax, 

which is symmetric around Winfl . That is, Winfl - W1 = Ws - Winfl 

and Winfl - W4 = Ws - Winfl; Wo acts merely as a dummy variable. In a 
construction similar to that in the homoclinic case we define two families of 
blocks {B! : s E (0, 1]}, which are symmetric to each other with respect to 
the inflection point of the cubic and set Bi = Bi after s has been chosen. 
Similarly to the previous proof, we set 

B:(w) = {(u,v): Iv± (8 + l)(u - ui(w))I ~ (8 + l)ci(w)} (5.6) 

and 
B:= LJ B:(w)x{w}fori=l,2, 

wE[w1,ws] 

where the diameter ci(w) of Bi is a monotonic C1-function of w for 
w E [w1 , w8 ]. For i = 1, we want it to satisfy 

8 ( ) _ { SC for W E [w1, W4], c1 W -
c for w E [ws, ws], 

(5.7) 

(5.8) 

for some fixed c > 0 chosen as in the homoclinic proof and s E (0,,1] to be 
determined in ( C); c2( w) is defined symmetrically. 

The blocks B: and B; are shown in Figure 5.8. 

Note that for each s E (0, 1] and w E [w1 ,w8 ], Bt(w) is a block for the fast 
system (FN; B, 0) if c > 0 is sufficiently small. If, in addition, c > 0 is small 
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Figure 5.8: Symmetric blocks around S1 and S2 in the proof of periodic solutions 

enough, then for each s, B: and B; are blocks for the full system (FN; 8, e). 
Observe that, the bottom face of B1 and the top face of B2 are contained 
in their respective exit sets. 

B: That no positive semi orbit is contained in either B1 or B2 follows immediately 
by an inspection of the slow flow. 

C: For ~(c) > 0 determined as in the homoclinic proof we set w 617 = w =F ~. 
Then we define Ll = Uwe(wa,w7 ) Ll(w) X {w}, where 

Ll(w) = {(u,v) E b;(w): -(8 + l)c~(w) ~ v ~ O} 

and s E (0, 1] is small enough, so that Ll is contained in Df. We define E 
symmetric to Ll. That is, for W2/3 = w =F ~' E = Uwe(w2 ,w3 ) E( w) X { w} , 
with E(w) = {(u,v) E bt"(w) : 0 ~ v ~ (8 + l)cHw)}. Then E ~ Dt 
and b1\E and b2\Ll consist each of two components. Furthermore, 60 

and 61 , as well as, e0 and 6, leave the blocks B1 and B2 through distinct 
components of their respective exit sets. Also, q,1(60 U61;8,e) ~ {w > w5 } 

and q,2(eo u ei; 8,e) ~ {w < W4} for£ and 18 - Bl small enough. 

D: The conditions concerning the homeomorphisms are clearly satisfied. 
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Conclusion: Thus all the hypotheses PER are satisfied. Hence, Proposition 5.4 
implies the theorem. 11 

5.4.2 The Degenerate Case 
"Da mufit er mit dem frommen Heer 
durch ein Gebirge, wiist und leer. 
Daselbst erhob sich grofie Not, 
viel Steine gab's und wenig Brot." 

L. Uhland 

Our aim in this section is to prove the persistence of degenerate singular periodic 
solutions, as defined in the previous chapter. 
We want to apply the proof of Proposition 5.4 for which we shall define sets B1 , 

B2 , ~ and ~ similar to those of the previous theorem. In the course of the proof it 
shall become clear that the as yet undefined sets B1 and B2 are not blocks in the 
proper sense of the definition, as tangencies on their boundaries are unavoidable. 
Thus the program for our proof will be to adapt the standard definition of Bi 
and Bi( w) for i = 1, 2, as given in the previous proofs, such that the mapping 
conditions on the sets t and~ and their respective upper and lower boundaries 
are satisfied. 
We state the persistence result for the degenerate singular periodic solutions in 
the following theorem, whose proof is similar to that of the non-degenerate case. 

Theorem 5.6 Let a, the variable root of the cubic f, be negative. Then, for 
each B ~ B*(a) there exists es> 0, such that for all e E (O,es) (FN;B,e) admits 
a periodic solution. 

Proof: We shall only examine those parts of the proof where the degeneracy 
affects the argument. 
Recall that for the degenerate singular periodic solutions there is no one-to-one 
correspondence between thew and the B-values any more, as for w = Wmin and 
w = Wma:z: degenerate singular periodic solutions exist for all B ~ B*( a) provided 
that a< 0. 
To start the actual proof, we define a subdivision on an extension of the set II, 
being symmetric around Winfl, 

W1 < W2 < W = Wmin < W3 < W4 < Winfl < 
< Ws < Ws < Wcrit < W = Wma:z: < W7 < Wa, 
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where 

(a) there is no further restriction on the choice of w1 and w8 , as the bottom 
face of B1 is for all W1 < Wmin an exit set. Similarly, is the top face of B2 
for all Ws > Wma:z: an exit set. 

(b) Ws,1 = Wma:z: =t= (3 , where (3 > 0 will be determined later and 

( c) Wcrit is the w-level at which the node in the fast flow enters the standard 
block B2( w ). Without loss of generality we may assume that Wcrit > w6 • 

Next, we set Bi = UwE[wi,wa] Bi( w) X { w }, where the sets Bi( w) will be defined 
in the following. Because of the symmetry, it suffices to specify the changes to 
the set B2 containing the set l. 
Here l = UwE(we,wT) l(w) X {w}, where Ws,1 = Wma:z: =t= (3 for some (3 with 
0 < (3 < (3_ and f3- as determined in the homo clinic proof. 
For w E [w1,Wcrit) we set B2(w) = B2(w), with B2(w) as defined in (5.6) of the 
previous proof. Note that B2( w) is then a block for the fast system. 
However, for w ~ Wcrit, we need to amend this standard definition in order to 
satisfy the condition l( w) ~ ( iJt )( w ). 

Note that for w = Wcrit the node (ii.( w ), 0) enters B2( w) at its left corner 
(u2(w) - c~(w), 0) and therefore the map <i>t((u2(w) - c~(w), O); B, 0)2 is not 
defined. We can, however, continuously extend <i>t(·; B, 0) to the node (ii.(w), 0) 
where we define it to be the intersection of the branch of W 8

( u1( w ), 0) starting 
from the node (ii.( w ), 0) with the face J~l;w(O). 

Analogously to the homoclinic proof, B2( w) is given as 

4 

B2(w) = n J~];w([O, oo)). (5.9) 
j=l 

Our strategy will be to determine B2( w) in terms of K( w ), the intersection of 
the backward fast flow of certain subintervals H(w) of H(w) = f~l;w(O) n B1(w) 
with K(w) = f~i;w(O) n B2(w), at different distinguished w-levels. Note tliat 
<i>t(k(w); B, 0) = H(w) by definition. 

2Since cpt(u; 8, 0) = u·T{(u; 8, 0) and the time map T{((u2(w)-c2(w), O); 8, 0) approaches 
infinity when for w-+ Wcrit the corner becomes a rest point, the node. 
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(a) 

K(w) 
W E [wcrit, W'f'na:i:) 

(c) 

X:( Ws) 

Figure 5.9: Construction of the K(w) (in bold) at different w-levels 
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As we require, for j = 1, 3; j;,];w(O) := f2,};w(O) and for j = 2, 4; the_ lines 
]2,};w ( 0) to be parallel to the corresponding lines of B2 ( w) and to go through 
the lower and upper endpoints of K( w ), respectively, the set B2 ( w) is uniquely 
determined and satisfies by construction the above stated property. We illustrate 
this approach in the following sequence of figures. 

Fig. 5.9 (a): Consider w E [wcrit, Wma:i:), for which the node is inside the standard 
set B2(w). Here, we choose a subinterval H(w) of H(w) around the 
intersection point of ws( u1( w ), 0) with H( w ), which contains this in-
tersection point as an inner point and is small enough for its backward 
fast image k ( w) to be contained in K ( w). 

Fig. 5.9 (b ): At the saddle node, for w = Wma:z:, we choose H( w) similar to the 
last case, except that the distance between the lower end point of 
the subinterval and the intersection point with W 8 (u1(Wma:z:), 0) is de-
creased. Again, H ( w) must be chosen small enough for k ( w) to be 
contained in K(w). 

Fig. 5.9 ( c ): Finally, for the upper boundary of !J., at w 7 = projy S1 , we choose 
the subinterval of Hwa such that its lower interval endpoint equals the 
intersection point with W 8 (u1(wa), 0) and the upper end point taken 
as in the last instance. We set u2( w) = u2( Wma:z:) for all w E ( Wma:z:, wa] 
then this construction does so also apply to all w E ( w1 , w8]. Note, 
in particular, we have at W7 = projy(S1 ) that ~1(S1 ) ~ {v > O} as 
required. 

As the construction of the K( w) can be made smooth in w, we require K( w) to 
be a 0 1-smooth function of w on ( Wcrit, wa). 
Finally, we investigate the tangencies of fJi and B2 • The tangencies, which can 
easily be characterized in the fast flow, must occur on the face j;:i;w( 0) n B2 ( w) 
for some interval starting at thew-level at which the node enters the set B2( w) 
and terminating at Wma:z:· In particular, they do not occur for any won the faces 
Ky = f2,j;w(O) n B2 ( w ), which make up the set !J.. Hence, the maps ~t and ~i 
on 'E and !J., respectively, are continuous and the return map of Proposition 5:4 
is well defined and continuous. 1111 



Appendix A 

Cusp Calculation 

We show that the function 

p( a, 8) := ( a2 
- 4£ )84 + 2(2a3 

- 9£ )82 
- 27 £2

, (A.l) 

which is obtained by multiplying (2.3) through with the term a2 - 4£, has for 
fixed £ > 0 at z0 := ( -l, J3i) a cusp point1 , where l := J3e. 
We show below that z0 is a degenerate critical point of p, i.e. p( z0 ) = 0, 
Dp(zo) = (0, 0) and D2p(z0 ), the Hessian of p at z0 , has each a zero and a 
non-zero eigenvalue; additionally we show that the third derivative of p at z0 

satisfies a nondegeneracy condition, which we will state later. Under these condi-
tions it is a straightforward exercise in singularity theory to prove that p around 
z0 is equivalent to 

u3 +v2 

after a smooth change of coordinates (a, 8) 1-+ ( u, v ). 
We shall, however, make use of this result only later. Meanwhile, assuming the 
above conditions, we may write p as 

p(z) = Q(z, z) + C(z, z, z) + h.o.t., (A.2) 

where the quadratic form Q is given by 

Q(z, z) := (A(z - z0 ), z - zo) 

with A= ~D2p(z0 ) and the cubic form by 

C(z, z, z) := ~D3p(z0)(z - zo, z - zo, z - zo). 

1 More precisely, the zero set of p at zo is locally a cusp. 
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We introduce coordinates (x, y) according to 1R2 3 z - z0 = x¢ + y'lj;, where 
¢ E Ker A, ¢ f:. 0 and 'lj; is an eigenvector to the nontrivial eigenvalue of A, say 
A'lj; = A'lj; for some A f:. 0. Then the quadratic term satisfies 

(A.3) 

Exploiting the multilinearity of C we write (A.2) as 

where a = G( ¢, ¢, ¢ ), {3 = 30( ¢, ¢, 'lj;) etc. and subsequently as 

KY 2(1+1'x + 6'y)2 + a(x + {3'y)3 + ... , 
• h (.ll _ ..@.__ I _ ...!..( ~) d Cl _ ...!..( C ~) wit JJ - 3a' I - 2" I - 3a an ° - 2" 0 - 21a2 · 

With respect to the (nonlinear) coordinate change 

x = x + {3'y 
y - y ( 1 + :f x + ~y) (A.4) 

the Taylor series of p around z0 is then given by 

Ky
2 + ax3 + terms of degree at least 4. (A.5) 

Having carried out these calculation we now appeal to the previously stated result 
in singularity theory which tells us that if a and K are non-zero, then the terms 
of degree less than or equal to three are 3-determined, so there is a change of 
coordinates that transforms away the higher order terms. 
Thus for (A.l) at z0 to be a cusp point it is sufficient to show that both a and K 

are non-zero. We have 

8p 8p 
p(zo) = 0 and aa (zo) = 0 = ao (zo). 

Furthermore, the Hessian of pat z0 is given by 

- 6£ ( 27 6v'3l ) . 
6v'3l 4£ 

(A.6) 

Note that the determinant of (A.6) is zero and therefore 0 is an eigenvalue, 
the other nontrivial eigenvalue is given by the trace, .X = -6£(27 + 4£). The 
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eigenvector corresponding to the trivial eigenvalue is <P = (2£, -3.J?lf and the 
one corresponding to .A is given by 'l/; = (9, 2.J3£f. We can now compute K, to be 

K = -6e(27 + 4£)v'81+12£. 

Thus it only remains to be shown that a= D3 p(z0 )(<P, </J, <P) is non-zero. In order 
to do this we have to compute the third derivative of p at z0 which is completely 
determined by the following terms: 

Finally, a computation shows that 

a= -96 · 64e2
, 

which settles the argument. 



Appendix B 

Topological Techniques 

B.1 Wazewski's principle 

Suppose that B is a block of a parameter dependent autonomous differential 
equation. Then the reason why these concepts are of interest is the following. 
D+\(D- U B) is the set of points from outside B that enter it but do not ever 
leave it. We concentrate on assumptions that force this set to be nonempty. 
From Lemma 5.1, we derive the weak form of the Wazewski Principle, which in 
our notation reads: 

Corollary B.1 Let E C n+ be a set, such that trajectories intersect it only once. 
If E c n-, then E is homeomorphic to q,-(E). 

Compare Figure B.1. The bijectivity of q,-(:E) follows from the global existence 
of the trajectories and the well known fact that two trajectories to an autonomous 
differential equation can not cross. The continuity of its inverse is easily estab-
lished by considering the time reversed map. 

Compare the above statement with the one in [Dun81]. We refer the interested 
reader to [Con76] for a formulation of the Wazewski Principle in its full power, 
relating it to homotopy theory. 

Provided there are trajectories, being asymptotic to a rest point contained in 
B, we can apply the principle of Wazewski to give a non-constructive proof of 
homoclinic solutions. Let us assume that the unstable manifold of the rest point 
intersects E for some interval J of parameters. Then the restatement as an 
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Figure B.l: Existence of an homoclinic orbit 

existence proof is as follows: Suppose :E C n+ is connected, but cp-(:E) is not, 
so that they are not homeomorphic. This means that E\D- is not empty, that 
is, there exist trajectories (for some parameters A E J) which stay in B for all 
positive time. 

B.2 Brouwer degree 

We need different tools to find periodic solutions. This is because we can not 
use invariant manifolds of rest points. The method we shall employ relies on 
a fixed point theorem. Equivalently, this means that the Brouwer degree of 
some mapping will be non-zero. Suppose that U is an open bounded set in JR.le. 
Let F E C1( U, IR1e) n C0 ( cl( U), IR1e) and let y be a regular value1 of F with 
y ¢ F( 8 U). Then the degree of a point y in IR1e relative to U, denoted by 
deg( F, U, y ), is given by 

deg(F, U,y) = E sgndetDF(x). 
:z:EF-1 (y) 

(B.l) 

Note that since cl( U) is compact and since y is a regular value of F the sum 
has by the Inverse Function Theorem at most finitely many terms. From this 
definition the concept of degree is extended to singular values by a prominent 
theorem of differential topology, Sard's lemma, and to continuous functions by 
a density argument. Roughly speaking, the degree is a measure for the number 
of zeros of Fin cl( U). The book of Amann [Ama90] is a good reference on the 
subject. 

1This means that the Jacobian of Fis nonsingular on the set p-1(y) C U. 
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2-----..... 

t 

x 

Figure B.2: Existence of a fixed point in the shaded region 

The Brouwer degree does have the following crucial properties: Consider contin-
uous mappings F, G : cl( U) ~ IR k, then: 

(i) (Dependence on boundary values only): If Flau =Glau and y ~ F(8U) = 
G( 8 U), then deg ( F, U, y) = deg ( G, U, y). 

(ii) (Solution property): If deg (F, U, y) # 0, then F( U) is a neighbourhood 
of y in IR.Jc. 

(iii) (Homotopy invariance): If {F.}se[o,i] is a continuous family of mappings 
such that F.(x) # x for all x E 8 U ands E [O, 1] then deg (F. - I, U, 0) 
is independent of s E [O, 1]. In particular, we have that 

deg (Fo - I, U, 0) =deg (F1 - I, U, 0). 

The properties of the Brouwer degree allow us to prove the following lemma which 
will be needed later. 

Lemma B.2 ([Car77], lemma p.359) Let cp [O, 1] x [O, 1] ~ (0, 1) x [-1, 2] 
be a continuous map such that 

cp( [O, 1] x {O}) ~ (0, 1) x [-1, 0) 
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and 
cp( [O, 1] x {1}) ~ (0, 1) x (1, 2]. 

Then cp has a fixed point, that is, there exist (x, l), such that cp(x, l) = (x, l). 

Proof: Take U = (0, 1) x (0, 1). Set cpo = cp and define cp1 (x, t) = (~, 2t - ~)on 
U. Then it is straightforward to check that cp0 is fixed-point homotopic to cp1 by 
cps= (1- s)cpo + scp1, since cps(u) :/= u on au for alls, i.e. no fixed points of cps 
leave through the boundary of U. Furthermore, G, ~) is a fixed-point of cp1 and 
from (B.l) we can explicitly compute deg (cp1 - I, U, 0) = -1. The fixed-point 
homotopy invariance of the degree implies that deg ( cp0 - I, U, 0) = -1, and 
therefore cpo = cp has a fixed point, by the solution property of the degree. Refer 
to Figure B.2.111 
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