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LD PRINCIPLE SINGLE POINT CATALYST 1Abstract. In the single point catalytic super-Brownian motion \particles"branch only if they meet the position of the single point catalyst. If thebranching rate tends to zero, the model degenerates to the heat ow. Weare concerned with large deviation probabilities related to this law of largenumbers. To this aim the well-known explicit representation of the modelby excursion densities is heavily used. The rate function is described by theFenchel-Legendre transform of log-exponential moments described by a log-Laplace equation. Contents1. Introduction 11.1. Motivation 11.2. The single point catalytic super-Brownian motion X 21.3. Main result 41.4. Method of proof 42. Exponential moments 52.1. To equation (1.11) 52.2. Exponential moments 83. Proof of the large deviation principles 83.1. Proof of Proposition 1.1 83.2. Proof of Theorem 1.1 9References 101. Introduction1.1. Motivation. Starting with Dawson and Fleischmann (1983) [1], a large areaof spatial branching models in randommedia was developed. For recent surveys, see[3, 4, 13]. But there are only a few papers in this �eld which deal with large deviationprobabilities, see Greven and denHollander (1991,1992) [11, 12]. In particular, wedo not know a single reference for a large deviation result in the important case ofa branching model with a singular catalytic medium.Here we pay attention to the simplest model of this kind: a super-Brownian mo-tion X = fXt : t � 0g on the real line R with a single point catalyst % Æ0 ; where% > 0 is a �xed constant, and Æ0 denotes the Dirac delta function centered at 0:This process was introduced in Dawson and Fleischmann (1994) [2], and furtherinvestigated in Dawson et al. (1995) [5], Dynkin (1995) [7], and Fleischmann andLeGall (1995) [10]. Roughly speaking, here the tiny \particles" move as indepen-dent Brownian motions in R with migration constant { > 0; and split accordingto critical Feller's branching di�usion with rate %; but only if they pass the posi-tion 0 2 R of the single point catalyst. In order for the branching to happen, theparticles have to accumulate enough local time at 0:What law of large numbers on X we have in mind we are asking for relatedlarge deviations? Well, if the branching rate % > 0 tends to zero, one expects thatX approaches the heat ow. Is there a related large deviation principle?For the classical case of a constant medium, that is if % Æ0 is replaced by %;large deviation principles had been established in Fleischmann and Kaj (1994) [9],Fleischmann et al. (1996) [8], and Schied (1996) [14]. To deal with large deviationsin a general catalytic situation however seems to be rather hopeless at the �rst



2 FLEISCHMANN AND XIONGsight. However in the present special case of the single point catalyst % Æ0 onecan use a di�erent explicit representation of the model found by Fleischmann andLeGall (1995) [10], which we want briey recall in the next subsection.1.2. The single point catalytic super-Brownian motion X. More formally,the single point catalytic super-Brownian motion X = �X; P�; � 2 M(R)� is a(time-homogenous) continuous measure-valued Markov process determined by itslog-Laplace transition functional� logP�e�hXt;'i = 
�;w(0; � )�; � 2M(R); t � 0; ' 2 �+(R): (1.1)Here, �(R) denotes the separable Banach space of all continuous functions ' :R! R such that the limit limjaj"1 ejaj '(a) exists in R; furnished with the normk'k := supa2R ejaj j'j(a); and �+(R) is the cone of all non-negative members of�(R): Furthermore, h�; 'i denotes the integral R �(da)'(a) (integrated over thewhole space). M(R) is the set of all (non-negative) measures � on R such thath�; 'i < 1 for all ' 2 �+(R): Equipped with the �nest topology such that allthese mappings � 7! h�; 'i are continuous, M(R) is a Polish space. P� indicatesthat X starts at time t = 0 with the measure X0 = �: Finally, for t; ' �xed,w = wt;' = �w(s; a) : s � 0; a 2 R	 denotes the unique non-negative solution tothe log-Laplace equationw(s; a) = 1fs<tg Z db pt�s(b� a)'(b) � % Z 1s dr pr�s(a)w2(r; 0); (1.2)s � 0; a 2 R; related to the formal partial di�erential equation� @@sw(s; a) = {22 @2@a2w(s; a) � % Æ0(a)w2(s; a); 0 < s < t; a 2 R; (1.3)with terminal condition w(t�; � ) = ': Here, p is the heat kernel in R withmigration constant { > 0 :pt(a) := 1p2�{t exp h� a22{ti; t > 0; a 2 R: (1.4)From [2, Theorem 1.2.4] it is known that the measure-valued process X has ajointly continuous occupation density �eld denoted by y = �y(t; a) : t � 0; a 2 R	:That is, Z t0 ds hXs ; 'i = Z da y(t; a)'(a); t � 0; ' 2 �+(R): (1.5)In particular, t 7! y(t; 0) is a continuous non-decreasing function, determining acontinuous random measure � on R+ ; which by Dawson et al. (1995) [5], or [10]is singular. On the other hand, by [2, Theorem 1.2.5 and Theorem 1.2.2], � hascarrying Hausdor� dimension one, and o� the catalyst's position X has a jointlycontinuous density �eld denoted by x = �x(t; a) : t > 0; a 6= 0	:For the moment, �x a (non-zero) initial measure X0 = � 2 M(R): The pointis, that by [10, Theorem 1] there is an independent construction (in law) of theoccupation density measure �; namely as the total occupation measureV := Z 10 dsUs (1.6)of a super-12 -stable subordinator U = fUt : t � 0g on R+ starting from a particularmeasure U0 = �� (see (1.13) below). More precisely, U = �U; P�; � 2 M(R+)�



LD PRINCIPLE SINGLE POINT CATALYST 3is the measure-valued continuous Markov process determined by its log-Laplacetransition functional� logP�e�hUt;'i = 
�; u(0; � )�; � 2M(R+); t � 0; ' 2 �+(R+); (1.7)where for t; ' �xed, u = ut;' = �u(s; a) : s; a 2 R+	 is the unique non-negativesolution to the log-Laplace equationu(s; a) = 1fs<tg Z 10 db qt�s(b�a)'(b)� % Z 1s dr Z 10 db qr�s(b�a)u2(r; b); (1.8)s; a 2 R+ : Here M(R+) and �(R+) are de�ned analogously to M(R) and �(R)using only the non-negative part R+ of R; and q is the transition density of the12-stable subordinator on R :qs(a) := 1fa>0g sp2�{a3 exp�� s22{a�; s > 0; a 2 R; (1.9)where additionallywe formally set q0 = Æ0 : Note that V has log-Laplace functional� logP�e�hV;'i = h�; vi; � 2M(R+); ' 2 �+(R+); (1.10)where for ' �xed, v = v' = �v(a) : a 2 R+	 is the unique non-negative solutionto the log-Laplace equationv(a) = Z 1a db r {2�(b� a) '(b) � % Z 1a db r {2�(b� a) v2(b); a 2 R+ ; (1.11)(since Z 10 ds qs(a) = 1fa>0g r {2�a ; a 2 R): (1.12)From now on we assume that for X0 = � 2 M(R) �xed, U starts with U0 =�� 2M(R+) de�ned byh�� ; 'i := Z �(da) Z 10 dr qjaj(r)'(r); ' 2 �+(R+): (1.13)Besides the alternative construction � L= V; all the randomness of X is restoredin V in the sense, that its density �eld x can explicitly be written (in law) usingBrownian excursion densities of excursions starting from the catalyst's position 0:In particular, x satis�es the heat equation o� the catalyst with the random singularboundary condition �: To make this more precise, we introduce the transitiondensity p� of Brownian motion killed at 0 :p�t (a; b) := 1fab> 0g �pt(b� a)� pt(b+ a)�; (1.14)t > 0; a; b 2 R: Then according to the main result of [10], the representationformula xt(a) = Z �(db) p�t (b; a) + Z[0;t) �(ds) qjaj(t � s); (1.15)t > 0; a 2 _R := Rnf0g; holds P�-a.s. So the �rst term takes care of the initialparticles which do not reach the catalyst, whereas the second term gives the con-tribution of particles born by branching at the catalyst's position and providingBrownian excursions away from 0:



4 FLEISCHMANN AND XIONG1.3. Main result. Recall that X =: X% depends on the branching rate % > 0 andwe want to let % # 0: The corresponding large deviation principle formulated interms of the related density �elds x =: x% is the content of the following theorem.Write �%'(a) := �'(a) := logPÆaehV;'i; ' 2 �(R+); a 2 R+ ; (1.16)for the log-exponential moments of the total occupation measure V =: V % from(1.6). Recall that X0 = � 2M(R)nf0g is �xed.Theorem 1.1 (Large deviation principle for x%). As % # 0; the family fx% :% > 0g of density �elds satis�es a large deviation principle on C : = C�(0;1)� _R�with good convex rate functionJ(f) := sup'2�(R+)�h�f ; 'i � 
�� ; �1'��; f 2 C; (1.17)with �� from (1.13) and �1' from (1.16), and where, for f 2 C �xed, �f = � 2M(R+) is the (unique) solution, if it exists, to the equationft(a) = Z �(db) p�t (b; a) + Z[0;t) �(ds) qjaj(t � s); t > 0; a 2 _R; (1.18)and otherwise we set �f :=1 and J(f) :=1:Here C+�(0;1) � _R� denotes the set of all non-negative continuous functions onthe locally compact space (0;1)� Rnf0g equipped with the topology of uniformconvergence on compacta. Clearly, according to a general terminology (see, forinstance, Dembo and Zeitouni (1993) [6, x 1.2]), the statement that fx% : % > 0gsatis�es a large deviation principle on C with rate function J means that for eachBorel subset � of C;� inff2�Æ J(f) � lim inf%#0 % logP�(x% 2 �) � lim sup%#0 % logP�(x% 2 �) � � inff2�� J(f);where �Æ and �� denote the interior and the closure of �; respectively. Moreover,the rate function J : C ! [0;1] has to be lower semicontinuous, and it is calledgood if all of its level sets are compact.The occurrence of the log-exponential moments �1' within the rate functionseems to be a bit complicated, but they can actually be characterized as uniquesolutions of an equation, see Proposition 2.1 below.1.4. Method of proof. Our approach to the proof of Theorem 1.1 is to establish�rst the following large deviation principle for V = V % as % # 0; and then touse the contraction principle based on the fact that the correspondence � 7! f =:F (�) de�ned by (1.18) maps M(R+) continuously into C and is one-to-one (seeLemma 3.2 below).Proposition 1.1 (Large deviation principle for V %). Fix � 2M(R+): As% # 0, the family fV % : % > 0g of total occupation measures of the super-12 -stablesubordinators U = (U; P�) =: (U%; P %� ) = U% satis�es a large deviation principleon M(R+) with good convex rate functionI(�) := sup'2�(R+)�h�; 'i � 
�; �1'��; � 2M(R+); (1.19)with �1' from (1.16).



LD PRINCIPLE SINGLE POINT CATALYST 5For the proof of this proposition in Subsection 3.1 we will exploit ideas from [9].The remaining paper is organized as follows. In the next section, we deal withthe log-Laplace equation related to the random measure V in a functional analyticsetting. Using this we describe the exponential moments of V (Proposition 2.1).Then the large deviation proofs follow in Section 3.2. Exponential momentsThe purpose of this section is to verify that the random measure � L= V hassome �nite exponential moments.2.1. To equation (1.11). Recall that via its log-Laplace functional, the randommeasure V is related to equation (1.11), we now want to deal with in a Banach spacesetting. Recall the separable Banach space �(R+) introduced in Subsection 1.2.Set T' (a) := Z 1a db r {2�(b� a) '(b); ' 2 �(R+); a 2 R+ : (2.1)Lemma 2.1 (Continuity of T ). The functional T maps �(R+) continuouslyinto itself.Proof. Introduce the reference function �(a) := e�a; a � 0: Clearly, a 7! T' (a)is continuous. Moreover,T' (a)�(a) = Z 10 db r {2�b '(a+ b)�(a) ; a � 0: (2.2)Then j'j � k'k� and dominated convergence imply that T' belongs to �(R+):For n � 1;T�n(a) � �n(a) Z a+1a db r {2�(b� a) + r {2� Z 1a+1db �n(b)� 2r {2� �n(a) + 1nr {2� �n(a+ 1) < 2p{ �n(a) � 2p{; a � 0: (2.3)This givesjT'j � 2p{ k'k� and kT'k � 2p{ k'k; ' 2 �(R+); (2.4)�nishing the proof. �Obviously, F de�ned byF(v; ') := v � T' + % T (v2); (v; ') 2 �(R+)� �(R+); (2.5)maps continuously into �(R+):Lemma 2.2 (Uniqueness). For each ' 2 �(R+) there is at most one v 2 �(R+)such that F(v; ') = 0:Proof. Assume we have two such solutions v1 and v2 ; and set ~v := v1�v2 : Then~v + % T �(v1 + v2)~v� = 0: (2.6)It suÆces to show that for �xed g 2 �(R+);~v + T (g~v) = 0 implies ~v = 0: (2.7)



6 FLEISCHMANN AND XIONGBy assumption, jgj � kgk� � c�; where with c we always denote a �nite positiveconstant, which value might change from place to place (except it has an indexreferring to the equation number). Then from (2.7) this givesj~vj(a) � c Z 1a dbpb� a �(b) j~vj(b); a � 0: (2.8)Iterating this equation ones, interchanging the order of integration, and noting thatZ ra db 1pb� a 1pr � b � Z 10 dbpb(1� b < 4; 0 � a � r; (2.9)we obtain j~vj(a) � c Z 1a db �(b) j~vj(b); a � 0: (2.10)Then necessarily j~vj = 0: (To see this, use new variables x := e�a and y = e�b;and apply Gronwall's inequality, for instance. Or pass to supb�a j~vj(b) which thenhas to disappear for all suÆciently large a; etc.) This �nishes the proof. �For the moment �x (v; ') 2 �(R+) � �(R+): We now consider the Fr�echetderivative of F(v; ') at v :D1vF(v; ')~v = ~v + 2% T (v~v); ~v 2 �(R+): (2.11)Lemma 2.3 (Fr�echet derivative). For (v; ') 2 �(R+)��(R+) �xed, D1vF(v; ')is a one-to-one mapping of �(R+) onto itself.Proof. By linearity, the one-to-one statement follows from (2.7). Now considerg 2 �(R+): To �nish the proof, we want to show that there is a ~v 2 �(R+) suchthat D1vF(v; ')~v = g; that is~v(a) + 2% T (v~v) (a) = g(a); a � 0: (2.12)We do this by decomposing R+ into �nitely many cells as follows. Fix a0 �0; introduce ��[a0;1)� similarly as �(R+); denoting the norm by k � k0 ; andconsider T as a continuous operator on ��[a0;1)�: Then S0(~v) := 2% T (v~v);~v 2 ��[a0;1)�; is also a continuous linear operator on ��[a0;1)�: Since jv~vj �kvk k~vk0 �2; we havejS0(~v)j (a) � 2% kvk k~vk0 T �2(a) � 4p{ % kvk k~vk0 �2(a); a � a0 ; (2.13)where we used (2.3). Hence, kS0(~v)k0 � 4p{ % kvk k~vk0 �(a0): Choose a0 � 0 solarge that 4p{ % kvk�(a0) < 1: Then S0 is a contraction, and~v0 := (I + S0)�1g = 1Xn=0(�1)ngn (2.14)solves (2.12) on [a0;1) (cf. Zeidler (1986) [15, Theorem 1.B, p.32]).If a0 > 0; take a1 2 [0; a0); and introduce the continuous linear operator T1on C�[a1; a0]� (with the supremum norm denoted by k � k1 ) by modifying (2.1):T1' (a) := Z a0a db r {2�(b� a) '(b); ' 2 C�[a1; a0]�; a 2 [a1; a0]: (2.15)



LD PRINCIPLE SINGLE POINT CATALYST 7Consider the equation~v(a) + 2% T1(v~v) (a) = g(a) � 2% Z 1a0 db r {2�(b� a) (v~v)(b); a 2 [a1; a0]:(2.16)Set S1(~v) := 2% T1(v~v); ~v 2 C�[a1; a0]� to get also a continuous linear operatoron C�[a1; a0]�: Now kS1(~v)k1 � 2% kvk1 k~vk1 kT1(1)k1 = cpa0 � a1 k~vk1 ; wherec is a constant independent of a0; a1 : Choosing a1 suÆciently close to a0 ; theoperator S1 is a contraction, and we can solve (2.16). Continuing in this way�nitely many times, R+ is exhausted. Putting together the constructed solutions,the proof is �nished. �Denote by �̂(R+) the set of all ' 2 �(R+) such that k'k < 18�% .Lemma 2.4 (All solutions). Denote by O the set of all ' 2 �(R+) for whichthere is a v = v' 2 �(R+) such that F(v; ') = 0: Then(a): O is open, and �̂+(R+) � O:(b): The mapping '! v' de�ned on O is analytic.Proof. (a) Fix (v0; '0) 2 �2(R+) satisfying F(v0; '0) = 0: By Lemmas 2.2 and2.3, the implicit function theorem (cf. [15, Theorem 4.B, p.150]) yields that thereis an open set O0 containing '0 such that there is a unique map ' 7! v' de�nedon O0 with F(v'; ') = 0: Hence, O is open.Suppose ' 2 �̂+(R+): We want to construct v = v' 2 �(R+) such thatF(v'; ') = 0; that is v = T'� % T (v2): For this purpose, de�ne recursivelyv0 := T' and vm+1 := T'� % T (v2m); m � 0: (2.17)Then jvmj � 2p{ k'k�; m � 0: (2.18)In fact, we will show this by induction. For m = 0 this is true by (2.4). Assumeit is valid for 0; : : : ;m for some m � 0: To get (2.18) for m + 1; note that bothterms in the de�nition (2.17) of vm+1 are non-negative, so we havejvm+1j � max�T'; % T (v2m)�: (2.19)Hence, it suÆces to show that the second term is bounded from above by 2p{ k'k�:But by induction hypothesis (2.18) and (2.3),% T (v2m) � % �2p{ k'k�2 2p{ �2 � 2p{ k'k�; (2.20)since c(2:21) := 8{ % k'k < 1 (2.21)by assumption on ': Hence, (2.18) is proven.Now (2.17), (2.18), and again (2.4) implykvm+1 � vmk0 � % T �(vm + vm�1)(vm � vm�1)�0 (2.22)� 4p{ % k'k 2p{ kvm � vm�1k0 = c(2:21) kvm � vm�1k0 ; m � 1:Letting m " 1; by completeness of �(R+); we see that there is a v in �(R+)satisfying v = T'� % T (v2); that is, �̂+(R+) � O:(b) Note that the derivativesD1'F(v; ') ~' = �T ( ~') and D2vF(v; ')(~v; ~w) = 2% T (~v ~w); (2.23)



8 FLEISCHMANN AND XIONG~'; ~v; ~w 2 �(R+); are independent of v; ': Therefore, F(v; ') is analytic in (v; ');and hence (cf. [15, Corollary 4.23, p.151]) the mapping ' ! v' de�ned on O isanalytic, �nishing the proof. �2.2. Exponential moments. Recall the log-exponential moments �' de�ned in(1.16). Put ~O := �' 2 �(R+) : �' 2 �(R+)	: (2.24)Recalling from Lemma 2.4 the set O of all solutions, let O0 denote the largestconnected subset of O containing �̂+(R+) (see the notation in front of Lemma2.4).Proposition 2.1 (Exponential moments). We have �O0 � ~O: As a conse-quence,logP�ehV;'i = h�;�'i = h�;�v�'i <1; � 2M(R+); ' 2 �O0 : (2.25)Proof. First �x ' 2 �̂+(R+): Then by Lemmas 2.4(a) and 2.2, for each � 2 [0; 1]there is a unique v�' 2 �(R+) satisfying F(v�'; �') = 0; and �' 2 O0 : Onthe other hand, ����' � 0 uniquely solves (1.11) with ' replaced by �'; andit obviously belongs to �(R+): Hence, ����' = v�' 2 �+(R+); in particular,��̂+(R+) � ~O:For general ' 2 �̂(R+) and �1; �2 � 0; we have that ����1'+��2'� 2 �+(R+)solves (1.11) with ' replaced by �1'+ + �2'� ; where '+ := ' _ 0 and '� :=�(' ^ 0): Writing � := (�1; �2); for the �xed ' 2 �̂(R+) we introduce~� = ~�(') := n� 2 R2 : ��1'+ � �2'� 2 ~Oo;�0 = �0(') := n� 2 R2 : �1'+ + �2'� 2 O0o: (2.26)Note that [0; 12 ]2 belongs to ~� \ �0 ; that �0 is a connected open set, and thatby H�older's inequality, ~� is convex.Fix a 2 R+ and putfa(�) := ����1'+��2'� (a); � 2 ~�; (2.27a)ga(�) := v�1'++�2'� (a); � 2 �0 : (2.27b)Then, fa is analytic on the interior ~�Æ of ~�; and ga is analytic on all of �0 :Moreover, fa = ga on [0; 12 ]2 � ~� \�0 : Therefore, both are branches of a uniqueanalytic function de�ned on ~� [ �0 : Since a is arbitrary and ~� is maximal, weobtain �0 � ~�Æ = ~� and ����1'+��2'� = v�1'++�2'� for � 2 �0 :Consider ' 2 O0 : Then we have (1;�1) 2 �0(') � ~�('); implying �' 2 ~Oand ���' = v' : Finally, (2.25) follows from the branching property. �3. Proof of the large deviation principles3.1. Proof of Proposition 1.1. We start with the following scaling property.Fix � 2 M(R+): Recall that the super-12 -stable subordinator U = (U; P�) =(U%; P %� ) = U% and its total occupation measure V = V % depend on the branchingrate % > 0:Lemma 3.1 (Scaling of U ). Fix a constant c > 0: If U is distributed accordingto P %� ; then cU has the law P c%c� :



LD PRINCIPLE SINGLE POINT CATALYST 9Proof. For t � 0 �xed, denote by u%t;' the unique solution of (1.8). Then by theMarkov property, via (1.7) and (1.8), the claim in the lemma immediately followsfrom the identity u%t;c' = cuc%t;' ; ' 2 �+(R+): �By Lemma 3.1, we have V % L= %V 1; provided that U10 = %�1U%0 : Thus, the largedeviation claims of Proposition 1.1 can be seen as statements on %V 1 under thelaw P 1%�1� of U1: Consequently, setting %�1 =: R; we look at the probabilitiesg(R) := P 1R�(R�1V 1 2 A); � 2M(R+); Borel A �M(R+); (3.28)as R " 1: For the moment, �x such A: As in [9, Lemma 4.2.1], the branchingproperty implies that R 7! g(R) is supermultiplicative, provided that in additionA is convex. Moreover, if A is additionally open, then g(R) > 0 for some R > 0yields that g is bounded away from 0 on some non-empty open interval. This can beseen as in [9, Lemma 4.2.3] by using the branching property, supermultiplicativity,and �niteness of some exponential moments according to Proposition 2.1.We further proceed as in [9, Subsection 4.3]. Denote by A the system of allnon-empty, convex, and open subsets of M(R+): Then the mentioned supermulti-plicativity implies that the functionR 7! �(R) := � logP 1R�(R�1V 1 2 A) 2 [0;+1]; A 2 A; (3.29)is subadditive, and � is either bounded on some non-empty open interval, or it isidentically +1: Thus, the limit as R " 1 exists in [0;+1]; we denote it by I(A):Using shrinking open balls and monotone limits, we can de�ne I(�); � 2 M(R+):Note that � 7! I(�) 2 [0;+1] is lower semi-continuous and convex. Actually,the family �P 1R�(R�1V 1 2 � ) : R > 0	 satis�es a weak large deviation principle asR " 1 with convex rate function I: Moreover, based on Proposition 2.1, as in [9,Subsection 4.4] we get exponential tightness, hence the full large deviation principlefor this family with good convex rate function I:Finally, specializing to R = 1; 2; : : : ; using the branching property and Cram�er'stheorem [9, Corollary 5.1.3], the uniqueness of rate functions gives I = I with Ithe Fenchel-Legendre transform as de�ned in (1.19). This �nishes the proof ofProposition 1.1. �3.2. Proof of Theorem 1.1. Recall that the occupation density measure �% ofX% at the catalyst's position 0; where X%0 = � 2M(R)nf0g; coincides in law withthe total occupation measure V % of U%; if U%0 = �� : By the representation (1.15),x% is (in law) a functional F of V %: Having now available Proposition 1.1, by thecontraction principle Theorem 1.1 will follow from the following lemma.Lemma 3.2 (Continuity of F ). The mapping � 7! f = F (�) of M(R+) intoC = C�(0;1)� _R� de�ned by (1.18) is continuous and one-to-one.Proof. Clearly, f is �nite and continuous, i.e. belongs to C: Also, if (tn; an; sn)!(t; a; s) as n " 1 in (0;1)� _R� (0;1); then1[0;tn)(sn) qjanj(tn � sn)! 1[0;t)(s) qjaj(t� s): (3.30)Hence, F is continuous. Also, �1 6= �2 certainly implies F (�1) 6= F (�1); �nishingthe proof. �
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