Weierstraf3-Institut
fiir Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.
Preprint ISSN 0946 — 8633

Large deviation principle
for the single point catalytic

super-Brownian motion

Klaus Fleischmann?, Jie Xiong?

submitted: May 26, 2004

1 2

Weierstrass Institute Department of Mathematics

for Applied Analysis University of Tennessee
and Stochastis Knoxville, TN 37996-1300
Mohrenstr. 39 U.S.A.
10117 Berlin and
Germany Department of Mathematics
E-Mail: fleischm@wias-berlin.de Hebei Normal University
Shijiazhuang 050016
P.R. China

E-Mail: jxiong@math.utk.edu

No. 937
Berlin 2004

Wl 11Als

2000 Mathematics Subject Classification. 60K35, 60J80.

Key words and phrases. Point catalyst, superprocess, large deviations, exponential moments,
singular catalytic medium, log-Laplace equation, representation by excursion densities.

1 Corresponding author.
2 Research supported partially by NSA and by Alexander von Humboldt Foundation. Thanks go
also to the Weierstrass Institute for Applied Analysis and Stochastics.



Edited by

Weierstraf-Institut fiir Angewandte Analysis und Stochastik (WIAS)
Mohrenstrafie 39

10117 Berlin

Germany
Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de

World Wide Web:  http://www.wias-berlin.de/



LD PRINCIPLE SINGLE POINT CATALYST 1

ABSTRACT. In the single point catalytic super-Brownian motion “particles”
branch only if they meet the position of the single point catalyst. If the
branching rate tends to zero, the model degenerates to the heat flow. We
are concerned with large deviation probabilities related to this law of large
numbers. To this aim the well-known explicit representation of the model
by excursion densities is heavily used. The rate function is described by the
Fenchel-Legendre transform of log-exponential moments described by a log-
Laplace equation.

CONTENTS
1. Introduction 1
1.1. Motivation 1
1.2. The single point catalytic super-Brownian motion X 2
1.3. Main result 4
1.4. Method of proof 4
2. Exponential moments 5
2.1. To equation (1.11) 5
2.2. Exponential moments 8
3. Proof of the large deviation principles 8
3.1. Proof of Proposition 1.1 8
3.2. Proof of Theorem 1.1 9
References 10

1. INTRODUCTION

1.1. Motivation. Starting with Dawson and Fleischmann (1983) [1], a large area
of spatial branching models in random media was developed. For recent surveys, see
[3, 4, 13]. But there are only a few papers in this field which deal with large deviation
probabilities, see Greven and den Hollander (1991,1992) [11, 12]. In particular, we
do not know a single reference for a large deviation result in the important case of
a branching model with a singular catalytic medium.

Here we pay attention to the simplest model of this kind: a super-Brownian mo-
tion X = {X;:1 > 0} on the real line R with a single point catalyst pdo, where
¢ > 0 is a fixed constant, and Jo denotes the Dirac delta function centered at 0.
This process was introduced in Dawson and Fleischmann (1994) [2], and further
investigated in Dawson et al. (1995) [5], Dynkin (1995) [7], and Fleischmann and
Le Gall (1995) [10]. Roughly speaking, here the tiny “particles” move as indepen-
dent Brownian motions in R with migration constant s > 0, and split according
to critical Feller’s branching diffusion with rate g, but only if they pass the posi-
tion 0 € R of the single point catalyst. In order for the branching to happen, the
particles have to accumulate enough local time at 0.

What law of large numbers on X we have in mind we are asking for related
large deviations? Well, if the branching rate ¢ > 0 tends to zero, one expects that
X approaches the heat flow. Is there a related large deviation principle?

For the classical case of a constant medium, that is if pdo is replaced by g,
large deviation principles had been established in Fleischmann and Kaj (1994) [9],
Fleischmann et al. (1996) [8], and Schied (1996) [14]. To deal with large deviations
in a general catalytic situation however seems to be rather hopeless at the first
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sight. However in the present special case of the single point catalyst pdo one
can use a different explicit representation of the model found by Fleischmann and
Le Gall (1995) [10], which we want briefly recall in the next subsection.

1.2. The single point catalytic super-Brownian motion X. More formally,
the single point catalytic super-Brownian motion X = (X, P, pe M(R)) is a
(time-homogenous) continuous measure-valued Markov process determined by its
log-Laplace transition functional

—log Pye™t %) = (uw(0,-)), peM(R), t>0, ped (R). (LI)

Here, ®(R) denotes the separable Banach space of all continuous functions ¢ :
R — R such that the limit limjs4e0 elal p(a) exists in R, furnished with the norm
l|o|| := supger el*l |p|(a), and &, (R) is the cone of all non-negative members of
®(R). Furthermore, (i, ) denotes the integral [u(da)e(a) (integrated over the
whole space). M(R) is the set of all (non-negative) measures g on R such that
(1, ¢) < oo for all ¢ € ®,(R). Equipped with the finest topology such that all
these mappings p — (i, ¢) are continuous, M(R) is a Polish space. P, indicates
that X starts at time ¢ = 0 with the measure Xo = p. Finally, for ¢, ¢ fixed,
W= Wy = {w(s,a) 18>0, a€ R} denotes the unique non-negative solution to
the log-Laplace equation

w(s,a) = lisce) /db pi—s(b—a) p(b) — Q/ dr pr_s(a) w?(r,0), (1.2)
s> 0, a € R, related to the formal partial differential equation
d »? 62

—gw(S, a) = 7@1{)

with terminal condition w(t—,-) = ¢. Here, p is the heat kernel in R with
migration constant 3 > 0 :

(s,a) — 0do(a) w(s,a), 0<s<t, a€R, (1.3)

. 1 a?

pt(a) T vV 2maxt P [_ E}’
From [2, Theorem 1.2.4] it is known that the measure-valued process X has a

jointly continuous occupation density field denoted by y = {y(t, a):t>0, g€ R}.
That is,

t>0, a€R. (1.4)

/0 ds (Xs,p) = /da y(t, a) p(a), t>0, o€d,(R). (1.5)

In particular, ¢ — y(¢,0) is a continuous non-decreasing function, determining a
continuous random measure A on Ry, which by Dawson et al. (1995) [5], or [10]
is singular. On the other hand, by [2, Theorem 1.2.5 and Theorem 1.2.2], A has
carrying Hausdorff dimension one, and off the catalyst’s position X has a jointly
continuous density field denoted by = = {x(t, a):t>0, a+# 0}.

For the moment, fix a (non-zero) initial measure Xo = p € M(R). The point
is, that by [10, Theorem 1] there is an independent construction (in law) of the
occupation density measure A, namely as the total occupation measure

V::/ ds U, (1.6)
0

ofa super-%-stable subordinator U = {U, : t > 0} on R, starting from a particular
measure Uy = v, (see (1.13) below). More precisely, U = (U, P,ve M(R+))
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is the measure-valued continuous Markov process determined by its log-Laplace
transition functional

“log Pe®) = (b,u(0,-)), wveMRy), t>0, ped,(Ry), (L7)

where for £, fixed, u = us, = {u(s,a) D 8,a € R_|_} is the unique non-negative
solution to the log-Laplace equation

u(s,a) = lyepy /0°°db gi—s(b—a) o(b) — Q/Oodr/ooodb gr_s(b—a) u?(r, b), (1.8)

s,a € Ry. Here M(R;) and ®(R;) are defined analogously to M(R) and ®(R)
using only the non-negative part Ry of R, and ¢ is the transition density of the
%—stable subordinator on R :

2

8
qs(a) = 1{a>0} m exXp [—%], s > 0, a € R, (19)

where additionally we formally set go = o . Note that V has log-Laplace functional
—log P,e™V%) = (u,v), veM(RL), ¢ed (Ry), (1.10)

where for ¢ fixed, v = v, = {v(a) ta€ R_|_} is the unique non-negative solution
to the log-Laplace equation

v = /:Odb \/%‘O(b) - QLOOdb \/%vz(b), a€Ry, (1.11)
(since
/0°°ds ¢s(a) = l{a>0) \/% a €R). (1.12)

From now on we assume that for Xo = p € M(R) fixed, U starts with Uy =
v, € M(Ry) defined by

(Vu,p) = /,u(da) /Ooodr q)q|(r) (r), p €Dy (Ry). (1.13)

Besides the alternative construction \ = V, all the randomness of X is restored
in V in the sense, that its density field « can explicitly be written (in law) using
Brownian excursion densities of excursions starting from the catalyst’s position 0.
In particular, x satisfies the heat equation off the catalyst with the random singular
boundary condition A. To make this more precise, we introduce the transition
density p* of Brownian motion killed at 0 :

pi(a,b) := ligpsoy [pe(b—a) —pe(b+a)], (1.14)

t > 0, a,b € R. Then according to the main result of [10], the representation
formula

wa) = [u(ah)pi(ba) + /[Ot)x(dsw(t—s), (1.15)

t> 0, a € R:=R\{0}, holds P,-a.s. So the first term takes care of the initial
particles which do not reach the catalyst, whereas the second term gives the con-
tribution of particles born by branching at the catalyst’s position and providing
Brownian excursions away from 0.
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1.3. Main result. Recall that X =: X? depends on the branching rate ¢ > 0 and
we want to let g | 0. The corresponding large deviation principle formulated in

terms of the related density fields z =: z? is the content of the following theorem.
Write

A8(a) == Ay(a) = log P5, eV o e ®(Ry), a€Ry, (1.16)

for the log-exponential moments of the total occupation measure V' =: V¢ from

(1.6). Recall that Xo = p € M(R)\{0} is fixed.

Theorem 1.1 (Large deviation principle for z¢). As g | 0, the famiy {x9:
0 > 0} of density fields satisfies a large deviation principle on C : = C((O, 00) X R)
with good convez rate function

J(f)y == sup ((nf,go) — <I/#, A;)), fec, (1.17)
PE2(Ry)
with v, from (1.13) and Aj, from (1.16), and where, for f € C fized, ny =1 €
M(Ry) is the (unique) solution, if it exists, to the equation

fi(a) = /,u(db) pi(b,a) + /[0 t)n(ds) q)q|(t — 5), >0, acR, (1.18)

and otherwise we set ng := oo and J(f) := oco.

Here C+((0, 00) X R) denotes the set of all non-negative continuous functions on
the locally compact space (0,00) x R\{0} equipped with the topology of uniform
convergence on compacta. Clearly, according to a general terminology (see, for
instance, Dembo and Zeitouni (1993) [6, §1.2]), the statement that {z2: ¢ > 0}
satisfies a large deviation principle on C with rate function J means that for each
Borel subset I' of C,
— inf J(f) < liminfg log P,(z¢ € T') < limsupg log P,(z° € T') < — inf J(f),
fere 040 240 fer
where I'° and T denote the interior and the closure of T', respectively. Moreover,
the rate function J : C — [0, 00] has to be lower semicontinuous, and it is called
good if all of its level sets are compact.
The occurrence of the log-exponential moments Al within the rate function
seems to be a bit complicated, but they can actually be characterized as unique
solutions of an equation, see Proposition 2.1 below.

1.4. Method of proof. Our approach to the proof of Theorem 1.1 is to establish
first the following large deviation principle for V.= V2 as p | 0, and then to
use the contraction principle based on the fact that the correspondence n — f =:
F(n) defined by (1.18) maps M(Ry) continuously into C and is one-to-one (see
Lemma 3.2 below).

Proposition 1.1 (Large deviation principle for V2). Fiz v e M(R}). As
0} 0, the family {Ve: o > 0} of total occupation measures of the super-%-stable
subordinators U = (U, P,) =: (U?, P2) = U? satisfies a large deviation principle
on M(R}) with good convez rate function

I(n) = ES;(I; )((n, o) — (v, A},,)), ne M(Ry), (1.19)

with Ai, from (1.16).
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For the proof of this proposition in Subsection 3.1 we will exploit ideas from [9].

The remaining paper is organized as follows. In the next section, we deal with
the log-Laplace equation related to the random measure V' in a functional analytic
setting. Using this we describe the exponential moments of V' (Proposition 2.1).
Then the large deviation proofs follow in Section 3.

2. EXPONENTIAL MOMENTS

The purpose of this section is to verify that the random measure A £V has
some finite exponential moments.

2.1. To equation (1.11). Recall that via its log-Laplace functional, the random
measure V is related to equation (1.11), we now want to deal with in a Banach space
setting. Recall the separable Banach space ®(Ry) introduced in Subsection 1.2.

Set
/db [———— v € ®(Ry), a€R;. (2.1)

Lemma 2.1 (Continuity of 7). The functzona,l T maps ®(Ry) continuously
into itself.

Proof. Introduce the reference function ¢(a) :=e2, @ > 0. Clearly, a — Ty (a)

is continuous. Moreover,
o b
:/ dp J25 Peth) sy (2.2)
o 2rb  ¢(a)

Then |¢| < ||¢||¢ and dominated convergence imply that T belongs to ®(Ry).
For n > 1,

76"a) < () | " Jiea \/g / idb ()

(2.3)
x . 1 fse n
< 2)o=d™(a) + —4/o- 9" (a+1) < 2V/39"(a) < 2V, a>0.
2 ny 2w
This gives
[Tol < 2Vx|lell¢ and |[To|l < 2v|lell, ¢ €@Ry),  (2.4)
finishing the proof. |

Obviously, F defined by
Flu,0) = v —Te+0T(%), (v,0) € 2(Ry) x ®(Ry), (2.5)
maps continuously into ®(Ry).

Lemma 2.2 (Uniqueness). For each ¢ € ®(Ry) there is at most one v € ®(Ry)
such that F(v, @) = 0.

Proof. Assume we have two such solutions »; and wvg, and set v := vy —vy. Then
o+ o7 ((vi +v2)8) = 0. (2.6)

It suffices to show that for fixed g € ®(Ry),
o+ T(gt) = 0 implies v =0. (2.7)
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By assumption, |g| < ||g||¢ < ¢é, where with ¢ we always denote a finite positive
constant, which value might change from place to place (except it has an index
referring to the equation number). Then from (2.7) this gives

*® db
« Vb—a

Iterating this equation ones, interchanging the order of integration, and noting that

[ol(a) < ¢

¢(b) |0](b),  a2>0. (2.8)

[T —/1 ® o4 0<ac< (2.9)
—_—— = o , <a<r, .
a Vvb—a+r—>b o Vb(1-10

we obtain

il < ¢ [ wowpiw, a0 (2.10)
Then necessarily |¢| = 0. (To see this, use new variables z := ¢™% and y = e7?,
and apply Gronwall’s inequality, for instance. Or pass to supys, |](b) which then
has to disappear for all sufficiently large a, etc.) This finishes the proof. |

For the moment fix (v,¢) € ®(R;) x ®(R;). We now consider the Fréchet
derivative of F(v,¢) at v:

DIF(v,0)o = o+ 20T (v0), v € ®(Ry). (2.11)

Lemma 2.3 (Fréchet derivative). For (v,¢) € ®(Ry) x ®(Ry) fized, DLF(v, )
is a one-to-one mapping of ®(Ry) onto itself.

Proof. By linearity, the one-to-one statement follows from (2.7). Now consider
g € ®(R;). To finish the proof, we want to show that there is a o € ®(R) such
that DF(v, )t =g, that is

v(a) + 20T (v0) (a) = g(a), a>0. (2.12)
We do this by decomposing R into finitely many cells as follows. Fix aq >
0, introduce <I>([a0,oo)) similarly as ®(R;), denoting the norm by || - |lo, and
consider 7 as a continuous operator on <I>([a0,oo)). Then So(8) := 20T (v9),

v E <I>([ao, oo)), is also a continuous linear operator on <I>([a0, oo)) Since |vo| <
||v[| [|2]lo 62, we have

[So(8)[(a) < 2ellvll[|5llo T¢*(a) < Avaeellvlll|ollod?(a),  a>ao, (2.13)

where we used (2.3). Hence, [|So(?)]|, < 44/220]|v]||?]|o ¢(a0). Choose ag > 0 so
large that 44/3¢¢||v|| #(ao) < 1. Then &y is a contraction, and

o0

o 1= (T+80) g = D (-1)"g" (2.14)

n=0

solves (2.12) on [ag, o) (cf. Zeidler (1986) [15, Theorem 1.B, p.32]).
If ao > 0, take a1 € [0,a0), and introduce the continuous linear operator 7y
on C([al, ao]) (with the supremum norm denoted by || -||1) by modifying (2.1):

Tip(a) = /a“odb ,W%—a) o(b), ¢ € C([a1,a0]), a € [a1,a0]. (2.15)
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Consider the equation

#(a) + 20 Ta(v¥) (a) = g(a)—?g/oodb ‘/W%—a) (v3)(b),  a € [ay, ao).

(2.16)
Set S1(9) := 2071 (vd), ¥ € C([al,ao]) to get also a continuous linear operator

on C([az,acl). Now S1(@)l, < 2el[oll lelly IT(DIl, = e v/ao = axfelly, where
¢ is a constant independent of ag,a;. Choosing a; sufficiently close to ag, the
operator §; is a contraction, and we can solve (2.16). Continuing in this way
finitely many times, Ry is exhausted. Putting together the constructed solutions,
the proof is finished. |

Denote by <i>(R_|_) the set of all ¢ € ®(Ry) such that ||¢]| < sng‘

Lemma 2.4 (All solutions). Denote by O the set of all ¢ € ®(R;) for which
there is a v = v, € ®(Ry) such that F(v,¢) =0. Then
(a): O is open, and ®,(Ry) C O.
(b): The mapping ¢ — v, defined on O is analytic.
Proof. (a) Fix (vo, o) € ®%(Ry) satisfying F(vo, vo) = 0. By Lemmas 2.2 and
2.3, the implicit function theorem (cf. [15, Theorem 4.B, p.150]) yields that there
is an open set O containing oo such that there is a unique map ¢ — v, defined
on Op with F(v,,¢) = 0. Hence, O is open.
Suppose ¢ € ®,(Ry). We want to construct v = v, € ®(Ry) such that
F(vp, ) =0, that is v = T — o7 (v?). For this purpose, define recursively
vo := Ty and vmy1 := To— 0T (v2), m>0. (2.17)
Then
lom| < 205t [lol| 4, m>0. (2.18)
In fact, we will show this by induction. For m = 0 this is true by (2.4). Assume
it is valid for 0,...,m for some m > 0. To get (2.18) for m + 1, note that both
terms in the definition (2.17) of v,41 are non-negative, so we have
omsr] < max(To, 0T (2)- (2.19)

Hence, it suffices to show that the second term is bounded from above by 24/ ||¢||¢.
But by induction hypothesis (2.18) and (2.3),

oT(v2) < o(2vx |lell)” 2v/%¢* < 2v/ [|¢] &, (2.20)
since
cra.21) = 8xollp|| < 1 (2.21)

by assumption on . Hence, (2.18) is proven.
Now (2.17), (2.18), and again (2.4) imply

||Um+1 - UmHO S 0 ||T((Um + Um—l)(vm - Um—l)) ||0 (222)

S 4\/;Q||$0|| 2\/; ||Um - Um—l”o = 0(2.21) ||Um - Um—l”o ’ m Z 1.
Letting m 1 oo, by completeness of ®(R;), we see that there is a v in ®(Ry)
satisfying v = T — o7 (v?), that is, <i>_|_(R+) Cc 0.

(b) Note that the derivatives
DAF(n,0) = ~T(§) and DEF(n,0)(5,8) = 20T(50),  (2.23)
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@, 0, w € ®(Ry), are independent of v, . Therefore, F(v, ) is analytic in (v, ¢),
and hence (cf. [15, Corollary 4.23, p.151]) the mapping ¢ — v, defined on O is
analytic, finishing the proof. |

2.2. Exponential moments. Recall the log-exponential moments A, defined in
(1.16). Put

O :={pe®Ry): Ay, € ®(Ry)}. (2.24)
Recalling from Lemma 2.4 the set O of all solutions, let Og denote the largest
connected subset of O containing &4 (R;) (see the notation in front of Lemma 2.4).

Proposition 2.1 (Exponential moments). We have —Oq C O. As a conse-
quence,

log P,elV:¢) = (v, Ap) = (v, —v_y) < 00, veMRL), o€-0q. (2.25)

Proof. First fix ¢ € <i>_|_(R+). Then by Lemmas 2.4(a) and 2.2, for each 6 € [0, 1]
there is a unique wvg, € ®(Ry) satisfying F(vgy,0p) = 0, and 8p € Oy. On
the other hand, —A_s, > 0 uniquely solves (1.11) with ¢ replaced by 8¢, and
it obviously belongs to ®(Ry). Hence, —A_s, = vg, € ®1(Ry), in particular,
~%4(Ry) CO.

For general ¢ € ®(Ry) and 6,60, > 0, we have that —A_g,p —6,0_ € PL(RY)
solves (1.11) with ¢ replaced by 01p1 + O2p_, where ¢4 := @V 0 and ¢_ :=
—(p A 0). Writing 8 := (01,03), for the fixed ¢ € <i>(R_|_) we introduce

6 = &(p {0 ER?: —O1p, —Ohp_ € o}
(2.26)
O @ {GERz. 01g0+ + 030 600}

Note that [0, 2] belongs to ©n O¢, that ©¢ is a connected open set, and that

by Hélder’s inequality, © is convex.
Fix ¢ € R4 and put

Fa(8) == —A_,0, —0,0_(a), 6eo, (2.27a)
9a(0) 1= v9,4, 40,0_(a), 0c0Og. (2.27b)

Then, f, is analytic on the interior ©° of (:), and g, is analytic on all of ©g.
Moreover, f, = g, on [0, 2] C ©N©Og. Therefore, both are branches of a unique

analytic function defined on © U ©Og. Since a is arbitrary and © is maximal, we
obtain @0 C ©° =0 and —A_g,p, _g,p_ = Vg, +6,p_ fOT 6 € Op.
Consider ¢ € Og. Then we have (1,—1) € Og(p) C (:)(go), implying —¢ € O

and —A_, = v, . Finally, (2.25) follows from the branching property. |

3. PROOF OF THE LARGE DEVIATION PRINCIPLES

3.1. Proof of Proposition 1.1. We start with the following scaling property.
Fix v € M(Ry). Recall that the super—%—stable subordinator U = (U, P,) =
(U?e, P2) = U? and its total occupation measure V = V2 depend on the branching
rate g > 0.

Lemma 3.1 (Scaling of U). Fiz a constant ¢ > 0. If U is distributed according
to P2, then cU has the law PZS2.

cv*
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Proof. For t > 0 fixed, denote by ufﬂp the unique solution of (1.8). Then by the
Markov property, via (1.7) and (1.8), the claim in the lemma immediately follows
from the identity uf ., = cu;’,, ¢ € ®4(Ry). O

By Lemma 3.1, we have V@ £ oV'1, provided that U} = p~1U¢. Thus, the large
deviation claims of Proposition 1.1 can be seen as statements on V! under the
law Pgl_lu of U'. Consequently, setting o~ ! =: R, we look at the probabilities

g(R) := Py, (R™'V?! € A), v € M(Ry), Borel A C M(Ry), (3.28)

as R 1 oo. For the moment, fix such A. As in [9, Lemma 4.2.1], the branching
property implies that R +— g(R) is supermultiplicative, provided that in addition
A is convex. Moreover, if A is additionally open, then g(R) > 0 for some R > 0
yields that g is bounded away from 0 on some non-empty open interval. This can be
seen as in [9, Lemma 4.2.3] by using the branching property, supermultiplicativity,
and finiteness of some exponential moments according to Proposition 2.1.

We further proceed as in [9, Subsection 4.3]. Denote by 2 the system of all
non-empty, convex, and open subsets of M(R;). Then the mentioned supermulti-
plicativity implies that the function

R o(R) = —log Pg, (R™'V! € A) € [0,400], A€, (3.29)

is subadditive, and ¢ is either bounded on some non-empty open interval, or it is
identically 4+o00. Thus, the limit as R 1 oo exists in [0, +00], we denote it by I(A).
Using shrinking open balls and monotone limits, we can define I(n), n € M(Ry).
Note that n — I(n) € [0,4o00] is lower semi-continuous and convex. Actually,
the family {PEV(R_lvl €-): R> 0} satisfies a weak large deviation principle as
R 1 oo with convex rate function I. Moreover, based on Proposition 2.1, as in [9,
Subsection 4.4] we get exponential tightness, hence the full large deviation principle
for this family with good convex rate function I.

Finally, specializing to R =1,2,..., using the branching property and Cramér’s
theorem [9, Corollary 5.1.3], the uniqueness of rate functions gives I = I with I
the Fenchel-Legendre transform as defined in (1.19). This finishes the proof of
Proposition 1.1. |

3.2. Proof of Theorem 1.1. Recall that the occupation density measure A2 of
X at the catalyst’s position 0, where X§ = u € M(R)\{0}, coincides in law with
the total occupation measure V¢ of U®, if U = v, . By the representation (1.15),
z? is (in law) a functional F of V2. Having now available Proposition 1.1, by the
contraction principle Theorem 1.1 will follow from the following lemma.

Lemma 3.2 (Continuity of F). The mapping n+— f = F(n) of M(Ry) into
C = C((O, 00) X R) defined by (1.18) is continuous and one-to-one.

Proof. Clearly, f isfinite and continuous, i.e. belongs to C. Also, if (tn, n, Sn) —
(t,a,s) as n T oo in (0,00) x R x (0,00), then

1[0,tn)(5n) 90| (tn — Sn) — 1[0715)(8) qq| (t — S). (330)

Hence, F is continuous. Also, 11 # n2 certainly implies F(n1) # F(n1), finishing
the proof. |
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