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Abstract

In an earlier paper, we studied the approximation of solutions V (t) to a class of

SPDEs by the empirical measure V
n
(t) of a system of n interacting di�usions. In the

present paper, we consider a central limit type problem, showing that
p
n(V

n � V )

converges weakly, in the dual of a nuclear space, to the unique solution of a stochastic

evolution equation. Analogous results in which the di�usions that determine V
n
are

replaced by their Euler approximations are also discussed.

1 Introduction

In [26], we considered a class of nonlinear stochastic partial di�erential equations (SPDE)

of the form

dv(t; x) =

 
1

2

dX
i;j=1

@xi@xj [aij(x; v(t; �))v(t; x)] �
dX
i=1

@xi [bi(x; v(t; �))v(t; x)] (1.1)

+d(x; v(t; �))v(t; x)

!
dt

�
Z
U

 
�(x; v(t; �); u)v(t; x) +

dX
i=1

@xi [�i(x; v(t; �); u)]

!
W (dudt) :

The natural interpretation of v is as the density of a mass distribution V evolving in time,

and in fact, since v will not have the regularity presumed in (1.1), to rigorously formulate

the equation, we must use a weak form

h�; V (t)i � h�; V (0)i (1.2)

=

Z t

0

h�d(�; V (s)) + L(V (s))�; V (s)i ds

+

Z
U�[0;t]



��(�; V (s); u) +r�T�(�; V (s); u); V (s)

�
W (duds) :

where

L(v)�(x) =
1

2

X
i;j

aij(x; v)@xi@xj�(x) +
X
i

bi(x; v)@xi�(x):

Equations in this class arise in a variety of settings, including nonlinear �ltering with both

the Zakai and the Kushner-FKK equations being of this form. Other examples include

McKean-Vlasov equations [30] and classes of SPDEs considered by Kotelenez [23] and

Dawson and Vaillancourt [9].

In [26], we established a representation of the solution of (1.1) in terms of weighted em-

pirical measures of the form

V (t) = lim
n!1

1

n

nX
i=1

Ai(t)ÆXi(t); (1.3)
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where Æx is the Dirac measure at x and the limit exists in the weak* topology on M(Rd).

To be precise, let U be a Polish space and � be a �-�nite measure on U . W will be a

space-time Gaussian white noise on U � [0;1) with covariance measure �(du)dt, namely

E(W (A� [0; t])W (B � [0; s])) = �(A \B)(t ^ s):

For 1 � i; j � d, aij ; bi; d and �i; � will be real functions on R
d �M(Rd) and on

R
d �M(Rd)� U respectively. Here M(Rd ) is the collection of all �nite measures on R

d .

Dot notation will represent a function in that variable alone. For example, d(�; v) is the
real-valued function on R

d with v 2 M(Rd) �xed. b and � will denote the vectors with

components bi and �i and a will denote the matrix ((aij)).

The particle system fXi; Ai; V g giving the solution is governed by the following equations:

Xi(t) = Xi(0) +

Z t

0

�(Xi(s); V (s))dBi(s) +

Z t

0

c(Xi(s); V (s))ds (1.4)

+

Z
U�[0;t]

�(Xi(s); V (s); u)W (duds)

and

Ai(t) = Ai(0) +

Z t

0

Ai(s)

T (Xi(s); V (s))dBi(s) +

Z t

0

Ai(s)d(Xi(s); V (s))ds (1.5)

+

Z
U�[0;t]

Ai(s)�(Xi(s); V (s); u)W (duds) ;

where the Bi are independent, standard R
d -valued Brownian motions, independent of W ,

and f(Xi(0); Ai(0))g is an exchangeable sequence of random variables in R
d � R that is

independent of fBig and W . Here �, c and 
 are related to a, b, �, and � by

a(x; v) = �(x; v)�T (x; v) +

Z
U

�(x; v; u)�T (x; v; u)�(du)

and

b(x; v) = c(x; v) + �(x; v)
(x; v) +

Z
U

�(x; v; u)�(x; v; u)�(du):

The representation of the solution given by (1.3) suggests that the solution can be approx-

imated by the weighted empirical measure

V n(t) =
1

n

nX
i=1

Ani (t)ÆXn
i (t)

; (1.6)

of a �nite particle system satisfying

Xn
i (t) = Xi(0) +

Z t

0

�(Xn
i (s); V

n(s))dBi(s) +

Z t

0

c(Xn
i (s); V

n(s))ds (1.7)

+

Z
U�[0;t]

�(Xn
i (s); V

n(s); u)W (duds)

Ani (t) = Ai(0) +

Z t

0

Ani (s)

T (Xn

i (s); V
n(s))dBi(s) +

Z t

0

Ani (s)d(X
n
i (s); V

n(s))ds

+

Z
U�[0;t]

Ani (s)�(X
n
i (s); V

n(s); u)W (duds); (1.8)
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for i = 1; 2; � � � ; n.

In [27], it was shown that for an appropriate metric e� on M(Rd), f
p
ne�(V n(t); V (t))gn�1

is stochastically bounded, that is, for each � > 0, there is a constant K� such that

sup
n

P
�p
ne�(V n(t); V (t)) > K�

�
< �: (1.9)

From (1.9), we see that the convergence rate has an upper bound of the order of 1p
n
.

A natural question to ask is whether 1p
n
is the right order. To this end, we study the

convergence of the process Sn(t) =
p
n(V n(t) � V (t)) and show that for an appropriate

space ���of distributions, Sn converges in distribution in C�
��
[0;1). We characterize

the limit S as the unique solution of a stochastic evolution equation of the form

h�; S(t)i = h�; S(0)i + h�;M(t)i +
Z t

0

hF1(V (s))�; S(s)i ds (1.10)

+

Z
U�[0;t]

hF2(V (s); u)�; S(s)iW (duds);

where F1 and F2 are linear in � and M is a distribution-valued martingale.

This type of problem has been studied by various authors in the McKean-Vlasov setting,

that is, � = 0 and Ani (t) � 1 (cf. Hitsuda and Mitoma [19] and the references therein).

Comparing the present results with those of [19], here the process V is not deterministic

and the process S is not Gaussian. In [19], the limit S is characterized by its covariance

structure which, because S is Gaussian, uniquely determines its distribution. A stochastic

evolution equation is also derived in that paper. The uniqueness of the solution to that

stochastic evolution equation is proved by Mitoma [33].

Another new feature in this paper is that the driving martingale M in the evolution

equation (1.10) is not Gaussian and has to be de�ned by the particle system fXi; Ai; V g
itself. The main diÆculty in establishing the uniqueness of the solution of (1.10) comes

from the addition of the last term in (1.10) which does not appear in [19] and [33].

Limits of empirical measure processes for systems of interacting di�usions have been stud-

ied by various authors (see, for example, Chiang, Kallianpur and Sundar [4], Graham [18],

Kallianpur and Xiong [22], M�el�eard [31], and Morien [34]) since the pioneering work by

McKean [30]. Typically, the driving processes in the models are assumed to be indepen-

dent, and the limit is then a deterministic, measure-valued function.

Florchinger and Le Gland [14] consider particle approximations for stochastic partial dif-

ferential equations in a setting that, in the notation above, corresponds to taking 
 = � = 0

and the other coeÆcients independent of V . Florchinger and Le Gland were motivated

by approximations to the Zakai equation of nonlinear �ltering. Del Moral [10] speci�cally

studies this example. Kotelenez [23] introduces a model of n-particles with the same driv-

ing process for each particle and studies the empirical process as the solution of a SPDE.

His model corresponds to taking 
 = � = d = � = 0, but the other coeÆcients are allowed

to depend on V . In particular, the weights Ai are constants. Dawson and Vaillancourt [9]

consider a model given as a solution of a martingale problem that corresponds to taking

Ai(t) � 1 in the current model. Bernard, Talay, and Tubaro [1] consider a system with

time-varying weights and a deterministic limit.

The paper is organized as follows: In the next section, we derive key estimates on the

magnitude of the Ani and on the error in the approximation of (Xi; Ai) by (Xn
i ; A

n
i ).

3



In Section 3, we prove that fSng is a tight sequence of �0-valued processes (�0 being a

conuclear space de�ned later). Then, in Section 4, we show that the limit S of fSng is the
unique solution of (1.10).

If one wants to use the �nite system to simulate the solution of the SPDE, then the

�nite system must also be approximated. The simplest approach is to use an Euler ap-

proximation. In the last section of this paper, we analyze this approximation in the

simplest setting, assuming that W is a one-dimensional Brownian motion (that is, U con-

sists of a single point). Letting V n;1=n denote the weighted empirical measure for the

Euler scheme approximating the �nite system (cf. (5.1-5.3)), we consider the processeSn(t) = p
n(V n;1=n(t)� V n(t)). We prove tightness for feSng and characterize its limit as

the unique solution of another stochastic evolution equation. Finally, we combine the two

parts and derive a stochastic evolution equation for the limit of
p
n(V n;1=n � V ).

2 Preliminaries

In this section, we state the main results of [26] and [27] needed in the present paper

for the convenience of the reader. The following assumptions were made in [26] for the

existence and uniqueness of solutions of the SPDE (1.1).

(S1) There exists a constant K such that for each x 2 R
d , � 2M(Rd)

j�(x; �)j2 + jc(x; �)j2 +
Z
U

j�(x; �; u)j2�(du)

+j
(x; �)j2 + jd(x; �)j2 +
Z
U

�(x; �; u)2�(du) � K2:

(S2) For each x1; x2 2 R
d , �1; �2 2M(Rd)

j�(x1; �1)� �(x2; �2)j2 + jc(x1; �1)� c(x2; �2)j2

+j
(x1; �1)� 
(x1; �1)j2 +
Z
U

j�(x1; �1; u)� �(x2; �2; u)j2�(du)

+jd(x1; �1)� d(x2; �2)j2 +
Z
U

j�(x1; �1; u)� �(x2; �2; u)j2�(du)

� K2(jx1 � x2j2 + �(�1; �2)
2)

where

�(�1; �2) = sup fj h�; �1i � h�; �2i j : � 2 B 1g

and

B 1 =
n
� : j�(x)� �(y)j � jx� yj; j�(x)j � 1;8x; y 2 R

d
o
:

By the same proof as in Proposition 2.1 of [26], we have the following result.

Proposition 2.1 Suppose that Assumption (S1) holds and p is a positive number.

i) If

EepjX1 (0)j <1; (2.1)

then

sup
1�n�1

E sup
0�s�T

epjX
n
i (s)j <1: (2.2)
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ii) If

E jA1 (0)jp <1; (2.3)

then

sup
1�n�1

E sup
0�s�T

jAni (s)j
p <1: (2.4)

iii) If

E jA1 (0)jerjX1(0)j <1; (2.5)

then

sup
1�n�1

E sup
0�s�T

jAni (s)je
rjXn

i
(s)j <1: (2.6)

Remark 2.2 If (2.1) and (2.3) hold, then (2.5) holds with r = p� 1.

A weaker form of the following assumption was used in [27].

(S3) There exist constants � > 1 and K > 0 such that for any iid sequence (�i; �i); i =

1; 2; � � � and x 2 R
d ,

E

������
 
x;

1

n

nX
i=1

�iÆ�i

!
� �(x; �)

�����
2�

�
KE�2�1
n�

;

where �(�) = E [�11�12�], and a similar inequality holds for the other coeÆcients.

Remark 2.3 If �(x; �) =
R
�1(x; y)�(dy) or �(x; �) = �1(x), then (S3) usually holds.

For example, if j�1(x; y)j � K, then (S3) holds.

The following estimate is the key for the proof of the tightness of fSng.

Theorem 2.4 Under the assumptions (S1)-(S3), there exists a constant c1(T;m) such

that

E sup
t�T

0@jXn
i (t ^ �

n
m)�Xi(t ^ �nm)j

2� +

0@ 1

n

nX
j=1

jAnj (t ^ �
n
m)�Aj(t ^ �nm)j

�

1A21A
�
c1(T;m)

n�
;

where

�nm = inf

(
t :

1

n

nX
i=1

Ani (t)
2 > m2 or lim

k!1

1

k

kX
i=1

Ai(t)
2 > m2

)
:

Proof: By Doob's inequality and Holder's inequality, we have

E sup
r�t

jXn
i (r ^ �

n
m)�Xi(r ^ �nm)j

2� (2.7)

� 32�
�

2�

2�� 1

�2�

E

Z t

0

j�(Xn
i (s); V

n(s))� �(Xi(s); V (s))j2�1s��nmdst
��1

+32�t2��1E

Z t

0

jc(Xn
i (s); V

n(s))� c(Xi(s); V (s))j2�1s��nmds

+32�
�

2�

2�� 1

�2�

t��1

�E
Z t

0

�Z
U

j�(Xn
i (s); V

n(s); u)� �(Xi(s); V (s); u)j2�(du)
��

1s��nmds:

5



Let eV n(t) =
1

n

nX
i=1

Ai(t)ÆXi(t) and eV n
i (t) =

1

n� 1

nX
j=1; j 6=i

Aj(t)ÆXj (t):

Then

E j�(Xn
i (s); V

n(s))� �(Xi(s); V (s))j2�1s��nm (2.8)

� 32�E j�(Xn
i (s); V

n(s))� �(Xi(s); eV n(s))j2�1s��nm
+32�E j�(Xi(s); eV n(s))� �(Xi(s); eV n

i (s))j
2�

+32�E j�(Xi(s); eV n
i (s))� �(Xi(s); V (s))j2�1s��nm

� 32�K2�
E

�
jXn

i (s)�Xi(s)j2 + �(V n(s); eV n(s))2
��

1s��nm

+32�K2�
E�(eV n(s); eV n

i (s))
2�1s��nm

+32�E [E [j�(Xi(s);
1

n� 1

nX
j=1; j 6=i

Aj(s)ÆXj(s))� �(Xi(s); V (s))
2�jjW;Xi]]:

Note that, similar to the arguments in the proof of Theorem 2.1 in [26], we have

�(V n(s); eV n(s)) (2.9)

�
1

n

nX
j=1

Anj (s)jX
n
j (s)�Xj(s)j+

1

n

nX
j=1

jAnj (s)�Aj(s)j

� (
1

n

nX
j=1

Anj (s)
2)1=2(

1

n

nX
j=1

jXn
j (s)�Xj(s)j2)1=2 +

1

n

nX
j=1

jAnj (s)�Aj(s)j:

Similarly,

�(eV n(s); eV n
i (s)) �

1

n
Ai(s) +

1

n(n� 1)

nX
j=1

Aj(s):

Let

fnm(t) = E sup
r�t

jXn
i (r ^ �

n
m)�Xi(r ^ �nm)j

2� ;

and

gnm(t) = E sup
r�t

0@ 1

n

nX
j=1

jAnj (r ^ �
n
m)�Aj(r ^ �nm)j

�

1A2

:

Then, for the right hand side of (2.8),

1st term � 32�K2�2�
�
E jXn

i (s ^ �
n
m)�Xi(s ^ �nm)j

2�

+22�m2�
E
1

n

nX
j=1

jXn
j (s ^ �

n
m)�Xj(s ^ �nm)j

2� + 22�gnm(s)
�

� 18�K2�
�
fnm(s) + 4�m2�fnm(s) + 4�gnm(s)

�
and

2nd term � 32�K2�22�
�

1

n2�
E sup
r�t

jAi(r)j2� +
1

(n� 1)2�
m2�

�
:

6



Since, conditioning on (W;Xi), (Aj ;Xj), j 6= i, are iid, we have

3rd term � 32�E

�
K2�

(n� 1)�
E

�
A1(s)

2�jW;Xi

��
=

32�K2�

(n� 1)�
EA1 (s)

2�:

Hence, the �rst term on the right hand side of (2.7) is dominated by�
6�

2�� 1

�2�

T ��1
Z t

0

18�K2�
�
(1 + 2�m2�)fnm(s) + 2�gnm(s)

�
ds

+

�
6�

2�� 1

�2� �
32�K2�22�

�
1

n2�
E sup
r�t

jAi(r)j2� +
1

(n� 1)2�
m2�

�
+
32�K2�

(n� 1)�
EA1(s)

2�

�
T �:

Similar estimates hold for other terms on the right hand side of (2.7). Therefore, there

exist constants c2(T;m) and c3(T;m) such that

fnm(t) � c2(T;m)

Z t

0

(fnm(s) + gnm(s))ds+
c3(T;m)

n�
: (2.10)

By similar arguments as in (2.7) of [26] and (2.10) above, we have

gnm(t) � c4(T;m)

Z t

0

(fnm(s) + gnm(s))ds+
c5(T;m)

n�
:

Therefore

fnm(t) + gnm(t) � (c2 + c4)

Z t

0

(fnm(s) + gnm(s))ds+
c3 + c5

n�
:

By Gronwall's inequality, we have

fnm(t) + gnm(t) �
c1

n�

by taking c1 =
e(c2+c4)T (c3+c5)

c2+c4
.

3 Tightness

In this section, we prove tightness for fSng in an appropriate space. For simplicity of

notation, we restrict our calculations to space dimension d = 1 in the rest of this paper.

As in Hitsuda and Mitoma [19], we use the modi�ed Schwartz space �. Let �(x) =

C exp
�
�1=(1 � jxj2)

�
1jxj<1, where C is a constant such that

R
�(x)dx = 1. Let

 (x) =

Z
e�jyj�(x� y)dy:

Then for any integer k, we have je(k)(x)j � c6(k)(1 + ejxj). Let

� = f� : � 2 Sg ;

where S is the Schwartz space. For � = 0; 1; 2; : : :, de�ne

k�k2� =
X

0�k��

Z
R

(1 + jxj2)2�
���� dkdxk (�(x) (x))

����2 dx:

7



Let �� be the completion of � with respect to k � k�. Then �� is a Hilbert space with

inner product

h�1; �2i� =
X

0�k��

Z
R

(1 + jxj2)2�
�
dk

dxk
(�1(x) (x))

��
dk

dxk
(�2(x) (x))

�
dx:

Note that �� � ��+1 and that �0 is L2(� ), where � (dx) =  2(x)dx. For b� 2 �0 and

� 2 ��,

hb�; �i � hb�; �i0 = Z
R

b�(x)�(x) 2(x)dx

de�nes a continuous linear functional on �� with norm

kb�k�� = sup
�2��

jhb�; �ij
k�k�

;

and we let ��� denote the completion of �0 with respect to this norm. Then ��� is a

representation of the dual of ��. If f��j g is a complete, orthonormal system for ��, then

the inner product for ��� can be written as

hb�1; b�2i�� = 1X
j=1

hb�1; ��j ihb�2; ��j i: (3.1)

By a slight modi�cation of Theorem 7, page 82, of [17], these norms determine a nuclear

space, so in particular, for each � there exists a �0 > � such that the embedding T �
0

� :

��0 ! �� is a Hilbert-Schmidt operator. The adjoint T �
0�

� : ��� ! ���0 is also Hilbert-

Schmidt. �0 = [1k=0��k gives a representation of the dual of �. (See [17], page 59.) We

prove tightness for fSng in C�
��
[0;1) for an appropriate �.

Theorem 3.1 Suppose that (S1)-(S3) hold and that (2.1) and (2.3) hold for

p = max(4�; �=(� � 1)):

Then there exists � such that fSng is tight in C�
��
[0;1).

Proof: Let

�n;pm = inf

(
t :

1

n

nX
i=1

Ani (t)
p � mp or

1

n

nX
i=1

�
1 + epjX

n
i (t)j _ epjXi(t)j

�
� mp

)
:

Then for T > 0, we have

sup
n

P(�n;pm � T ) �
2

mp
sup

1�n�1

 
1 + E sup

0�s�T
Ani (s)

p + E sup
0�s�T

epjX
n
i (s)j

!
;

and since by Proposition 2.1, for each T > 0, the right side goes to zero as m! 1, it is

enough to prove tightness for fSn(� ^ �
n;p
m )g.

By Itô's formula, we have

h�; V n(t)i � h�; V n(0)i (3.2)

=
1

n

nX
i=1

Z t

0

Ani (s)

�
�(Xn

i (s))
(X
n
i (s); V

n(s))

8



+�0(Xn
i (s))�(X

n
i (s); V

n(s))

�
dBi(s)

+

Z t

0

h�d(�; V n(s)) + L(V n(s))�; V n(s)i ds

+

Z
U�[0;t]



��(�; V n(s); u) + �0�(�; V n(s); u); V n(s)

�
W (duds)

where

L(v)�(x) =
1

2
a(x; v)�00(x) + b(x; v)�0(x):

Hence, by (1.2) and (3.2), we have

h�; Sn(t)� Sn(0)i (3.3)

=
1
p
n

nX
i=1

Z t

0

Ani (s)

�
�(Xn

i (s))
(X
n
i (s); V

n(s))

+�0(Xn
i (s))�(X

n
i (s); V

n(s))

�
dBi(s)

+

Z t

0

p
n
�
h�d(�; V n(s)) + L(V n(s))�; V n(s)i

� h�d(�; V (s)) + L(V (s))�; V (s)i
�
ds

+

Z
U�[0;t]

p
n
� 

��(�; V n(s); u) + �0�(�; V n(s); u); V n(s)

�
�


��(�; V (s); u) + �0�(�; V (s); u); V (s)

� �
W (duds):

Note that h�; Sn(t)i =M
1;n
� (t) +An�(t) +M

2;n
� (t) is a semimartingale with respect to the

�ltration fFtg generated by W and the Bi. Setting

Gn�(s; u) =
p
n
� 

��(�; V n(s); u) + �0�(�; V n(s); u); V n(s)

�
�


��(�; V (s); u) + �0�(�; V (s); u); V (s)

� �
;

we haveh
M

1;n
�

i
t

=
1

n

nX
i=1

Z t

0

Ani (s)
2
�
�(Xn

i (s))
(X
n
i (s); V

n(s)) + �0(Xn
i (s))�(X

n
i (s); V

n(s))
�2
ds

and �
M2;n

�
t
=

Z t

0

Z
U

Gn�(s; u)
2�(du)dt:

Let

H
1;n
� (s) =

1

n

nX
i=1

Ani (s)
2
�
�(Xn

i (s))
(X
n
i (s); V

n(s)) + �0(Xn
i (s))�(X

n
i (s); V

n(s))
�2

H
2;n
� (s) =

Z
U

Gn�(s; u)
2�(du)

H
3;n
� (s) = n (h�d(�; V n(s)) + L(V n(s))�; V n(s)i � h�d(�; V (s)) + L(V (s))�; V (s)i)2 :

9



It follows, for example, that for t; h > 0, we have

E [h�; Sn(t+ h)� Sn(t)i2jFt] � E [

Z t+h

t

3(H
1;n
� (s) +H

2;n
� (s) + hH

3;n
� (s))dsjFt]; (3.4)

and, applying Doob's inequality,

E [sup
s�t

h�; Sn(s)� Sn(0)i2] � E [

Z t

0

12(H
1;n
� (s) +H

2;n
� (s) + tH

3;n
� (s))ds]: (3.5)

We need to estimate each of the H
k;n
� .

Let e� = � and je�j� = supx;0�k�� j(dk=dxk)e�(x)j. Then je�j� � constk�k�+1. It is easy to

see that there exists a constant c7 such that

j�(x)j � c7je�j0 �1 + ejxj
�

and

j�(x)j+ j�0(x)j � c7je�j1 �1 + ejxj
�
:

Hence

E

����� 1n
nX
i=1

Ani (s)
2
�
�(Xn

i (s))
(X
n
i (s); V

n(s)) + �0(Xn
i (s))�(X

n
i (s); V

n(s))
�2�����

�

1f�n;pm �sg

� E

����� 1n
nX
i=1

Ani (s)
2K2c7e

2jXn
i (s)jje�j21

�����
�

1f�n;pm �sg

� K2�c�7 je�j2�1 E

����� 1n
nX
i=1

Ani (s)
4 1

n

nX
i=1

e4jX
n
i (s)j

�����
�
2

1f�n;pm �sg

� K2�c�7 je�j2�1 ��m423m4
���2

� c8(m;�; s)je�j2�1 ;
and we have

E [H
1;n
� (s)�1f�n;pm �sg] � c8(m;�; s)je�j2�1 � c8(m;�; s)k�k2�2 : (3.6)

Observing that

p
n (h�d(�; V n(s))); V n(s)i � h�d(�; V (s))); V (s)i)

=
p
n
D
�d(�; V n(s))); V n(s)� eV n(s)

E
+
p
n
D
�(d(�; V n(s))� d(�; eV n(s)); eV n(s)

E
+
p
n
D
�(d(�; eV n(s))� d(�; V (s))); eV n(s)

E
+
p
n
D
�d(�; V (s)); eV n(s)� V (s)

E
;

we have���pnD�d(�; V n(s))); V n(s)� eV n(s)
E���

=

����� 1
p
n

nX
i=1

(Ani (s)�(X
n
i (s))d(X

n
i (s); V

n(s))�Ai(s)�(Xi(s))d(Xi(s); V
n(s)))

�����
10



�
1
p
n

nX
i=1

j�(Xn
i (s))� �(Xi(s))jjd(Xn

i (s); V
n(s))jAni (s)

+
1
p
n

nX
i=1

j�(Xi(s))jjd(Xn
i (s); V

n(s))� d(Xi(s); V
n(s))jAni (s)

+
1
p
n

nX
i=1

jAni (s)�Ai(s)jj�(Xi(s))d(Xi(s); V
n(s))j

�
K
p
n

nX
i=1

j�0(�Xn
i (s) + (1� �)Xi(s))jjXn

i (s)�Xi(s)jAni (s)

+
K
p
n

nX
i=1

j�(Xi(s))jjXn
i (s)�Xi(s)jAni (s)

+
K
p
n

nX
i=1

j�(Xi(s))jjAni (s)�Ai(s)j

�
2K
p
n

nX
i=1

c7

�
ejX

n
i (s)j _ ejXi(s)j

�
je�j1jXn

i (s)�Xi(s)jAni (s)

+
K
p
n

nX
i=1

c7e
jXi(s)jje�j0jAni (s)�Ai(s)j;

and hence

E

���pnD�d(�; V n(s))); V n(s)� eV n(s)
E���2� 1f�n;pm �sg

� 22��1je�j2�1 (2
p
nc7K)2�E

 
1

n

nX
i=1

jXn
i (s)�Xi(s)j2�

�

 
1

n

nX
i=1

����ejXn
i (s)j _ ejXi(s)j

�
Ani (s)

��� 2�
2��1

!2��1

1f�n;pm �sg

!

+22��1je�j2�0 n�K2�c2�7 E

  
1

n

nX
i=1

jAni (s)�Ai(s)j�
!2

�

 
1

n

nX
i=1

e
�

��1
jXi(s)j

!��1
1f�n;pm �sg

!
� c9(m;�; s)je�j2�1 :

As ���pnD�(d(�; V n(s))� d(�; eV n(s)); eV n(s)
E���

=

����� 1
p
n

nX
i=1

Ai(s)�(Xi(s))(d(Xi(s); V
n(s))� d(Xi(s); eV n(s)))

�����
�

1
p
n

nX
i=1

Ai(s)j�(Xi(s))jK�(V n(s); eV n(s));

we have

E

���pnD�(d(�; V n(s))� d(�; eV n(s)); eV n(s)
E���2� 1f�n;pm �sg

11



� K2�n�E

����� 1n
nX
i=1

Ai(s)c7e
jXi(s)jje�j0�(V n(s); eV n(s))

�����
2�

1f�n;pm �sg

� K2�n�c2�7 je�j2�0 E

"  
1

n

nX
i=1

Ai(s)
2 1

n

nX
i=1

e2jXi(s)j
!�

�22��1
 
m2�(

1

n

nX
i=1

jXn
i (s)�Xi(s)j2)� + (

1

n

nX
i=1

jAni (s)�Ai(s)j)2�
!
1f�n;pm �sg

#
� K2�n�c2�7 je�j2�0 �m2c(m; 2)

��
22��1

�E

24m2� 1

n

nX
i=1

jXn
i (s)�Xi(s)j2� +

 
1

n

nX
i=1

jAni (s)�Ai(s)j�
!2

1f�n;pm �sg

35
� c10(m;�; s)je�j2�0 :

As ���pnD�(d(�; eV n(s))� d(�; V (s))); eV n(s)
E���

=

����� 1
p
n

nX
i=1

Ai(s)�(Xi(s))(d(Xi(s); eV n(s)))� d(Xi(s); V (s)))

����� ;
we have

E

���pnD�(d(�; eV n(s))� d(�; V (s))); eV n(s)
E���2� 1f�n;pm �sg

� c2�7 K
2�n�je�j2�0 E

"  
1

n

nX
i=1

Ai(s)
2�

2��1 e
2�

2��1
jXi(s)j

!2��1

�
1

n

nX
i=1

���d(Xi(s); eV n(s))� d(Xi(s); V (s))
���2� 1f�n;pm �sg

#
� c11(m;�; s)je�j2�0 ;

where the last inequality follows by arguments similar to the estimate for the third term

on the right side of (2.8).

Let

Nn =

nX
i=1

(Ai(s)�(Xi(s))d(Xi(s); V (s))� h�d(�; V (s)); V (s)i) ; n � 1:

Then fNn : n = 1; 2; � � �g is a discrete-time P(�jW )-martingale with, using the notation of

Burkholder [3],

Sn(N)2 =

nX
i=1

(Ai(s)�(Xi(s))d(Xi(s); V (s))� h�d(�; V (s)); V (s)i)2 :

(Do not confuse Sn(N) here with our process Sn.) By Theorem 3.2 in Burkholder [3],

there exists a constant C� such that

E(N2�
n jW ) � C�E(Sn(N)2�jW ):

12



Therefore

E

���pnD�d(�; V (s)); eV n(s)� V (s)
E���2�

=
1

n�
E (E (N2�

n jW ))

�
1

n�
C�E [E [(

nX
i=1

(Ai(s)�(Xi(s))d(Xi(s); V (s))� h�d(�; V (s)); V (s)i)2 )
�jW ]]

= C�E
�
jA1(s)�(X1(s))d(X1(s); V (s))� h�d(�; V (s)); V (s)ij2�

�
� c12(m;�; s)je�j2�0 ;

and we have

E [
��pn (h�d(�; V n(s))); V n(s)i � h�d(�; V (s))); V (s)i)

��2� 1f�n;pm �sg] � c13(m;�; s)je�j2�1 :
Similar arguments give

E [
�p

n jhL(V n(s))�; V n(s)i � hL(V (s))�; V (s)ij
�2�

1f�n;pm �sg] � c14(m;�; s)je�j2�3 ;
where the estimate in terms of the higher derivatives is required because of the di�erential

operator, and we have

E [H
3;n
� (s)�1f�n;pm �sg] � c15(m;�; s)je�j2�3 � c15(m;�; s)k�k2�4 : (3.7)

Finally, again applying similar arguments, we can show

E [H
2;n
� (s)�1f�n;pm �sg] � c16(m;�; s)je�j2�2 � c16(m;�; s)k�k2�3 : (3.8)

Without loss of generality, we can assume that all of the cl(m;�; s) are nondecreasing in

s. Applying (3.6), (3.7), and (3.8), (3.5) gives

E [sup
s�t

h�; Sn(s ^ �n;pm )� Sn(0)i2] � c17(m; p; t)k�k24:

For � suÆciently large, the embedding T 4
��1 : ���1 ! �4 is Hilbert-Schmidt and hence,

if f�kg is an orthonormal basis for ���1,
P1

k=1 k�kk
2
4 < 1. (See [17], Lemma 1 and

Theorem 2, pages 33-34.) Consequently,

E [sup
s�t

kSn(s ^ �n;pm )� Sn(0)k2�(��1)] � E [

1X
k=1

sup
s�t
h�k; Sn(s ^ �n;pm )� Sn(0)i2]

� c17(m; p; t)

1X
k=1

k�kk24 <1:

It follows that for each t � 0 and � > 0, there exists kt;� > 0 such that

sup
n

Pfsup
s�t

kSn(s ^ �n;pm )k�(��1) > kt;�g � �:

But f 2 ��� : k k�(��1) � kt;�g is a compact subset of ��k, so fSn(� ^ �
n;p
m )g satis�es

the compact containment condition in ��k.

13



Similarly, by (3.4), for t < t+ h � T , h < 1,

E [kSn((t+ h) ^ �n;pm )� Sn(t ^ �n;pm )k2�(��1)jFt]

�
1X
k=1

E [

Z t+h

t

(H
1;n
�k

(s) +H
2;n
�k

(s) + hH
3;n
�k

(s))1f�n;pm �sgdsjFt]

� h(��1)=�E [
1X
k=1

(

Z T

0

(H
1;n
�k

(s) +H
2;n
�k

(s) + hH
3;n
�k

(s))�1f�n;pm �sgds)
1=�jFt]:

Then

E [

1X
k=1

(

Z T

0

(H
1;n
�k

(s) +H
2;n
�k

(s) + hH
3;n
�k

(s))�1f�n;pm �sgds)
1=�]

= E [

1X
k=1

k�kk24(
Z T

0

�
(H

1;n
�k

(s) +H
2;n
�k

(s) + hH
3;n
�k

(s))=k�kk24
��

1f�n;pm �sgds)
1=�]

� E [

1X
k=1

k�kk24(
Z T

0

�
(H

1;n
�k

(s) +H
2;n
�k

(s) + hH
3;n
�k

(s))=k�kk24
��

1f�n;pm �sgds)
1=�]

� (

1X
k=1

k�kk24)
(��1)=�

�

 1X
k=1

k�kk24

Z T

0

E [
�
(H

1;n
�k

(s) +H
2;n
�k

(s) + hH
3;n
�k

(s))=k�kk24
��

1f�n;pm �sg]ds

!1=�

<1:

Since

kSn((t+ h) ^ �n;pm )� Sn(t ^ �n;pm )k2�� � kSn((t+ h) ^ �n;pm )� Sn(t ^ �n;pm )k2�(��1);

we have veri�ed the conditions of Theorem 4.20 of [24] (Theorem 3.8.6 of [13]) with


n(Æ) = Æ(��1)=�
1X
k=1

(

Z T

0

(H
1;n
�k

(s) +H
2;n
�k

(s) + ÆH
3;n
�k

(s))�1f�n;pm �sgds)
1=�:

Note that since the Sn are continuous, tightness of fSng in D�
�k
[0;1) implies tightness

in C�
�k
[0;1).

The same argument gives tightness for fM1;ng, and we have the following additional result.

Lemma 3.2 Under the conditions of Theorem 3.1, fMng is tight in C�
��
[0;1).

4 Characterization of the limit

We need the following additional assumptions.

(S4) There exists Æ > 0 such that

j�(x; �)T zj2 � Æ

Z
U

jz � �(x; �; u)j2�(du) � 0

8x; z 2 R
d ; � 2M(Rd).

14



(S5) The coeÆcients �, c, d, a, b, 
, �, and � are di�erentiable with respect to the

measure in the sense that, for example, there exists a bounded, continuous function

@d on R
d �M(Rd)� R

d such that for �1; �2 2M(Rd ),

d(x; �2)� d(x; �1) =

Z 1

0

Z
Rd

@d(x; (1 � r)�1 + r�2; y)(�2(dy)� �1(dy))dr:

(S6) For � given by Theorem 3.1, � 2 ��+l+2, �1; �2 2M(Rd), and u 2 U ,

F1(�1; �2)� (4.1)

� d(�; �2)�+ L(�2)�

+

Z
Rd

Z 1

0

�
�(x)@d(x; r�2 + (1� r)�1; �)

+@L(r�2 + (1� r)�1; �)�(x)
�
dr�1(dx)

and

F2(�1; �2; u)� (4.2)

� ��(�; �2; u) +r�T�(�; �2; u)

�
Z
Rd

Z 1

0

�
�(x)@�(x; r�2 + (1� r)�1; u; �)

+r�T (x)@�(x; r�2 + (1� r)�1; u; �)
�
dr�1(dx)

are in ��+l for 0 � l � 2.

For � 2 ��+2, the mappings

(�1; �2; v) 2M(Rd )�M(Rd)���� ! hF1(�1; �2)�; vi 2 R (4.3)

and

(�1; �2; v) 2M(Rd )�M(Rd)���� ! hF2(�1; �2; �)�; vi 2 L2(U; �) (4.4)

are continuous.

(S7) For each � 2 M(Rd), the mappings from x 2 R
d to aij(x; �); bi(x; �); d(x; �) 2 R

and �i(x; �; �); �(x; �; �) 2 L2(U; �) have bounded derivatives with respect to x up to

order q � �+2. For each x 2 R
d , u 2 U and � 2M(Rd), @aij(x; �; �); @bi(x; �; �); @d(x; �; �),

@�i(x; �; u; �); @�(x; �; u; �) are in �q, and there exists a constant K such thatX
i;j

k@aij(x; �; �)k2q +
X
i

k@bi(x; �; �)k2q + k@d(x; �; �)k
2
q

+

Z
U

 X
i

k@�i(x; �; u; �)k2q + k@�(x; �; u; �)k
2
q

!
�(du) � K:

Remark 4.1 If �1 = �2 = �, we write Fi(�) rather than Fi(�; �).

Condition (S6) implies smoothness and growth conditions on the coeÆcients of the di�er-

ential operators. Continuity of the mapping

(�1; �2) 2M(Rd )�M(Rd )! F1(�1; �2)� 2 �k

would imply (4.3).
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Continuing to restrict the calculations to dimension d = 1, by (3.3),

h�; Sn(t)i = h�; Sn(0)i +


�;M1;n(t)

�
+

Z t

0

hF1(V (s); V n(s))�; Sn(s)i ds

+

Z
U�[0;t]

hF2(V (s); V n(s); u)�; Sn(s)iW (duds); (4.5)

where

M
1;n
� (t) =



�;M1;n(t)

�
= n�1=2

nX
i=1

Z t

0

Ani (s)

�
�(Xn

i (s))
(X
n
i (s); V

n(s))

+�0(Xn
i (s))�(X

n
i (s); V

n(s))

�
dBi(s)

p
n (h�d(�; V n(s)) + L(V n(s))�; V n(s)i � h�d(�; V (s)) + L(V (s))�; V (s)i)

= h�d(�; V n(s)) + L(V n(s))�; Sn(s)i
+
p
n h�d(�; V n(s)) + L(V n(s))�� �d(�; V (s)) + L(V (s))�; V (s)i

= h�d(�; V n(s)) + L(V n(s))�; Sn(s)i

+

Z
R

Z 1

0

h�(x)@d(x; rV n(s) + (1� r)V (s); �)

+@L(rV n(s) + (1� r)V (s); �)�(x); Sn(s)idrV (s; dx)
= hF1(V (s); V n(s))�; Sn(s)i

and

p
n
� 

��(�; V n(s); u) + �0�(�; V n(s); u); V n(s)

�
�


��(�; V (s); u) + �0�(�; V (s); u); V (s)

� �
=


��(�; V n(s); u) + �0�(�; V n(s); u); Sn(s)

�
�
Z
R

Z 1

0

h�(x)@�(x; rV n(s) + (1� r)V (s); u; �)

+�0(x)@�(x; V (s); u; �); Sn(s)idrV (s; dx)
= hF2(V (s); V n(s); u)�; Sn(s)i

Let H = L2(U; �). In the terminology of Kurtz and Protter [25], we de�ne a R � H
# -

semimartingale Y by setting

Y (a; h; t) = at+Bh(t) = at+

Z
U�[0;t]

h(u)W (duds);

for a 2 R and h 2 H . Let

Un(t) = Sn(0) +M1;n(t);

and for � 2 ��+2, let hF (V (s); V n(s))�; Sn(s)i denote the R � H -valued process given by

hF (V (s); V n(s))�; Sn(s)i = (hF1(V (s); V n(s))�; Sn(s)i ; hF2(V (s); V n(s); u)�; Sn(s)i) :

Then (4.5) can be rewritten in the notation of Kurtz and Protter [25] as

h�; Sn(t)i = h�;Un(t)i+ hF (V (�); V n(�))�; Sni � Y (t):
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Note that for each � 2 C1(R), h 2 H , and 1 � i � n,
h
M

1;n
� ; Bh

i
t
= 0,h

M
1;n
� ; Bi

i
t
=

1

n

Z t

0

(Ani (s))
2(�(Xn

i (s))
(X
n
i (s); V

n(s)) + �0(Xn
i (s))�(X

n
i (s); V

n(s)))
2
ds;

and h
M

1;n
�

i
t
=

Z t

0

D
(�
(�; V n(s)) + �0�(�; V n(s)))

2
; V n

2 (s)
E
ds;

where V n
2 (s) =

1
n

Pn
j=1A

n
j (s)

2ÆXn
j (s)

.

We should emphasize that we are proving convergence in distribution for fSng. The limit

will not \live" on the original probability space. To be precise, for a countable dense

subset fhjg � H , the sequence

f(V n;M1;n; Sn; fY (hj)g; fBig; fXig; fAig)g

is relatively compact in CM(R)�(�
��)2�(R1)4 [0;1). Denoting a limit point by

(V;M;S; fY (hi)g; fBig; fXig; fAig)

(even though these are not the V , Y , fBig, fXig, fAig on the original probability space,

they will have the same distribution),M (and hence S) will not be adapted to the �ltration

fFY;fBig
t g generated by Y and fBig. Note that fY (hi)g determines Y (h) (and hence Bh)

for all h 2 H and the Y (h) determine W .

For any limit point,M will be a ���-valued local martingale with
�
M�; B

h
�
t
= 0 for every

� 2 � and h 2 H and

[M�]t =

Z t

0

D
(�
(�; V (s)) + �0�(�; V (s)))2; V2(s)

E
ds;

where

V2(t) = lim
n!1

1

n

nX
i=1

Ai(t)
2ÆXi(t):

Lemma 4.2 For � 2 ��,

E [eih�;S(0)+M(t)i jW ]

= expf�
1

2
(h�2; V2(0)i � h�; V (0)i2 +

Z t

0

h(�
(�; V (s)) + �0�(�; V (s)))2; V2(s)ids)g

and

E [eih�;M(t+r)�M(t)i j�(W ) _ FM
t ]

= expf�
1

2

Z t+r

t

h(�
(�; V (s)) + �0�(�; V (s)))2; V2(s)ids)g;

which determine the joint distribution of W and M .

Proof: De�nefMn
� (t) =

D
�;fMn(t)

E
= n�1=2

nX
i=1

Z t

0

Ai(s)

�
�(Xi(s))
(Xi(s); V (s))

+�0(Xi(s))�(Xi(s); V (s))

�
dBi(s);

17



and observe thath
M

1;n
� � fMn

�

i
t

=
1

n

nX
i=1

Z t

0

�
Ani (s)�(X

n
i (s))
(X

n
i (s); V

n(s)) + �0(Xn
i (s))�(X

n
i (s); V

n(s))

�Ai(s)�(Xi(s))
(Xi(s); V (s))� �0(Xi(s))�(Xi(s); V (s))

�2

ds

converges to zero. It follows that M1;n and fMn must have the same limit. Again, to be

precise, one should say that any limit point of

f(V n;M1;n;fMn; Sn; fY (hj)g; fBig; fXig; fAig)g

will be of the form

(V;M;M;S; fY (hi)g; fBig; fXig; fAig):

For a �(W ) measurable random variable Z, exchangeability implies

E [eih�;S(0)+M(t)iZ]

= lim
n!1

E [eih�;Sn (0)+
fMn(t)iZ]

= lim
n!1

E [E [expfi
1
p
n
(A1(0)�(X1(0))� h�; V (0)i+ fM�;1gjW ]nZ]

= E [expf�
1

2
(h�2; V2(0)i � h�; V (0)i2 +

Z t

0

h(�
(�; V (s)) + �0�(�; V (s)))2; V2(s)ids)gZ]

where

fM�;1(t) =

Z t

0

A1(s)

�
�(X1(s))
(X1(s); V (s)) + �0(X1(s))�(X1(s); V (s))

�
dB1(s):

The proof of the second identity is similar.

Let U(t) = S(0) +M(t) and

hF (V (s))�; S(s)i = (hF1(V (s))�; S(s)i ; hF2(V (s); u)�; S(s)i) :

Then (Sn; Un) is relatively compact in C�
������ [0;1), and by the continuity assumptions

on F1 and F2 and Theorem 5.5 in [25], for any limit point (S;U), we have

h�; S(t)i = h�;U(t)i + hF (V (�))�; Si � Y (t):

Speci�cally, any limit point of fSng satis�es (1.10).

To prove uniqueness for the solution to (1.10), suppose that S1 and S2 are solutions and

set � = S1 � S2. Then � satis�es

h�; �(t)i =
Z t

0

hF1(V (s))�; �(s)i ds+
Z
U�[0;t]

hF2(V (s); u)�; �(s)iW (duds): (4.6)

We adapt arguments of Rozovskii [36] to establish that � � 0 is the unique solution to

(4.6) and hence establish uniqueness for (1.10).
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Lemma 4.3 Suppose that the assumptions (S1)-(S7) hold. Then � = 0 a.s.

Proof: Let q = �+ 2, and for � 2 M(R), de�ne �� �
R
R
 (x)�1�(dx) < 1. By Lemma

A.6,

2 hv; F �1 (�)vi�q +
Z
U

kF �2 (�; u)vk
2
�q�(du) � c18�

2
�kvk

2
�q; (4.7)

for all v 2 ���.

Note that �(t) takes values in ��� � ��q. Let f�qjg be an orthonormal basis for �q.

Applying Itô's formula, we haveD
�
q
j ; �(t)

E2
=

Z t

0

2
D
�
q
j ; �(t)

ED
F1(V (s))�

q
j ; �(s)

E
ds

+

Z
U�[0;t]

2
D
�
q
j ; �(t)

ED
F2(V (s); u)�

q
j ; �(s)

E
W (duds)

+

Z t

0

Z
U

D
F2(V (s); u)�

q
j ; �(s)

E2
�(du)ds:

By Lemma 2.1, if (2.1) and (2.3) hold, then (2.6) holds giving E [supt�T �V (t)] < 1. Let

�k = infft : �V (t) � kg. Stopping the processes at �k, taking expectations, and summing

over j, (4.7) gives

Ek�(t ^ �k)k2�q = E

Z t^�k

0

�
2 h�(s); F �1 (V (s))�(s)i�q +

Z
U

kF �2 (V (s); u)�(s)k
2
�q�(du)

�
ds

�
Z t

0

c18k
2
Ek�(s ^ �k)k2�qds:

Then uniqueness follows from Gronwall's inequality and the fact that �k !1 as k !1.

Finally, we have our main result.

Theorem 4.4 Under assumptions (S1)-(S7), we have Sn ) S and S is the unique solu-

tion to the stochastic evolution equation (1.10).

5 CLT for Euler scheme

Now we consider the CLT for the Euler scheme used in [27]. Let �Æ(s) =
�
s
Æ

�
Æ, and for

some partition fUkg of U and uk 2 Uk, de�ne �Æ(u) = uk, u 2 Uk, k = 1; 2; : : :. Let

f(Xn;Æ
i ; A

n;Æ
i ); i = 1; : : : ; ng satisfy

X
n;Æ
i (t) = Xi(0) +

Z t

0

�(X
n;Æ
i (�Æ(s)); V

n;Æ(�Æ(s)))dBi(s) (5.1)

+

Z t

0

c(X
n;Æ
i (�Æ(s)); V

n;Æ(�Æ(s)))ds

+

Z
U�[0;t]

�(X
n;Æ
i (�Æ(s)); V

n;Æ(�Æ(s)); �Æ(u))W (duds)
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A
n;Æ
i (t) = Ai(0) +

Z t

0

A
n;Æ
i (s)
(X

n;Æ
i (�Æ(s)); V

n;Æ(�Æ(s)))dBi(s) (5.2)

+

Z t

0

A
n;Æ
i (s)d(X

n;Æ
i (�Æ(s)); V

n;Æ(�Æ(s)))ds

+

Z
U�[0;t]

A
n;Æ
i (s)�(X

n;Æ
i (�Æ(s)); V

n;Æ(�Æ(s)); �Æ(u))W (duds);

where

V n;Æ(t) =
1

n

nX
i=1

A
n;Æ
i (t)Æ

X
n;Æ
i (t)

: (5.3)

In this paper, we only analyze the simplest case in whichW is a one-dimensional Brownian

motion, that is, U consists of a single point.

Modifying Theorem 3.3 in [27] in a way similar to the proof of Theorem 2.3 of the current

paper, we have the following result.

Theorem 5.1 Under the assumptions (S1)-(S5), we have

E sup
0�t�T

0@���Xn;Æ
i (t)�Xn

i (t)
���2� +

0@ 1

n

nX
j=1

jAn;Æj (t)�Anj (t)j
�

1A21A 1
t<�

n;Æ
m
� c(T;m)Æ�

where

�n;Æm = inf

(
t :

1

n

nX
i=1

Ani (t)
2 > m2 or

1

n

nX
i=1

A
n;Æ
i (t)2 > m2

)
:

Applying the same arguments as those in Section 3, we can prove that the sequenceeSn � p
n(V n;1=n � V n) is tight. Now we characterize its limit points.

Note that eSn(0) = 0. As in (3.3), we haveD
�; eSn(t)E

=
1
p
n

nX
i=1

Z t

0

(
A
n;1=n
i (s)

�
�(X

n;1=n
i (s))
(X

n;1=n
i (� 1

n
(s)); V n;1=n(� 1

n
(s)))

+�0(Xn;1=n
i (s))�(X

n;1=n
i (� 1

n
(s)); V n;1=n(� 1

n
(s)))

�
�Ani (s)

�
�(Xn

i (s))
(X
n
i (s); V

n(s)) + �0(Xn
i (s))�(X

n
i (s); V

n(s))
�)

dBi(s)

+
1
p
n

nX
i=1

Z t

0

(
A
n;1=n
i (s)

�
�(X

n;1=n
i (s))d(X

n;1=n
i (� 1

n
(s)); V n;1=n(� 1

n
(s)))

+L(V n;1=n(� 1
n
(s)))�(X

n;1=n
i (� 1

n
(s))

�
�Ani (s) [�(X

n
i (s))d(X

n
i (s); V

n(s)) + L(V n(s))�(Xn
i (s))]

)
ds

+
1
p
n

nX
i=1

Z t

0

(
A
n;1=n
i (s)

�
�(X

n;1=n
i (s))�(X

n;1=n
i (� 1

n
(s)); V n;1=n(� 1

n
(s)))
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+�0(Xn;1=n
i (s))�(X

n;1=n
i (� 1

n
(s)); V n;1=n(� 1

n
(s)))

�
�Ani (s)

�
�(Xn

i (s))�(X
n
i (s); V

n(s)) + �0(Xn
i (s))�(X

n
i (s); V

n(s))
�)

dW (s)

� I1 + I2 + I3: (5.4)

Lemma 5.2 Let �ni (t) be processes satisfying

1

n

nX
i=1

�ni (t)
2 � K; 8t; 8!:

Then
1
p
n

nX
i=1

Z t

0

�ni (s)(Bi(s)�Bi(� 1
n
(s)))2ds! 0; (5.5)

1
p
n

nX
i=1

Z t

0

�ni (s)(s� � 1
n
(s))2ds! 0; (5.6)

1
p
n

nX
i=1

Z t

0

�ni (s)(W (s)�W (� 1
n
(s)))2ds! 0; (5.7)

1
p
n

nX
i=1

Z t

0

�ni (� 1
n
(s))(Bi(s)�Bi(� 1

n
(s)))ds! 0; (5.8)

1
p
n

nX
i=1

Z t

0

�ni (� 1
n
(s))(s� � 1

n
(s))ds! 0; (5.9)

1
p
n

nX
i=1

Z t

0

�ni (� 1
n
(s))(W (s)�W (� 1

n
(s)))ds! 0; (5.10)

1
p
n

nX
i=1

Z t

0

�ni (� 1
n
(s))(Bi(s)�Bi(� 1

n
(s)))dW (s)! 0; (5.11)

1
p
n

nX
i=1

Z t

0

�ni (� 1
n
(s))(s� � 1

n
(s))dW (s)! 0: (5.12)

Proof: Note that

E

����� 1
p
n

nX
i=1

Z t

0

�ni (s)(Bi(s)�Bi(� 1
n
(s)))2ds

�����
2

� nE

Z t

0

1

n

nX
i=1

�ni (s)
2 1

n

nX
i=1

(Bi(s)�Bi(� 1
n
(s)))4ds

� K

nX
i=1

Z t

0

3(s� � 1
n
(s))2ds

� 3Kn

[nt]X
j=0

Z j+1
n

j

n

(s�
j

n
)2ds

= Kn[nt]
1

n3
! 0:
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This proves (5.5). (5.6), (5.7) and (5.9) can be proved similarly.

For k = 1; 2; � � �, let

Mk =
1
p
n

nX
i=1

Z k
n

0

�ni (� 1
n
(s))(Bi(s)�Bi(� 1

n
(s)))ds:

ThenMk is a discrete-time, square integrable martingale with quadratic variation process

[M ]k =

kX
j=1

 
1
p
n

nX
i=1

�ni (� 1
n
(s))

Z j

n

j�1

n

(Bi(s)�Bi(� 1
n
(s)))ds

!2

:

Hence

EM2
[nt] =

[nt]X
j=1

E

 Z j

n

j�1

n

1
p
n

nX
i=1

�ni (
j � 1

n
)(Bi(s)�Bi(

j � 1

n
))ds

!2

=

[nt]X
j=1

Z j

n

j�1

n

Z j

n

j�1

n

1

n

nX
i=1

E

�
�ni (

j � 1

n
)2
�
(s1 ^ s2 �

j � 1

n
)ds1ds2

� K

[nt]X
j=1

Z 1
n

0

Z 1
n

0

s1 ^ s2ds1ds2

= 2K[nt]

Z 1
n

0

s1(
1

n
� s1)ds1

=
K[nt]

3n3
! 0:

This proves (5.8). (5.10) can be proved similarly.

Finally,

E

����� 1
p
n

nX
i=1

Z t

0

�ni (� 1
n
(s))(Bi(s)�Bi(� 1

n
(s)))dW (s)

�����
2

= E

Z t

0

 
1
p
n

nX
i=1

�ni (� 1
n
(s))(Bi(s)�Bi(� 1

n
(s)))

!2

ds

=

Z t

0

1

n

nX
i=1

E�ni (� 1
n
(s))2(s� � 1

n
(s))ds

� K

[nt]X
j=0

Z j+1

n

j

n

(s�
j

n
)ds

= K([nt] + 1)
1

2n2
! 0;

which proves (5.11). (5.12) can be proved similarly.

Lemma 5.3 Let fW n(t) =

Z t

0

p
2n(W (s)�W (�n(s)))dW (s):

Then fW n ) fW and fW is a one-dimensional Brownian motion independent of W .
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Proof: It is clear that fW n is a sequence of martingales andhfW n
i
t

=

Z t

0

2n(W (s)�W (�n(s)))
2ds

=
1

nt

ntX
j=1

"
2n2t

Z j

n

j�1

n

(W (s)�W (
j � 1

n
))2ds

#

! 2n2t

Z 1
n

0

sds = t:

By (5.10), we have hfW n;W
i
t
=

Z t

0

p
n(W (s)�W (�n(s)))ds! 0;

and the lemma follows by the martingale central limit theorem

Note that

X
n;1=n
i (s)�X

n;1=n
i (� 1

n
(s)) = �(X

n;1=n
i (� 1

n
(s)); V n;1=n(� 1

n
(s)))(Bi(s)�Bi(� 1

n
(s)))

+c(X
n;1=n
i (� 1

n
(s)); V n;1=n(� 1

n
(s)))(s� � 1

n
(s)) (5.13)

+�(X
n;1=n
i (� 1

n
(s)); V n;1=n(� 1

n
(s)))(W (s)�W (� 1

n
(s)))

and

A
n;1=n
i (s) = A

n;1=n
i (� 1

n
(s)) exp

�

(X

n;1=n
i (� 1

n
(s)); V n;1=n(� 1

n
(s)))(Bi(s)�Bi(� 1

n
(s)))

+D(X
n;1=n
i (� 1

n
(s)); V n;1=n(� 1

n
(s)))(s � � 1

n
(s))

+�(X
n;1=n
i (� 1

n
(s)); V n;1=n(� 1

n
(s)))(W (s)�W (� 1

n
(s)))

�
;

where D = d � 1
2
(
2 + �2). (5.5)-(5.7) then justify the replacement of A

n;1=n
i (s) and

X
n;1=n
i (s) by A

n;1=n
i (� 1

n
(s)) and X

n;1=n
i (� 1

n
(s)) in the calculations below, where the nota-

tion � means that the di�erence converges to zero in probability.

Lemma 5.4 Let  : R2 ! R be bounded and continuous and have bounded, continuous

�rst derivative @2 with respect to the second variable. ThenZ t

0

1
p
n

nX
i=1

A
n;1=n
i (� 1

n
(s))

D
 (X

n;1=n
i (� 1

n
(s)); �); V n;1=n(s)� V n;1=n(� 1

n
(s))

E
dW (s)

�
Z t

0

h�(�; V (s))@2 (�; �) + �(�; V (s)) (�; �); V (s)
 V (s)i dfW n(s):

Proof: Note thatZ t

0

1
p
n

nX
i=1

A
n;1=n
i (� 1

n
(s))

D
 (X

n;1=n
i (� 1

n
(s)); �); V n;1=n(s)� V n;1=n(� 1

n
(s))

E
dW (s)

=

Z t

0

1
p
n

nX
i=1

A
n;1=n
i (� 1

n
(s))

1

n

nX
j=1

A
n;1=n
j (s)
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( (X
n;1=n
i (� 1

n
(s)); X

n;1=n
j (s))�  (X

n;1=n
i (� 1

n
(s));X

n;1=n
j (� 1

n
(s)))dW (s)

+

Z t

0

1
p
n

nX
i=1

A
n;1=n
i (� 1

n
(s))

1

n

nX
j=1

(A
n;1=n
j (s)�A

n;1=n
j (� 1

n
(s)))

 (X
n;1=n
i (� 1

n
(s));X

n;1=n
j (� 1

n
(s))dW (s)

�
Z t

0

1

n

nX
i=1

A
n;1=n
i (� 1

n
(s))

1

n

nX
j=1

A
n;1=n
j (s)@2 (X

n;1=n
i (� 1

n
(s)); X

n;1=n
j (� 1

n
(s))

�(X
n;1=n
j (� 1

n
(s)); V n;1=n(� 1

n
(s)))dfW n(s)

+

Z t

0

1

n

nX
i=1

A
n;1=n
i (� 1

n
(s))

1

n

nX
j=1

A
n;1=n
i (� 1

n
(s))�(X

n;1=n
j (� 1

n
(s)); V n;1=n(� 1

n
(s)))

 (X
n;1=n
i (� 1

n
(s));X

n;1=n
j (� 1

n
(s))dfW n(s):

The conclusion of the lemma then follows.

Theorem 5.5 For � 2 ��, de�ne

fM�(t) �
D
�;fM (t)

E
=

Z t

0

h(�@1�)(�; V (s))�; V (s)i dfW (s)

+

Z t

0

h�(�; V (s))@2@3�(�; V (s); �) + �(�; V (s))@2�(�; V (s); �))�(�); V (s)
 V (s)i dfW (s)

+

Z t

0

h(�@1�)(�; V (s))�; V (s)i dfW (s)

+

Z t

0



�(�; V (s))@2@3�(�; V (s); �) + �(�; V (s))@2�(�; V (s); �))�0(�); V (s)
 V (s)

�
dfW (s);

where @1 and @3 are derivatives with respect to the corresponding variables and @2 refers

to the operator de�ned in (S5). Then fM� is a martingale satisfying [W; fM�]t = 0. Let eS
be a limit point of feSng. Then eS is the unique solution ofD
�; eS(t)E =

D
�;fM (t)

E
+

Z t

0

D
F1(V (s))�; eS(s)E ds+Z t

0

D
F2(V (s))�; eS(s)E dW (s): (5.14)

Proof: Recall that I1; I2; I3 are de�ned by (5.4). It is easy to see that I1 ! 0. Note that

I2 =
1
p
n

nX
i=1

Z t

0

A
n;1=n
i (s)�(X

n;1=n
i (s))�

d(X
n;1=n
i (� 1

n
(s)); V n;1=n(� 1

n
(s))) � d(X

n;1=n
i (s); V n;1=n(s))

�
ds

+
1
p
n

nX
i=1

Z t

0

A
n;1=n
i (s)

�
L(V n;1=n(� 1

n
(s)))�(X

n;1=n
i (� 1

n
(s)))

�L(V n;1=n(s))�(X
n;1=n
i (s))

�
ds
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+
p
n

Z t

0

�D
d(�; V n;1=n(s))�+ L(V n;1=n(s)�; V n;1=n(s)

E
�hd(�; V n(s))�+ L(V n(s)�; V n(s)i

�
ds

� I21 + I22 + I23;

By Lemma 5.2, it is easy to show that I21 ! 0 and I22 ! 0, and by the de�nition of F1
in (4.1),

I23 =

Z t

0

D
F1(V

n(s); V n;1=n(s))�; eSn(s)E ds
which converges to the second term on the right of (5.14).

Similarly

I3 =

Z t

0

1
p
n

nX
i=1

A
n;1=n
i (s)�(X

n;1=n
i (s))�

�(X
n;1=n
i (� 1

n
(s)); V n;1=n(� 1

n
(s)))� �(Xn

i (s); V
n(s))

�
dW (s)

+

Z t

0

1
p
n

nX
i=1

A
n;1=n
i (s)�0(Xn;1=n

i (s))�
�(X

n;1=n
i (� 1

n
(s)); V n;1=n(� 1

n
(s))) � �(Xn

i (s); V
n(s))

�
dW (s)

+

Z t

0

D
F2(V

n(s); V n;1=n(s)�; eSn(s)E dW (s)

� I31 + I32 + I33:

By (5.13) and Lemma 5.4, we have

I31 �
Z t

0

1
p
n

nX
i=1

A
n;1=n
i (s)�(X

n;1=n
i (s)

�
@1�(X

n;1=n
i (s); V n;1=n(s))(X

n;1=n
i (� 1

n
(s))�X

n;1=n
i (s))

+
D
@2�(X

n;1=n
i (s); V n;1=n(s); �); V n;1=n(� 1

n
(s)))� V n;1=n(s)

E�
dW (s)

�
Z t

0

h(�@1�)(�; V (s))�; V (s)i dfW n(s)

+

Z t

0

h�(�; V (s))@2@3�(�; V (s); �) + �(�; V (s))@2�(�; V (s); �))�(�); V (s)
 V (s)i dfW n(s)

and

I32 �
Z t

0

h(�@1�)(�; V (s))�; V (s)i dfW n(s)

+

Z t

0

h�(�; V (s))@2@3�(�; V (s); �)

+�(�; V (s))@2�(�; V (s); �))�0(�); V (s)
 V (s)idfW n(s):

Then I31 + I32 converges to
D
�;fME and I33 converges to the third term on the right of

(5.14).

Uniqueness of the solution follows from Lemma 4.3 giving the desired result.

Finally, we combine the results of Sections 4 and 5.
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Theorem 5.6 Let S�n(t) =
p
n(V n;1=n(t)� V (t)). Then S�n ) S� where S� is the unique

solution of the stochastic evolution equation

h�; S�(t)i = h�; S(0)i +
D
�;M(t) + fM(t)

E
+

Z t

0

hF1(V (s))�; S�(s)i ds (5.15)

+

Z t

0

hF2(V (s)�; S�(s)i dW (s);

� 2 ��.

A Appendix: Proof of monotonicity

We can represent ��q as the space of equivalence classes of (q+1)-tuples v = f(v0; v1; � � � ; vq)g,
where vj 2 Lq � L2(R; (1 + x2)2qdx), such that

hv; fi =
qX

k=0

Z
R

(1 + x2)2qvk(x)
dk

dxk
(f(x) (x))dx: (A.1)

The (q + 1)-tuples u and v are equivalent if the right side of (A.1) does not change when

v is replaced by u. Then

kvk2�q = inf

(
qX

k=0

kukk2Lq : u = (u0; : : : ; uq) � v

)
: (A.2)

By the Riesz representation theorem, for each v 2 ��q, there exists a unique � � �qv 2 �q
such that

hv; fi = h�; fiq =
qX

k=0

h(� )(k); (f )(k)iLq :

It follows that

v � f(� ; (� )0; � � � ; (� )(q))g

and

kvk2�q =
qX

k=0

k(� )(k)k2Lq :

In particular, the in�mum in (A.2) is achieved. For each u = f(u0; u1; � � � ; uq)g 2 ��q,

hu; vi�q =
qX

k=0

D
uk; (� )

(k))
E
Lq

does not depend on the choice of the (q + 1)-tuple in the class of u. Note also, that since

�q+2 is dense in �q, fv 2 ��q : �qv 2 �q+2g is dense in ��q.

Lemma A.1 Suppose that f and its derivatives up to order q are bounded. Then for


; � 2 �q+1,

qX
k=0

Z
R

(1 + x2)2q(f
0 )(k)(� )(k)dx =

Z
R

(1 + x2)2qf(
 )(q+1)(� )(q)dx+O(k
kqk�kq)

= �
Z
R

(1 + x2)2qf(
 )(q)(� )(q+1)dx+O(k
kqk�kq);
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and hence for 
 = �,

qX
k=0

Z
R

(1 + x2)2q(f�0 )(k)(� )(k)dx = O(k�k2q):

In addition

sup

2�q

Pq
k=0

R
R
(1 + x2)2q(f
0 )(k)(� )(k)dx

k
kq
(A.3)

�

sZ
R

(1 + x2)2qjf(� )(q+1)j2dx+ c19
X

1�i;j�q

sZ
R

(1 + x2)2qjf (i)(� )(j)j2dx

Proof: Let f1 =
f 0

 and note that if f and its derivatives are bounded, then f1 and its

derivatives are bounded. Then

qX
k=0

Z
R

(1 + x2)2q(f
0 )(k)(� )(k)dx

=

qX
k=0

Z
R

(1 + x2)2q(f(
 )0 � f1
 )
(k)(� )(k)dx

=

qX
k=0

Z
R

(1 + x2)2q(f(
 )0)(k)(� )(k)dx�
qX

k=0

Z
R

(1 + x2)2q(f1
 )
(k)(� )(k)dx

=

Z
R

(1 + x2)2qf(
 )(q+1)(� )(q)dx+

q�1X
l=0

�
q

l

�Z
R

(1 + x2)2qf (q�l)(
 )(l+1)(� )(q)dx

+

q�1X
k=0

Z
R

(1 + x2)2q(f(
 )0)(k)(� )(k)dx

�
qX

k=0

Z
R

(1 + x2)2q(f1
 )
(k)(� )(k)dx

=

Z
R

(1 + x2)2qf(
 )(q+1)(� )(q)dx+O(k
kqk�kq):

Integrating the �rst term in the fourth expression above by parts gives

�
Z
R

(1 + x2)2qf(
 )(q)
�
(� )(q+1) +

4qx

1 + x2
(� )(q)

�
dx

�
Z
R

(1 + x2)2qf 0(
 )(q)(� )(q)dx

+

q�1X
l=0

�
q

l

�Z
R

(1 + x2)2qf (q�l)(
 )(l+1)(� )(q)dx

+

q�1X
k=0

Z
R

(1 + x2)2q(f(
 )0)(k)(� )(k)dx

�
qX

k=0

Z
R

(1 + x2)2q(f1
 )
(k)(� )(k)dx

= �
Z
R

(1 + x2)2qf(
 )(q)(� )(q+1)dx+O(k
kqk�kq):
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Since k
kq � k(
 )(j)kLq , (A.3) follows by the Cauchy-Schwartz inequality.

Finally, if 
 = �, we can add the two identities to obtain

qX
k=0

Z
R

(1 + x2)2q(f�0 )(k)(� )(k)dx = O(k�k2q):

Write F1 = F11 + F12 and F2 = F21 + F22, where

F11� =
1

2
a�00 + b�0; F21� = ��0: (A.4)

For � 2M(R), let �� =
R
R
 (x)�1�(dx).

Lemma A.2 For v 2 ��q such that � = �qv 2 �q+2,

2 hv; F �11vi�q = �
Z
R

a(x; �)(1 + x2)2qj(� )(q+1)(x)j2dx+O(kvk2�q);

where jO(kvk2�q)j � c20kvk2�q with c20 independent of �.

Proof: By de�nition,

hv; F �11vi�q = h�; F �11vi = hF11�; vi = hF11�; �iq (A.5)

=

qX
k=0

Z
R

(1 + x2)2q(� )(k)(
1

2
a�00 )(k)dx

+

qX
k=0

Z
R

(1 + x2)2q(� )(k)(b�0 )(k)dx;

where the third equality follows from the fact that F11� 2 �q. By Lemma A.1, the term

involving b is bounded by a constant times k�k2q � kvk2�q.

For the term involving a, let a1 =
a 00

 
and a2 =

2a 0

 
. Then

qX
k=0

Z
R

(1 + x2)2q(� )(k)(a�00 )(k)dx

=

qX
k=0

Z
R

(1 + x2)2q(� )(k)(a(� )(2) � a1( �) � a2( �
0))(k)dx

= �
qX

k=0

Z
R

(1 + x2)2q(� )(k+1)a(� )(k+1)dx+O(k�k2q)

= �
Z
R

a(1 + x2)2qj(� )(q+1)j2dx+O(k�k2q);

where the second equality follows by integrating by parts and applying Lemma A.1.
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Lemma A.3 There exists a constant c21 such that for � > 0, v 2 ��� such that � =

�qv 2 �q+2, and � 2M(R),Z
U

kF �21(�; u)vk
2
�q�(du)

� (1 + �)

Z
R

(1 + x2)2q
Z
U

j�(�; �; u)j2�(du)j(� )(q+1) j2dx+ c21(1 + ��1)kvk2�q :

Proof: Noting that

kF �21(�; u)vk�q = sup

2�q

hF �21v; 
i
k
kq

= sup

2�q

h�; F21
iq
k
kq

;

by (A.3),

kF �21(�; u)vk
2
�q �

�sZ
R

(1 + x2)2qj�(x; �; u)(� )(q+1) j2dx

+c19
X

1�i;j�q

sZ
R

(1 + x2)2qj�(i)(x; �; u)(� )(j)j2dx
�2
:

Consequently, there exists a constant c22 such that

kF �21(�; u)vk
2
�q � (1 + �)

Z
R

(1 + x2)2qj�(x; �; u)(� )(q+1) j2dx

+c22(1 + ��1)
X

1�i;j�q

Z
R

(1 + x2)2qj�(i)(x; �; u)(� )(j)j2dx2;

and integrating with respect to �, the boundedness of �(i) in L2(U; �) implies the existence

of c21.

Lemma A.4 For v 2 ���,

2 hv; F �12vi�q � c23��kvk2�q:

Proof: Assume that � = �qv 2 �q+2. As in Lemma A.2,

hv; F �12vi�q = hF12�; �iq :

Write

hF12(�)�; �iq = hd(�; �)�; �iq + hG1(�)�; �iq (A.6)

where

G1(�)� =

Z
R

(@d(x; �; �)�(x) +
1

2
@a(x; �; �)�00(x) + @b(x; �; �)�0(x))�(dx):

The boundedness of the derivatives of d implies that the �rst term on the right of (A.6)

is O(k�kq) uniformly in �. Note that

j�(x) (x)j2 �
Z
R

j(�(y) (y))0j2(1 + y2)2dy

Z
R

(1 + y2)�2dy;
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so

j�(x) (x)j � O(k�k1):

Similarly, letting K1 = supz
j 0(z)j
 (z)

and K2 = supz
j 00(z)j
 (z)

,

j�0(x) (x)j � j(�(x) (x))0 j+K1j�(x) (x)j � O(k�k2)

and

j�00(x) (x)j � j(�(x) (x))00 j+ 2K1j�0(x) (x)j +K2j�(x) (x)j � O(k�k3):

Consequently,

kG1(�)�kq =

Z
R

(k@d(x; �; �)kq j�(x) (x)j +
1

2
k@a(x; �; �)kq j�00(x) (x)j

+k@b(x; �; �)kq j�0(x) (x)j) �1(x)�(dx)
� c31��k�k3 � c31��k�kq = c31��kvk�q:

Combining this inequality with the estimate on the �rst term gives the result.

Lemma A.5 There exists c24 such that for v 2 ���,Z
U

kF �22(�; u)vk
2
�q�(du) � c24�

2
�kvk

2
�q: (A.7)

Proof: To bound kF �22vk�q, note that

kF �22vk�q = sup

2�q+2

h
; F �22vi
k
kq

= sup

2�q+2

hF22
; �iq
k
kq

� sup

2�q+2

kF22
kq
k
kq

k�kq:

Then kF22
kq � c25(u)��k
kq by the same argument used to estimate G1 in Lemma A.4,

and c25 can be selected to be integrable with respect to �.

Combining the previous lemmas we have

Lemma A.6 For v 2 ���,

2 hv; F �1 (�)vi�q +
Z
U

kF �2 (�; u)vk
2
�q�(du) � c18�

2
�kvk

2
�q: (A.8)

Proof: Selectin � > 0 so that (1 + �)2 � (1 + Æ) for Æ in (S4),

2 hv; F �1 (�)vi�q +
Z
U

kF �2 (�; u)vk
2
�q�(du)

� 2 hv; F �11(�)vi�q + (1 + �)

Z
U

kF �21(�; u)vk
2
�q�(du)

+2 hv; F �12(�)vi�q + (1 + ��1)

Z
U

kF �22(�; u)vk
2
�q�(du)

� �
Z
R

�
a(x; �)� (1 + �)2

Z
U

j�(x; �; u)j2�(du)
�
(1 + x2)2qj(� )(q+1)(x)j2dx

+(c20 + c21(1 + �)(1 + ��1) + c23�� + (1 + ��1)c24�
2
�)kvk

2
�q

� c18�
2
�kvk

2
�q;
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since the �rst term in the third expression is less than or equal to zero by (S4).
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[18] Graham, Carl (1992). Nonlinear Itô-Skorohod equations and martingale problem

with discrete jump sets. Stochastic Process. Appl. 40, 69-82.

[19] Hitsuda, Masuyuki and Mitoma, Itaru (1986). Tightness problem and stochastic

evolution equation arising from 
uctuation phenomena for interacting di�usions. J.

Multivariate Anal. 19, 311{328.

[20] Hu, Y.; Kallianpur, Gopinath; and Xiong, Jie (2002). An approximation for the

Zakai equation. Appl. Math. Optim. 45, 23-44.

[21] Kallianpur, Gopinath and Xiong, Jie (1995). Stochastic Di�erential Equations in

In�nite Dimensional Spaces, IMS Lecture Notes-Monograph Series 26, Institute of

Mathematical Statistics.

[22] Kallianpur, Gopinath and Xiong, Jie (1994). Asymptotic behavior of a system of

interacting nuclear-space-valued stochastic di�erential equations driven by Poisson

random measures. Appl. Math. Optim. 30, 175-201.

[23] Kotelenez, Peter (1995). A class of quasilinear stochastic partial di�erential equation

of McKean-Vlasov type with mass conservation, Probab. Theory Relat. Fields 102,

159-188.

[24] Kurtz, Thomas G. Semigroups of conditioned shifts and approximation of Markov

processes. Ann. Probab. 3 (1975), 618{642.

[25] Kurtz, Thomas G. and Protter, Philip (1996). Weak convergence of stochastic in-

tegrals and di�erential equations. II. In�nite-dimensional case. Probabilistic models

for nonlinear partial di�erential equations, 197-285, Lecture Notes in Math., 1627,

Springer, New York.

[26] Kurtz, Thomas G. and Xiong, Jie (1999). Particle representations for a class of

nonlinear SPDEs, Stochastic Process. Appl. 83, 103-126.

[27] Kurtz, Thomas G. and Xiong, Jie (2000). Numerical solutions for a class of SPDEs

with application to �ltering. Stochastics in Finite and In�nite Dimension: In Honor

of Gopinath Kallianpur. Edited by T. Hida, R. Karandikar, H. Kunita, B. Rajput,

S. Watanabe and J. Xiong. Trends in Mathematics. Birkhauser, 233-258.

[28] Lototsky, Sergey and Rozovskii, Boris L. (1997). Recursive multiple Wiener integral

expansion for nonlinear �ltering of di�usion processes. In: Stochastic processes and

functional analysis (Riverside, CA, 1994), 199-208, Lecture Notes in Pure and

Appl. Math., 186, Dekker, New York.

32



[29] Lototsky, Sergey; Mikulevicius, R. and Rozovskii, Boris L. (1997). Nonlinear �ltering

revisited: a spectral approach. SIAM J. Control Optim. 35, 435-461.

[30] McKean, Henry P. (1967). Propagation of Chaos for a Class of Non-linear Parabolic

Equations, Lecture Series in Di�erential Equations 2, 177-194.

[31] M�el�eard, Sylvie (1996). Asymptotic behavior of some interacting particle systems,

McKean-Vlasov and Boltzmann models. Probabilistic models for nonlinear partial

di�erential equations, Lecture Notes in Math., 1627, 42-95.

[32] Mitoma, Itaru (1983). Tightness of probabilities on C([0; 1];S 0) and D([0; 1];S 0),
Ann. Probab. 11, 989-999.

[33] Mitoma, Itaru (1985). An 1-dimensional inhomogeneous Langevin's equation, J.

Funct. Anal. 61, 342-359.

[34] Morien, P. L. (1996). Propagation of chaos and 
uctuations for a system of weakly

interacting white noise driven parabolic SPDE's. Stochastics Stochastics Reps. 58,

1-43.

[35] Picard, J. (1984). Approximation of nonlinear �ltering problems and order of con-

vergence. Filtering and Control of Random Processes. Lecture Notes Control Inf.

Sci. 61, Springer, New York.

[36] Rozovskii, Boris L. (1990). Stochastic evolution systems. Linear theory and applica-

tions to nonlinear �ltering. Kluwer Academic Publishers Group, Dordrecht.

[37] Walsh, John (1984). An introduction to stochastic partial di�erential equations.
�Ecole d'�et�e de probabilit�es de Saint Flour. Lecture Notes in Math. 1180, 265-439.

Springer, New York.

33


