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Abstract. Here we develop a new approach for pricing both continuous-time

and discrete-time American options which is based on the fact that an American

option is equivalent to a European option with a consumption process involved.

This approach admits construction of an upper bound (a lower bound) on the true

price using a lower bound (an upper bound) by Monte Carlo simulation. A number

of e�ective estimators of the upper and lower bounds with reduced variance are

proposed. The results obtained are supported by numerical experiments which

look promising.

1. Introduction

It is well known that the value of a trading strategy for pricing European options

satis�es the classical Cauchy problem for an equation of parabolic type. If an op-
tion depends on many stocks, the solution of the problem via any deterministic
method is, as a rule, impossible in practice due to huge volume of computations.
However, for constructing the hedging strategy we have to �nd only individual val-
ues of solutions to certain Cauchy problems at any instant. In such a situation a
probabilistic approach becomes viable. It is based on probabilistic representations
of solutions. Further, the ideas of weak sense numerical integration of stochastic
di�erential equations (SDEs) are exploited and �nally the Monte Carlo technique
is applied. Much more complicated numerical problems arise in connection with

multi-dimensional American options. On the one hand there is no alternative to
a Monte Carlo approach but on the other hand the arising boundary value prob-
lems for partial di�erential problems are nonlinear and they do not have suÆciently
constructive probabilistic representations from the numerical point of view.

Valuation and optimal exercise of American and Bermudan options are one of the
most important problems both in theory and practice. Several approaches have been
proposed in recent years to develop simulation technique for their pricing (see, e.g.
[2, 3, 6, 9, 10, 11, 13, 14, 15, 16, 19, 20, 27, 29] and references therein). The recent
papers [13, 14, 15, 16, 19, 27] are devoted to the dual minimax method for American
and Bermudan options. The authors of [13] and [27] establish a dual representation
of American option prices which allows them to compute upper bounds on several
types of the options using Monte Carlo simulation. Another dual representation

is established and used in [14]. These approaches involve expensive calculations
connected with the maximization of expressions depending on the trajectories of
the price process. The papers [15, 16] are devoted to the further development of the
dual minimax approach and gives its eÆcient numeric performance.

Here we develop a new approach to pricing American options, which is based on the
fact that an American option is equivalent to a European option with a consumption
process involved. In the case of a continuous-time American option (see Sections 2
and 3) the consumption process is equal to zero in the continuation region of the
American option and is equal to a known function in the exercise (stopping) region
(we recall that these regions themselves are unknown). If an approximation of the
exercise region is found and this approximation is wider than the true exercise region,
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then the European option with a consumption process, which is nonnegative in the

wider region, is an upper bound on the true price. In turn, the approximation of
the exercise region is determined by a lower bound. Let f(t; x) be a payo� function
of an American option and let its lower bound v(t; x) be equal, for example, to

(1.1) v(t; x) = maxff(t; x); ueu(t; x)g;

where ueu(t; x) is the price of the underlying European option which, in principle,
can easily be computed by the Monte Carlo method. The value of the upper bound
V (t; x) at a position (t; x) is constructed by the Monte Carlo method in the follow-
ing way. Let u(t; x) be the true option price and E be the exercise region of the
considered American option. Let

Ev = f(t; x) 2 [0; T )�Rd

+ j v(t; x) = f(t; x)g:

Since v � u, we get that E � Ev: Now the upper bound V (t; x) is constructed as
the European option with the consumption process determined by the set Ev: The
inequality V (t; x) � u(t; x) is ensured because we take the consumption processes for

u and V to be equal on E and the consumption process on EvnE to be nonnegative.
We show that if two lower bounds v1 and v2 are such that v1 � v2 � u; then
the corresponding upper bounds V1; V2 satisfy the inequality V1 � V2 � u: The
upper bound V is approximately constructed by using weak methods of numerical

integration of SDEs and Monte Carlo simulation. The obtained estimate V̂ of V

involves an error of numerical integration (bias of V̂ ) and a statistical error due to the
Monte Carlo method. The �rst error can be reduced considerably by a proper choice
of numerical integration scheme. We emphasize that our approach admits applying
a number of known variance reduction methods for reducing the second error (see
Section 4) which are of crucial importance for the e�ectiveness of any Monte Carlo
procedure. In this connection we use the results of [21, 22, 24, 25, 26, 30] (see also

[11] and references therein).

Thus, the new method of constructing upper bound for the price using some lower
bound is developed. We note that we do not need any explicit analytical form of

the lower bound, we only require the ability to compute its price at every position,
for instance, by a Monte Carlo procedure.

In Section 5 we consider the discrete-time case. Here we also use the equivalence of a

discrete-timeAmerican option to a European option with consumption process. The
consumption process is again easily expressed through the characteristics of the price
process and the continuation and exercise regions. Let (Bn;Xn) = (Bn;X

1
n
; :::;Xd

n
);

n = 0; 1; :::; N; be the vector of prices at time n of a discrete-time �nancial model
under consideration. Here Bn is the price of a scalar riskless asset and Xn is the
price vector process of risky assets. Let fn(x) be the pro�t made by exercising an
American option at time n if Xn = x: It turns out that the discrete-time American
option is equivalent to the European option with the payo� function fN (x) and with
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the consumption process 
n(x) de�ned by


n(x) =

�
fn(x)�BnE

�
un+1(Xn+1)

Bn+1

jXn = x

��+
; n = 0; :::; N � 1;

where un(x) is the price of the American option. It is clear that if we take a lower
bound (an upper bound) instead of un+1 in this formula, we obtain a consumption
process which leads to an upper bound (to a lower bound). Following this way
and starting with a lower bound v1; we obtain an upper bound V 1; then again a
lower bound v2 and so on. This procedure gives us the sequences v1

n
(x) � v2

n
(x) �

v3
n
(x) � ::: � un(x); and V 1

n
(x) � V 2

n
(x) � ::: � un(x). However each further step

of the procedure requires labor-consuming calculations and in practice it is possible

to realize only a few steps of this procedure. All the bounds vi and V i can, in
principle easily, be evaluated by the Monte Carlo simulation. In this connection,
much attention is given to variance reduction techniques and some e�ective and
constructive methods reducing statistical errors are proposed (see Section 6). All the
results obtained for discrete-timeAmerican options are carried over to the Bermudan
options in Sections 5 and 6.

In this paper, our attention focuses on constructing the new numerical procedures
and on their practical implementation. The results of numerical experiments (see
Section 7) con�rm eÆciency of the proposed algorithms.

2. Preliminaries

We consider a multi-dimensional American style option in a generalized Black-

Scholes framework

dX i

s
= X i

s
(ai(s;Xs)ds+

dX
j=1

�ij(s;Xs)dW
j

s
); X i

0 = xi; i = 1; :::; d;(2.1)

dBs = r(s;Xs)Bsds; B0 = 1; 0 � s � T:(2.2)

In (2.1)-(2.2), the process X = (X1; :::;Xd) is the price vector process of risky
assets in Rd

+, B is the price of a scalar locally riskless asset, W = (W 1; :::;W d) is a
d-dimensional standard Wiener process on a probability space (
;F ; P ). As usual,
the �ltration generated by W is denoted by fFsg: It is assumed that ai; �ij; r are

suÆciently regular functions from [0; T ]�Rd

+ ! R. Moreover, we assume that the

matrix �(t; x) = f�ij(t; x)g has full rank for every (t; x) 2 [0; T ]�Rd

+: Under these
assumptions the model (B;X) constitutes a complete market, see e.g. [17, 28]. Due

to the American style option contract, the holder has the right to exercise the option
at any 0 � t � T ; yielding a payo� f(t;Xt); where f is a nonnegative continuous
function:

If we set ai = r; i = 1; :::; d; in (2.1), we obtain the price process X in the risk
neutral measure. We recall that with respect to the risk neutral measure the dis-

counted process eX(t) := e�
R t
0
r(s;Xs)dsX(t) is a martingale and the price u(t;Xt) of
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the American option is given by

(2.3) u(t;Xt) = sup
�2Tt;T

E[e�
R �
t
r(s;Xs)dsf(�;X� )jFt] ;

where Tt;T represents the set of stopping times � taking values in [t; T ].

For any time t; let us introduce the following di�erential operator At (we recall that
ai = r; i = 1; :::; d):

Atu(t; x) =
1

2

dX
i;j=1

aij(t; x)
@2u

@xi@xj
(t; x) +

dX
i=1

bi(t; x)
@u

@xi
(t; x);

where

aij(t; x) =

dX
k=1

xixj�ik(t; x)�jk(t; x); bi(t; x) = xir(t; x):

We denote X t;x

s
(or X t;x(s)); s � T; the solution of (2.1) starting at the moment t

from x : X
t;x

t = x:

It is known (see e.g. [5, 17, 31] and references therein) that if u(t; x) is a regular
solution of the following system of partial di�erential inequalities:

@u

@t
+Atu� ru � 0; u � f; (t; x) 2 [0; T )�Rd

+;(2.4) �
@u

@t
+Atu� ru

�
(f � u) = 0; (t; x) 2 [0; T )�Rd

+;

u(T; x) = f(T; x); x 2 Rd

+;

then

(2.5) u(t; x) = sup
�2Tt;T

E[e�
R �
t
r(s;X

t;x
s )dsf(�;X t;x

�
)] ; (t; x) 2 [0; T ]�Rd

+;

i.e., the solution of (2.4) is the price of the American option.

Consider the continuation region C, the exercise (stopping) region E, and the exercise
boundary (critical price surface) 
 :

C = f(t; x) 2 [0; T )�Rd

+ j u(t; x) > f(t; x)g;
E = f(t; x) 2 [0; T )�Rd

+ j u(t; x) = f(t; x)g;

 = @C \ @E:

Introduce the function

(2.6) c(t; x) =

8<:
0 if (t; x) 2 C;

�
�
@f

@t
+Atf � rf

�
if (t; x) 2 E:

It is clear from (2.4) that
@u

@t
+ Atu � ru = 0 in C, u = f in E; and c � 0:

Consequently, the function u(t; x) is the solution of the following Cauchy problem
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for the equation of parabolic type

@u

@t
+Atu� ru+ c = 0; (t; x) 2 [0; T )�Rd

+;(2.7)

u(T; x) = f(T; x); x 2 Rd

+:

This means that the considered American option is equivalent to the European
option with the consumption process C which is de�ned by the consumption rate
c(t;X(t)); 0 � t � T: Thus, the price u(t; x) can be represented as

(2.8) u(t; x) = E[f(T;X t;x(T ))Y t;x;1(T ) + Z t;x;1;0(T ))];

where X satis�es (2.1) and the scalars Y and Z satisfy the equations

dY = �r(s;X)Y ds; Y (t) = 1;(2.9)

dZ = c(s;X)Y ds; Z(t) = 0:

3. Construction of upper bounds using consumption processes

We start with a lower bound v(t; x) for the true option price u(t; x): Due to (2.5),
for any � 2 Tt;T the function

(3.1) v(t; x) = E[e�
R �
t
r(s;X

t;x
s )dsf(�;X t;x

�
)] ; (t; x) 2 [0; T ]�Rd

+;

is a lower bound. In particular, if we take � to be equal zero, then v(t; x) = f(t; x),
and if � = T; v(t; x) is the price of the corresponding European option (without
consumption). We can also de�ne � with the help of any surface in [0; T )�Rd

+ as
the �rst stopping time when the process X t;x

s
reaches this surface. In all these cases

the lower bound can be e�ectively evaluated using Monte Carlo simulation. Further,

if v1(t; x); :::; vk(t; x) are some lower bounds, then v(t; x) = max1�i�k vi(t; x) is also a
lower bound. Henceforth we consider lower bounds satisfying the inequality v(t; x) �
f(t; x):Consider the following important example of lower bound. Introduce the grid

(3.2) t = �0 < �1 < : : : < �l � T

and the time

�(t; x) = inf
n
�m � 0 : E[e�

R �m
t

r(s;X
t;x
s )dsf(�m;X

t;x

�m
)]

= max
0�i�l

E[e�
R �i
t r(s;X

t;x
s )dsf(�i;X

t;x

�i
)]

�
:

Clearly, the following formula gives us a lower bound

v(t; x) = E[e�
R �(t;x)
t

r(s;X
t;x
s )dsf(�(t; x);X

t;x

�(t;x)
)] � u(t; x):

For any lower bound v(t; x) we introduce the sets

Cv = f(t; x) 2 [0; T )�Rd

+ j v(t; x) > f(t; x)g;
Ev = f(t; x) 2 [0; T )�Rd

+ j v(t; x) = f(t; x)g:
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Clearly Cv � C; Ev � E: Also consider also the set

D = f(t; x) 2 [0; T )�Rd

+ j �
�
@f

@t
+Atf � rf

�
� 0g:

Due to (2.4), we have D � E and therefore E � D \ Ev: Introduce the function
cv(t; x) :

(3.3) cv(t; x) := �
�
@f

@t
+Atf � rf

�
�D\Ev(t; x);

where �D\Ev is the characteristic function of the set D \ Ev: Since E � D \ Ev;
we have cv(t; x) � c(t; x): Hence the price V (t; x) of the European option with the
consumption, de�ned by cv(t; x) instead of c(t; x); exceeds u(t; x); i.e., V (t; x) is an
upper bound for the true option price u(t; x). Thus, having begun with a lower
bound, we construct an upper bound. The upper bound V (t; x) is equal to

(3.4) V (t; x) = E[f(T;X t;x(T ))Y t;x;1(T ) + Z t;x;1;0(T )];

where X satis�es (see (2.1))

(3.5) dX i = X i(r(s;X)ds +

dX
j=1

�ij(s;X))dW j(s)); X i(t) = xi; i = 1; :::; d;

and the scalars Y and Z satisfy the equations

dY = �r(s;X)Y ds; Y (t) = 1;(3.6)

dZ = cv(s;X)Y ds; Z(t) = 0:

As u� v � V � v and V � u � V � v; the di�erence V � v estimates the exactness
of both the lower and upper bounds. We note that the more a lower bound v(t; x)
is close to the true option price u(t; x) the more V (t; x) is close to u(t; x); i.e., if
v1 � v2 � u then V1 � V2 � u; where the upper bounds V1; V2 correspond to the
lower bounds v1; v2 according to the approach under consideration. In particular,
if v = u then V = u:

To evaluate V (t; x);we simulate some approximate random variables �X t;x(T ); �Y t;x;1(T );
�Z t;x;1;0(T ) which can be obtained by using weak methods for numerical integration
of SDEs [25]. The error of such an approximation is of order O(hp); where p is
the order of weak convergence, depending on the speci�c method, and h is a time

discretization step. For example, let us use an equidistant time discretization of the
time interval [t; T ] : t = t0 < t1 < ::: < tL = T with step size h = (T � t)=L then
the Euler method (its order p is equal to 1) with simpli�ed simulation of Wiener
processes applied to system (3.5), (3.6) gives

�X(t) = x; �X i(tl+1) = �X i(tl)(1 + rlh+ (�l�l)
i
p
h); i = 1; :::; d;(3.7)

�Y (t) = 1; �Y (tl+1) = �Y (tl)� rl �Y (tl)h;

�Z(t) = 0; �Z(tl+1) = �Z(tl) + (cv)l �Y (tl)h; l = 0; :::; L� 1:
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In (3.7) rl; �l; and (cv)l are values of the functions r; �; cv at (tl; �X(tl)) and �l =

(�1
l
; :::; �d

l
)| is a vector of the random variables �

j

l
distributed by the law P (�

j

l
=

�1) = 1=2 and independent for j = 1; :::; d; l = 0; :::; L� 1:

Then, using the Monte Carlo approach, we get

V (t; x) = E� ' E �� = E[f(T; �X t;x(T )) �Y t;x;1(T ) + �Z t;x;1;0(T )](3.8)

' 1

M

MX
m=1

[f(T; m
�X(T )) m

�Y (T ) +m
�Z(T )] := V̂ (t; x);

where � = f(T;X t;x(T ))Y t;x;1(T )+Z t;x;1;0(T ), �� = f(T; �X t;x(T )) �Y t;x;1(T )+ �Z t;x;1;0(T ),
and m

�X(tl) = (m �X1(tl); :::;m �Xd(tl))
|, m

�Y (tl); m
�Z(tl); m = 1; :::;M; are indepen-

dent weak approximate trajectories of system (3.5), (3.6). So, the approximation

V̂ (t; x) of V (t; x) involves two errors: the �rst one is due to the method of numerical

integration (this error is the bias of V̂ (t; x)) and the second one is a statistical error

due to the Monte Carlo method (it is determined by the variance of V̂ (t; x)). The
�rst error can be reduced by a proper choice of numerical integration scheme and
step size h: It is well known that decreasing the second error, i.e. variance reduction,
is of crucial importance for e�ectiveness of any Monte Carlo procedure.

4. Variance reduction methods in constructing upper bounds

Variance reduction methods can be derived from the generalized probabilistic repre-

sentation for V (t; x) (see, e.g., the method of important sampling in [25, 26, 30], the
method of control variates in [25, 26], and the combining method in [21, 22, 25]).
Let us use the method of control variates. Along with the previous probabilistic
representation for V (t; x) the generalized representation given by the formula (3.4)
with X; Y; Z; satisfying the system

dX i = X i(r(s;X)ds +

dX
j=1

�ij(s;X))dW j(s)); X i(t) = xi; i = 1; :::; d;(4.1)

dY = �r(s;X)Y ds; Y (t) = 1 ;

dZ = cv(s;X)Y ds+ F>(s;X)Y dW (s); Z(t) = 0 ;

is evidently true as well. In (4.1), F (s; x) is a column-vector of dimension d with
good analytical properties but arbitrary otherwise. We see that the expectation E�F
in (3.4) does not depend on a choice of F (we note that �F is equal to the previous
expression for � but now it is calculated due to (4.1)). At the same time, V ar�F
does depend on F . A suitable choice of F allows us to reduce the variance. It is
known (see [21, 22, 25]) that

(4.2) V ar�F = E

Z
T

t

(Y t;x;1(s))2
dX

j=1

(

dX
i=1

X i�ij
@V

@xi
+ Fj)

2ds:
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Therefore, if

(4.3) Fj(s; x) = �
dX

i=1

xi�ij(s; x)
@V

@xi
(s; x);

then V ar�F = 0: Of course, such a vector F cannot be constructed without knowing
the function V: However, the function v is known. Suppose that the lower bound v
is not too far from the true price u; then v is close to V: Choosing

(4.4) Fj(s; x) = �
dX

i=1

xi�ij(s; x)
@v

@xi
(s; x);

we obtain that V ar�F although is not zero but small. As � is close to ��, the variance

V ar��F is small as well. Therefore, if the estimate V̂ (t; x) is computed according to
(3.8) with �X and �Y from (3.7) and �Z due to the formula
(4.5)
�Z(t) = 0; �Z(tl+1) = �Z(tl) + (cv)l �Y (tl)h + F |(tl; �X(tl)) �Y (tl)�l

p
h; l = 0; :::; L� 1;

with F from (4.4), then the variance V ar��F is small.

The complexity of computing V̂ (t; x) depends on the complexity of computing the

lower bound v(s;X) and (for variance reduction) its derivatives
@v

@xi
(s;X): If v(s; x)

is known analytically, then the use of (4.5) is straightforward. Let us describe a

way of reducing variance in the most typical situation when v(s; x) is unknown
analytically however it can be evaluated by a Monte Carlo procedure. Let v̂(t; x) be
an estimator for v(t; x): For instance, if v is the price of the underlying European
option, then

(4.6) v̂(t; x) =
1

K

KX
k=1

f(T; k
�X(T )) k

�Y (T );

where k
�X(T ); k

�Y (T ) are simulated due to (3.7). We stress that for any position
(t; x) the estimator v̂(t; x) is computed by a procedure which is independent of the

procedure for computing V̂ (t; x):

There are manymethods of evaluating the derivatives
@v

@xi
(s;X) (see, e.g. [11, 21, 24]

and references therein). In [24] a very simple method is justi�ed. It makes use of
evaluating only the values of v to evaluate deltas. This method rests on the �nite
di�erence formula
(4.7)
@v

@xi
=

v(t; x1; : : : ; xi +�xi; : : : ; xd)� v(t; x1; : : : ; xi ��xi; : : : ; xd)

2�xi
+O

��
�xi

�2�
:

Of course, in (4.7) we are forced to use the approximate values v̂(t; x1; : : : ; xi �
�xi; : : : ; xd) instead of v(t; x1; : : : ; xi � �xi; : : : ; xd): Usually two errors appear in
evaluating v: the error of numerical integration, say O(hp); and the statistical error
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of the Monte Carlo method, say O(1=
p
K); i.e.,

v ' v̂ +O(hp) +O(1=
p
K):

Therefore, the error R of the approximation

@v

@xi
' v̂(t; x1; : : : ; xi +�xi; : : : ; xd)� v̂(t; x1; : : : ; xi ��xi; : : : ; xd)

2�xi

is evaluated, in general, by

R � O
��
�xi

�2�
+O

�
hp

�xi

�
+O

�
1

�xi
p
K

�
:

Due to the presence of small �xi in the denominators, the di�erence approach seems

to be not admissible. Fortunately, the more accurate arguments and the employ-
ment of the dependent realizations in simulation of v̂(t; x1; : : : ; xi + �xi; : : : ; xd)
and v̂(t; x1; : : : ; xi ��xi; : : : ; xd) rehabilitate the di�erence approach. In [24] it is
proved that the error of numerical integration by the weak Euler method (p = 1)
contributes to the total error of evaluation of the derivatives not O(h=�xi) but only
O(h)+O(h2=�xi). Further, it is proved that the method of dependent realizations,
which is close to using common random numbers for Monte Carlo estimators (see

[6, 11, 24]), contributes just O(1=
p
K) to the total error. Thus,

R � O
��
�xi

�2�
+O(h) +O

�
h2

�xi

�
+O

�
1p
K

�
:

If we put �xi = �ih
1=2; �i > 0, then

R � O(h) +O(1=
p
K) :

Hence we get the same convergence rate in evaluating derivatives of a function as in

evaluating the function itself.

Brie
y, the method of dependent realizations consists in the following. For get-

ting the estimator @̂iv(t; x) for @v(t; x)=@xi; K pairs of approximate trajectories

are simulated, each pair consists of a trajectory starting from x + �ih
1=2ei :=

(x1; : : : ; xi+�ih
1=2; : : : ; xd) and a trajectory starting from x��ih1=2ei := (x1; : : : ; xi�

�ih
1=2; : : : ; xd) at the moment t: The pairs are independent but the two trajectories

of the same pair are dependent: they correspond to the same realization (as a rule,
in the weak sense) of the Wiener process. For the above example of the European

option (see (4.6)), the estimator @̂iv(t; x) looks as

@̂iv(t; x) =
1

2�ih1=2
1

K

KX
k=1

[f(T; k
�X t;x+�ih

1=2
ei(T )) k

�Y t;x+�ih
1=2

ei;1(T )

� f(T; k
�X t;x��ih

1=2ei(T )) k
�Y t;x��ih

1=2ei;1(T )]:

9



As the �nal result, the estimator V̂ (t; x) with reduced variance is computed by the
formula

(4.8) V̂ (t; x) =
1

M

MX
m=1

[f(T; m
�X(T )) m

�Y (T ) +m
�Z(T )];

where m
�X(T ); m

�Y (T ) are simulated due to (3.7) and m
�Z(T ) due to

(4.9) �Z(t) = 0; �Z(tl+1) = �Z(tl) + (cv)l �Y (tl)h�
dX

i=1

�X i(tl)�ij(tl; �X(tl))@̂
iv(t; x):

5. Discrete-time case

5.1. American options. In this section we consider a discrete-time �nancial model.
Let

(Bn;Xn) = (Bn;X
1
n
; :::;Xd

n
); n = 0; 1; :::; N;

be the vector of prices at time n; where Bn is the price of a scalar riskless asset
(we assume that Bn is deterministic and B0 = 1) and Xn = (X1

n
; :::;Xd

n
) is the

price vector process of risky assets. Let fn(x) be the pro�t made by exercising an
American option at time n if Xn = x: We assume that the modelling is based on
the �ltered space (
;F ; (Fn)0�n�N ; P ), where the probability P is the risk-neutral
pricing probability for the problem, and that Xn is a Markov chain with respect

to the �ltration (Fn)0�n�N : The discounted process ~Xn := Xn=Bn is a martingale
with respect to the probability P and the price un(Xn) of the American option is
given by

(5.1) un(Xn) = sup
�2Tn;N

BnE

�
f�(X�)

B�

Fn

�
;

where Tn;N is the set of stopping times � taking values in fn; n+ 1; :::; Ng:
The value process un can be determined by induction as follows (Snell envelope):

uN (x) = fN (x);(5.2)

un(x) = max

�
fn(x); BnE

�
un+1(Xn+1)

Bn+1

jXn = x

��
; n = N � 1; :::; 0:

We see that in theory the problem of evaluating u0(x); the price of the discrete-time
American option, is easily solved using iteration procedure (5.2). However, if X is
high dimensional, the iteration procedure is not practical.

For 0 � n � N � 1 the equation (5.2) can be rewritten in the form
(5.3)

un(x) = BnE

�
un+1(Xn+1)

Bn+1

jXn = x

�
+

�
fn(x)�BnE

�
un+1(Xn+1)

Bn+1

jXn = x

��+
:

10



Introduce the functions

(5.4) 
n(x) =

�
fn(x)�BnE

�
un+1(Xn+1)

Bn+1

jXn = x

��+
; n = N � 1; :::; 0:

Due to (5.3), we have

uN�1(XN�1) = BN�1E

�
fN (XN )

BN

jFN�1

�
+ 
N�1(XN�1);

uN�2(XN�2) = BN�2E

�
uN�1(XN�1)

BN�1

jFN�2

�
+ 
N�2(XN�2)

= BN�2E

�
fN(XN )

BN

jFN�2

�
+BN�2E

�

N�1(XN�1)

BN�1

jFN�2

�
+ 
N�2(XN�2):

Continuing in the same way, we get

un(Xn) = BnE

�
fN(XN )

BN

jFn

�
+Bn

N�(n+1)X
k=1

E

�

N�k(XN�k)

BN�k

jFn

�
(5.5)

+
n(Xn); n = 0; :::; N � 1:

Putting X0 = x and recalling that B0 = 1; we obtain

(5.6) u0(x) = E

�
fN (XN )

BN

�
+ 
0(x) +

N�1X
n=1

E

�

n(Xn)

Bn

�
:

The formula (5.6) gives the value of the European option with the payo� function
fN (x) and with the consumption process 
n de�ned by (5.4). For the considered

American option, the exercise (stopping) set E can be determined as (see (5.2)):

(5.7) E =

�
(n; x) : fn(x) > BnE

�
un+1(Xn+1)

Bn+1

jXn = x

��
;

i.e., similar to the continuous case, the consumption process does not vanish in
stopping set only (see (5.3)).

The obtained result on the equivalence of the discrete-time American option to the

European option with the consumption process cannot be used directly because
un(x) and, consequently, 
n(x) are unknown. We take advantage of the discovered
connection in the following way.

Let vn(x) be a lower bound for the true option price un(x): We introduce the func-
tions

(5.8) 
n;v(x) =

�
fn(x)�BnE

�
vn+1(Xn+1)

Bn+1

jXn = x

��+
; n = 0; :::; N � 1:

Clearly,


n;v(x) � 
n(x):

Hence the price Vn(x) of the European option with the payo� function fN (x) and
with the consumption process 
n;v(x) is an upper bound: Vn(x) � un(x):

11



Conversely, if Vn(x) is an upper bound for the true option price un(x) and

(5.9) 
n;V (x) =

�
fn(x)�BnE

�
Vn+1(Xn+1)

Bn+1

jXn = x

��+
; n = 0; :::; N � 1;

then the price vn(x) of the European option with the consumption process 
n;V (x)
is a lower bound.

Thus, starting from a lower bound v1
n
(x); one can construct the upper bound V 1

n
(x)

as the European option with the corresponding consumption process 
n;v1(x) (we do
not require that v1

n
(x) itself is equipped with any consumption process). Then it is

possible to construct the lower bound v2
n
(x) with the consumption process 
n;V 1(x):

Consider the lower bound ~v2
n
(x) = maxfv1

n
(x); v2

n
(x)g � v1

n
(x) (we do not equip

~v2
n
(x) with any consumption process) and construct the upper bound V 2

n
(x) as the

European option with the consumption process 
n;~v2 (x): Clearly, V
2
n
(x) � V 1

n
(x):

Then we construct the lower bound v3
n
(x) with the consumption process 
n;V 2(x)

(we need not in ~v3
n
(x) since v3

n
(x) � v2

n
(x)), and so on. This procedure gives us the

sequences

v1
n
(x) � ~v2

n
(x) � v3

n
(x) � ::: � un(x);(5.10)

V 1
n
(x) � V 2

n
(x) � ::: � un(x):

However, each further step of the procedure requires labor-consuming calculations
and in practice it is possible to realize only a few steps of this procedure. In the

capacity of v1
n
(x) one can propose the European option with payo� function fN (x)

(this option is equipped with zero consumption process). In this case ~v2
n
(x) = v2

n
(x):

Another proposition for v1
n
(x) :

(5.11) v1
n
(x) = max

�
fn(x); BnE

�
fn+1(Xn+1)

Bn+1

jXn = x

��
:

This v1
n
(x) is one of the simplest lower bounds. In addition we note that the quantity

BnE

�
fn+1(Xn+1)

Bn+1

jXn = x

�
can be very often evaluated exactly.

If a lower bound vn(x) is known, the upper bound Vn(x) can be, in general easily,
evaluated by the Monte Carlo simulation:

(5.12) Vn(x) ' 1

M

MX
m=1

fN(mX
n;x

N
)

BN

+ 
n;v(x) +
1

M

MX
m=1

N�1X
k=n+1


k;v(mX
n;x

k
)

Bk

:= V̂n(x)

In (5.12) mXk; m = 1; :::;M; are independent trajectories of the Markov chain X:
A lower bound is evaluated analogously if an upper bound is known.

12



As an important example of the discrete-time �nancial model, let us consider the

Markov chain (Bn;Xn) = (Bn;X
1
n
; :::;Xd

n
), n = 0; 1; :::; N; generated by the system

B0 = 1; Bn+1 = (1 + rnh)Bn;(5.13)

X0 = x; X i

n+1 = X i

n
(1 + rnh+ (�n(Xn)�n)

ih1=2); i = 1; :::; d;

where h > 0 is a suÆciently small constant, rn � 0 are scalars, �n(x) are matrices

of dimension d � d, �n = (�1
n
; :::; �d

n
)| is a vector of two point random variables �j

n
;

distributed by the law P (�j
n
= �1) = 1=2 and independent in j = 1; :::; d; n =

0; :::; N � 1: We see, that the system for the Markov chain X coincides with the
discretization scheme (3.7) for �X: Let us denote by l� = (l�

1; :::;l �
d); l = 1; :::; 2d;

all the di�erent values of this vector which components take the values �1 and by

lX(n; x; h) the values of Xn+1 from (5.13) for Xn = x; �n =l �: For any function

g(x), the conditional expectation BnE

�
g(Xn+1)

Bn+1

jXn = x

�
can be found exactly:

(5.14) BnE

�
g(Xn+1)

Bn+1

jXn = x

�
=

1

1 + rnh

1

2d

2dX
l=1

g(lX(n; x; h)):

Therefore for this example, the functions 
n;v(x) from (5.8), 
n;V (x) from (5.9), and
v1
n
(x) from (5.11) can be expressed exactly through vn(x); Vn(x), and fn(x):

Let us compare the consumption rate c(t; x) given by (2.6) in the continuous-
time case and the consumption process 
0(x) de�ned by (5.4) in the correspond-
ing discrete-time case in a heuristic manner. For simplicity we consider d = 1:
We set t0 = t; X0 = x; n = 0: Let (t; x) 2 IntE: If h is suÆciently small, then
u0(x) ' u(t; x) = f(t; x), u1(X1) ' u(t+ h;X1) = f(t+ h;X1). Further (see (5.4)),


0(x) =

�
f0(x)�B0E

�
u1(X1)

B1

jX0 = x

��+
=

�
f0(x)� 1

1 + r0h
E(f(t+ h;X1)jX0 = x)

�+
:

Since f0(x) = f(t; x), X1 = x(1 + rh+ ��h1=2), we get


0(x) = [f(t; x)� 1

1 + rh

1

2
(f(t+ h; x(1 + rh+ ��h1=2))

+ f(t+ h; x(1 + rh � ��h1=2)))]+

= �
�
@f

@t
+Atf � rf)h +O(h2

�
' c(t; x)h;

i.e., we obtain the expected correspondence (see (2.6)).

5.2. Bermudan options. As before we consider the discrete-time model

(Bn;Xn) = (Bn;X
1
n
; :::;Xd

n
); n = 0; 1; :::; N:
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However, now an investor can exercise his right only at time belonging to the set of

stopping times S = fi1; :::; ilg within f0; 1; :::; Ng where il = N . The price un(Xn)
of the Bermudan option is given by

(5.15) un(Xn) = sup
�2TS\[n;N ]

BnE

�
f�(X�)

B�

jFn

�
;

where TS\[n;N ] is the set of stopping times � taking values in fi1; :::; ilg \ fn; n +
1; :::; Ng:
The value process un is determined as follows:

uN (x) = fN (x);(5.16)

un(x) =

8>><>>:
max

�
fn(x); BnE

�
un+1(Xn+1)

Bn+1

jXn = x

��
; n 2 S;

Bn

�
un+1(Xn+1)

Bn+1

jXn = x

�
; n =2 S:

Thus, we obtain that the Bermudan option is equivalent to the European option
with the payo� function fN(x) and with the consumption process 
n de�ned by

(5.17) 
n(x) =

8<:
�
fn(x)�BnE

�
un+1(Xn+1)

Bn+1

jXn = x

��+
; n 2 S;

0; n =2 S:

From here all the results obtained in this section for discrete-time American options

can be carried over to the Bermudan options. For example, if vn(x) is a lower bound
of the true option price un(x), the price Vn(x) of the European option with the
payo� function fN(x) and with the consumption process

(5.18) 
n;v(x) =

8<:
�
fn(x)�BnE

�
vn+1(Xn+1)

Bn+1

jXn = x

��+
; n 2 S;

0; n =2 S:

is an upper bound: Vn(x) � un(x):

6. Variance reduction in the discrete-time case

The statistical error of the approximation V̂n(x) for Vn(x) is determined by variance

of V̂n(x): To reduce the statistical error, one can use both the method of important
sampling and the method of control variates. Let us consider the method of control
variates. To this aim we need in a generalized probabilistic representation for Vn(x):

Let Pn(x; dy); n � 1; be one-step transition functions of the Markov chain Xn, i.e.,

P (Xn 2 dyjXn�1) = Pn(Xn�1; dy); n = 1; 2; ::: :

In the case of a homogeneous Markov chain all the one-step transition functions
coincide and equal to P (x; dy) = P1(x; dy) = ::: = Pn(x; dy) :

14



Clearly, Vn(x) is the solution to the Cauchy problem for the following di�erence

integral equation

VN (x) = fN (x);(6.1)

Vn(x) =
Bn

Bn+1

Z
Vn+1(y)Pn+1(x; dy) + 
n;v(x); n � N � 1:(6.2)

A probabilistic representation for Vn(x) is given by the formula (see [23])

(6.3) Vn(x) = E[
Bn

BN

fN(X
n;x

N
) + Z

n;x

N
];

where the scalar Zn;x

n+k ; k = 0; 1; :::; is governed by the equation

(6.4) Z
n;x

n+k+1 = Z
n;x

n+k +
Bn

Bn+k


n+k;v(X
n;x

n+k); Z
n;x

n
= 0:

Let ~Vn(x) be the solution to the Cauchy problem

~VN (x) = ~f(x);(6.5)

~Vn(x) =
Bn

Bn+1

Z
~Vn+1(y)Pn+1(x; dy) + ~
n(x); n � N � 1:(6.6)

We have

(6.7) ~Vn(x) = E[
Bn

BN

~f(X
n;x

N
) + ~Z

n;x

N
];

where the scalar ~Zn;x

n+k ; k = 0; 1; :::; satis�es the equation

(6.8) ~Zn;x

n+k+1 =
~Zn;x

n+k +
Bn

Bn+k

~
n+k(X
n;x

n+k);
~Zn;x

n
= 0:

Let us denote

� =
Bn

BN

fN (X
n;x

N
) + Zn;x

N
; ~� =

Bn

BN

~f(Xn;x

N
) + ~Zn;x

N
:

We have

(6.9) Vn(x) = � ~Vn(x) + E(� � �~�);

where � is a constant.

The formula (6.9) gives a generalized probabilistic representation for Vn(x): If using
(6.9) (and considering Vn(x) to be known) the Monte Carlo error is determined by

V ar(� � �~�) instead of V ar� if using (6.3). We have

V ar(� � �~�) = V ar� + �2V ar~� � 2�Cov(�; ~�):

The optimal � is

�opt =
Cov(�; ~�)

V ar~�

and

V ar(� � �opt~�) = V ar� � Cov2(�; ~�)

V ar~�
� V ar�:
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In practice, the value �opt can be evaluated during a numerical experiment.

If � = 1; then

V ar(� � ~�) = V ar� + V ar~� � 2Cov(�; ~�)

and method (6.9) is e�ective if the covariance between � and ~� is large.

Let a lower bound vn(x); which is the price of a European option with the consump-

tion process ~
n(x); be taken in the capacity of ~Vn; i.e., vn(x) satis�es the Cauchy
problem

vn(x) =
Bn

Bn+1

Z
vn+1(y)Pn+1(x; dy) + ~
n(x); n � N � 1;(6.10)

vN(x) = fN(x):(6.11)

Hence

vn(x) = E[
Bn

BN

fN (X
n;x

N
) + ~Zn;x

N
]

with ~Z
n;x

n+k; k = 0; 1; :::; satisfying the equation (6.8), and

Vn(x) = vn(x) + E�;

where

� = Z
n;x

N
� ~Z

n;x

N
:

Now the Monte Carlo estimator V̂n(x) for Vn(x) has the form

(6.12) V̂n(x) = vn(x) +
1

M

MX
m=1

(mZ
n;x

N
�m

~Z
n;x

N
):

The bias of this estimator is equal to zero and the variance is equal to

(6.13) V arV̂n(x) = V ar� ' 1

M

MX
m=1

(mZ
n;x

N
�m

~Z
n;x

N
)2�

"
1

M

MX
m=1

(mZ
n;x

N
�m

~Z
n;x

N
)

#2
:

Clearly, if vn(x) is close to un(x); the estimator (6.12) is much better than the direct
estimator

(6.14) V̂n(x) =
1

M

MX
m=1

[
Bn

BN

fN (mX
n;x

N
) +m Zn;x

N
]:

Analogously, we can reduce the variance when we construct a lower bound using
an upper bound. We emphasize that the proposed variance reduction method re-
quires both lower and upper bounds equipped with the corresponding consumption

processes. If v1
n
in the procedure (5.10) is equipped with the corresponding con-

sumption process, then ~v2
n
= v2

n
and all the bounds V 1

n
, v2

n
; V 2

n
and so on can be

constructed using the proposed variance reduction method. If v1
n
is not equipped

with a consumption process, then to reduce variance in constructing V 1
n
we need

another approach. But for further reducing one can again use the proposed method.
For example, for the variance reduction in constructing V 2

n
; we can use v2

n
or V 1

n

which are equipped with the corresponding consumption processes (but, in general,
not ~v2

n
). Let us return to reducing variance in constructing V 1

n
if v1

n
is not equipped
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with a consumption process. Evidently, vn(x) = v1
n
(x) satis�es the Cauchy problem

(6.10)-(6.11) with

(6.15) ~
n(x) = v1
n
(x)�BnE

�
v1
n+1(Xn+1)

Bn+1

jXn = x

�
:

We note that ~
n(x) from (6.15) can be negative. Nevertheless, the estimator of the
form (6.12) can again be better than the direct estimator (6.14).

For evaluating 
 due to formula (5.8) ((5.9)), we need at any step n to compute the

conditional expectation of the form E(
vn+1(Xn+1)

Bn+1

jXn = x) (E
Vn+1(Xn+1)

Bn+1

jXn =

x)). It can be done either exactly (see, for example, formula (5.14)) or by simulation:

(6.16) E

�
vn+1(Xn+1)

Bn+1

jXn = x

�
' 1

K

KX
k=1

vn+1(kX
n;x

n+1)

Bn+1

;

where kX
n;x

n+1; k = 1; :::;K; are independent realizations of the state of the Markov

chain X at the moment n + 1 starting from x at the step n: Thus, unlike the con-
tinuous case, where the consumption de�ned by cv; is computed explicitly, we have
to compute 
 by simulation in the discrete-time case. Fortunately, the computation
(6.16) is rather inexpensive because of simulating the Markov chain at a single step
only, i.e., computing 
 is `almost explicit'.

7. Numerical examples

7.1. An American put on a single asset. Let us consider an American put on
a single log-Brownian asset, which price is given by

Xt = X0 exp(�Wt + (r � �2=2)t);

with r denoting as usual the riskless rate of interest, assumed constant, and �
denoting the constant volatility, and which payo� function f(t; x) = (K � x)+: No
closed-form solution for the price is known, but there are various numerical methods
which give accurate approximations to the price.

The aim of this subsection is to investigate the performance of continuous consump-
tion process method (abbreviated by CCP) in this setup. The results of simulation
for the case of the initial lower bound approximation (1.1) are reported in Table
7.1. The parameters values are K = 100; � = 0:4; r = 0:06 and T = 0:5, with X0

varying as shown in the �rst column of the table. The true values of the American
option are quoted from the article [1]. The �fth column gives values of the upper
bound estimated as (see (3.8))

(7.1) V̂ (0;X0) =
1

M

MX
m=1

V (m)(0;X0);
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Table 7.1. Upper bound for the standard one-dimensional American
put with parameters K = 100; r = 0:06; T = 0:5; and � = 0:4 ob-
tained by CCP and CCP&VR methods. Values for di�erent numbers
of Monte Carlo simulations and di�erent initial stocks are presented.

X0 Lower Bound American Option M Upper Bound Upper Bound
(1.1) (True Value) (CCP) (CCP&VR)

102 24.9425 � 3.6261 22.1791 � 0.2430

80 20.6893 21.6059 104 22.3643 � 0.3500 22.2012 � 0.0234
106 22.1862 � 0.0347 22.2120 � 0.0024

102 18.1221 � 3.2926 15.1391 � 0.2630

90 14.4085 14.9187 104 15.4796 � 0.3176 15.2712 � 0.0277
106 15.2724 � 0.0314 15.2932 � 0.0028

102 12.6247 � 2.8720 9.9633 � 0.2818

100 9.6642 9.9458 104 10.3200 � 0.2742 10.1067 � 0.0298
106 10.1123 � 0.0271 10.1240 � 0.0030

102 8.4518 � 2.4013 6.3575 � 0.3162

110 6.2797 6.4352 104 6.6991 � 0.2266 6.4909 � 0.0311
106 6.5051 � 0.0223 6.5119 � 0.0031

102 5.6270� 1.8924 3.9788 � 0.2959

120 3.9759 4.0611 104 4.2647� 0.1813 4.0889 � 0.0298
106 4.1094� 0.0178 4.1133 � 0.0029

where

(7.2) V (m)(0;X0) = f(T; m �X(T )) m
�Y (T ) +m

�Z(T )

with �X, �Y , �Z being de�ned in (3.7) and h being equal to 0:01. All the values are
given together with their 5% con�dence intervals:

(7.3) RMC =
2p
M

24 1

M

MX
m=1

(V (m)(0;X0))
2 �

 
1

M

MX
m=1

V (m)(0;X0)

!2
351=2

:

The sixth column in turn shows results for the same set of parameters and the same
initial lower bound when in addition the variance reduction (VR) technique is em-
ployed. Since the European option and its derivative can be computed analytically,
the same holds for the function F in (4.4). More precisely, F is given in this case

by

(7.4) F (s; x) =

(
�x�@ueu

@x
(s; x); ueu(s; x) � (K � x)+;

x� � �fx<Kg; ueu(s; x) < (K � x)+:

Hence, variance reduction can be done in this case eÆciently by using the weak
integration scheme (4.5) for �Z(T ) in (7.2).
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7.2. Upper bounds depending on choice of lower ones. It is known that the

price u�(x) of the American put in the case of in�nite time horizon (see [17]) is equal
to

u�(x) =

(
K � x; x � x�;

(K � x�)
� x
x�

�
�


; x > x�;

where 
 = 2r=�2; x� = K
=(1 + 
):

Let us return to the American put with a �nite time horizon. Clearly, u�(x) is an
upper bound and

Eu� = f(t; x) 2 [0; T )�Rd

+ j u�(x) = f(x)g
= f(t; x) 2 [0; T )�Rd

+ j x � x�g
belongs to E : Eu� � E (recall that f(x) = (K � x)+). Besides Eu� � D. Therefore

cu�(t; x) := �
�
@f

@t
+Atf � rf

�
�Eu�(t; x)

is less than c(t; x) : cu�(t; x) � c(t; x) and the price u�(t; x) of the European option
with the consumption cu�(t; x) is a lower bound. The lower bound

v�(t; x) = maxff(x); u�(t; x)g
is larger than that given by (1.1) and, consequently, it is more preferable for the
considered example.

In Table 7.2 we compute values of v�(t; x) at the point (0;X0) for the standard one-
dimensional American put with parameters K = 100; r = 0:06; T = 5; and � = 0:2
using CCP&VR approach. For the purpose of variance reduction, one possible way
would be to de�ne in (4.4)

F (s; x) = �x�du
�

dx
(x):

But numerical experiments suggest using rather the lower bound (1.1) as an ap-
proximation for v�. So we simulate M trajectories using the system (4.1) with F

given by (7.4) and the size of the integration step h being equal to 0:1. Note that
for X0 = 80 we have f(X0) > u�(X0) and hence v�(0;X0) = f(X0) = 20.

Now we are able to obtain the upper bound using the lower bound v�(t; x) con-

structed in the way described above. In Table 7.3 we present values of this bound
(third column) for the standard one-dimensional American put (the parameters are
the same as before). M1 = 1000 paths were used to estimate the lower bound v� and
M2 = 1000 paths for estimating the upper bound itself. Improvements are clearly
observable.

7.3. Bermudan put on a single asset. In this section we turn to Bermudan
put on a single asset in the Black-Scholes framework and, consequently, we will use
discrete consumption process approach (DCP) described in Section 5.
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Table 7.2. Lower bounds for the standard one-dimensional Ameri-
can put with parameters K = 100; r = 0:06; T = 5; and � = 0:2. The
�rst lower bound is given by (1.1) while the second one is obtained
by CCP&VR method using the upper approximation u� . Values for
di�erent initial stocks and di�erent numbersM of simulated paths are
presented.

X0 Lower Bound M Lower Bound
v(0;X0) v�(0;X0)

102 20
80 20 104 20

106 20

102 13.1654 � 1.3341
90 10 104 12.0265 � 0.1406

106 11.9013 � 0.0140

102 7.6077 � 1.0398
100 5.6968 104 8.0171 � 0.1045

106 7.9671 � 0.0106

102 5.1080 � 0.8355
110 4.11214 104 5.3793 � 0.0867

106 5.4280 � 0.0085

102 3.9085 � 0.6127
120 2.96985 104 3.6431 � 0.0709

106 3.6578 � 0.0070

Table 7.3. Upper bounds for the standard one-dimensional Amer-
ican put with parameters K = 100; r = 0:06; T = 5; and � = 0:2
obtained by CCP method with di�erent initial lower approximations.

X0 Upper Bound Upper Bound
((1.1) based) (v� based)

80 26.8186�0.1292 24.1685 � 0.3304

90 19.5623�0.1202 15.9458 � 0.3532

100 12.7508�0.1053 10.7251 � 0.2581

110 8.7377�0.0884 7.1022 � 0.1974

120 6.0040�0.0727 5.0116 � 0.1528

We assume throughout this section that the points �0 < ::: < �l corresponding to
exercise periods of the option considered are equidistant, Æ = �i � �i�1 and �0 =
0; �l = T . Further, in this one can approximate case the underlying asset process
by a Markov chain (Bn;Xn) generated by the system (5.13), where h = Æ=L for
some natural number L and N = Ll. Now the consumption process corresponding
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to the Bermudan option is given by (see Section 5.1)

(7.5)


n(x) =

8<:
�
fn(x)�BnE

�
un+1(Xn+1)

Bn+1

jXn = x

��+
; n 2 f0; L; 2L; :::; (l� 1)Lg;
0; n =2 f0; L; 2L; :::; (l� 1)Lg;

where un+1(Xn+1) is the option price of the option at the time �k+h if n = kL. Let
us consider the Black-Scholes model with parameters K = 100; r = 0:06; T = 5,
� = 0:4 and the Bermudan option with L = 5 and l = 10, i.e. Æ = 0:5; h = 0:1: In
the third column of Table 7.4 we present values of the corresponding upper bound
at the point (0;X0) estimated as (see (6.12))

(7.6) V̂ 1
n
(Xn) = v1

n
(Xn) +

1

M1

M1X
m=1

m�
n;Xn

N
;

where

m�
n;Xn

N
= (mZ

n;Xn

N
�m

~Z
n;Xn

N
)

with Z and ~Z de�ned in (6.4) and (6.8) correspondingly, and 
n;v; ~
n given by


n;v1(x) =

8<:
�
fn(x)�BnE

�
v1
n+1(Xn+1)

Bn+1

jXn = x

��+
; n 2 f0; L; 2L; :::; (l� 1)Lg;
0; n =2 f0; L; 2L; :::; (l� 1)Lg;

~
n(x) =

8<: v1
n
(x)�BnE

�
v1
n+1(Xn+1)

Bn+1

jXn = x

�
; n 2 f0; L; 2L; :::; (l� 1)Lg;
0; n =2 f0; L; 2L; :::; (l� 1)Lg:

Here (1.1) is used as a lower bound, v1
n
(Xn) is equal to the value of this lower bound

at the point (nh;Xn) and M1 = 104. All values are given together with their 5%
con�dence intervals

V̂ 1
0 (X0)� 2p

M1

24 1

M1

M1X
m=1

(m�
0;X0

N
)2 �

 
1

M1

M1X
m=1

m�
0;X0

N

!2
351=2

:

Let us now make one step further and compute the new lower bound v20(x) (and then
~v20(x) = maxfv10(X0); v

2
0(X0)g) using the constructed upper bound V 1

n
(x). First, we

de�ne the process Z using 
n;V 1 given by


n;V 1(x) =

8<:
�
fn(x)�BnE

�
V 1
n+1(Xn+1)

Bn+1

jXn = x

��+
; n 2 f0; L; 2L; :::; (l� 1)Lg;
0; n =2 f0; L; 2L; :::; (l� 1)Lg;

and similarly process ~Z by means of ~
n = 
n;v1 as described in Section 6. Upon
constructing M2 independent realizations of these processes, the estimated value of
the new lower bound at the point (0;X0) is given by

(7.7) v̂20(X0) = V̂ 1
0 (X0) +

1

M2

M2X
m=1

mÆ
0;X0

N
;
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Table 7.4. Bounds for the standard one-dimensional Bermudan put
with parameters K = 100; r = 0:06; T = 5, � = 0:4, L = 5 and
l = 10. Results from the two consecutive steps of DCP&VR method
are reported.

X0 Lower Bound Upper Bound New Lower Bound
(1.1) (DCP&VR) (DCP&VR)

60 40 45.5692�0.1010 41.5142�0.1129
70 30 40.4180�0.1028 37.7906�0.1137
80 23.7333 35.5510�0.0944 33.3436�0.1048
90 20.9902 30.6261�0.0988 28.8452�0.1064
100 18.6459 25.5120�0.0941 24.0281�0.1025
110 16.6311 23.2165�0.0969 22.0260�0.1025
120 14.8903 20.5668�0.0875 19.5517�0.0932

where

mÆ
0;X0

N
= (mZ

0;X0

N
�m

~Z
0;X0

N
):

We see that the Monte Carlo error for v20(X0) is a sum of two errors one coming from
the �rst summand in (7.7) and another one from the second term. While the �rst
error depends crucially on the choice of M1; the second one is mainly determined by
M2 and is stable with respect to the number of simulations M3 used for calculation

of the process 
n;V 1 at each time step. So, we take M1 = 104 for estimating V 1
0 (X0),

set M2 = 104, M3 = 100 and construct 5% con�dence intervals for v20(X0) as

v̂20(X0)� 2

24 1

M2
2

M2X
m=1

(mÆ
0;X0

N
)2 � 1

M2

 
1

M2

M2X
m=1

mÆ
0;X0

N

!2

+

1

M2
1

M1X
m=1

(m�
0;X0

N
)2 � 1

M1

 
1

M1

M1X
m=1

m�
0;X0

N

!2
351=2

:

The corresponding values ~v20(X0) = maxfv10(X0); v̂
2
0(X0)g are given in the forth

column of the Table 7.4. The new lower bound together with the upper bound gives
already comparatively tight bounds for the true value of the Bermudan option.

8. Conclusions

In this paper we present the new approach for evaluation of American and Bermudan
options based, in a sense, on the decomposition of these options into the European
option and some consumption process. This decomposition together with its prob-
abilistic representation allows us to construct an eÆcient sequential method for im-
proving the initial approximation by interchanging between lower and upper bounds
at each step of the algorithm. The approach seems to be constructive and, in prin-
ciple, to be easily implementable. Di�erent types of variance reduction techniques
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can be incorporated into algorithms within the framework of this approach. Since

the methods obtained are Monte Carlo based, high-dimensional problems become
tractable.
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