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Abstract. A large system of particles is studied. Its time evolution is 
determined as the superposition of two components. The first component 
is the independent motion of each particle. The second component is the 
random interaction mechanism between pairs of particles. The intensity of 
the interaction depends on the state of the system and is assumed to be 
bounded. 

Convergence of the empirical measures is proved as the number of parti-
cles tends to infinity. The limiting deterministic measure-valued function is 
characterized as the unique solution of a nonlinear equation of the Boltzmann 
type. 
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1. Introduction 
The basic equation of the kinetic theory of dilute (monatomic) gases is 

the Boltzmann equation (originally published in [5]) 

a at P( t, x, v) + ( v, v x) p( t, x, v) + (f3 ( x, v), v v) p( t, x, v) = ( 1.1) 

k.
3 

dw fs
2 

de B( v, w, e) [p(t, x, v*) p(t, x, w*) - p(t, x, v) p(t, x, w )] . 

This equation describes the time evolution of a density function p(t, x, v) that 
depends on a time variable t ~ 0, on coordinates x E G C R 3 representing 
the possible positions of the gas particles, and on coordinates v E R 3 repre-
senting the possible velocities of the gas particles. The function B is called 
the collision kernel, and the function f3 describes an external force acting on 
the particles. The symbol V denotes the gradient (the vector of the partial 
derivatives), and (., .) is the scalar product in three-dimensional Euclidean 
space R 3 • The symbols de and dw denote the uniform surface measure on the 
unit sphere S 2 and the Lebesgue measure on R 3 , respectively. The objects 
v* and w* are defined as 

v* = v + e(e, w - v), w* = w + e(e, v - w), (1.2) 

where v, w E R 3 , e E S 2 • They are interpreted as the post-collision veloci-
ties of two particles with the pre-collision velocities v and w. The transforma-
tion (1.2) preserves momentum (v*+w* = v+w) and energy (llv*ll 2+llw*ll 2 = 
llvll 2+ llwll 2). We refer to [7] concerning more information about the Boltz-
mann equation. 

To turn to the discussion of stochastic models related to the Boltzmann 
equation, we introduce a Markov process 

(1.3) 

with the infinitesimal generator of the form 
n 

A( <I> )(z) = L [ (Vi, v xJ + (f3(xi, Vi), v vJ] (<I> )(z)+ (1.4) 
i=l 
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where <I> is an appropriate test function, z = (xi, vi)~1 , Xi E G, Vi E R 3
, 

and 

(1.5) 

is a collision transformation based on (1.2). The function (3 is the external 
force appearing in Eq. ( 1.1), and the function a is related to the collision 
kernel B. 

Stochastic particle systems of the form (1.3)-(1.5) have been investi-
gated for a long time. The first reference seems to be the paper by Leon-
tovich [17], which was brought to the author's attention by Ivanov and 
Rogazinskij [12]. Among other things, Leontovich pointed out the problem 
that has become known later as the problem of propagation of chaos. Let 
Pn(t, x1, vi, ... , Xn, vn) be the n-particle distribution function of the process 
(1.3), and let Pnlk denote the corresponding marginal distributions. What 
Leontovich found was the following: If (in the limit n ~ oo) 

and 

a(x,v,y,w,e) = K.(x-y)B(v,w,e), (1.6) 

where K. denotes Dirac's delta-function, then (in the limit n ~ oo) the func-
tion Pnll ( t, x, v) solves the Boltzmann equation (1.1 ). 

In his famous paper on the mathematical foundation of kinetic theory of 
gases [13], Kac gave a precise notion of the problem: if a certain factorization 
property (the "chaos" property) holds at time zero, namely 

k 

lim Pnlk(O,x1,v1, ... ,xk,vk) =IT lim Pn11(0,xi,vi), (1.7) 
n-oo n-oo 

i=l 

then this property remains true at any time (it "propagates"), i.e. 

k 

lim Pnlk(t, X1, Vi, ... , Xk, vk) = IT lim Pn11(t, Xi, Vi), Vt> 0, 
n-oo n-oo 

i=l 
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and the function li!Iln-.oo Pnll ( t, x, v) solves the Boltzmann equation (1.1 ). 
Kac also proved propagation of chaos for a specific model (Kac's caricature 
of a Maxwellian gas, cf. [19]). 

However, Kac considered only the so-called spatially homogeneous case 
(more precisely, the case when both gradient terms in Eq. (1.1) disappear). 
This fact influenced the development of the theory of stochastic particle 
systems related to the Boltzmann equation quite strongly. Research in this 
field was restricted to the spatially homogeneous case during a long period 
after Kac's paper [13]. We refer to [14], [15], [20], [28], [25] ,[26], [24], [29], 
[9], [3] (cf. [11], [27] concerning up to (that) date reviews and additional 
reference lists). The spatially inhomogeneous case has been treated during 
the last decade in [23], [6], [10], [1], [21], [18], [16], [2]. 

Skorokhod [23, Ch. 2] considered a Markov process Z(t) = (Zi(t))f=1 
(describing it via stochastic differential equations with respect to Poisson 
measures) with the generator 

n 

A(~)(z) = L (b(zi), V'zJ(~)(z)+ 
i=l 

2
1 L ~ [~(J(z, i,j, 1?)) - ~(z)] 7r(d1?), 
n l~#j~n le 

where ~ is an appropriate test function, z = (zi)f=1 , Zi E Z, and 

{ 

Zk , if k =j:. i, j , 
[ J ( Z, i, j, e)] k = Zi + f ( Zi, Zj, 1?) , ~f k == i. , 

Zj + f(zj, Zi,1?), If k == J. 

(1.8) 

(1.9) 

The symbol Z denotes the state space of a single particle, e is a parameter 
set' f is a function on z x z x e ' and 71" is a measure on e . 

This model is more general than the Leontovich model (1.4)-(1.5) as far as 
the gradient terms and the jump transformation J are concerned. However, 
the distribution 7r of the jump parameter 1? does not depend on the state z. 

Let 

(1.10) 

be the empirical measures associated with the Markov process Z(t), where 
the symbol Oz denotes the Dirac measure concentrated in z. 
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Skorokhod proved that the empirical measures (1.10) converge (for any 
t) to a deterministic limit .:\(t) which satisfies the equation 

~ f cp(z).:\(t,dz) = f (b(z), Vz)(cp)(z).:\(t,dz)+ (1.11) dt lz lz l l {fa [<p(z1 + f(z1, z2, ..?)) - <p(z1)] 7r(d..?)} >.(t, dz1) >.(t, dz2), 

for appropriate test functions cp. 
It turns out (cf., e.g., [26]) that the chaos property (1. 7) (i.e., the asymp-

totic factorization) is equivalent to the convergence in distribution of the 
empirical measures (considered as random variables with values in the space 
of measures on Z) to a deterministic limit. In this setup, it is natural to 
study the convergence not only for fixed t, but also in the space of measure-
valued functions of t (functional law of large numbers) (cf. [22], [25], [29], 
[11 ]). 

In a recent paper [2], the authors considered a Markov process (1.3) with 
the infinitesimal generator 

n 

A( <I>)( z) = I: (Vi, \7 xJ (<I>)( z)+ (1.12) 
i=l 

_I_ I: r r [<I>(J(z,i,j,-u1,il2))- <I>(z)] Q(vi,v;,dil1,dil2), 
2 n l$i:f:j$n Jn3 Jn3 

where <I> is an appropriate test function, z = (Xi, Vi)f=l' Xi E 'R3 ' Vi E 'R3 ' 

and 

{ 

( X k, Vk) , if k # i, J , 
[J(z, i, j, v1, il2)t = (xi, ~i) , ~f k = i_, 

( X j, V2) , If k = J . 

The symbol Q denotes a generalized collision kernel. 
Under the assumption that the velocities belong to a bounded 

functional law of large numbers was proved. 
As compared with the Leontovich model (1.4)-(1.5), the case 

(1.13) 

set, a 

is covered by the above model. But still the distribution of the jump pa-
rameters v1 , v2 does not depend on the coordinates that perform a drift (i.e., 
Xi, x;, in this case). 

5 



In the present paper, we prove a functional law of large numbers for a 
model, which includes both the Leontovich model (1.4)-(1.5) and the Sko-
rokhod model (1.8)-(1.9). The paper is organized as follows. 

The main results are formulated in two theorems in Section 2. The first 
theorem is concerned with the description of the limiting equation showing 
existence and uniqueness of the solution. The second theorem studies the be-
haviour of the empirical measures showing convergence to a measure-valued 
function determined by the limiting equation. 

Section 3 contains some technical preparations concerning random vari-
ables with values in metric spaces. 

Section 4 is devoted to the study of the limiting equation. In particular, 
existence and uniqueness of the solution are proved. In the spatially homo-
geneous case, this solution reduces to the so-called Wild's sum (cf. [30], [19], 
[25]). 

Section 5 concerns some properties of the basic Markov particle system. 
Relative compactness of the empirical measures is proved. 

In Section 6 we give the proof of the convergence theorem. The main idea 
is (as in [23]) to approximate the Markov process by a pure jump process, to 
study the convergence of the approximate system, and to control the error 
resulting from the approximation. 

Finally, Section 7 contains some remarks concerning the results and their 
possible or rather desirable generalizations. 

2. Main Results 
In the first part of this section we introduce what we call a Boltzmann type 

stochastic particle system. This is a Markov process, which is determined 
by two basic components. The first component is a transition function U0 

describing the independent motion of the particles (called the "free fl.ow" in 
the Boltzmann context). The second component is a generalized collision 
kernel Q describing the pairwise interaction among the particles (interpreted 
as "collisions" in the Boltzmann case). In the second part of this section we 
consider an equation that determines the limit of the empirical measures and 
give a theorem concerning existence and uniqueness of the solution. This 
result is valid for rather general U0 and (bounded) Q. In the third part we 
introduce several restrictions concerning U0 and Q , and give a convergence 
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theorem. 
Let ( Z, r) be a locally compact separable metric space ( r denoting the 

metric) and Bz denote the Borel-O"-algebra. Let B(Z) be the Banach space 
of bounded Borel measurable functions on Z with ll'Pll = supzEZ lcp(z)I, and 
let C(Z) denote the subspace of continuous functions vanishing at infinity. 
Furthermore, let M(Z) be the space of finite, positive measures on (Z, Bz) 
and P(Z) denote the space of probability measures on (Z, Bz). 

Let U0 (t, z, r) be a transition function on [O, oo) x Z x Bz with the prop-
erties (cf. [8, Ch. 4, Sect. 1]) 

U0 (t,z)EP(Z), V(t,z)E[O,oo)xZ, (2.1) 

Uo(O, z) = Sz, Vz E Z, 

U0 (., ., r) is measurable, Vr E Bz, 

Uo(t + s, z, r) = fz Uo(s, z, I') Uo(t, z, dz), 

vs' t E [ 0, 00) ' v z E z ' vr E B z . 

(2.2) 

(2.3) 

(2.4) 

Let Q(z1 , z2 , r 1 , r 2 ) be a function on Z x Z x Bz x Bz with the properties 

Q(., ., I'1, I'2) is measurable, VI'1, I'2 E Bz. (2.6) 

Using Uo and Q, we introduce a Markov process Z(t) = (Zi(t))f=1 with 
the state space zn and the generator 

n 

A(<I>)(z) = 2:Ao,zi(<I>)(z)+ 
i=l 

~ L f f [<I>(J(z, i,j, z1, z2)) - <I>(z)] Q(zi, zj, dz1, dz2), 
n l5:i#i~n f z f z 

(2.7) 

where z = (zi)f=1 , Zi E Z, A0 denotes the generator corresponding to the 
transition function U0 , <I> is an appropriate test function, and 

{ 

Zk , if k f:. i, J , 
[ J ( z, i, j, z1 , z2 )] = z1 , if k = i , 

k - "f k . Z2, 1 = J. 

7 
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We call the process Z ( t) a Boltzmann type stochastic particle system. Some 
basic properties of this process will be studied in Section 5. 

We assume 

(2.9) 

and introduce a kernel 

Qmax(zi, z2, r1, r2) = Q(z1, z2, r1, r2)+ (2.10) 
[CQ,max - Q(z1, z2, z, Z)] 6z1 (r1) 6z2(r2)' z1, Z2 E z' I'i, r2 E Bz. 

Furthermore, we define a function 

T0 (t)*(µ)(I') = fz µ(dz) U0 (t, z, I'), µ E M(Z), r E Bz, (2.11) 

and a function 

Kmax(µ1, µ2)(I') = fz fz [Qmax(z1, z2, r, Z)+ (2.12) 

Q max ( Z1' Z2' z' r)] µ1 ( dz1) µ2 ( dz2) ' µ1' µ2 E M ( z) ' r E B z . 

It is easy to realize that (2.11) defines an operator 

To(t)* : M(Z) ~ M(Z), 

and that (2.12) defines an operator 

Kmax : M(Z) x M(Z) ~ M(Z)' 

justifying the notations. Some additional properties of these operators will 
be established in Section 4. 

Using the operators T0 ( t )* and Kmax , we introduce the equation 

.\( t) = e-co t To( t)*( Ao)+ le-co (t-.) To( t - s )* Kma:( >.( s ), .\( s )) ds, (2.13) 

where t E [O, oo), .:\0 E M(Z), and 

Co= 2 Cq,max Ao(Z). (2.14) 
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Theorem 2.1 Assume the generalized collision kernel Q satisfies (2. 9). Sup-
pose Ao E M(Z), and let c0 be given in (2.14). 

Define, fort E [O, oo) , k 2::: 1 , 

(2.15) 

and 

Vk+1 (t)(Ao) = (2.16) 
k t I: l e-co (t-s) To(t - s )* Kmax(vi(s )(Ao), Vk+i-i(s )(Ao)) ds. 

i=l 0 

Then the series 
00 

W ( t) (Ao) = I: Vk ( t) (Ao) , t E [ 0, oo) , (2.17) 
k=l 

converges in M(Z) in the total variation norm. 
The function A(t) = W(t)(Ao) is the unique solution of Eq. (2.13). 

Example 2.2 (Wild's sum) Consider the case, when the free flow degen-
erates, i.e. U0 (t, z) = 8z, Vt> 0, Vz E Z. Notice that 

fz cp(z) Kmax(µ, µ)(dz)= 2 CQ,max µ(Z) fz cp(z) µ(dz)+ 

fz fz { fz fz [cp(z1) + cp(z2) - cp(z1) - cp(z2)] x (2.18) 

Q(z1, z2, dz1, dz2)} µ(dz1) µ(dz2), Vcp E B(Z), Vµ E M(Z). 

Thus, Eq. (2.13) takes the form 

~ fz cp(z) >.(t, dz)= fz fz { fz fz [cp(Z1) + cp(Z2 ) - cp(z1) - cp(z2 )] x 

Q(z1, z2, dzi, dz2)} A(t, dz1) A(t, dz2), A(O) =Ao, (2.19) 

where cp is an arbitrary bounded measurable function. Eq. (2.19) is a weak 
version of the spatially homogeneous Boltzmann equation (cf. {28}, [25}, 
{11}). 
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The solution .:\( t) given in {2.17) has now the representation 
00 

.:\(t) = Le-cot (1 - e-co t)k-l Vk, t E [O, oo), (2.20) 
k=1 

where ii1 = Ao, Vk+i = co\ E:=l Kmax(iii, Vk+i-i), k 2:: 1, and Co is 
defined in (2.14). The series on the right-hand side of {2.20) is called Wild's 
sum {cf. {25}, with Ao(Z) = 1, CQ,max = ~). 

We introduce now certain restrictions on the basic components U0 and Q 
of the generator (2. 7)-(2.8). 

Let T0 (t) denote the semigroup of operators on B(Z) associated with the 
transition function U0 . We suppose that T0 ( t) is a Feller semigroup (cf. [8, 
Ch. 4, Sect. 2]), i.e. 

T0 ( t)( cp) E G(Z), Vcp E G(Z), (2.21) 

and 

lim II To( t)( cp) - c,oll = 0, Vcp E G(Z). 
t-+0 

(2.22) 

Furthermore, we assume that the transition function U0 is determined as 

Uo(t, z, r) = bF(t,z)(r), r E Bz, 

where F( t, z) is a mapping from [O, oo) x Z into Z such that 

F(O, z) = z, Vz E Z, 

and 

(2.23) 

(2.24) 

F(t + s, z) = F(s, F(t, z)), Vt, s E [O, oo), Vz E Z. (2.25) 

Concerning the free flow F , we assume 

r(F(t, z), F(s, z))::; CF [r(z, z) +It - sl (1 + ro(z) + ro(z))] , (2.26) 
Vt, s E [O, oo), Vz, z E Z, 

where the function r0 is defined as 

r0(z) = r(z,zo), z E Z, for some z0 E Z, (2.27) 

10 



and r is the metric in the space Z . 
We suppose that the collision kernel Q has the form 

where 8 is the Dirac measure, e is a parameter set, q, f 1 , f2 are appropriate 
functions on z x z x e' and 7r is a a-:fini te measure on e. 

Concerning the function q , we assume 

where 

(2.30) 

and 

le lq(z, z1, 19) - q(z, z1, 19)l 7r(d19):::; Cq,L [r(z, z) + r(z1, z1)], (2.31) 

v z' Z1' z' Z1 E z . 
Concerning the functions fi, i = 1, 2, we assume 

[ r(fi( z, Z1' 19), fi(z, Z1' 19)) qmax( 19) 7r( d19) :::; c f,L [r( z, z) + r( Z1' z1)], le 
Vz, z1, z, z1 E Z, (2.32) 

[ r(fi( zo, zo, 19), zo) qmax( 19) 7r( d19) < oo, for some z0 E Z, (2.33) le 
and 

le cp(fi(., .,19))qmax(19)7r(d19) E C(Z X Z), Vcp E C(Z). (2.34) 

Theorem 2.3 Let Z(t) = (Zi(t))i=i be a Markov process with the generator 
(2. 7)-(2.8), where Uo is defined in {2.23) and Q is defined in {2.28). Let 
µ(n)(t) be the empirical measures defined in {1.10) and .A(t) be the solution 
of Eq. {2.13). 
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Suppose that the assumptions {2.21), (2.22), (2.26) concerning the free 
flow F and the assumptions {2.29)-(2.34) concerning the functions q, f1, h 
are satisfied. 

If 

lim £(n) e(µ(n)(O), .A(O)) = 0, 
n-+oo 

(2.35) 

then 

lim £(n) sup e(µ<n)(s ), .A(s )) = 0, Vt~ 0, 
n-+oo 05s5t 

(2.36) 

where e is any bounded metric equivalent to weak convergence in P(Z), and 
£(n) denotes mathematical expectation. 

Finishing this section, we consider two examples. 
With Q defined in (2.28), the generator (2. 7)-(2.8) takes the form 

n 

A(<P)(z) = l:Ao,zi(<P)(z)+ (2.37) 
i=l 

(2.38) 

Let the free flow F be defined as the solution to a system of ordinary 
differential equations 

d 
dt F ( t, z) = b( F ( t, z)) , t E ( 0, oo) , F ( 0, z) = z , 

where bis a mapping from Z into Z, and Z =Rd (r is the Euclidean metric). 
Then the free flow generator A0 takes the form 

Ao(cp)(z) = (b(z), Vz). (2.39) 
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In this case the properties (2.21), (2.22) of the semigroup T0 (t) are conse-
quences of assumption (2.26) (assuming z0 = 0, without loss of generality). 
To show this, we consider cp E C(Z) and note that T0 (t)(cp)(z) = cp(F(t,z)) 
by (2.23). 

The function T0 (t)( cp) is bounded and continuous, because of (2.26) with 
s = t. Thus, (2.21) is fulfilled if 

lim llF(t, z)ll = oo, Vt> 0. 
llzll--+00 

It follows from (2.26) and (2.24) that 

llF(t, z) - zll ::; CF t (1+2 llzll). 

Consequently, 

and 
1 1 

llF(t, z)ll ~ 2 llzll - 4, 1 
Vz E Z, Vt::; 4 CF . 

(2.40) 

(2.41) 

(2.42) 

Thus, (2.40) follows, for small t, from (2.42) and, for arbitrary t, from the 
semigrou p property. 

To establish (2.22), we estimate 

llTo(t)(cp) - cpll ::; sup ITo(t)(cp)(z) - cp(z)I 
llzll~R 

+ sup ITo(t)(cp)(z)I + sup jcp(z)I. 
llzll>R llzll>R 

The third term on the right-hand side is small for large R, the second term 
is small for large R uniformly int because of (2.42), and the first term tends 
to zero as t ---+ 0 for fixed R, because of (2.41 ). Thus, (2.22) follows. 

Example 2.4 (Skorokhod model) The generator (1.8)-(1.9) has the form 
{2.31)-(2.38) with Ao given in (2.39), q(z1, z2, .a)=~, and 

f1(z1, z2, .a) = z1 + f(z1, z2, .a), h(zi, z2, .a) = z2 + f(z2, z1, .a). (2.43) 

Condition {2.26) is fulfilled if b satisfies the global Lipschitz condition 

llb(z) - b(z)ll ::; Cb,L llz - zll, Vz, z E Z. (2.44) 
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Example 2.5 {Leontovich model) The generator (1..4.)-(1.5} has the form 
(2.37)-(2.38} with Ao given in (2.39 }, 

Z==R3 x'R3
, z==(x,v), z1 ==(x1,v1), z2==(x2,v2), 

b(z) == (v,t3(x,v))' e == S 2' 7r(d'!J) ==de' 

and f 1 , f2 given in (2.43} with 

f(z1, z2, e) == (0, e{e, v2 - v1)). (2.45) 

Condition (2.44) is fulfilled if (3 satisfies a global Lipschitz condition, in 
particular, if t3 == 0 . 

Conditions {2.32} and (2.33) are fulfilled for the functions fi, f2 defined 
in {2.43) and {2.45). Condition {2.34) is a consequence of the energy conser-
vation property of the Boltzmann collision transformation defined in {1.2}. 

3. Technical preparations 
In this section we introduce some notations and prove several technical 

assertions concerning random variables with values in metric spaces. 
Let (S, d) be a metric space (d denoting the metric) and Bs denote the 

a-algebra of Borel subsets of S. Let B( S) be the Banach space of bounded 
Borel measurable functions on S with llfll == supxES lf(x)I, and C(S) be the 
subspace of bounded continuous functions. For f E C(S), we denote 

llJllL ==max (sup lf(x)I, sup If(~ - f)(y)I) . (3.1) 
xES x,yES ,x=/=y X, Y 

Furthermore, M(S) is the space of finite, positive measures on S, and 
P(S) is the space of probability measures on S. We denote 

(!, v) ==ls f(y) v(dy), where f E B(S), v E M(S). 
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On M ( S) , we consider the distance induced by the total variation norm on 
the space of finite signed Borel measures (cf. [8, p. 495]), 

llv1 - v2ll = sup l(f, v1) - (!, v2)I. (3.2) 
fEB(S): 11111:9 

On P( S) , we consider the bounded Lipschitz metric 

{!L(Pi, P2) = sup l(f, P1) - (!, P2)I, (3.3) 
fEC(S): llJllL9 

which is equivalent to weak convergence (cf. [8, p. 150]). 
Let (e<n)) be a sequence of random variables with values in S, i.e. of mea-

surable mappings from a probability space ( nCn), ;:Cn), Prob(n)) into the space 
S. Let (P(n)) denote the associated probability distributions on (S, Bs). The 
sequence (e(n)) is said to converge in distribution to the S-valued random 
variable e if the sequence (P(n)) converges weakly to the probability distri-
bution P associated with e . Weak convergence (as n ---t oo) is denoted by 
p(n) ::::} P and convergence in distribution (as n ---too) by e<n) ::::} e . Mathe-
matical expectation with respect to Prob(n) is denoted by £(n). 

Lemma 3.1 (extension of the space) Let S, S1 be metric spaces such that 
S c S1 and S has the relative topology. Let e<n), e be random variables with 
values in S. 

Then e<n), e are random variables with values in S1 and 

e<n) ::::} e in S if and only if e<n) ::::} e in S1 . 

Proof. It can be checked easily (cf. [4, Add. II]) that 

Bs = {r1 n s : ri E BsJ. 

Consequently, we have 

(3.4) 

Assertion (3.4) is proved in analogy with [8, Ch. 3, Cor. 3.2], where the 
case SE Bs1 was considered. Let p(n), P and P}n), P1 denote the measures 
associated with e<n), e on S and S1 , respectively. Obviously, 
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We use the criterion ( e) from [8, Ch. 3, Th. 3.1], which reads p(n) ::==> P on 
S if and only if lim infn-+oo p(n)( G) ~ P( G), for all open subsets G C S. 

Let p(n) =?Pon Sand G1 be an open subset of S1. Then G1 n Sis open 
in S. Using (3.5), we obtain 

Let P}n) =? P1 on S1 and G be an open subset of S. Then G = G1 n S, 
for some open subset G1 C S1 • Using (3.5), we obtain 

lim inf p(n)( G) = lim inf p{n)( G1 n S) = n-+oo n-+oo 
liminf P}n>(G1) ~ P1(G1) = P(G1 n S) = P(G). n-+oo 

This completes the proof. D 

Lemma 3.2 (convergence in distribution to a constant) Let (e<n)) be 
a sequence of random variables with values in a metric space (S, d) and (P(n)) 
be the sequence of the associated probability distributions on (S, Bs). Let 
y E S be a fixed element and d = min( d, 1) . 

Then 

Proof. Suppose p(n) =? Cy . Since the function f ( x) = d( x, y) is bounded 
and continuous on S , one obtains 

lim £(n)J(e(n), y) = lim (! p(n)) = (! E ) = 0. n-+oo n-+oo ' ' Y 

The second part of the assertion follows from [8, Ch. 3, Cor. 3.3). D 

Corollary 3.3 Let ( S, d) be a metric space and d1 be a metric inducing the 
same topology. Let (e(n)) be a sequence of random variables with values in S 
and y E S be a fixed element. 

Then limn-co £(n)J(e<n>, y) = 0 if and only if limn-+oo £(n)J1(e(n), y) = 0. 

Proof. The assertion follows immediately from Lemma 3.2, since the left-
hand side of (3.6) depends only on the topology in S. D 
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Corollary 3.4 Let (S, d) be a separable metric space. Let (e(n)(t)) be a se-
quence of stochastic processes with index set b,,. and state space S. Let y be a 
deterministic mapping from b,,. into S . 

Then 

( eCn)( ti), ... , eCn)( tk)) * (y( ti), ... , y( tk)) , V( ti, ... , tk) c b,,., (3. 7) 

if and only if 

(3.8) 

Proof. Notice that (eCn)(ti), ... , eCn)(tk)) is a random variable with values 
in Sk (cf. [8, p. 50]). According to Lemma 3.2, (3. 7) is equivalent to 

lim £(n) m~x d( e(n) (ti), y( ti)) == 0. 
n--+-oo i~i~k 

This is fulfilled if limn__.00 £(n)J(eCn)(ti), y(ti)) == 0, Vi == 1, ... , k, which is 
assured by (3.8) and Lemma 3.2. D 

Let DE[O, oo) be the space of right continuous functions from [O, oo) into 
a metric space (E, e) having left limits (cf. [8, Ch. 3, Sect. 5]), and let 
CE[O, oo) denote the space of continuous functions from [O, oo) into E. The 
space DE[O, oo) is topologized with the Skorokhod metric dE. Furthermore, 
let g == min(l, e), and 

du(x,y) == 1
00 

e-t sup g(x(s),y(s))dt (3.9) Jo O~s9 
be the uniform metric on DE[O, oo). 

Corollary 3.5 Let (E,e),(Ei,ei) be metric spaces such that EC Ei and 
e is the restriction of ei. Let eCn), e be random variables with values in 

DE[O, 00). 
Then e(n)' e are random variables with values in DE1 [O, 00)' and 

e(n) * e in DE[O, 00) if and only if e(n) * e in DE1 [O, 00). 

Proof. The assertion follows immediately from Lemma 3.1, since 

s == DE[O, 00) c DE1 [O, 00) = Si' 

and the topology in S is equivalent to the relative topology induced from Si . 
0 
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Lemma 3.6 (uniform convergence) Let ( E, e) be a metric space, and 
e = min( 1, e) . Let ( e( n)) be a sequence of random variables with values in 
DE[O, oo) and y E CE[O, oo). 

Then the following are equivalent 

lim £(n)dE(e(n), y) = 0, (3.10) 
n-+oo 

(3.11) 

lim £(n) sup e(e(n\s),y(s)) = 0, Vt> 0. 
n-+oo O~s::;t 

(3.12) 

Proof. It follows from definition (3.9) that (3.12) implies (3.11). It is easy to 
see from the definition of the Skorokhod metric (cf. [8, p. 117]) that dE ::; du. 
Consequently, (3.11) implies (3.10). It remains to show that (3.10) implies 
(3.12). 

We introduce a real-valued function f ( x) = SUPo<s<t e( x( s ), y( s)) on 
DE[O, 00)' and notice that the function f is continuous at-the point y. This 
is a consequence of [8, Ch. 3, Lemma 10.l]. 

The function f is also measurable on (DE[O, oo ), dE). Really, the function 
e( x( s ), y( s)) is measurable for any fixed s, because it is the superposition of 
a measurable mapping (7r 8 (x) = x(s)) from DE[O, oo) into E, and a contin-
uous function (f1(z) = e(z,y(s))) from E into n. The SUPo<s<t equals the 
supremum over a dense set because of the cadlag-property of x-. 

Since (3.10) is equivalent to p(n) :::} Dy, according to Lemma 3.2, we 
obtain from (4, Ch. 1, Th. 5.2] that 

lim £(n) J(e(n)) = lim (!, p(n)) = (!, 6 ) = 0. 
n-+oo n-+oo Y 

This completes the proof. D 
Let Z be a locally compact separable metric space and C(Z) C C(Z) 

denote the subspace of continuous functions vanishing at infinity. We intro-
duce 

Mc(Z) = {v E M(Z) : v(Z)::; c}, c E (0, oo). 

Let ('Pk) be a dense subset of C(Z). On Mc(Z), we consider the metric 
00 1 

g(v1, v2) = L 
2
k min (1, l(cpk, v1) - (cpk, v2)I). 

k=l 
(3.13) 
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Remark 3. 7 Notice that liIDn-oo e(vCn), v) = 0 if and only if 

lim (cp, v(n)) = (cp, v), Vcp E C(Z), n-+oo 

where vCn), v E Mc(Z). The space (Mc(Z), e) is separable and complete. On 
P(Z), the metric e is equivalent to weak convergence. 

Corollary 3.8 Let e(n), e be random variables with values in Dp(z)[O, oo). 
Then ec n) ' e are random variables with values in D M1 ( .Z) [ 0' 00) ' and 

Proof. The assertion follows from Corollary 3.5 and Remark 3. 7, since 

Lemma 3.9 (empirical measures as random variables) Lete = (ei)i::1 
be a random variable with values in D zn [ 0, oo) , for some n = 1, 2, . . . . 

Then the mapping v defined as 

1 n 
v( t) = - :L Sei(t) , t E [O, oo) , 

n i=l 

is a random variable with values in Dp(z)[O, oo). 

Proof. Consider the mapping 'lj; : zn -7 P(Z) defined as 

and the associated mapping,,/; : Dzn[O, oo) -7 DP(Z)[O, oo) defined as 

,,/; ( x) ( t) = 'lj; ( x ( t)) , x E D zn [ 0, oo) , t E [ 0, oo) . 

The mapping 'lj; is continuous. If limN-+oo :z(N) = z, then limN-+oo z~N) 
Zi, Vi = 1, ... , n, and Sz(N) =? h'zi. Thus, 'l/;(:zCN)) =? 'l/;(z). Therefore, the 

\ 

mapping ,,/; is continuous too (cf. [8, p. 151 ]), and the mapping v = ,,/;( e) is 
measurable. D 
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Lemma 3.10 (relative compactness criterion) Let (e<n)) be a sequence 
of random variables with values in DM1 (z)[O, oo). 

The following condition is sufficient for the relative compactness of the 
sequence (e(n)) : 

limlimsup£(n).max sup e(e(n)(s),e(n)(ti))==O, \/T>O, (3.14) 
.6.t-+0 n-too ": ti<T sE[ti,ti+l) 

where ti== i flt' i == 0, 1, ... ' and e is defined in {3.13). 

Proof. We apply [8, Ch. 3, Cor. 7.4]. The first condition (compact contain-
ment) is fulfilled because the space M 1(Z) itself is compact. The second 
condition is 

VT/> 0, \IT> 0 3c: > 0 limsupProb(n)(w(e(n),c:,T) ~ TJ) ~ T/, 
n-too 

where (cf. [8, p. 122]) 

w(y,c:,T)== in.f mfiX sup e(y(s),y(t)), yEDM1 (z)[O,oo), 
(ti)E::.~,T " s,tE[ti,ti+1) 

and 

From Chebyshev's inequality, it follows that the condition 

limlim sup E(n)w(e(n), c:, T) == 0, VT> 0, 
e-tO n-too 

(3.15) 

is sufficient. Note that w becomes larger if one chooses a concrete partition 
(ti), in particular, ti== i flt, i == 0, 1, ... , flt> t:, instead of the infimum. 
From the obvious inequality 

we obtain 

Consequently, (3.15) follows from (3.14). D 
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4. Properties of the limiting equation 

In this section we study Eq. (2.13), which is to characterize the limit of 
the empirical measures. First we show some properties of the operators To( t )* 
and Kmax and check that the definitions (2.15)-(2.16) are correct. Then we 
prove Theorem 2.1. Finally, we study an approximation to the solution of 
the limiting equation. 

Lemma 4.1 (integration of measure-valued functions) Let E1 , E2 , 

and s be metric spaces. Let µ(xi, X2, r) be a function on E1 x E2 x Bs 
such that µ(x1, x2) E M(S), Vx1 E E1, Vx2 E E2, and µ(x1, X2, r) is 
measurable in (x1 , x2), Vr E Bs. Let a be a measure on E2 such that 

( 4.1) 

Then the function fl, on E1 X B s defined as 

( 4.2) 

has the properties 

(4.3) 

(4.4) 

fl,(x1, r) is measurable in X1, vr E Bs. (4.5) 

Proof. Using the definition ( 4.2), we prove ( 4.3) showing u-additivity: 

J, µ(x1,x2,U;:"=1rn)a(dx2) = 1 f µ(x1,x2,rn)a(dx2) 
E2 E2 n=l 

f J, µ(x1,x2,rn)a(dx2) = f Mx1,rn)· 
n=l E2 n=l 

Assertion ( 4.4) is an obvious consequence of ( 4.1). Assertion ( 4.5) follows 
from the definition and Fubini's theorem. D 
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Lemma 4.2 The function T0 (t)*(.X0 )(r) defined in {2.11) has the properties 

To(t)*(.Xo) E M(Z), \It E [O, oo), V.Xo E M(Z), (4.6) 

To(t)*(.Xo)(Z) = .X0 (Z), \It E [O, oo), \/.Xo E M(Z), (4.7) 

T0 (t)*(.Xo)(r) is measurable int, Vr E Bs, \/.X0 E M(Z), (4.8) 

Proof. Properties ( 4.6) and ( 4.8) follow from Lemma 4.1, with µ = U0 and 
a = .\0 • Here, assumptions (2.1 ), (2.3) concerning U0 are used. Properties 
( 4. 7) and ( 4.9) follow from the definitions (2.11) and (3.2). D 

Lemma 4.3 The function Kmax(v1, v2)(r) defined in {2.12) has the proper-
ties 

llKmax( V1, V2) - Kmax( ii1, ii2) II ::; [II v1 - ii1 II + II v2 - ii2 II] X ( 4.12) 
2 CQ,max max(v1(Z), v2(Z), ii1(Z), ii2(Z)), \/v1, V2, ii1, ii2 E M(Z). 

Proof. Property ( 4.10) follows from Lemma 4.1, with 

Here, assumptions (2.5), (2.6) concerning Q are used. Properties ( 4.11) and 
( 4.12) follow from the definitions (2.12), (2.10), and (3.2). D 

Next we consider the functions vk(t) defined in (2.15)-(2.16). Their prop-
erties are studied by means of the following lemma. 
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Lemma 4.4 (measurability) Let E, Si, S2 be separable metric spaces, an~ 
cp E B(E x Six S2). Let µi(x, I'), i = 1, 2, be functions on Ex Bsi such that 
µi(x) E M(Si), µi(x,Si) ~ Gµ, Vx EE, and 

µi(x, I') is measurable in x, Vr E Bsi. ( 4.13) 

Then the function 

is measurable in x . 

Proof. We apply [8, App., Th. 4.3]. Consider the set of functions 

H = {cp E B(ExSixS2): f f cp(x,zi,z2)µi(x,dzi)µ2(x,dz2) E B(E)}. ls2 ls1 
The set H is linear and contains constants because of ( 4.13). Furthermore, 
we consider the system of sets 

s = {r x r i x r 2 : r E BE , r i E B s1 , r 2 E B s2} . 

We have Ai n A2 E S if Ai , A2 E S. Furthermore, ~A E H if A E S , and 
the set H is closed with respect to hp-convergence. 

Therefore, H contains all bounded er( S)-measurable functions. Since 

because of the separability, we obtain H = B(E x Si x S2). D 

Lemma 4.5 The integration in {2.16) is well-defined in the sense of (4.2). 
The functions vk(t)(Ao), k2::1, tE[O,oo), defined in (2.15)-(2.16) have 

the fallowing properties: 

vk(t)(Ao) E M(Z), (4.14) 

( 4.15) 

vk(t)(Ao)(I') is measurable int, Vr E Bz. (4.16) 
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Proof. The proof is performed by induction on k. Fork= 1, the assertions 
follow from the properties (4.6)-(4.8) of the operator T0 (t)*. 

Suppose the properties ( 4.14)-( 4.16) are fulfilled for some k 2:: 1. Consider 
µ(s, t) = To(t- s)*(µ(s)), where µ(s) = Kmax(vi(s)(.Xo), Vk+i-i(s)(.Xo)) and i 
is fixed. 

First we notice that µ(s) E M(Z) and the function µ(s, r) is measurable 
in s. This follows from the definition (2.12) of Kmax and Lemma 4.4 with 

cp(z1, z2) = Qmax(z1, z2, r, Z) + Qmax(z1, z2, Z, I'), 
µi(s) = vi(s)(.Xo), µ2(s) = Vk+i-i(s)(.Xo). 

Then we see that µ(s, t) E M(Z) and the function µ(s, t, r) is measurable in 
(s, t). This follows from the definition (2.11) of T0 (t)* and Lemma 4.4 with 

cp( ( t, s ), z1) = U0( t - s, Zi, r), µ1 ( ( t, s)) = µ( s), µ2( ( t, s ), Z) = 1. 

Therefore, Lemma 4.1 can be applied to the function µ(s, t), and the prop-
erties ( 4.14) and ( 4.16) follow for k + 1. 

Using ( 4.11) and the induction hypothesis, we obtain 
k t 

Vk+i(t)(Ao)(Z) = ~la e-co (t-s) 2 CQ,max v;(s )(Z) vk+i-;(s )(Z) ds 

~le-co (t-a) 2 CQ,max Ao(Z)2 e-2 co • (1 - e-co ')k-l ds 

Ao( Z) e-co' fa' k Coe-co• (1 - e-co ')k-l ds. 

Thus, property ( 4.15) follows for k + 1. D 

Lemma 4.6 Define, fork= 1, 2, ... , t E [O, oo), and .X0 E M(Z), 
k 

.Xk(t) = L vi(t)(Ao) 
i=l 

and 

( 4.17) 

~k( t) = e-co t To( t)*( Ao)+ le-co (t-•) To( t - s )* KmaA Ak( s ), Ak( s)) ds. ( 4.18) 

Then 

( 4.19) 
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Proof. It follows from ( 4.18) and ( 4.17) that 

jk(t) = e-cot To(t)*(Ao) + 
k k t LL 1 e-co (t-s) To( t - s )* Kmax(vi( s )(Ao), Vj(s )(Ao)) ds. 

i=l i=l 0 

Omitting in the double sum the terms with i + j > k + 1, and changing the 
summation variables ( i + j = l), we obtain 

jk( t) ~ e-co t To( t)*( Ao) + 
k+l l-1 t LL 1 e-co (t-s) To(t - s)* Kmax(Vi(s)(Ao), Vz-i(s)(Ao)) ds 
l=2 i=l 0 

k+l 
e-cot To(t)*(Ao) + L vz(t)(Ao) = Ak+i(t), 

l=2 

according to (2.15), (2.16), and ( 4.17). The other inequality in ( 4.19) is 
proved in an analogous way. D 

Proof of Theorem 2.1. First we show the convergence of the series 
(2.17). Since vi(t)(Ao) E M(Z), Vi, it is sufficient to prove convergence of 
the masses. This follows from Lemma 4.5 via the estimate 

( 4.20) 

It remains to prove that A( t) satisfies Eq. (2.13). It follows from Lemma 4.6 
and the obvious inequality Ak(t) ~ A(t) that 

Thus, 

lim sup lljk(s)-A(s)ll=O, Vt>O, 
k-+oo O~s9 

according to (4.20). Taking the limit k-HXJ in (4.18) shows that A(t) satisfies 
Eq. (2.13). Uniqueness of the solution follows from the Lipschitz properties 
(4.9) and (4.12) of the operators To(t)* and Kmax, respectively, and from 
Gronwall's inequality. D 
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In the remainder of this section, we will study an approximation to the 
solution of Eq. (2.13). 

To this end, we introduce an approximation fi~N) to the free flow generator 
Ao , defined as 

-(N) _ 1 _ A0 - N [To( N) - I], N - 1, 2, . . . . ( 4.21) 

Here, T0(t) is the semigroup of operators on B(Z) associated with the tran-
sition function U0 , and I denotes the identity operator. 

Lemma 4. 7 Let cp E B( Z) be such that 

lim 11 To ( t) ( cp) - cp 11 = 0 . t-.o ( 4.22) 

Let rJN)( t) be the semigroup corresponding to the generator A~N) defined in 
(4.21). 

Then 

lim llf1JN>(t)(cp) - To(t)(cp)ll = 0, Vt~ 0. (4.23) 
N-.oo 

Proof. Since A~N) is bounded, the corresponding semigroup has the form 

-(N) -(N) 00 (N t)k k 
T0 (t) = exp(t A0 ) = exp(-N t) ~ k! To( N). ( 4.24) 

Therefore, we obtain the estimate 

11rJN)(t)(cp) -To(t)(cp)ll::; 
00 (N t)k k 

< exp(-Nt) ~ k! llTo(N)(cp)-To(t)(cp)ll 

(N t)k k 
< exp(-Nt) I: kl llTo(N)(cp)-To(t)(cp)ll + 

k: lk-Nt!>o:N . 

(N t)k k 
exp(-N t) 2: k' II To( N )( cp) - To(t)( cp )II 

k: lk-Nt!~o:N . 

tN 
< 2 llrpll (aN)2 + ., 1.~~~~ llTo(s)(rp) - To(t)(rp)ll 

tN 
< 2 ll'Pll -( )2 + sup llTo(h)(cp) - 'Pll · 

CT.N O<h<~ 
- - N 
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Now assertion ( 4.23) follows from ( 4.22) for an appropriate choice of Cl.N. 
D 

Let j(N)(t) denote the solution of Eq. (2.13) with T0 replaced by 'I'JN), 
i.e. 

j(N\t) = e-cotjJN)(t)*(.Xo)+ (4.25) 

lo' e-co(t-s) TJNl(t - s)* Kmax(~(N)(s), ~(Nl(s)) ds. 

Lemma 4.8 (approximation of the solution) Suppose 

Kma:r: is continuous on Mc(Z) X Mc(Z), c = .Xo(Z), ( 4.26) 

and T0(t) satisfies (2.21} and (2.22}. 
Then limN-+oo lJL(j(N)(t), .X(t)) = 0, Vt E [O, oo). 

Proof. According to Theorem 2.1, we have 

00 

~(N)(t) = L ii}N)(t)(.Xo), ( 4.27) 
i=l 

where viN\t)(.Xo) = e-co t TJN)(t)*(.Xo), and, for k 2:: 1, 

ii~~{(t)(.Xo) = (4.28) 
k t 'f lo e-<o (t-•) TJNl(t - s )* Kmax(iilN)(s )(Ao), vk~L(s )(Ao)) ds. 

Since the masses are identical, it is sufficient to show 

lim (cp, ~(N)( t)) = (cp, .X( t)} , Vcp E C(Z). 
N-+oo 

It follows from (4.27) that (cp, j(N)(t)) = 2::1 (cp, ii}N)(t)(.Xo)}. Since there 
is a majorant uniformly in N, it is sufficient to show 

lim (cp, ii}N\t)(.Xo)) = (cp, vi(t)(.Xo)), Vi, Vcp E C(Z). (4.29) 
N-+oo 

We proceed by induction on i. For i = 1, assertion ( 4.29) follows from 
Lemma 4. 7. The function under the integral in ( 4.28) is uniformly bounded. 
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The masses of the measures v!N)(s )(Ao) are bounded by the constant c be-
cause of ( 4.15). According to assumption ( 4.26), to perform the induction 
step, it is sufficient to show 

lim (cp, 'i'JN\ t)*(iiN )) = (cp, To( t)*(v)), 
N-+oo 

for any sequence iiN converging to ii in Mc(Z). We have 

l(cp, 'i'JN>(t)*(iiN )) - (cp, Ta(t)*(v)) I ~ ( 4.30) 

l(TJN)(t)(cp), iiN) - (To(t)(cp), iiN)I + l(To(t)(cp), iiN) - (To(t)(cp), v)I. 

The second term on the right-hand side of ( 4.30) tends to zero because of 
assumption (2.21 ). The first term can be estimated by the term 

c llTJN)(t)(cp) - Ta(t)(cp)ll, 

which tends to zero as N --+ oo according to Lemma 4. 7. D 

5. Properties of the Markov process 
In this section we study some properties of the Markov process with the 

generator (2. 7)-(2.8). In particular, we establish relative compactness of the 
empirical measures defined in (1.10). 

Let Y be a locally compact separable metric space. Let S0 (t, y, r) be a 
transition function on [O, oo)xYxBy (cf. the properties (2.1)-(2.4)), and So(t) 
denote the corresponding semigroup on B(Y). Suppose H(y, r) is a function 
on Y X By such that H(y) E M(Y), H(y, Y) ~ CH,max, Vy E Y, and 
H(., r) is measurable, Vr E By . Let 1i denote the operator on B(Y) defined 
as 

1i( \0 )(y) = D\O(ii) - \O(Y )] H(y, dfi)' y E y. 

Lemma 5 .1 Suppose 

So(t)( cp) E C(Y), Vt~ 0, Vcp E C(Y), (5.1) 

and 

limS0 ( t)( cp) = cp, Vcp E C(Y). 
t-+0 

(5.2) 
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Suppose 

'H( cp) E C(Y) , Vcp E C(Y) . (5.3) 

Then 

S(t)(cp) = So(t)(cp) + f ft dt1 ... rL-l dtl 
l=l lo lo (5.4) 

So(t-t1)'H ... So(tl-1 -tl)'HSo(tl)(cp), 

defines a Feller semigroup on C(Y) {cf. {8, Ch. 4, Sect. 2}). The generator of 
S(t) has the form 90 + 'H, where 90 is the generator corresponding to So(t). 

Proof. Let cp E C(Y), and denote 7/J1(t) = S0 (t)(cp), 

..Pk+1(t) = So(t)( cp) +la' So(t - s) rt.( .,Pk(s )) ds, k ~ 1. (5.5) 

The function 7/J1(t) is continuous in C(Y) because of (5.1) and (5.2). It is easy 
to show that the function So( t - s) 'H( 7/Jk( s)) is continuous with respect to s , 
provided that 7/Jk(s) is continuous. Thus, the integration in (5.5) is defined as 
the integration of continuous Banach-space-valued functions (cf. [8, Ch. 1, 
Sect. 1 ]). Furthermore, the function Ji So( t - s) 'H( 7/Jk( s)) ds is continuous 
with respect to t so that the definition (5.5) is correct. 

One obtains that S(t)(cp) = limk-+oo1/Jk(t), and S(t) is an operator in 
C(Y). The estimate 

llS(t)(cp)- 'Pll:::; llSo(t)(cp)- 'Pll + ecH,=<n:t -1 (5.6) 

yields continuity at t = 0. 
To prove the remaining properties of the operators S( t) (positive contrac-

tion semigroup ), we use the approximation result established in Lemma 4. 7, 

lim llS~N)(t)(cp) - So(t)(cp)ll = 0, Vcp E C(Y). 
N-+oo 

Using (5.4), we derive an analogous result for S(t), 

lim 11s<N)(t)(cp) - S(t)(cp)ll = o, Vcp E C(Y). 
N-+oo 
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Now, the remaining properties of S ( t) follow from the corresponding proper-
ties of S(N)( t) . 

Finally, we calculate the generator of S(t). Since S(t)(cp) satisfies the 
equation 

S(t)( \0) = S0(t)( r,o) + 1' S0(t - s) 7-l S(s )( \0) ds, (5. 7) 

one obtains 

~ [s(t)(r,o) - r,o] ~[so( t)( r,o) - r,o] +So( t) 7-l( r,o) + (5.8) 

~ 1' [So(t - s) 7-l S(s )( r,o) - So(t) 7-l( r,o )j ds. 

The first term on the right-hand side of (5.8) tends to Q0 ( cp), the second 
term tends to H( cp), because of (5.2) and (5.3). The third term is estimated 
as follows, 

~111' [so(t- s)7-lS(s)(r,o)-So(t)7-l(r,o)] dsll::; 

< ~ 1' llSo(t- s)7-lS(s)(r,o) - So(t- s)7-l(r,o)ll ds + 

~ 1' llSo(t - s)7-l(r,o) - So(t)7-l(r,o)ll ds (5.9) 
< 2CH,max sup llS(s)(cp)- 'Pll + sup llSo(s)H(cp) - H(cp)ll · 

05s5t 05s5t 

The right-hand side of (5.9) tends to zero as t ~ 0, because of (5.6), (5.2), 
and (5.3). D 

Remark 5.2 According to {8, Ch. 4, Th. 2. 7}, there exists a process Y(t) 
with sample paths in Dy[O, oo) corresponding to the semigroup S(t). This 
process can be considered as a random variable with values in Dy[O, oo) {cf. 
{8, p. 128}). 

Lemma 5.3 (martingale representation) Let z(n)(t) be a Markov pro-
cess with the generator (2. 7)-(2. 8). Suppose Q satisfies (2. 9). Let µ(n)( t) 
denote the empirical measures as defined in ( 1.10). 

Let cp E C(Z) be such that cp, cp2 E 'D(Ao) {the domain of the generator 
Ao). 
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Then the following representation holds, 

(<p, /nl( t)) = l (Ao( <p ), µ,(n)( S )) ds + l (<p, Kmax(µ,(n)( S ), µ,(n)( S ))) ds 

-2 CQ,max l (<p, µ,(n)( S )) ds + R(n)( <p, t) + Af(n)( <p, t), ( 5.10) 

where Kmax is defined in {2.12), 

and M(n) is a martingale such that 

£(n) [ M(n)( cp, i) - M(n)( cp, S )]2 ~ ( 5.12) 

{ ~ ll'P Ao( 'P )II +~II Ao( 'P2)11 + ~ 16 jjcpjj 2 CQ,max} (t - S) · 
n n n 

Proof. If 4> E 'D( A) , then the process 

M ( t) = cJ> ( Z ( t)) - l A( cJ>) ( Z ( s)) ds (5.13) 

is a martingale (cf., e.g., (8, Ch. 4, Prop. 1.7]). Moreover, if cI>2 E 'D(A), 
then one can show that 

£[M(t) - M(s)] 2 = £ f.'[A(cJ>2) - 2 cJ> A(<I>)](Z(u)) du. (5.14) 

We introduce the notations 

and 

n 

~n) ( cI> )( z) = L Ao,zi ( cI> )( z) ' (5.15) 
i=l 

Q(n)(cI>)(z) = ~ I: r r [4>(J(z,i,j,.z1,.z2))- cI>(z)] x (5.16) 
n l~#i~n lz lz 
Q(zi, zj, dz1, dz2), z = (zi)i=i, zi E Z, 

where J is defined in (2.8). 
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We apply (5.13)-(5.14) to the generator (2.7)-(2.8), which, with the above 
notations, takes the form 

(5.17) 

and to the function 

(5.18) 

Notice that 

(5.19) 

Taking into account (2.8), we obtain 

and 

[ <f>(n))2( J ( z, i, j, zi, z2)) == [ <f>(n)] 2(z) + 2 <f>(n) ( z) x ( 5.21) 

~ [cp(Z1) + cp(Z2) - cp(z,) - cp(z;)] + : 2 [cp(Z1) + cp(Z2) - cp(z,) - cp(z;)j2. 

By (5.16), (5.20), and (5.21), we have 

Q(n)( q>(n))(z) == (5.22) 

-\ I: f f [cp(z1) + cp(z2) - cp(zi) - cp(z;)] Q(zi, Zj, dzi, dz2) n 15#=i5:n J.z lz 
and 

Q(n)( [ q>(n)]2)( z) == 2 <f>(n) ( z) Q(n)( <f>(n) )( z)+ ( 5.23) 

-\ I: f f [cp(z1) + cp(z2) - cp(zi) - cp(z;)J2 Q(zi, z;, dz1, dz2). n l<i:/=i<n J.z Jz 
Furthermore, it follows from (5.18) and (5.15) that 

Ao,zi ( <f>(n) )( z) == ~Ao( cp )( Zi) 
n 
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and 

~ n) (<I> ( n)) ( Z) = ~ t Ao( 'P) ( Zi) · 
n i=l 

(5.24) 

and, by (5.15), 

Consequently, by (5.17), (5.22), and (5.24), we obtain 

A(n)( q>(n))( z(n)( s)) = l Ao( cp )(z) µ(n) ( s, dz) (5.27) 

+ l l { l l [cp(z1) + cp(z2) - cp(z1) - cp(z2)] x 

Q(z1, z2, dz1, dz2) }µ(n)(s, dz1) µ(n\s, dz2) 

- ~ l { l l [cp(Z1) + cp(Z2) - 2 cp(z)] Q(z, z, dZ1 , dZ2) }µCnl(s, dz). 

Furthermore, by (5.17), (5.23), and (5.26), we have 

[A (n)( [ <I>(n)]2) - 2 <I>(n) A (n)( <I>(n))] ( z<n>( u)) = ( 5.28) 

_ [A~n)([<I>(n)]2) _ 2 <J>(n) ~)( <J>(n)) + 
Q(n)([<I>(n)]2) _ 2 <I>(n) Q(n)(q>(n))] (z(n)(u)) 

= -~ [ cp(z)Ao(cp)(z)µ(n)(u,dz) + ~ [ A0(cp2)(z)µ(n)(u,dz) + n Jz n Jz 
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~ fz fz { fz fz [cp(i1 ) + cp(Z2) - cp(z1) - cp(z2)j2 x 

Q(z1, z2, dz1, dz2) }µCn)(u, dz1 ) µCn>(u, dz2) -

]__ J, { r J, [cp(z1) + cp(z2) - 2 cp(z)J2 Q(z, z, dz1, dz2) }µ(n)(u, dz). n2 z lz z 
The representation (5.10) follows from (5.13), (5.19), (5.27), and (2.18), 

with 

R(n)( cp, t) = 
r ~ f { f f [cp(z1)+cp(z2)-2cp(z)]Q(z,z,dz1,dz2)}µCn)(s,dz)ds. lo n lz lz lz 

The estimate (5.12) follows from (5.14) and (5.28). D 

Lemma 5.4 (relative compactness) Let zCn)(t) be a Markov process with 
the generator (2. 7}-(2.8} and sample paths in the space Dzn[O, oo). Suppose 
Q satisfies (2.9). Let µ(n)(t) denote the empirical measures as defined in 
{1.10}. 

Suppose ('Pk) is a dense subset of C(Z) such that 

(5.29) 

Then the sequence µ(n) is relatively compact as a sequence of random 
variables with values in the space D(M1(Z),e) [O, 00)' where e is defined in 
{3.13}. 

Proof. According to Lemma 3.10, it is sufficient to check condition 

where ti= i t6.t, i = 0, 1, .... One obtains from (5.10)-(5.11) 

I ( cp k , µ ( n) ( t)) - ( cp k , µ ( n) (ti)) I ~ 
C1 [llAo(cpk)ll + ll'Pkll] (t - ti)+ IM(n)(cpk, t)- M(n)(cpk, ti)I, 
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where c1 = 1 + 8 CQ,max and k 2: 1 . Consequently, 

sup e(µ(n)(t), µ(n)(ti)) ~ 
tE[ti,ti+1) 

00 1 
< sup L k min (1, c1 [II Ao( 'Pk) II + ll'Pk II] ( t - ti)) + 

tE[ti,ti+1) k=l 2 
00 1 

sup L k min ( 1, IM(n)( 'Pk, t) - M(n)( 'Pk, ti)I) 
tE[ti,ti+1) k=l 2 

00 1 
< b:..tc1 L 2k min (1, [llAo(cpk)ll + llcpkll]) + (5.31) 

k=l 
00 1 L 

2
k min ( 1, sup IM(n)( 'Pk, t) - M(n)( cpk, ti)I) . 

k=l tE[ti,ti+1) 

The first term on the right-hand side of (5.31) does not depend on i,w,n 
and, therefore, disappears when b:..t ~ 0. Consequently, to establish (5.30), 

. it is sufficient to show 

lim £(n) .max f lk min (1, sup IM(n)(cpk, t) - M(n)(cpk, ti)!) = 0, 
n-+oo i: ti<T k=l 2 tE[ti,ti+l) 

Vb:..t>O. (5.32) 

Since the maximum is taken over a finite set, ( 5.32) is fulfilled if 

Vi, V b:..t > 0. (5.33) 

To establish (5.33), it is sufficient to show 

Moreover, according to Doob's inequality, it is sufficient if 

This is fulfilled because of (5.12). D 
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Lemma 5.5 Suppose Ao corresponds to a transition function U0 determined 
via {2.23) by a deterministic flow F and such that the properties {2.21)-
(2.22) are fulfilled. 

Then there exists a dense subset ('Pk) of C(Z) such that (5.29) is fulfilled. 

Proof. Let ('1/Jk) be a dense subset of C(Z). Since T0(t) is strongly continuous 
on C(Z), according to (2.21), (2.22), the set V(Ao) is dense in C(Z). Hence, 
for any k , there exist functions '1/Jk,l E V( Ao) such that '1/Jk = liIIll-oo '1/Jk,l . 
Obviously, the set '1/Jk,l is dense in C(Z). 

Thus, it is sufficient to show that cp2 E V(Ao) for any cp E V(Ao). From 

1 -[cp2(F(t,z))- cp2(z)]- 2cp(z)Ao(cp)(z) = t 
[~[rp( F(t, z )) - rp(z)] [rp(F(t, z)) + rp(z )] - Ao( rp )(z) [rp(F(t, z )) + rp(z )J] 
+ [Ao ( cp) ( z) [ cp ( F ( t, z)) + cp ( z)] - Ao ( cp) ( z) [ cp ( z) + cp ( z)]] , 

one finds the estimate 

1 II t [To( t )( cp 2
) - cp2

] - 2 cp Ao( cp) II :::; 
1 

2ll'Pll11-[To(t)(cp)- cp] - Ao(cp)ll + llAo(cp)ll llTo(t)(cp) - 'Pll · 
t 

The right-hand side of the above inequality tends to zero as t ~ 0. D 

6. Proof of the convergence theorem 
In this section we prove Theorem 2.3. Assertion (2.36) is equivalent to 

according to Lemma 3.6 and Lemma 3.2. This convergence is equivalent to 

µ(n) =? A in D Mi(Z)[O, oo), 

according to Corollary 3.8. Weak convergence of µCn) to A follows from rela-
tive compactness and convergence of the finite-dimensional distributions (cf. 
[8, Ch. 3, Th. 7.8]). Relative compactness has been established in Lemma 5.4 
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and Lemma 5.5. By Corollary 3.4, it is sufficient to show convergence of the 
one-dimensional distributions. According to Lemma 3.2 and Corollary 3.3, 
this is equivalent to 

(6.1) 

where eL is defined in (3.3). Thus, to prove Theorem 2.3, it is sufficient to 
check con di ti on ( 6 .1). 

We introduce an approximation z(n,N)(t) of the process z(n)(t), given by 
the generator 

(6.2) 
i=l 

where ( E zn, and J is given in (2.38). Notice that the difference of the 
generator (6.2) with the generator (2.37) of the process z(n)(t) is that Ao is 
replaced by its approximation A~N) defined in (4.21). Let p,(n,N)(t) denote 
the empirical measures corresponding to the process Z(n,N)(t). 

The processes z(n)(t) and z(n,N)(t) are coupled in such a way that their 
joint generator takes the form 

(6.3) 

where 
n 

~n,N)( <J? )(z, () = L A~~],,i( <J? )(z, ()' (6.4) 
i=l 

A(N) -(N) 
Ao,z,C = Ao,z + Ao,c ' (6.5) 

and 

1 111 [ A A -l: <J?(J(z,i,j,'!9,TJ),J(c,i,j,a,TJ)) 
n l~ifj~n 0 0 

-<J?(z,(}] qmax('!9)dTJ7r(diJ), (6.6) 
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where 

J"(- .. {) ) z,i,J, , I 1J _ (iJ), 
{ 

J( - • • {}) "f < q(Zi 1Zj,iJ) 
z > ?, ) J > > 1J = _ . qtna:z: 

z , otherwise , 
(6.7) 

(z, () E zn x zn, and J is given in (2.38). 
Lemma 5.1 and Remark 5.2 (with Y=Znxzn) are applicable to the pro-

cess (zCn)(t), zCn,N)(t)), since the assumptions (5.1), (5.2), and (5.3) follow 
from (2.21), (2.22), and (2.34). Note also Lemma 3.9 concerning the proper-
ties of the empirical measures. Furthermore, the distribution of the process 
z<n>(t) does not depend on N so that 

£(n,N)eL(µ(n)(t), .X(t)) = £(n)eL(µ(n)(t), .\(t)), VN. 

The triangle inequality yields 

limsup£(n)eL(µ(n)(t), .\(t))::; eL(~(N)(t), .\(t))+ 
n-+oo 

limsup£(n,N)eL(µCn,N)(t), ~(N)(t)) + limsup£(n,N)eL(µ(n)(t), µCn,N)(t)). 
n-+oo n-+oo 

Thus, (6.1) is a consequence of Lemma 4.8, assumptions (2.29)-(2.34), and 
the following two assertions. 

Lemma 6.1 (approximation of the process) Let the assumptions of 
Theorem 2. 3 be fulfilled. Then 

lim lim sup £(n,N) eL(µ(n) ( t ), µ(n,N)( t)) = 0' Vt E [O, 00) . 
N-+oo n-+oo 

Lemma 6.2 (convergence of the approximate process) Let the 
assumptions of Theorem 2.3 be fulfilled. Then 

lim £(n,N)eL(p,(n,N)(t))CN)(t)) = 0, VN, Vt E [0,oo). 
n-+oo 

The following three lemmas prepare the proof of Lemma 6.1. 

Lemma 6.3 Let 'lj; be a function on [O, oo) such that 

'l/;(x) > 0, 'lf;(y + x)?. 'lf;(y), Vx > 0, y?. 0. 

Let <.p E C(Z) be such that ll'PllL::; 1 {cf. {3.1)). 
Then 

lcp(z) - cp(Z)I :::; c + ,P~c) ,P(r(z, Z)), Ve> 0, Vz, Z E Z. 
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Proof. If r(z, z):::; e' then lcp(z) - cp(z)I :::; e. 
If r(z, z) > e' then 'lj;(r(z, z)) ~ 'l/;(e) and consequently 

f cp( z) - cp( Z)f ::; 2 = ,P~e) ,P( e) ::; ,P~e) ,P(r( z, Z)). D 

Lemma 6.4 The Junction 'lf;( x) = min(l, x), x E [O, oo), has the properties 

'lj;(cx):::;c'lj;(x), VxE[O,oo), Vc~l, (6.8) 

'lj;(x + y):::; 'lj;(x) + 'lj;(y), Vx,y E [O, oo). (6.9) 

Proof. Elementary. D 

Lemma 6.5 Consider the function 

where 'lj;(x) = min(l, x), x E [O, oo), r0 is defined in (2.27} 1 and Ci.N = N-~. 
Let j'(n,N)(t) denote the semigroup corresponding to the generator A(n,N) 
defined in (6.3)-(6. 7). Let the assumptions of Theorem 2.3 be fulfilled. 

Then there exists a constant c such that 

j'(n,N)( t )( <I>(n,N))( z, () :::; c <I>(n,N)( z, () ) V( z, () E zn x zn. ( 6.11) 

Proof. We use the series representation established in Lemma 5.1: 

j'(n,N)(t) = i;,(n,N)(t) +fl di1 ... {''-' diz (6.12) 
l=l o lo 

Ta(n,N)(t - i1) Q(n) · · · Ta(n,N)(tl-1 - i1) Q(n)Ta(n,N)(i1), 

"(n N) "(n N) where To ' ( t) denotes the semigroup corresponding to the generator A6 ' 
defined in (6.4)-(6.5). We proceed in two steps showing 

ta(n,N)(t)(<I>(n,N))(z, ():::; C1 <I>(n,N)(.z, ()' Vz, ( E zn x zn' (6.13) 

and 
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Then assertion (6.11) follows from (6.12), since 

f(n,N)(t)(q,(n,N))(z, ()~Ci q,(n,N)(.z, ()+ 

f r dt1 ... ri-1 dtz C~+l C~ q,(n,N)(.z, () = C1 etci c2 q,(n,N)(.z, (). 
l=l lo lo 

Step 1. First we show (6.13). We have fo(n,N}(t) = I1?=1 TJ~~Ci(t), where 
rJ:,~( t) denotes the semigroup corresponding to the generator A~~~( defined 
in (6.5), because of the independence of the components. Consequently, it is 
sufficient to show 

"(N) To,z,c(t)( 'PN )(z, () ~ C1 'PN(z, (), (6.15) 

where 

<pN(z, () = 'l/l(r(z, ()) + 'l/J(a:N[l + ro(z) + ro(()]) + aN. (6.16) 

Since the operators Ao,z and A~~) act on different variable_s, we have 

"(N) -(N) To,z,(( t) = To,z( t) To,( ( t) . 

It follows from ( 4.24), (2.23), and (6.17) that 

"(N) -tN ~ (tN)k k T0 (t)(cpN)(z,() = e ~ k! <pN(F(t,z),F(N,()). 

Thus, we have 

TJN)(t)(cpN)(z, () = CiN+ 
-t N ~ ( t N)k [ k + e ~ kl 'ljJ(r(F(t, z), F( N' ())) + 

k:lk-tNl~'YN . 

k 
'ljJ(aN[l + r0(F(t, z)) + ro(F( N' ())])] 

-tN """" ( t N)k [ k + e ~ kl 'ljJ(r(F(t, z), F( N' ())) + 
k:lk-t Nl<'YN . 

,P( aN[l + ro(F(t, z)) + ro(F( ~· ())])j , 
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where !N is a sequence of positive real numbers. Using Chebyshev's inequal-
ity, assumption (2.26), and the monotony of the function 'lj;, we obtain the 
estimate 
"(N) tN !N 

T0 (t)( 'PN )(z, ()::; aN + 2 (TN )2 + 'l/;( CF [r(z, () + N(l + ro(z) + ro(())]) 
!N +'l/;(aN(l +CF [ro(z) + t(l + ro(z))] +CF [ro(() + (t + N )(l + ro(())])). 

Using Lemma 6.4, we obtain 
"(N) 2t N 

T0 ( t)( 'PN )(z, () ::; aN + (TN )2 + 

(CF+ 1) ['lfa(r(z, ()) + 'lfa('; [1 + ro(z) + ro(()])] + 

+ [1 +CF (1+2t + ';)] 'l/;(aN[l + ro(z) + ro(()]). 

Ch . ':1.N.. - d N - . - N~ d - N- 1 d oosmg N - aN an ("YN)2 - Ci.N, i.e. !N - 3 an aN - 3 , an 
remembering the definition (6.16), we obtain (6.15). 

Step 2. Next we show (6.14). From (6.6) and (6.10) we find that 
IQ(n)(<P(n,N))(z,()I = 

- I_!_ L: r f1 
.!.[cpN([J(z,i,j,i?,17)]i,[J((,i,j,i9,17)]i)+ 

n 1~#i~n le lo n 
'PN([J(z,i,j,i9,17)]j, [J((,i,j,i9,77))j)-
cpN(Zi, (i) - 'PN(Zj, (j)] qmax(i?) d17 7r(di9)l 

< 2:. L l fn12:.['PN([J(z,i,j,t?,71)];,[J((,i,j,t?,71)],)+ 
n l~i=f;j~n e o n 

'PN([J(z,i,j,i9,17)]j, [J((,i,j,19,77)]j)] qmax(i9)d177r(di9) + 
2 n 
- CQ,max L: 'PN(Zi, (i) · 
n i=l 

Thus, it is sufficient to show 

r f1 
['lfa(r([J(z,i,j,i9,17)]i,[J((,i,j,i9,17)]i))+ (6.18) le lo 

'l/;( r( [ J( z, i, j, i9, 7]) ]j, [ J( (, i, j, 19, 1] )]j))] qmax( 19) d17 7r( di?) 

< C3 ['lfa(r(zi, (i)) + 'l/;(r(zj, (j))] 
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and 

le l [.P( °'N [1+ ro([J( Z, i, j,.?, 1) )];)+ ro([ }( (, i, j,.?, 1) )];)])+ ( 6.19) 

'I/; (a N [ 1 + To ( [ J ( z, i, j, 19, 'f/)] j) + r o ( [ J ( (, i, j, 19, 'f/)] j)] ) ] qmax ( 19) d'f/ 7r ( d19) 

~ c4 ['l/;(aN[l + ro(zi) + ro((i)]) + 'l/;(aN[l + ro(zi) + ro((i)])]. 

Step 2a. First we show (6.18). We distinguish between the cases 

and 

In the case (6.20), we obtain 

f f
1 

['l/;(r([J(z,i,j,19,'f/)]i, [J((,i,j,19,7/)]i))+ le Jo 
'l/;(r([J(z,i,j,19,'f/)]j, [J((,i,j,19,'f/)]j))] qmax(19)d'f/7r(d19) 

< 2 CQ,max ~ 2 CQ,max ['l/;(r(zi, (i)) + 'l/;(r(zj, (j))]. 

In the case (6.21), we denote 

(6.20) 

(6.21) 

By dividing the integral with respect to 'f/ into three parts and using the 
definition ( 6. 7), we obtain 

le l [.P( r([J( Z, i, j,.?, 71 )];, [ J( (, i, j,.?, 1) )];) )+ 

'I/; ( T ( [ J ( Z, i, j, iJ, 'f/)] j, [ J ( (, i, j, iJ, 'f/ ) ] j))] qmax ( iJ) d'f/ 7r (di}) 

< le ['l/;(r([J(z, i,j, iJ)]i, [J((, i,j, iJ)]i)) + 

'l/;(r([J(z,i,j,iJ)]j, [J((,i,j,19)]j))] m1 qmax(il)7r(diJ) + 

le 2 ( m2 - m1) qmax( '11) 7r( d.9) + CQ,max [.,P(r( z;, (;)) + .,P( r( z;, (;))] 
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< le [7/J(r(f1(zi, Zj, 1'J), f1((i, (j,'z9))) + 

,,P(r(h(zi, Zj, 1'J), h((i, (j, 1'J)))] qmax(1'J) 7r(d1'J) + 

2 le lq(zi,Zj,1'J)-q((i,(j,1'J)l7r(d1'J) + 

CQ,max [7/J(r(zi, (i)) + ,,P(r(zj, (j))] . (6.22) 

Using the assumptions (2.32) and (2.31) concerning the functions f 1 , h and 
q, the right-hand side of (6.22) is estimated by the term 

CQ,max [7/J(r(zi, (i)) + ,,P(r(zj, (j))] + 2 (Ct,L + Cq,L) [r(zi, (i) + r(zj, (j)]. 

Consequently, (6.18) follows from (6.22) and (6.21). 
Step 2b. It remains to show (6.19). Now we distinguish between the 

cases 

and 

In the case (6.23), we obtain 

le l [Vi( °'N [1 + ro([J(z, i, j, t?, 77 )];) + r 0 ([ }( (, i, j, t?, 77 )];)])+ 

,,P(aN[l +ro([J(z,i,j,1'J,17)]i) +ro([J((,i,j,1'J,77)]j)])] x 
qmax( 1'J) d17 7r( d1'J) ::; 2 CQ,max 

< 2 CQ,max [7/J(aN[l + ro(zi) + ro((i)]) + ,,P(aN[l + ro(zj) + ro((j)])]. 

In the case (6.24), we obtain from (6.7) and (2.38) that 

le l [Vi( ON [1 + ro([J( Z, i, j, '11, 7J )];) + r0 ([J( (, i, j, t?, 77 )];)])+ 

,,P(aN [1 +ro([J(z,i,j,1'J,17)]i) +ro([J((,i,j,-z9,17)]i)])] x 
qmax ( 1'J) d17 7r ( d1'J) 

< le [Vi( ON [1 + ro( z;) + ro(f1 ( z;, z;, '11)) + ro( (;) + r0(f1 ( (;, (;, '!?))]) + 
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'l/J(aw [1 + ro(z1) + ro(f2(zi, Zj, 19)) + ro((1) + ro(h((i, (j, 19))])] x 
qmax ( 19) 7r ( d19) 

< CQ,max [aN [1 + ro(zi) + ro((i)] + O'.N [1 + ro(z1) + ro((1)J] + (6.25) 

le O'.N [ro(f1(zi, Zj, 19)) + ro(f1((i, (j, 19)) + 
ro(h( Zi, Zj, 19)) + ro(f2( (i, (j, 19))] qmax( 19) 7r( d19) . 

Now, one applies (2.32), (2.33), and (6.19) follows from (6.24) and (6.25). 
D 
Proof of Lemma 6.1. Let llcpllL ~ 1. It follows from Lemma 6.3 that 

I (cp, µ(n)( t )) - (cp, p,(n,N)( t)) I 

Thus, we have 

and it is sufficient to show that 

lim limsup£(n,N)cp(n,N)(z(n)(t), zCn,N)(t)) = 0, (6.26) 
N-+oo n-+oo 

where cp(n,N) is defined in (6.10). According to Lemma 6.5, assertion (6.26) 
follows from 

lim lim sup £(n,N)cp(n,N)(z(n)(0), z(n,N)(O)) = 0. (6.27) 
N-+oo n-+oo 

Suppose zCn)(O) = z(n,N)(O), then (6.27) takes the form 

J~ li~S:pf(n,N)~ ~ ['1/i(aN[l + 2ro(Z;(n)(O))]) + aN] = 0. (6.28) 

Since the function 'l/JN(z) = 'lfa(aN[l + 2r0 (z)]) is bounded and Lipschitz-
continuous, we obtain from (2.35) 

lim £(n,N) /, 'l/JN(z) µ(n)(O, dz)= J, 'lfJN(z) .\(0, dz). 
n-+oo z z 
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Now it remains to take the limit N ~ oo and to remember that limN_...00 aN = 
0, and (6.28) follows. D 

The following lemma prepares the proof of Lemma 6.2. 

Lemma 6.6 Let cp E C(Z) be such that cp E 'D(Ao) and Ao( cp) E C(Z). Let 
assumptions {2.29)-(2.34} be fulfilled. 

Then the mapping W i,o : D Mi(Z)[O, oo) ~ Dn[O, oo), defined as 

111.,.(w)(t) = (ip,w(t)) - (ip,w(O)) - fo\A0(ip),w(s)) ds - (6.29) 

lo' (ip, Kmax(w(s ), w(s ))) ds + 2 Cq,max fo\<p, w(s )) ds, 

is continuous. 

Proof. First we notice that li!Iln_...00 wn(O) = w(O) in M 1(Z), if li!Iln_...00 Wn = 
w in D Mi (Z) [O, oo) , according to [8, Ch. 3, Prop. 5.2], since 0 is a continuity 
point for any w. Thus, the mapping 

w~>(w)(t) = (cp,w(O)) (6.30) 

is continuous. 
Next, we use the fact (cf. [8, p. 153]) that the mapping 

f(x)(t) =lo' x(s)ds 

from Dn [O, oo) into Dn[O, oo) is continuous. Therefore, it remains to show 
that 

w~>(w)(t) = (cp,w(t)), w~>(w)(t) = (Ao(cp),w(t)), 

and 

'1'~4>(w)(t) = (cp, Kmax(w(t),w(t))) 

are continuous mappings from DM1 (z)[O, oo) into Dn[O, oo). This is fulfilled 
(cf. [8, p. 151 ]), if 

W~2>(v) = (cp, v), w~>(v) = (Ao( cp ), v), W~4>(v) = (cp, Kmax(v, v )) 
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are continuous mappings from M 1 ( Z) into R. These properties are assured 
by the assumptions concerning the function c.p and the properties of the op-
erator Kmax, which follow from the assumptions (2.29)-(2.34). D 
Proof of Lemma 6.2. Notice that j(N)(t) is continuous int. According to 
[8, Ch. 3, Th. 7.8], it is sufficient to show that 

µ(n,N) =? .X (N) in D'P(Z) [O, oo) , (6.31) 

when n -? oo and N is fixed. According to Corollary 3.5, it is sufficient 
to show this convergence in D Mi(Z)[O, oo). The relative compactness follows 
from Lemma 5.4 (with Ao replaced by A~N)). Let j>(n,N) denote the measures 
on D Mi(Z)[O, oo) corresponding to µ(n,N). Let j>(oo,N) be any limiting point 
of the sequence j>(n,N) . It remains to prove that f>Coo,N) is concentrated on 
-(N) ,\ . 

Consider the function 

(6.32) 

where W'P is the mapping defined in (6.29) (with Ao replaced by A~N)) and 
dn is the Skorokhod metric in Dn[O, oo). The function (6.32) is bounded 
and continuous because of Lemma 6.6 and the obvious inequality ldn( x, 0) -
dn(Y, O)I:::; dn(x,y). Therefore, we obtain 

(6.33) 

On the other hand, it follows from Lemma 5.3 (with Ao replaced by A~N)) 
that 

and 

(6.34) 

According to Lemma 3.6, (6.34) implies lillln-oo £(n,N)dn('11ip(µ(n,N)), 0) = 0, 
or 

lim ('l/;, j>(n,N)) = 0 
n-oo ' (6.35) 
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where the function 'ljJ is defined in (6.32). 
From (6.35) and (6.33), one obtains 

fa(oo,N)( {w : Wcp(w) = O}) = 1. (6.36) 

Next, we use the assumption (2.35). Since the mapping W~1 ) defined in (6.30) 
is continuous, we obtain 

fa(oo,N)( {w : (cp, w(O)) = (cp, -Xo)}) = 1. (6.37) 

Remembering the definition (6.29) of Wcp (note that Ao is replaced by A~N)) 
and denoting 

ncp = {w: Wcp(w) = 0 and (cp,w(O)) = (cp,-Xo)}, (6.38) 

we obtain from (6.36) and (6.37) that 

(cp, w( t )} = (cp, Ao} + l (A_~N)( cp ), w( s )} ds - 2 CQ,max l (cp, w( s )} ds + 
l (cp, Kmax(w(s ), w(s ))} ds, \ft:;:: 0, \fw E !1.,, (6.39) 

and fa(oo,N)(Qcp) = 1. 
Let ('Pk) be a dense subset in C(Z). Then Eq. (6.39) is fulfilled for any w E 

nr:1 n'Pk and for all 'Pk . Since the operator .ii~N) is bounded, we obtain that 
the equation is fulfilled for all functions cp E C(Z). Eq. (6.39) is equivalent 
to Eq. (4.25). From the uniqueness, it follows that nr:ln'Pk = {~(N)}, and 
p(oo,N)( {~(N)}) = 1. Therefore, there is only one limiting point, namely 
8)..(N). D 

7. Concluding remarks 
The class of stochastic particle systems, for which convergence has been 

established in Theorem 2.3, includes the Leontovich model (cf. Example 2.5). 
In this sense, it generalizes the Skorokhod model (cf. Example 2.4). However, 
the class studied by Skorokhod [23, Ch. 2] contains also Vlasov terms, which 
have not been considered in this paper. 

47 



The assumptions of Theorem 2.3 should be compared with the assump-
tions of Theorem 1 in [23, Ch. 2, Sect. 4]. Our assumptions (2.21), (2.22), 
(2.26) concerning the free flow process reduce in the case (2.39) to the as-
sumption (2.44), which corresponds to assumption (1) in [23]. The Lipschitz 
property (2.32) of the functions f 1 and f2 is also included in assumption (1) 
in [23]. 

Our assumptions (2.33), (2.34) replace assumptions (2a)-(2f) in [23]. As-
sumptions (2.33) means that two particles being at the same state are not 
allowed to jump too far away. In models with the Boltzmann collision trans-
formation (2.43), (2.45), such particles will not jump at all so that the left-
hand side of (2.33) is simply zero. Assumption (2.34) is fulfilled for the 
Boltzmann collision transformation (2.43), (2.45). In this sense, it general-
izes the property of conservation of momentum and energy. Note that any 
moment assumptions (like assumption (2e) in [23]) have been avoided. In ad-
dition, there are assumptions (2.29)-(2.31) concerning the function q, which 
is an additional parameter of our model. 

Finally, some remarks concerning the relation between the stochastic par-
ticle system considered in Theorem 2.3 and the original Boltzmann equation 
(1.1). 

We did not discuss the problem of boundary conditions associated with 
Eq. (1.1) (cf. [7, Ch. 3]). They enter the stochastic particle system via the 
free flow transition function U0 • The present results cover periodic boundary 
conditions, since they are equivalent to considering a torus as the position 
space. However, in the case of specular reflection at the boundary, the conti-
nuity assumption (2.26) is violated, because there is a jump in the velocity. 
If the boundary conditions are of stochastic nature (e.g., diffuse reflection), 
then even assumption (2.23) will not be fulfilled. Moreover, in realistic prob-
lems from rarefied gas dynamics, there is a flux at some part of the boundary. 

To discuss the restrictions concerning the collision kernel Q , we consider 
the Leontovich model (cf. Example 2.5), with the function a of the form 

Assumptions (2.29)-(2.31) are fulfilled if the functions hand Bare bounded 
and Lipschitz-continuous. This is a severe restriction, which is not valid for 
realistic collision kernels B (e.g., B( v1 , V2, e) = I ( e, V2 - v1 ) I , in the hard 
sphere case). 
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Thus, two problems arise. The first is to weaken the assumptions con-
cerning the function B . There are many results how to do this in the spatially 
homogeneous case (cf. the references cited in Section 1 ). It does not seem 
to be very hard to adapt them to the spatially inhomogeneous case, if the 
function h remains smooth and bounded. The limiting equation obtained in 
this case turns out to be a mollified Boltzmann equation (with h called the 
mollifier) (cf. [7, Ch. 8, Sect. 3]). 

The second problem is to remove the mollifier, i.e. to consider a function 
h(n)(x1 , x 2 ) tending to the delta-function in the limit n ---+ oo. This fun-
damental problem corresponds to the original conjecture by Leontovich (cf. 
(1.6)). 
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