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Abstract

The paper is devoted to the analysis of the calmness property for constraint set
mappings. After some general characterizations, specific results are obtained
for various types of constraints, e.g., one single nonsmooth inequality, differ-
entiable constraints modeled by polyhedral sets, finitely and infinitely many
differentiable inequalities. The obtained conditions enable to detect calmness
in a number of situations, where the standard criteria (via polyhedrality or
the Aubin property) do not work. Their application in the framework of
generalized differential calculus is explained and illustrated by examples as-
sociated with optimization and stability issues in connection with nonlinear
complementarity problems or continuity of the value-at-risk.

1 Introduction

There are very many possibilities of defining Lipschitz-like properties for a multi-
function Z : Y = X between metric spaces Y and X. Intuitively, the most obvious
way to do so is to require at some § € Y the estimate (for some L,e > 0)

dz(y)(z) < Ld(y1,y2) Vz € Z(y2) Yy1,y2 € B(7, €). (1)

Here, “d refers to the distances in the corresponding metric spaces, “dals the distance
of a point to a set A and “Bmeans a closed ball. Clearly, in the single-valued case,
(1) amounts to the classical notion of a Lipschitzian function around some point 3.
For many applications in variational analysis, nonlinear optimization, nonsmooth
calculus etc., this notion is too strong and one rather considers restricted versions of
it. The Aubin property ([29]), for instance, refers to localized image sets by replacing
the expression Z(y»)’ in (1) with "Z(y2) N B(z,¢)’, where Z € Z(g) (originally, this
concept was introduced under the name pseudo-Lipschitz in [1], and it is closely re-
lated to the sub-Lipschitz property introduced in [28]). Another restriction concerns
the degree of freedom for the arguments. When fixing y; = g in (1), Z is said to be
locally upper Lipschitz at g ([26]). When combining both mentioned (independent)
relaxations of (1), one arrives at the so-called calmness property of a multifunction
as introduced in [29] (and in [32] under a different name). More explicitly, Z is said
to be calm at some (7,Z) € Gph Z (graph of Z), if there exist L,e > 0 such that

dz(g)(z) < Ld(y,y) Vz € Z(y)NB(z,e) Vy € B, e). (2)

Note that, due to the symmetric role of y; and ya, (1) as well as the Aubin property
are upper and lower semicontinuity properties at the same time. In contrast, as a
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consequence of fixing y; = g, calmness and local upper Lipschitzness are just upper
semicontinuity properties. The corresponding lower counterparts are obtained when
exchanging ¥ and y in the respective definitions. A restricted version of calmness,
called calmness on selections ([8], [16], [19]) substitutes the set Z(g) by the singleton
{z} in (2). This stronger condition entails that B(z,e) N Z(y) = {z}, i.e., {Z} is
isolated in Z(g).

This paper will focus its attention to the (general) calmness property (2). Of par-
ticular importance is the calmness of constraint set mappings as this becomes the
key for the existence of local error bounds, exact penalty functions, (nonsmooth)
necessary optimality conditions or weak sharp minimizers. To be more precise, let
now Y be a normed space, A C Y a closed subset and g : X — Y a continuous
mapping. The multifunction

M(y) :={z € X |g(z) +y € A} (3)

may be interpreted as a perturbation of the constraint set M(0) = g~!(A). Then,
at some Z with g(Z) € A, the following statements are equivalent:

1. M is calm at (0, Z).
2. JL,& > 0 :dg-1(a)(z) < Ldp(g(z)) Vz e B(z,E).
3. AL, >0 :dy)(z) < Lly|| VyeYVeecB(z,&)N M(y).

Indeed, one may choose & < ¢ such that ||g(z) — g(Z)|| < €/2 for all z € B(z, &),
where ¢ refers to (2). Now, for arbitrary z € B(z, &) and arbitrary n € (0,e/2) there
is some A € A such that

lg(z) — All < da(g(2)) + 71 < |lg(z) — g(2)|| +e/2 <.

Since z € M (X — g(z)) and A — g(z) € B(0,¢), 1. implies 2. via (2) by taking into
account that n was arbitrary:

dg-1(8)(z) = dm(o)(z) < L|[A = g(2)|| < L(da(g(2)) +n) VzcB(z,é).

Next, let y € Y and z € B(z,&) N M(y) be arbitrary. Then, g(z) + y € A, whence
da(g(z)) < ||ly||. Consequently, 2. implies 3. which, in turn, trivially entails 1.

The equivalence between 1. and 3. shows that, for the considered constraint set
mappings, the localization of the perturbation parameter y may be omitted when
dealing with calmness (in a slightly different context, this was first observed in [3]).
More importantly, the equivalence between 1. and 2. shows that calmness of M
amounts to the existence of a local error bound (e.g., [24]) of the constraint function
g. It is exactly this equivalence which explains calmness of constraint systems to be
the basic condition in the context of penalty functions or constraint qualifications
for optimality conditions (see, e.g., [3], [6], [31]). For a recent discussion of these



relations, we refer to [17]. A further observation is that the value function ¢ of some
optimization problem having M (y) as a parametric constraint satisfies the inequality

w(y) > ¢(0) — ¢||ly|]] (¢ >0, y close to 0),

provided that the objective of this problem is locally Lipschitz and that M is calm at
solutions. This estimate was the very origin of the calmness concept ([5]). Finally,
we note (e.g., [12], Lemma 4.7) that in an optimization problem

min{f(z) | z € C}

the calmness of the multifunction y — {z € C | f(z) < y} at solutions amounts to
these solutions being weak-sharp minima (see, e.g., [4], [30]).

A standard way to ensure calmness of a general multifunction Z : Y = X consists
in the application of some suitable criterion ensuring the (stronger) Aubin property.
Alternatively, from [27] we know that, in the finite-dimensional case, Z is calm at
each point of its graph whenever this graph is polyhedral (i.e. a union of finitely
many convex polyhedral sets). In [11] and [12] the authors derived calmness criteria
in the nonpolyhedral case which do not necessarily imply the Aubin property. They
consider, however, a specific structure

Z(y) = M(y)ne, (4)
where X = R™ Y = R™, © C X is closed and g in (3) is locally Lipschitz. Addi-

tional assumptions like semismoothness or regularity are imposed on g, A and ©.
Multifunctions of the type (4) arise frequently in applications. Moreover, as shown
in [18], the calmness of a multifunction Z(yl,yg) = Z1(y1) N Z(y2) can be ensured
via the calmness of another map having the form (4). Applying the approach from
[11], [12] provides useful information only in case that the point of interest Z belongs
to the boundary of ©. Otherwise, the two main alternative conditions derived there
reduce to

ker D*9(3) N Na(g(2)) = {0}, (5)

0 cint {{J D'9(@)(w") |v" € Nala()) N BJ (©)

where the definitions of the coderivative D*g and of the limiting normal cone Ny
can be found in Section 2. Unfortunately, (5) is precisely the standard criterion for
the Aubin property of M around (0,Z) which can be derived on the basis of the so-
called Mordukhovich criterion ([29]). If g is continuously differentiable and A = R™,
then (5) amounts to the standard Mangasarian-Fromowitz constraint qualification

(MFCQ) in dual form
0 ¢ conv{Vg(z)|: € I(z)},

where I(z) = {¢ € {1,2,...,m}|g(z) = 0}. Therefore we will keep the name
(MFCQ) also for condition (5). Also note that (6) entails not only calmness but
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even the isolatedness of Z in M(0), i.e., it is a criterion for the calmness on selections
mentioned above. Summarizing, the use of the criteria developed in [11], [12] shrinks
when applied to interior points of ® (in particular for ® = X).

The aim of this paper is to derive new conditions for calmness of (3) which should be
weaker than (5) and applicable also in case that Z is not an isolated point of M(0).
The paper is organized as follows: Section 3 contains the main results. They are
ordered according to the assumptions imposed on the problem data and illustrated
by a number of examples. Some of them admit that the spaces X,Y are infinite-
dimensional. Section 4 provides applications of the obtained results to generalized
differential calculus as well as to stability of the value-at-risk.

2 Notation

The following notation is employed: B and S denote the unit ball and the unit
sphere, respectively. B(a, p) is the ball with the center in a and radius equal to .
da(-) is the distance function to a set A and, for a closed cone D with vertex at the
origin, D° denotes its negative polar cone. Tx(z) is the contingent (Bouligand) cone
to A at = and df(z) is the Clarke subdifferential of a real-valued function f at z.

For a set II C R? let a € clIl. The cone
: (§,a' —a)
Nn(a) := < ¢ € RP| hmsup T || <0
—a

is called the Fréchet normal cone to Il at a.

The notions of the limiting normal cone, the limiting subdifferential and the code-
rivative are the cornerstones of the generalized differential calculus of B. Mor-
dukhovich, cf. [21],[22]. The lmiting normal cone to II at a, denoted Np(a) is
defined by

Nn(a) = limsup Nn(a'),

; eIl
a’'—a

where the “limsup” means the Painlevé-Kuratowski upper (outer) limit. In this
finite-dimensional setting one has Nn(a) = (Tu(a))®. If Np(a) = Nn(a), we say that
II is Clarke-regular at a. If II is convex, then Np(a) = Nn(a) at each a € II and
so we will consequently use only the notation Ny(a). Now, let ¢ : RP — R be an
arbitrary extended real-valued function and a € dom . The set

dp(a) := {a” € RP|(a*, —1) € Nepiy(a, p(a))}

is called the Limiting subdifferential of ¢ at a. Finally, let & : R?P = R? be an
arbitrary multifunction and (a,b) € cl Gph ®. The multifunction D*®(a,b) : R? =
RP, defined by

D*®(a,b)(b") := {a” € R”|(a”, =b") € Napne(a,b)},
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is called the coderivative of ® at (a,b).

A function f : R? — R is called semismooth at z € RP if it is Lipschitz around z and
for any sequences t, | 0, d, — d, &, € 0f(Z + tnd,) the limit lim (¢, d) exists for
n—oo

each d € RP. The concept of semismoothness plays an important role both in the

numerical methods of nonsmooth analysis ([20]) as well as in the characterization
of calmness provided in [11], [12].

3 Characterization of calmness

Throughout the whole paper, we shall be concerned with a multifunction M : Y =
X between Banach spaces X,Y, which is defined by

M(y) :=A{z € X|g(z) +y € A}, (7)
where g: X — Y and A C Y is a closed subset.

When inspecting (7), one may wonder if the consideration of canonical perturbations
y of g is a serious restriction. The following lemma shows that for Lipschitz data no
difference with a general parameterization arises.

Lemma 3.1 Let X,U,Y be Banach spaces. Consider a multifunction M* : U = X
defined on the basis of some locally Lipschitzian (with respect to the product topology)
function h : X x U = Y by means of

M*(u) = {z € X|h(s,u) € A} (ACY).
Assume that h(Z,u) € A for some z € X and uw € U. Then, M* is calm at (4, Z)
provided that M in (7) is calm at (0,Z) with g(z) := h(z,q).

Proof. The local Lipschitz continuity of A and the calmness of M yield constants
K, L,e > 0 such that

|A(z,u') — h(z,u")]
dur(o)(2)

< K| =" Vu,u" € B(u,e)Vz € B(z,¢)
< Lijyll VyeB(0,e)Vz € B(z,e) N M(y).

Choose ¢’ such that 0 < ¢’ < ¢ and |h(z,u) — h(z,q)| < € for all (z,u) €
B(z,e') x B(a,e'). Let ¢ € M*(u) N B(Z,¢') and u € B(a,e’) be arbitrary. Then,
z € M(h(z,u)—g(z))NB(z,e") by definition of M and M*. It follows the calmness
of M* at (4, z):

dyre@)(z) = duo)(2) < L|[h(z,u) — g(=)]| < LK |[u — 1

The following lemma allows equivalently to reduce the calmness of system (7) to the
calmness of a single (nonsmooth) inequality where the distance function is involved.
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Lemma 3.2 With the multifunction M from (7) we associate a multifunction M :
R = X defined by

M(t) = {z € X|da (g9(z)) < t}.
Then, M is calm at some (0,%) € Gph M if and only if M 1s calm at (0,z).
Proof. Note that M(0) = M(0), hence (0,2Z) € Gph M if and only if (0,

z)
Gph M. Assume first that M is calm at (0,z). By definition, there exist L,e >
such that

€
0

diro)(@) < LIt| Vi€ [—¢,¢]Vz € M(t)NB(Z,e).

For any y € B(0,¢) and any z € M(y) N B(Z,¢) one has that dy (g(z)) < [jy|| <,
hence z € M(||y||) and it follows the calmness of M at (0,Z):

dur(o)(#) = dizgoy() < LIyl Vy € B(0,e) Vo € M(y) N Bz, ).
Conversely, let M be calm at (0,Z). By definition, there exist L,e > 0 such that
duy(z) < Lyl Vy e B(0,e) Vo € M(y) N B(z,e).

For any t € [—€/2,¢/2] and any = € M(t) N B(Z,¢) one has that t > 0 (otherwise
M(t) = 0) and dp (g(z)) <t = |t| < /2. If t = 0, then dur(o)(z) = 0. Otherwise
(t > 0), choose A € A such that ||[A — g(z)|| < 2¢ and put y := A — g(z). Then,
y € B(0,¢) and z € M(y), hence it follows the calmness of M at (0, Z):

ditio)(@) = duro)(®) < Lyl < 2Llt| Vi€ [~¢/2,¢/2]Va € M(t) N B(z,¢/2).

Either exploiting the definition of calmness along with the last lemma or directly
negating statement 2. in the Introduction, one gets immediately the following (neg-
ative) characterization of calmness.

Corollary 3.3 In (7), M fails to be calm at some (0,Z) € Gph M if and only
if there exists a sequence x; — T such that dagoy(z1) > lda(g(z1)). In particular,
x; ¢ M(0) or, equivalently, g(x;) ¢ A (otherwise the contradiction 0 = dpr)(z1) >
lda(g(z1)) 2 0).

The next proposition reveals the calmness property of a single inequality constraint
to imply the Abadie constraint qualification which is well-known from mathematical
programming, (see [2]), and which requires coincidence of the contingent and the
linearized cone.



Proposition 3.4 In (7), let X = R™ Y =R and g be Lipschitz around z € M(0)
and directionally differentiable at T. Let Lps(o)(Z) be the linearized cone to M(0) at
z, defined by

Luo)(2) = {h € R™|g'(z; h) € Ta(9(2))}- (8)

If M is calm at (0,Z), then Ty 0)(Z) = Lpo)(Z).

Proof. The inclusion Tys(0)(Z) € L (0)(Z) holds generally true (without calmness)
when g is locally Lipschitz and directionally differentiable. For the reverse inclusion,
assume by contradiction the existence of some h € R™ such that ¢'(z; h) € Ta(g(Z))
but h ¢ Tas0)(Z). This amounts to the existence of some p > 0 with

lirﬁénft_ldM(o)(:ﬁ +th) = p.

On the other hand, there are sequences k; — ¢'(Z; h) and ¢; | 0 such that g(z)+t:k; €
A for all 2. This means that

dr(g(Z) +tig'(z; b)) < ti[|ki — g'(Z;R)|| Vs
and, consequently,
titda(g(z +t:h) < 7 {da(9(2) + t:g'(z; h)) + |9(@ + tih) — g(2) — t:g'(z; h)[}

For arbitrary [ € Nset ; := (I+1)"'u. Choose 7; € N such that ti_lldA(g(:fz—l—tilh) < g
and ti_lldM(o)(:fz +t;,h) > p — &1 One may assume that ¢; is increasing, hence t;, is a
subsequence of ¢;. Putting z; := Z + ¢,,h, one gets

dM(o)(:IJl) > til(,u — 81) = tillffl > ldA(g(:IJl)),

which contradicts the calmness of M at (0,Z) according to Corollary 3.3. [ |

The following example shows that the converse of Proposition 3.4 does not apply
even in case of a C!-function.

Example 3.5 Put A := R_, z = 0, g(z) := z*sinz™! (with g(0) = 0). Then
Trm)(Z) = R = Ly(0)(Z), i.e., the Abadie constraint qualification is satisfied but M
fails to be calm at (0,0). Indeed, for the sequence zy := 2/((4k + 1)7), one has that
g(zx) = z;. Furthermore,

1 1
>0 V Vk
9(e) e ((Zk ) 2k7r) /
but g(z) = 0 at the endpoints of this interval. As a result, one gets a contradiction
with calmness according to Corollary 3.3:

2 1

duro)(zk) = @t @kt Dr > kg(zx) = kda(g(zr)).
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3.1 Special Cases

In this section, we collect criteria for calmness in certain special cases. For a function
g : R™ — R denote by

I( . R : : -1 = A —
g'(zh) = liminft™(g(z +th') — g(z))
g'(z;h) = limsupt™}(g(z + th') — g())

£10,h'—>h

the lower and the upper Hadamard derivative at Z in direction h. We start with the
simple situation of an inequality defined by a real function.

Proposition 3.6 In (7), let X =R,Y =R, A = R_ and g be lower semicontinuous
at some T with g(z) = 0. Then, M is calm at (0,Z) if the following two conditions
hold true:

0€ [g*(z;1),4"(z;1)] = Fe>03n>0Vz€[z,z2+¢:

9(z) <0 or g(z) > n(z — 2). (9)
0€ [g*(%;-1),9"(z;-1)] = Je>03n>0Vz€[T—¢,7:
9(z) <0 or g(z) > n(z — ). (10)

If, moreover, g is semismooth at T (see sect. 2), then the pair of conditions

§g(z;1) = 0=3e>0Vze€[z,2+¢]:9(z)<0 (11)
§d(z;—-1) = 0=3Je>0Vze[z—¢,7]:9(z) <0 (12)

is equivalent with M being calm at (0,Z).

Proof. Assuming violation of calmness, Corollary 3.3 provides a sequence z; — Z
such that

0 < g(azl) < l_ldM(o)(:IJl) < [t |:111 — :f:| VieN. (13)

Without loss of generality, we may assume that, upon passing to a subsequence,
z; > Z or ; < Z for all [. Assume first that z; > & for all . Then, (13) amounts
to g*(z;1) < 0. On the other hand, since g(z;) > 0, we also have that g'(z;1) > 0.
However, the inequalities g(z;) > 0 and g(z;) < [7*(z; — Z) contradict directly
condition (9). Similarly, in case of z; < & for all [, condition (10) is violated. In
this way the first part of the statement has been established. Now assume that
g 1s semismooth. According to the previous result, all we have to show now is
that violation of one of the conditions (11) or (12) leads to a violation of calmness.
Without loss of generality, let (11) be violated (the proof running analogously in
the second case). Then, ¢'(Z;1) = 0 and there is some sequence z; | Z such that
g(z1) > 0. If calmness held true, then dpo)(2z:) < Lg(z:) for some L > 0 and



for I large enough. Choose 2 € M(0) such that |2z — zi| = dp0)(21). In particular,
21 > T, 21 # @1, 9(z1) < 0 and, by the mean value theorem for Clarke’s subdifferential,

LY — | < g(a) < g(z1) — g(21) < & |z — @il (14)

where ¢ € Og(w) and u; belongs to the line segment joining z; and 2. Since
|zt — 21| < |z — | — 0, we get w; | Z. Now, the semismoothness of g at Z entails
that & — ¢'(z;1) = 0. Since z; # =z, (14) provides the contradiction L™! < 0.
Consequently, calmness is violated. [ |

The importance of the “or part in conditions (9),(10) can be illustrated by the
function

(z) = —z ifz=n""! for somen € N
AR otherwise,

where calmness holds true, but one also has that 0 € [g¢(:f:; 1), g% (z; 1)] and g fails
to be nonpositive on an interval [Z,Z + ¢].

Remark 3.7 The first result of Proposition 3.6 requires that g(Z) = 0. Indeed, the
example

z—1 1fz<0
g(m)—{mg ifz >0
shows that calmness of M may be violated for a lower semicontinuous function g
which satisfies conditions (9),(10). The reason is that g(z) = —1. However, as soon
as g is continuous, calmness of M holds automatically true at any T with g(z) <
0 due to Z being an interior point of M(0) then. Consequently, for investigating
calmness of M when g is continuous (as in the second result of Proposition 3.6),
one may assume g(Z) = 0 without loss of generality.

A trivial consequence of the definition is that calmness of M holds true whenever
Z 1s a local maximizer of g. If g is differentiable, this situation even covers the gap
between calmness and the Aubin property in Banach spaces:

Proposition 3.8 In (7), let X be a Banach space and g : X — R be continuously
differentiable in a neighborhood of T € X such that g(Z) = 0. Then, M is calm at
(0,Z) if and only if either this multifunction has the Aubin property around (0,Z)
or T 18 a local mazimizer of g.

Proof. The Aubin property being equivalent with Vg(z) # 0 here, all we have
to show is that calmness is violated in the case when Vg(z) = 0 and there exists
a sequence z; — Z with g(z;) > 0. If calmness held true, then, as in the last lines



of the proof of Proposition 3.6, there exists a sequence z; such that the following
modification of (14) is valid with u; belonging to the line segment [z, 2]:

L7l — il < g(z1) < g(z1) — g(=21) < [[Vg(w)l| 2 — |-

As in the proof of Proposition 3.6, u; — &, whence Vg(u;) — 0. Again, the contra-
diction L~! < 0 results. |

Remark 3.9 The differentiability of g 1s essential in the statement of Proposition
3.8, as one can see from the ezample X = R, g(z) = max{—z? z}, andz = 0. Here,
M 1is calm although neither it has the Aubin property nor T 1s a local mazimizer of
g. However, since g is semismooth, one may apply the second result of Proposition
3.6 1n order to detect calmness.

3.2 Calmness of a single nonsmooth inequality

According to the previous section, there are simple criteria for calmness in the special
case of a single inequality. In those criteria either the respective constraint function
g is defined on R and then may be rather general or it is defined on a general Banach
space and then has to be continuously differentiable. In many applications, of course,
one will be faced with several differentiable inequalities or with a nondifferentiable
inequality defined on more general spaces than R. As far as calmness is concerned,
Lemma 3.2 indicates, that the former task could be reduced to the latter one via the
distance function. The following theorem provides a sufficient condition for calmness
of a single nonsmooth inequality. This result will be exploited in later sections for
the situation of several smooth constraints (not necessarily inequalities). In the
following, for notational convenience, the expression bd M(0) \ {Z} is supposed to

mean (bd M(0)) \ {Z}, where “bdrefers to the topological boundary.

Theorem 3.10 In (7),let X =R"*, Y =R, A = R_ and g be lower semicontinuous.
M is calm at (0,Z), where g(Z) = 0, if the following conditions are satisfied:

1. g"z;h) >0 Vhe NM(O)(E;) \ {0};

2. lim inf g(zth) -
(2,8)=(2,0) IRl

(2,h)€ [bd M(O)\{2}]x [Nar(o) (2)\{0}]

Proof. By Corollary 3.3, violation of calmness entails the existence of some
sequence z; — Z such that z; ¢ M(0) and

dM(O)(fEl) > lg(a:l) Vie N (15)

Denotq by z; the Euclidean projection of z; onto M(0) and set h; := z; — 2;. Then,
hi € Nago)(2zi) \ {0}. We may assume that |hi||"*hi — h and proceed by case
distinction:
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case 1: z; = Z for infinitely many [ € N. We shall keep the same notation for the
resulting subsequences of z; and h;. Then, h; € NM )(2)\{0} and h € NM y(Z)\{0}

by closedness of the normal cone. Moreover, (15) prov1des that
L=z — 2| " daroy (1) > e — 2| Hg(a),

whence a contradiction with condition 1. by taking into account that h; = z; — Z
and g(z) = 0:
g*(z; h) lim inf ||z, — 2|7 g(2 + ||z — 3] |l ™ ) = liminf ||z, — 2|79 (1)

<
< 0.

case 2: z; # Z for [ € N large enough. In this case,
L= le — 2| daro) (1) > ||z — 21| Hg().

Evidently, z; € bd M(0)\{z}. From z; — Z € M(0) and das(0)(1) = ||h4]|, it follows
that Ay — 0. Along with lilm inf ||A|| "t g(z + i) < 0, this contradicts condition 2.
—>00

Remark 3.11 Conditions 1. and 2. of Theorem 3.10 can be combined to the form

liminf M
(2:h)=(2,0) [
(2,h)€ bd M (0)x [Npz(0y (2)\{0}]

> 0.

The reason to keep these conditions separate is to illustrate the addition to Abadie’s
constraint qualification (related to condition 1.) which is necessary to obtain the
(stronger) calmness property (compare Proposition 8.4).

3.3 Calmness of differentiable constraints modeled by a fi-
nite union of polyhedra

In the following, we consider (7) for a continuously differentiable mapping g between
finite-dimensional spaces and for a set A which is union of p convex polyhedra A;.
This framework allows to model certain equilibrium constraints and incorporates
conventional feasible sets of nonlinear optimization. It is easy to see (cf. [7]) that
only finitely many cones can occur as Nj(u), where u € A. This allows to introduce
the following finite family of cones for some fixed z € R™

N o= NPz MM s 5512, 0}
g(z;) € Ajand N = Ny, (g(z;)) for all + € N}.
In the following, Vg shall refer to the Jacobian of g.
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Theorem 3.12 Consider (1) with X = R™Y = R™ g € C'(R",R™) and A =
U?Zl A; C R™, where each Aj is a conver polyhedron. Then, M is calm at some
(0,%) € Gph M under the following two assumptions:

1. Tuo)(2) = {h € R*| Vg(2)h € Ta(g(2))};

2. NNker(Vg(z))T ={0} VNeWN.

Proof. By Lemma 2.2, it is sufficient to show the calmness of the multifunction
M(t) = {z € X |da(g(2)) <t}

at (0,z). This will be done on the basis of Theorem 3.10 applied to the function
b:=djog. Put

I(z):={j € {1,...,p}|g(z) € A;}.

Since d,; is convex continuous, the composition b; := d,; o g is directionally differ-
entiable, and for all 7 € I(z) and A € R™ one has

bj'(z; h) = dj (g(); Va(z)h) = dr, (4 (Vg(z)R),

(cf. [29], Example 8.53). Clearly, b = min{b,|7 € {1,2,...,p}}. By a continuity
argument one even has the identity

b(z + u) = min b;(z + u) (16)

J€l(=x)

for all z € M(0) and all u sufficiently close to z. Consequently, for all z € M(0)
and all A,

b'(z;h) = lim A7t (b(z + Ah) — b(z)) = lim A7t (min bi(z + )\h))

A0 x40 sel(z)
_ . . -1 ) _ ) — . Ki .
= minlimA (bj(z + Ah) — b;(z)) minb; (z; k)
= min dr, (4())(V9(2)h) = duz, (9(e))lser@)}(Va(z)h)

JEI(x)

= dr,(9(2))(V9(2)h).

Here, we used that b(z) = b;(z) = 0 for all j € I(z). Along with our assumption
1., the obtained relation yields that b%(%;h) = b'(z;h) > 0 for all h € NM(O)(:Y:)\{O},
which is the first condition of Theorem 3.10. To verify the second one, consider an
arbitrary sequence

(21, 1) — (%,0), z € bd M(0O)\{Z}, i € Nar(oy(21)\{0}.

Clearly, g(z1) € A, and, by the finiteness argument, one may pass to a subsequence
(which will not be relabeled) such that I(z) amounts to a fixed index set I* and,

12



for each j € I*, the normal cones Na,(g(2;)) reduce to some fixed closed convex
cones N; for all [ € N. By definition, all these cones N; belong to N. Setting
hy = |ht||"*hi, one may pass to another subsequence (again not relabeled) such
that by — h with ||A]] = 1. Since by € Nuoy(2) and M(0) = UP_ g7} (4;), it
follows that h; € ﬂjeH*Ng—l(Aj)(Zl). Here, we have used the existence of some open
neighbourhood U of z; such that

M(O) NU = (Uje]l*g_l(Aj)) NnU.

On the other hand, our assuption 2. ensures that N; N ker (Vg(z))T = {0} for [
sufficiently large. This constraint qualification allows to apply Theorem 6.14 in [29]
and to derive that Ng-1(a,)(21) = (Vg(2))T N;. We show now that

he(Vg(z)'N;nS Vjel (17)

Indeed, for an arbitrary fixed j € I* one has that h; = (Vg(2))Tk; with Kk €
N; and it suffices to verify that the sequence {k;} is bounded. Taking account
that H(Vg(zl))Tle = 1, this follows, however, immediately from our assumption 2.
Therefore, relation (17) holds true.

Now, since each A; is convex, one has for all j € I* that A; — g(z) C Ty, (g(21)).
Consequently,

bi(zi+hi) = da;(g(a+ hi) 2 dr, (g(2)(9(21 + ha) — g(1))
= dy, (9(=); (9(z + h) — g(=))) = max (& g(z + ) —g(2)),

J EEN;NB

where the last two equalities follow from Example 8.53 in [29]. Since g is continuously
differentiable, it is strictly differentiable at Z and one has

Il (951 + ) = (1)) = (Vai(@), B)
so that
(& bl (gle+ ) — g(2))) = ((V9(2))78,R)

iFrom (17), we know that h = (Vg(:f:))Tic for some k € N;\{0}. Recalling, that a

function rgnz}g((f, U(-)) with K convex compact and ¥ continuous is continuous, we
€

may summarize that, for all 7 € T*,

lim inf ||| ~b;(2 + he) > liminf max (¢, [mul|™" (g(z + he) — 9(21)))

200 EEN;NB

= max ((Vg(2))7¢,h)

¢EN;NB
((Va(a)™ (IFI7'E) , (Va(a))"%)
B (Vg(@)TR | > 0

Y
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in view of our assumption 2. Referring to (16), it follows that

liminf ||h||'8(2 + A) = liminfmin ||h]| " 0;(2 + i)
{00 00 jel*
= minliminf ||h]|7'b;(2 + ;) > 0.
FEI*  I—00
This establishes condition 2. of Theorem 3.10 and completes the proof. [ |

Remark 3.13 From the proof of Theorem 8.12 it 1s clear that one may replace
condition 1. by the weaker condition

Na(o)(&) N {h € R™Vg(2)h € Ta(9(2))} = {0}.
This is particularly efficient in situations where NM(O)(EJ) = {0} as in Ezample

3.15 below. With this condition, however, there is no real gain in the statement of
Theorem 38.12 because calmness implies its condition 1 (see Prop. 3.4).

Three examples shall illustrate the application of Theorem 3.12.

Example 3.14 Consider the nonlinear complementarity problem (NCP) governed
by the generalized equation (GE)

0 € f(z) + Nr,(z) (18)
with
—z? forz <0
flz)=¢ 0 for z € ]0,1]

(z —1)% forz>1
Clearly, this problem can be rewritten as g(z) € A with
9(z) = (z,— f(z))" and A = Gph Ng, = (R4 x {0}) U ({0} x R_).

Note that A is the union of two convez polyhedra (half lines). It is easily seen that
M(0) = [0,1] holds true for the multifunction M in (7). We ezamine calmness of M
at (0,0) € Gph M. Condition 2. of Theorem 3.12 is automatically fulfilled because
there is no sequence z; — 0 with z; € bd M(0)\{0}. Condition 1. of Theorem 3.12

18 also satisfied due to
Ta©)(0) = Ry = {h € R|(h,0) € A} = {h € R[Vg(0)h € Ta(g(0))}-

Consequently, M is calm at (0,0). Observe, however, that M does not possess the
Aubin property at (0,0). Indeed, one has M(0,e) = {1++/e} fore > 0 which implies
that M(0,¢) N B(0,1) = 0 in contradiction with the Aubin property. Therefore,
calmness cannot be detected here as a consequence of the Aubin property.

14



X2

X1

Figure 1: Illustration of the set M(0) in Example 3.15

Example 3.15 Let
g(mla :112) = (—:IJ% + Za, —:IJ% — T2, ml)T;

z=0and A=A UA; with A; = R*?XR_ and Ay, = R%2 x R,. The set M(0) is

tllustrated in Figure 1.

It is eastly calculated that (1,1,0) € Nx(g(z)) Nker (Vg(:f:))T. Hence, the calmness
of the multifunction M in (7) cannot be ensured at (0,0) by the MFCQ (5). On the
other hand, the condition of Remark 8.18 is trivially fulfilled due to NM(O)(EJ) = {0}.
This entails condition 1. of Theorem 8.12. As for condition 2. of that theorem, note
that the family N consists of the three cones

Ny =R, x {0} x {0}, N, = {0} x R} x {0}, N3 = {0} x {0} x R,.

Since N; N ker (Vg(a_:))T = {0} for: =1,2,3, condition 2. holds true as well and

calmness follows.

Example 3.16 Consider the parameter-dependent NCP governed by the (GE) 0 €
f(z1,22) + N, (z2) with f(z1,z2) = @ — x5 together with the parameter constraint
z1 < 0. Again, this can be written as g(z) € A, where

g(z) = (z1, 25, — f(z1,22))T and A = R_ x Gph Ng, .

Now, A is the union of two convez polyhedra. For the multifunction M in (7) one
computes

M(0) = (R_ x {0}) U {(z1,22) € R_ x R|z? = z,}.

15



Calmness of M shall be ezamined at (0,0) € Gph M. First note that
(07 _17 1)T € NA (9(07 0)) N ker (vg(oa 0))T 7£ {0};

which means that, again, MFCQ) is wolated and, thus, cannot be applied in order to
detect calmness. On the other hand, condition 1. of Theorem 8.12 is fulfilled because

Tr(0)(0)

10 L
R_ox{0}={rheR¥}[ 0 1 ( ' ) € A}
ks
0 1
= {h e R?|Vg(0)h € Tx(g(0))}-
Further note that the family N in Theorem 3.12 consists of the two cones
N, ={0} x {0} xR, N, ={0} xR x {0}.
Since
Ni ker (Vg(0))7 = {0} (i =1,2),

condition 2. of Theorem 3.12 is also satisfied and calmness of M at the origin has
been established.

As an application of Theorem 3.12 consider the special case
o(z) = Az + c, (19)

for some (m,n)- matrix A and some ¢ € R™. From Robinson’s well-known theorem
in [27] it follows that the multifunction M in (7) with g defined in (19) is calm at
(0,%) for each z € M(0). Next we show, how this result can alternatively be derived
from Theorem 3.12. We start with a preparatory statement.

Proposition 3.17 Let in the setting of Theorem 3.12 be p = 1 (i.e., A itself is a
convez polyhedron). Then M in (7) with g defined in (19) is calm at (0,Z) for each
z e M(0).

Proof. It is well-known that condition 1. of Theorem 3.12 is satisfied for our data
(see [2]). Concerning condition 2. of Theorem 3.12 we get back to the sequences
{zl},{izl} specified in the proof of that theorem. Due to the form of g, one has
NM(O)(zl) = ATN with some fixed closed convex cone N whenever [ is sufficiently
large. This implies that A € ATN as well. Simultaneously, Tao)(z) = (ATN)° =
{k € R™| Ak € N°} and we denote this fixed convex cone by T. Following the proof
of Theorem 3.12, it remains to show that

max (ATf,m > 0. (20)

¢eENNB
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Assume by contradiction that
(€, Ah) <0VE€ NNB.

This implies, however, that Ah € N ie., h € T. On the other hand, the intersection
of negative polar cones cannot contain a nonzero element. Thus, inequality (20)
holds true and we conclude that condition 2. of Theorem 3.12 is satisfied. [ |

Consider now the multifunction M with g given by (19) and

where the A; are convex polyhedra. With M; : R™ = R"™ defined by
Mi(y) :={z eR"Az+c+yecAj} (1=1,...,p)
it is easy to see that
P
Gph M = | J Gph M;.

i=1

This allows to invoke an idea from [29] (Example 9.57): Let (z,0) € Gph M so that
(z,0) € Gph M; for 7 € I (z). By virtue of Proposition 3.17, there exist [;,¢; > 0,
such that

dug(0)(z) < i llyll  Vy € B(0,¢;) Vo € B(Z,¢5) N M;(y).

2

Consequently, with

one has
dusyey(2) < Lyl Vo € B(0,e) Ve € Bz, ¢) N My(y) V) € 1 ().

This amounts, however, to the calmness of M at (z,0).

3.4 Calmness of finitely many differentiable inequalities

As a further application of Theorem 3.12 we characterize calmness of a finite system
of smooth inequalities, i.e., A = R™. Let

Iz):={te{l,...,m}|g(z) =0}

be the set of active indices at z. The standard results on characterization of calmness
of M mentioned in the introduction amount to the following conditions:

17



1. (MFCQ) 0 ¢ conv {Vg,(z)|z € I(z)}.

2. (see (6)) 0 € intconv {Vg;(Z)]: € I(Z)}.
Note that in this second case, Z is a weak sharp minimizer (cf. [30]) of the
function

G(z) := maxmgz(a:)

=1,

Simple examples show that in the remaining case 0 € bdconv {Vg;(Z)|: € I(z)}
calmness can be violated or satisfied (take g;(z) = z and gx(z) = 0 or go(z) = z?).
The application of Theorem 3.12, however, will provide a condition which allows to
detect calmness of M also in this case. Let J be the family of critical index sets
I C I(z), defined by

J ={I|3 = PAMONMEL 2. g

I(z)Vi € N}.

Theorem 3.18 Consider (7) with X = R™ Y =R™, g € CY(R",R™) and A = R™.
Then, M is calm at some (0,z) € Gph M under the following two assumptions:

1. Tyo)(z) = {h € R Vg(2)h <0 Vie I(z)};
2. 0 conv {Vg(z)le€ I} VIe J.

Proof. Condition 1. above is just the specification of condition 1. in Theorem
3.12 to the setting considered here. Since for an arbitrary point z € M(0)

Nem(g(z)) = {k € R™k; = 0 for 5 ¢ I(z)},

condition 2. of Theorem 3.12 reduces to the condition that, for all I € J one has
the implication

(Vg(2) k=0,kcR™ k=0if i ¢ ] = k =0.

This, however, is equivalent to 0 ¢ conv {Vg;(z),t € [} VI € J. [ |

Remark 3.19 Note that in Theorem 3.18 we do not require the MFC(Q)
0 ¢ conv {Vgi(Z)|s € I(z)}

which would guarantee the stronger Aubin property of M around (0,Z). Indeed,
condition 2. of Theorem 8.18 is strictly weaker than MFCQ due to I C I(Z) for all

IeJg.

18



The first two of the following examples illustrate the application of Theorem 3.18. In
both of them, the two calmness criteria mentioned before the statement of Theorem
3.18 (yielding Aubin property or weak sharp minimum, respectively) are violated.
In the third example the respective M is not calm. We always put z = 0.

o gi(z) = —z?, g2(z) = z: Then,
M(0) = Trm(o)(Z2) ={h e R|Vgi(Z)h <0 Vie I(z)={1,2}} =R_.

Since bd M(0) = {z}, it results that J is an empty family of index sets and,
hence, condition 2. of Theorem 3.18 is trivially fulfilled. Therefore, M is calm

at (0,0).
o gi(z1,22) = Ty — 22, go(z1,22) = —2 — 23, g3(z1,%2) = —z1: Then,
M(0) = {(z1,22)| 2| < &7, 21 > 0}
and

Tu)(z) = {h € R*|Vg(2)h <0 Vi€ I(z)=1{1,2,3}} =R, x {0}.

Moreover, we have that J = {{1},{2}} (the third inequality never becomes
active at M(0) \ {z}). Since Vg:1(z) = (0,1) # 0 and Vgi(z) = (0,—1) # 0,
condition 2. of Theorem 3.18 is fulfilled. Thus, M is calm at (0,0).

o g1(z) = 2%, ga(z) = z: One easily verifies that M is not calm at (0,0). Then,
condition 1. of Theorem 3.18 is violated:

{0}
R_={heR|Vg(z)h <0 Vie I(z)={1,2}}.

M(0) = Ty o)(z) =
£

3.5 Calmness of infinitely many differentiable inequalities

The idea developed in Theorem 3.18 can be also applied to the case of another multi-
function M, where y is an infinite-dimensional parameter. Let T C R™ be compact
and denote by C(T') the Banach space of continuous functions on T equipped with
the maximum norm. Let g : R® x R™ — R be continuously differentiable such that
Vg is locally Lipschitzian (which is satisfied, for instance, if g is of class C? or even

Ch1). Consider the multifunction M : C(T) = R™ defined by
M(y) = {o € Rlg(a,2) < —y(2)} VzeT. (21)
Evidently, one may equivalently write (21) as

M(y) := {z € R"|g(z) +y € A}, (22)
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where g(z) := g(z,-) and A refers to the cone of nonpositive, continuous functions
on T'. For any z € R"”, the set of active indices will be denoted by

I(z):={2€T|g(z,z) = G(z)}, where G(z)=max{g(z,z2)|z€ T} (23)

It is well known that G is locally Lipschitzian and Clarke-regular. In particular, G
is directionally differentiable and one has

G'(z; h) = max{(V.g(z,2),h) |z € I(z)} (24)

(note that writing “maxis justified here due to the compactness of I(z)). Assume
that Z € R™ satisfies G(z) = 0, hence (0,z) € Gph M. Finally, we introduce the
following family of critical index sets:

J = {8 € T|3; MO 5 dg(8, 1)) — 0}

Here, dy refers to the Hausdorff distance between compact sets.

We shall need the following auxiliary result:

Lemma 3.20 Let K C R™ be a closed convez set such that 0 ¢ K C LB for some
L > 0. Then,

max(k,h) > LJE[? k]| VR € Ry,

keK

where £ is the norm-minimal element in K.

Proof. Since ¢ is a norm-minimal element in K, one has ||£||*? < (£, k) for all
h € K. Consequently,

max(k, h) > (§,h) > L |[¢|P*|R]| VR € K.

keK

Since both sides of the last inequality are positively homogeneous in A, the same
inequality holds true for all h € R, K. [ |

Theorem 3.21 Consider (7) with X := R™ Y := C(T) and M given by (22)
(where G plays the role of g in (7)). Let (0,z) € C(T) x R™ such that G(z) =0, i.e.,
9(Z,2) <0 for all z € T, and there exists some z € T with g(z,z) = 0. Assume that

1. Ty o)(Z) = {h € R*(V.g(Z,2),h) <0 Vze I(z)}.
2. There is some p > 0 such that deypny {vmg(i,z)pes}(o) >p forallS€J.
Then, M is calm at (0,Z).
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Proof. According to Lemma 3.2, calmness of M at (0,z) € C(T') x R™ is equivalent
with the calmness of

M(t) := {z € R"dprg(z) < t} = {z € R" max{G(z),0} < t}

at (0,z) € R x R". The definition of calmness immediately yields that, another
time, calmness of M at (0, Z) is equivalent with the calmness at (0,Z) of

M*(¢t) .= {z € R"G(z) < t}.

Hence, we are going to verify this last property on the basis of Theorem 3.10 (with
the function g there replaced by our function G here). By our assumption 1. we
have that NM(O)(EJ) = (LM(O)(EJ))O. Then, (24) provides condition 1. of Theorem
3.10:

GH&; h) = G'(&; h) = max{(V.g(z, 2),h) |2 € I(2)} >0 VYh € Narroy(2)\{0}.

In order to check condition 2. of Theorem 3.10, consider arbitrary sequences z; — Z
and h; — 0 such that z; € bd M(0)\{Z} and h; € Ny 0)(Z)\{0}. Denote by ¢ > 0
a Lipschitz modulus of Vg on the compact set B(z,1) x T' . We verify the following
relation:

AV > 1o3S € T : I(z) € S + B0, (4c)*p), (25)

where p > 0 refers to our condition 2. If the relation would not hold true, then
there were subsequences {z;},{z} which we do not relabel, such that z € I(z;)
and dg(z;) > (4¢c)™'p for all [ and all S € J. Since the space of compact subsets
of R™ endowed with the Hausdorff metric is itself compact, there is some compact
S C T along with another subsequence {z;}, which again we do not relabel, such
that dg (S, I(z;)) — 0. By definition, S € J. Finally, after passing yet to another
subsequence, we have that z; — z for some z € T. Consequently, z € S, which
contradicts dz(2;) > (4c)~!p for all [. This proves (25).

In addition to (25), we may assume that ||z; — Z|| < (4¢)~'p for all [ > l5. Now, we
fix an arbitrary [ > [y and an arbitrary z € I(z;). By S € J, we denote the set
whose existence is guaranteed in (25) and by z* € S the Euclidean projection of z
onto S. Then, due to (25), we get

IVag(21,2) = Vag(2, 2%)|| < c(llz — ]| + ||z = 2*[]) < p/2.

Our assumption 2., along with a separation argument, ensures the existence of some
z* with ||z*|| = 1 and

(z*,v) > p > (z*,u) Vv € conv{V,.g(Z,z2)|z € S}Vue B0,p).
Then, since z € I(x;) was arbitrary, one derives

(2%, Veg(z1,2)) 2 (27, Vag(2,2")) = [[Veg(@1, 2) = Veg(2, 27|

>
> p—p/2=p/2>{(z",u) Vze I(z;)VuecB0,p/2).
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It follows that conv{V.g(z;,2)|z € I(z;)} NintB(0,p/2) = B. Since | > Il was
arbitrary, we have that

dconv{Vmg(zl,z)|zel(zl)}(0) > P/2 Vi > lO' (26)

In particular, 0 ¢ conv {V,g(zi,2)|z € I(z;)} = 0G(z;). This constraint qualifica-
tion along with the Clarke regularity of G ensures that NM(O)(ml) = R, 0G(z;) (cf.
Prop. 10.3. in [29]). Accordingly, ||hi||"*hi € R4y0G(z;). The continuity of the
gradients Vg implies the existence of some L > 0 such that K; C LB for [ large
enough. Now, Lemma 3.20 and (26) ensure that

max (k, |||~ i) > L1 (dag(zl)(O))z > L2 /4 VI > .

k€dG(z))

We assume also [y large enough to meet the condition max{||z; — z||, [|[A|]} < 1/2
whenever [ > ly. Now, fix an arbitrary [ > [y and put

a(h, z) := g(z + h, z) — g(z1, 2) — (Veg(z1, 2), h).

Clearly, « 1s continuous and, by the mean value theorem and by Vg having Lipschitz
modulus ¢ > 0 on B(z,1) x T, one gets that

(b, 2)| < [(Vag(@1 + Onshy 2) — Vagl(ar, 2),h) | < O |Ih]?
V(h,z) € B(0,1/2) x T,

where O, € [0,1]. This implies
IR le(h, 2)| < c|[Rl] - V(h, 2) € (B(0,1/2)\{0}) x T

We note that z; € bd M(0) entails G(z;) = 0 by continuity of G and, hence,
g(z1,2z) = 0 for all z € I(z;).Then, the following estimation holds true for all [ > lq:

G(ml—l_hl) Z max g(ml—|—h172) _g(fEl,Z)
[P z€1(x) [P
= mox {(Valon, =) ) + [, )}
z Ty
> —1 _ —1
> mox {(Vagfen,2), Il A} — mase {Idl ek =)}

> L7'p%/4— |l
Choosing [y large enough to satisfy ||h|| < (8cL)™tp? for all [ > Iy, it follows that

G(:El —|— hl)

> L7288 >0 V>
1Bl

This last relation eventually entails condition 2. of Theorem 3.10. [ |
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4 Applications

4.1 Nonsmooth Calculus

This section is devoted to two applications of the preceding theory in nonsmooth
calculus. The first one concerns the computation of the limiting normal cone to the
set M(0) = {z € R™|g(z) € A}, where g : R® — R™ and A C R™ has a special

structure.

Theorem 4.1 Let g be continuously differentiable and A = U?ZlAj, where each
A; € R™ is a convez polyhedron. Suppose that g(Z) € A and both assumptions of
Theorem 8.12 are fulfilled. Then one has

Nuo)(2) € (Vg(2))" Na(9(2))- (27)
If A happens to be Clarke-regular at g(z), then M(0) is Clarke-regular at T and

inclusion (27) becomes an equality.

Proof. The first assertion follows immediately from the calmness of the respective
map M at (0,Z) by virtue of [12, Theorem 4.1]. To prove the second assertion, note
that

Nu(o)(Z) 2 Nuo)(2) 2 (Vg())" Na(9(2)) (28)

without any assumptions. Since Ny (9(z)) = Na(g(z)) by the Clarke-regularity of A
at g(z), it suffices to combine (27) and (28) to get

Nur(o)(2) = Nuro)(2) = (Vg(2))" Na(g(2)),
and we are done. [ ]

The preceding result can be utilized, e.g., in deriving optimality conditions for the
program

min{p(z)|g(z) € A}, (29)

where ¢ : R™ — R is locally Lipschitz and g, A satisfy the assumptions of Theorem
3.12. Let & be a local solution of (29) and assume that Ta(0)(%) is not convex. Then,
one usually employs the optimality conditions from [21]

0 € 0p(z) + NM(O)(ﬁz).
On the basis of Theorem 4.1 we arrive in this way at the desired relation
0 € dp(2) + (Vg())" Na(g(2)) (30)
even in the case when MFCQ does not hold at z.

This situation can be illustrated by means of the constraint system analyzed in
Example 3.15
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Example 4.2 Consider the mathematical program (29) with
p(z1,22) = 2|21 — 22| — (21 + 72) (31)

and g, A being given in Ezample 8.15. On the basis of Figure 1 and the objective (31)
one easily deduces that T = 0 1s a local minimazer in this program. From Ezample
3.15 we know that the respective map M is calm at (0,z). Therefore, by virtue of
Theorem 4.1, it follows that

Muo@ € |} Y ¢ | Mo (32

One readily computes that

NA(0) = (RZ x {0}) U ({0} x {0} x R).

Furthermore,

and we observe that the vector (—2,0)T € dp(Z) and the vector (2,0)T belongs to
the cone on the right-hand side of (82). This implies that the optimality conditions
(80) are fulfilled.

Calmness plays also a crucial role in the computation of coderivatives of composite
multifunctions. This concerns the general situation considered in [22, Theorem 5.1],
but here we restrict ourselves only to the multifunction

S(u) :={z € ©|h(z,u) € A}, (33)

where h : R® x RP — R™ is locally Lipschitz and the sets @ C R* A C R™ are
closed. We start with a modification of [22, Theorem 6.10] and introduce to this
purpose the multifunction P : R™ = R™ x RP defined by

P(y):={(z,u) € © x RP|h(z,u) +y € A}. (34)

Clearly, z € S(u) iff (z,u) € P(0), i.e., Gph S = P(0).

Theorem 4.3 Let (Z,a) € Gph S and assume that P is calm at (0,Z,u). Then one
has for all z* € R™ the inclusion

*

D*S(u,z)(z*) C {u € R?| { _Z* } € D*h(z,a) o Np(h(Z,a)) + { No(2) ”
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Proof. According to the definition,

u*

D*S(u,z)(z*) = {u € RP| { . } € Np(o)(:f},’l_l,)}.

Due to the required calmness of P we can invoke [12, Theorem 4.1 | which yields
the inclusion

Isd|

Npo)(z,a) C D*h(z,a) o Nx(h(z,)) + { 0 ]

No(Z)
and completes the proof. [ |

Formula (35) is useful, e.g., for testing the Aubin property of S around (@, z) via the
Mordukhovich criterion D*S(w,z)(0) = {0}. If we connect this criterion with the
qualification conditions from [22, Theorem 6.10], ensuring the validity of inclusion
(35), we arrive at the condition

o Je mrma [ | {05 (36
v € Nu(h(z,7))

If we, however, ensure the validity of (35) via the calmness of P at (0,Z,a), then S
possesses the Aubin property around (u,Z) provided

I R L R I I

The importance of the difference between (36) and (37) is strikingly illustrated by
the following NCP.

Example 4.4 Let S : R — R? be the map which assigns to the parameter u the set
of solutions to the complementarity problem, governed by the GE

o [ 01 0, [

We want to ezamine the Aubin property of S at (u,z) = (0,1,0). This problem
can be converted to the form (83) in the same way as it was done in Ezample
3.14; thereby © = R? and the corresponding map h is affine. We easily realize that
condition (86) is not fulfilled (each vector (vi,vs) € R x {0} belongs to Ny(h(Z,u))N
ker (Vh(Z,))T). On the other hand, since h is affine, the corresponding map P is
calm and condition (87) is fulfilled. This implies that S has the Aubin property
around (4, Z), which could not be detected by the standard technique.

The theory, developed in Section 2, does not enable to ensure the calmness of P in
the above general setting in a new way. If, however, © = R™ A is as in Theorem 3.12
and h happens to be continuously differentiable, then one can try to apply Theorem

4.8 whenever the qualification conditions of [22, Theorem 6.10] are not fulfilled.
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4.2 Continuity of the Value-at-Risk

A prominent risk measure used in mathematics of finance or in stochastic optimiza-
tion is the value at risk. For a given random variable X and a given probability
level p € (0, 1], this value at risk is defined as

VaR,(X) :=inf{r € R|P(X <r) > p} = inf{r € R|Fx(r) > p}.

Here, P denotes some probability measure and Fx is the distribution function of X.
It is well known, and sometimes stated as a shortcoming of this risk measure, that,
in general, VaR, does not depend continuously on X. The following theorem uses
Proposition 3.6 in order to derive a Lipschitz-type continuity result for VaR, under
the assumption that X has a density fx, i.e., Fx(z) = ffoo fx(¢t)dt. The deviation
between two random variables X and Y shall be measured by

A(X,Y) := sup |Fx(t) — Fy(t)]

teR

which is the Kolmogorov distance between the distributions induced by X and Y,
respectively. For convenience of notation, we put Z := VaR,(X). Furthermore,
denoting by A the Lebesgue measure in R, we introduce the quantities

pl(e,a) = Mz c(z,z+¢]lfx(z) > a}
Pea) = Moclz—ealfx(@) > a}
Theorem 4.5 Let X be a fized random variable. Assume that p € (0,1) and that

liminfe ™ "(e, @) > 0 and liminfe o' (e, a) > 0. (38)

a,el0 a,el0

Then, there exist constants L,é > 0, such that

|[VaR,(X) — VaR,(Y)| < LA(X,Y) for all Y with A(X,Y) < 6.

Proof. As a distribution function, Fx is nondecreasing, upper semicontinuous
and satisfles lim Fx(z) = 0. From here, it follows immediately that, under our
z——00

assumption p € (0,1), one has that Fx(Z) = p. The second condition in (38)
provides the existence of a,~y,d > 0 such that

o*(e,a) >ve Vec (0,6).

Consequently,
Fy(3) — Fy(3—¢) = / fe(B)dt > ap'(e,a) > ave Ve (0,8),  (39)

With g(z) := p— Fx(z), this yields that g*(z; —1) > 0 in the notation of Proposition
3.6 . Consequently, 0 ¢ [g¢(:f:; —-1), 4'(z; —1)] and the implication (10) holds trivially
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true. On the other hand, because Fx is nondecreasing as a distribution function,
one has that

g(z)=p—Fx(z)<p—Fx(2)=0 Vz>1z.

Thus, (the conclusion of) the implication (9) holds true. Summarizing, Proposition
3.6 may be applied to derive calmness of the mapping

t — {z|g(z) < -1}
at (0,Z) which amounts to the calmness of the mapping

t— {z|Fx(z) >t}
at (p,z). By definition, there are constants L,d; > 0 such that

d[i,oo)(r) <Lit—p| Vrelz—61,2+68]: Fx(r)>t Vte|p—4é1,p+d1].
Next we exploit that Fx(z — é1) < Fx(Z) (otherwise the fact that Fx is nonde-
creasing implies the contradiction Fx(r) = Fx(z) for all r € [z — 61, Z] with (39)).
Therefore, taking into account once more that Fx is nondecreasing and observing
that dz c)(r) = 0 for r > Z, the above relation can be extended to
dizoo)(r) S LIt —p| VreR:Fx(r)>t Vi€ [p—6bap+ 0o, (40)

where 6, := (Fx (&) — Fx(Z — 61)) /2. Now, consider an arbitrary random variable
Y and an arbitrary r € R with Fy(r) > p. By definition, Fx(r) > p — A(X,Y). If
Y is such that A(X,Y) < 4,, then we may put ¢ := p— A(X,Y) in (40) and get that
diz,00)(1) < LA(X,Y). Combining this with the obvious relation Z < r + 2d[z o)(7),

we arrive at

Z<r+2LAX,Y) Vr:Fy(r)>p VY :A(X,Y)<6,.
Passing to the infimum over all 7 with Fy(r) > p, yields

VaR,(X) < VaR,(Y) + 2LA(X,Y) VY : A(X,Y) < 6,.

Repeating the analogous argumentation, but now based on the first condition in
(38), one deduces calmness of the mapping

t— {z|Fx(z) <t}
at (p,Z) and, eventually, the relation
VaR,(X) > VaR,(Y) — 2LA(X,Y) VY : A(X,Y) < &,

which combines with the first one to the assertion of the theorem. [ ]
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Remark 4.6 Using Theorem 1 in [10], the conclusion of the last theorem could be
obtained without condition (88) but under the assumption that the density fx is
log-concave, i.e., log fx is concave (this holds true, for instance, for the normal,
Gamma, Dirichlet, uniform, lognormal and many other distributions, see [25]).

Remark 4.7 Instead of (88) one might consider the simpler condition
de >0: fx(z) > ¢ for almost allz € [Z —¢,T + €],
which obviously implies that

.. -1 % T “1 B
hal:fleicr)lfg ® (5,a)—110r£i51f5 er(e,a) =1,

and, hence is stronger than (38). Indeed, this condition was shown in [9] (Theorem
6) to imply the Aubin property of the mapping

t— {z|Fx(z) >t}

at (p,z). From here, one might ezpect now a stronger Lipschitz result as compared
to Theorem 4.5, e.q.:

|VaRP(}/1) - Va‘RP(Y’z” < LA(Y’hYE) vY’17Y’2 : A(X,Y’l),A(X,Y’z) <.

This, however, does not hold true as is confirmed by an ezample in [13] (Ezample
1), which is easily translated to the “value-at-risk setting considered here.

The following example demonstrates the use of condition (38) in Theorem 4.5 as
compared to the condition in the last remark:

Example 4.8 Consider a random variable X with its distribution having density
fx(z) = Ke™® max{sinz ™2, 0},

where we put fx(0) := 0, p := 0.5 and K is a normalizing constant such that
[ fx(z)dz = 1. Due to symmetry of f, it follows that T := VaR,(X) = 0. Some
calculation shows that

. . —1 T 1 . —1 i’ _

llﬂigfs o'(e,a) = llﬂigfs o*(e,a) = 0.5,

so that (38) is satisfied and the result of Theorem 4.5 may be derived, but the con-
dition of Remark 4.7 1s violated.
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