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Abstract

We apply theoretical results of S. Peng on supersolutions for BSDEs to

the problem of �nding optimal superhedging strategies in a Black-Scholes

market under constraints. Constraints may be imposed simultaneously on

wealth process and portfolio. They may be nonconvex, time-dependent, and

random. Constraints on the portfolio may e.g. be formulated in terms of the

amount of money invested, the portfolio proportion, or the number of shares

held.

1 Introduction

The seller of an option � with exercise time T faces the following problem: How

much money does he need to replicate at least the obligation � at exercise time T

which he accepts when selling the option? Put in other words, the seller of an option

seeks to invest money in the underlying �nancial market in a way that his wealth at

time T exceeds �. The minimal initial capital, which has to be invested to achieve

this goal, is called the seller's price of the option, provided the minimum is attained.

The corresponding strategy is said to be the optimal superhedging strategy.

It is by now classical that in an arbitrage free, complete, and unconstrained market

the seller's price of an option � is given by the expectation of the discounted obli-

gation under the risk-neutral probability measure. However, the trading strategies

employed by the investor in order to replicate the obligation with this initial capital

are usually rather unrealistic. The investor is assumed to trade in a perfect market.

So, for example, he may buy and sell (even shortsell), as many shares (even fractions

of shares) as he likes. Or he can borrow arbitrarily high amounts of money from

the bank. He may also employ very risky strategies, by investing huge amounts of

money in one risky asset.

It was therefore suggested to reconsider the problem under constraints on the ad-

missible trading strategies. Cvitani�c and Karatzas (1993) imposed convex (time

independent and nonrandom) constraints on the portfolio proportion process, i.e.

on the ratio of the wealth invested in an asset. In the framework of a Black-Scholes
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market they derived a dual formulation of the problem and constructed optimal su-

perhedging strategies by means of the optional decomposition. This approach was

generalized by F�ollmer and Kramkov (1997) to semimartingale models. Note, this

procedure heavily relies on the convexity of the constraints, since the dual formu-

lation is basing on properties of the support function of the convex constraint set.

Recently, attempts have been made to determine the seller's price in a constrained

market without passing to a dual problem. Soner and Touzi (2000, 2003) consider

large investors and Gamma constraints. In both situations no obvious dual formu-

lation is available. Instead they establish a dynamic programming approach on the

primal problem.

In the present paper we completely deviate from the convexity assumption. There-

fore a dual formulation in terms of convex analysis is impossible, and we have to

tackle the primal problem directly. The techniques, we apply, are borrowed from

the theory of backward stochastic di�erential equations (BSDEs). Therefore we as-

sume that the �nancial market is driven by a Brownian motion. The main theorem

states that under very general constraints existence of a superhedging strategy im-

plies existence of an optimal one, i.e. one with minimal initial capital. It can be

proved by translating the problem into an equivalent problem of �nding a minimal

supersolution of a constrained BSDE and applying a result by Peng (1999). We also

give a direct construction of the optimal superhedging strategy based on a penal-

ization argument. We �rst consider a sequence of markets, where violation of the

constraint is not prohibited, but penalized with increasing weight. Existence of the

seller's price process in these markets follows from the Pardoux and Peng (1990)

existence theorem for BSDEs. Then the monotonic limit theorem for BSDEs due

to Peng (1999) guarantees that the limiting process is again the wealth process of a

superhedging strategy in the original market. The limiting process turns out to be

the minimal wealth process, and is, thus, the seller's price process for the option in

the constrained market.

We believe that the BSDE approach has several advantages over the duality ap-

proach: First of all it covers a huge class of constraints. Indeed, the constraint is

only supposed to be the zero set of a nonnegative standard generator of a BSDE. This

allows for time dependence and randomness of the constraint. Moreover, constraints

may be simultaneously imposed on portfolio and wealth process. To demonstrate

the power of the BSDE approach we present some classes of admissible constraints

in section 4. We show, how constraints can be imposed on the amount of money

invested in the stock, the portfolio proportion, or the number of shares held by

the investor. For example, we can deal with the constraint that the investor may

not hold fractions of the stock. To the best of our knowledge this kind of con-
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straint has not yet been considered. We also show that barrier constraints on the

wealth process �t into our framework. So the BSDE approach can even be applied

to the optimal superhedging of American options under additional constraints on

the portfolio. The second advantage is that the penalization method suggests an

approximation procedure. In this procedure all approximating steps are meaningful

from an economist's point of view as they are price processes in a penalized market.

The paper is organized as follows: We introduce the market model in section 2 and

recall some well known results in the unconstrained market. Section 3 is devoted to

the proof of the main result and a construction of the optimal strategy. In section

4 we present some important examples. Section 5 concludes the paper.

2 The Market Model

Let (
;F ;Ft; P ) be a �ltered probability space that carries a d-dimensional Brown-

ian motion (Wt; 0 � t � T ). We assume, the �ltration is the augmented Brownian

�ltration. We consider a complete Black-Scholes market consisting of a riskless bond

and d-risky assets.

The riskless asset (bond) is given by

Bt = exp

�Z t

0

rsds

�
:

Here, r is a progressively measurable bounded process, the interest rate.

The d risky assets (stocks) are de�ned by

Si
t = si0 exp

(
dX

j=1

Z t

0

�i;j
s dW j

s +

Z t

0

�isds �

dX
j=1

1

2

Z t

0

j�i;j
s j

2ds

)
:

We assume that the drift vector � and the volatility matrix � are bounded progres-

sively measurable processes. Moreover, � is supposed to have a bounded inverse.

Clearly,

dSi
t = Si

t�
i
tdt+ Si

t�
i
tdWt:

An investor may trade in this market as follows.

De�nition 2.1 A portfolio is a triplet (x; �;C), where x � 0 is the initial wealth

of an investor, � is a progressively measurable d-dimensional process, and C is a

progressively measurable RCLL increasing process satisfying C0 = 0 and

E

�Z T

0

j��t�tj
2dt+ C2

T

�
<1 (1)
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�i
t is the amount of money invested in the ith stock at time t and Ct is the cumulated

consumption up to time t.

The wealth process Xx;�;C of a portfolio (x; �;C) is the solution of the SDE

dXt = rtXtdt+ ��t (�t � rt1d)dt� dCt + ��t�tdWt

X0 = x

In the case C = 0, this is the standard de�nition of a self-�nancing portfolio, which

means that money is neither added nor withdrawn from the portfolio. Consumption

is modeled separately by the process C.

Note, given a progressively measurable process X, there is at most one portfolio

(x; �;C) such that X = Xx;�;C . This is ensured by the integrability condition (1)

on the portfolio.

We shall next describe the superhedging problem without constraint: Given a con-

tingent claim �, i.e. � 2 L2(
;FT ; P ), �nd the portfolios (x; �;C) such that

X
x;�;C

T = �: (2)

These portfolios are called superhedging portfolios, and, when additionally C = 0,

hedging portfolios.

The well-known solution is stated in the following theorem.

Theorem 2.2 Given a contingent claim � and a consumption process C, there exist

a unique pair (x; �) such that (x; �;C) is a superhedging portfolio for �. Moreover,

X
x;�;C

t = ��1t E

�
�T (� + CT ) +

Z T

t

�srsCsds

����Ft

�
� Ct

with the deator process given by

�t = exp

�Z t

0

��sdWs �
1

2

Z t

0

j�sj
2ds�

Z t

0

rsds

�

and the risk premium vector

�t = ��1t (�t � rt1d):

Here, 1d denotes the d-dimensional vector with every component equal to 1.

Notice, the process

�tCt +

Z t

0

�srsCsds
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is a submartingale. Therefore, the wealth process corresponding to the hedging port-

folio is minimal among the wealth processes corresponding to superhedging portfo-

lios. Moreover, the deator process � contains both, the discounting of the claim

and the density of the risk-neutral probability. So put in classical terms, the (seller's)

price in the unconstrained market is the expectation of the discounted contingent

claim under the equivalent martingale measure.

3 Construction of Optimal Superhedging Strate-

gies under Constraints

For the remainder of the paper we shall consider the problem of �nding minimal

superhedging portfolios under market imperfections.

De�nition 3.1 A market is called imperfect, if the portfolio and/or its correspond-

ing wealth process are required to satisfy additional constraints.

Examples of market imperfections include:

Example 3.2 (i) American contingent claims: The wealth process of the seller must

stay above a given barrier �t.

(ii) Incomplete market: The investor may only trade in the �rst k stocks (k < d).

(iii) Restrictions on shortselling and/or borrowing

(iv) The investor must not hold fractions of a stock.

(v) Combinations of these constraints.

We will see later that these examples �t into the framework of an admissible con-

straint described in the following de�nition.

De�nition 3.3 (i) A mapping K : 
 � [0; T ] ! P(Rd+1) is called a constraint.

Here P denotes the power set operator.

(ii) A portfolio (x; �;C) is said to satisfy the constraint K, if�
Xx;�;C

t (!); �t(!)
�
2 Kt(!) P � a:s: a:e:t

(iii) A constraint is admissible, if there exist a mapping � : 
�[0; T ]�R�Rd! R�0

satisfying

1. For all (!; t)

Kt(!) = f(x; p); �(!; t; x; p) = 0g ;

5



2. �(�; x; p) is a progressively measurable process for every (x; p) 2 Rd+1;

3. � is uniformly (in the �rst and second variable) Lipschitz continuous in the

third and fourth variable;

4. �(�; 0; 0) 2 L2(
� [0; T ]).

Remark 3.4 (i) Since by condition 1. an admissble constraint is the zero set of the

process �, condition 2. is one way to formulate, that the investor knows the random

and time dependent constraint set Kt at time t. Conditions 3. and 4. are imposed

for technical reasons.

(ii) Clearly, the constraint set Kt(!) is closed for all (t; !), since it is the zero set

of a continuous function.

The next theorem states that under admissible constraints the mere existence of a

superhedging strategy implies existence of an optimal one:

Theorem 3.5 Suppose K is an admissible constraint and � is a contingent claim.

Then the following assertions are equivalent:

(i) There exists a superhedging strategy for �, which satis�es the constraint K;

(ii) There exists an optimal superhedging strategy (~x; ~�; ~C) for � under the constraint

K, i.e. (~x; ~�; ~C) is a superhedging portfolio for � which satis�es K and for every

other superhedging portfolio (x; �;C) satisfying K,

X ~x;~�; ~C � Xx;�;C:

Moreover, in case of existence, the optimal superhedging strategy is unique.

Proof. Suppose there is a superhedging strategy for � which satis�es the constraint.

The problem may simply be translated into an equivalent problem of �nding an

optimal supersolution of a BSDE under constraint, namely

dYt = rtYtdt+ Z�t �
�1
t (�t � rt1d)dt� dCt + Z�t dWt

YT = �

under the constraint given by the process

��(t; y; z) = �(t; y; (��1t )�z):

By the boundedness of ��1, �� is also Lipschitz continuous. Hence, theorem 5.1 in

Peng (1999) yields existence of an optimal supersolution for the constrained BSDE.

In case of existence, uniqueness follows from the integrability condition (1).
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Remark 3.6 Suppose the investor employs the strategy ~� with initial capital ~x, but,

instead of consuming, he invests the otherwise consumed money in the bond. It is

straightforward, that

X
~x;~�;0
t = X

~x;~�; ~C
t +

Z t

0

e
R
t

u
rvdvd ~Cu:

This strategy is clearly admissible in the unconstrained market, but it will also satisfy

most of the reasonable constraints. (The investor modi�es a strategy, that ful�lls

the constraint, just by putting some additional money in the bond.) This modi�ed

strategy hedges the contingent claim

~� := � +

Z T

0

e
R
T

u
rvdvd ~Cu:

with the same initial capital as the original optimal superhedging strategy for � under

the constraint. Therefore the seller's price for � under the constraint equals the

price of the face lifted contingent claim ~� in the unconstrained market. Under strong

assumptions an explicit expression of the face-lifted contingent claim may be given by

a dynamic programming approach. We refer the reader to Soner and Touzi (2003).

Actually, the optimal superhedging portfolio may be constructed via a penalization

method. This method has been applied to incomplete markets and to American

options by El Karoui and Quenez (1997a) and El Karoui and Quenez (1997b). In

the theory of BSDEs existence results for reected BSDEs (El Karoui et al., 1997a)

and the monotonic limit theorem (Peng, 1999) can be proved by penalization.

One advantage of the following penalization construction of the optimal superhedg-

ing is, that the approximating steps have a sound economic meaning. Given an ad-

missible constraint K which is the zero set of the process � we consider a sequence of

marketsMn
�. In these markets the same bond and stocks as in the original market

are traded, but the wealth of a portfolio is governed by the SDE

dXt = rtXtdt+ ��t (�t � rt1d)dt� dCt � n�(t;Xt; �t)dt+ ��t�tdWt

X0 = x

Denote the solution byXn;x;�;C . Hence, in the nth market violation of the constraint

is penalized by a cumulative payment of

n

Z t

0

�(s;Xn;x;�;C
s ; �s)ds

up to time t.

By the Pardoux and Peng (1990) theorem, given a contingent claim � and a con-

sumption process C we �nd a unique pair (x; �) such that the portfolio (x; �;C)
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replicates �, i.e.

Xn;x;�;C = �:

Again, as in the unpenalized market, the minimal wealth process of a superhedging

strategy for � in Mn
� is obtained by the choice C = 0. This is an immediate

consequence of the comparison theorem for BSDEs (El Karoui et al., 1997b). We

denote this hedging strategy in the market Mn
� by (xn; �n) and the correponding

wealth process Xn;xn;�n;0 simply by Xn. The penalization paid for this strategy is

Cn
t = n

Z t

0

�(t;Xn
t ; �

n
t )dt:

We expect that, with increasing n, more money is needed to replicate the contingent

claim. An application of the comparison theorem for BSDEs shows that indeed

Xn � Xn+1.

We may also consider the triplet (xn; �n; Cn) as a superhedging strategy for � in

the original market M0
� with wealth process Xn. Since the Xn are dominated by

any superhedging strategy for � in M0
� which satis�es the constraint, the sequence

Xn is bounded. Thus, the monotonic limit theorem (Peng, 1999) tells us that its

limit, say X, is also wealth process of a superhedging strategy for � in M0
�. The

corresponding portfolio process ~� and the consumption process ~C are given by

~� = lim
n!1

�n (strong limit in L1(
 � [0; T ]))

~Ct = lim
n!1

Cn
t (weak limit in L2(
;Ft)):

Since �n (and, of course, Xn) converge strongly in L1(
� [0; T ]) to ~� (and X), this

superhedging strategy satis�es the constraint due to the Lipschitz continuity of �.

Finally, optimality again follows from the comparison theorem.

Remark 3.7 Examining the construction of the optimal superhedging strategy, we

see that the existence of a superhedging strategy was only used to guarantee the

boundedness of the sequence Xn. Thus conditions (i), (ii) in theorem 3.5 are also

equivalent to

(iii) There is a constant � such that for all n 2 N

E

"
sup
t2[0;T ]

jXn
t j

2

#
� �:

4 Examples of Admissible Constraints

The de�nition of an admissible constraint as the zero set of an appropriate process is

rather abstract. To demonstrate the strength of theorem 3.5, we now present some
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classes of admissible constraints. We begin with a straightforward proposition, which

states that admissible constraints may be combined.

Proposition 4.1 Given k admissible constraints K1; : : : ;Kk, their intersection is

admissible.

Proof. Suppose the constraint Ki is given as the zero set of �i satisfying the

conditions of an admissible constraint. Then the intersection

K =

k\
j=1

Kj

is the zero set of � =
Pk

j=1
�j, which inherits Lipschitz continuity,non-negativity,

and measurability from the �j's.

Example 4.2 (Barrier Constraints) A typical example of a constraint on the

wealth process is a barrier constraint. Given a progressively measurable process �t :


 � [0; T ]! R the wealth process Xt of a portfolio must stay above �t. We assume

E

Z T

0

(�t)
2
+dt <1

and de�ne �(!; t; x; p) = (�t(!)�x)+. Clearly � satis�es the conditions of de�nition

3.3. The zero set of � is just the barrier constraint

Kt(!) = fx; x � �t(!)g �R
d:

When � = �T and

E

�
sup

0�t�T

(�t)
2
+

�
<1;

standard estimates (El Karoui et al., 1997a) show that condition (iii) in remark

3.7 is always satis�ed. Hence, there exist an optimal superhedging portfolio for �T

satisfying the barrier constraint �t. The time 0 value of this portfolio is the price

of the American contingent claim �t. It can also be calculated by means of reected

BSDEs (El Karoui and Quenez, 1997b) and optimal stopping (Karatzas and Shreve,

1998).

Example 4.3 (Constraints on the amount of money invested) Suppose ~K �

R
d is a closed, but not necessarily convex, set. We shall impose the constraint that

the portfolio process �t belongs to ~K. Recall, the kth entry of the vector valued
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process denotes the amount of money invested in the kth stock. The corresponding

constraint set is

Kt(!) = R� ~K

Since it is the zero set of the Lipschitz function

�(t; x; p) = d ~K(p) = inf
q2 ~K

jp � qj;

this constraint is clearly admissible. Some interesting examples are

1. Incomplete market: ~K = Ri�f0g� � � � � f0g, i.e. no trading in the last d� i

assets.

2. No shortselling: ~K = Rd
�0

Example 4.4 (Constraints on the portfolio proportion) Constraints may also

be imposed on the portfolio proportion process P . Given a portfolio (x; �;C) it is

de�ned as

P i
t = �

fX
x;�;C

t 6=0g

�i
t

Xx;�;C
t

:

Thus, P i is the ratio of the total wealth invested in the ith stock.

Let k � d and ~K � Rk compact. The constraint

Kt(!) = f(x; p);
�p1
x
; : : : ;

pd

x

�
2 ~K �R� � � � �Rg[ f(0; 0; pk+1; : : : ; pd)g

is admissible. It basically (but in the case of zero wealth when the portfolio proportion

is meaningless) states that the �rst k components of the portfolio proportion P must

belong to ~K. Kt(!) is the zero set of the function

�(t; x; p) = inf
z2 ~K

j(p1; : : : ; pk)� x(z1; : : : ; zk)j:

Since it is independent of !, we only have to show that � is Lipschitzian. Let

(x; p); (~x; ~p) 2 R1+d. Suppose ~z is a minimizer of

j(~p1; : : : ; ~pk)� ~x(z1; : : : ; zk)j

in ~K, and assume w.l.o.g. that

inf
z2 ~K

j(p1; : : : ; pk)� x(z1; : : : ; zk)j � j(~p1; : : : ; ~pk)� ~x(~z1; : : : ; ~zk)j:

Then,

j�(t; x; p)� �(t; ~x; ~p)j

� j(p1; : : : ; pk)� x(~z1; : : : ; ~zk)j � j(~p1; : : : ; ~pk)� ~x(~z1; : : : ; ~zk)j

� j(p1; : : : ; pk)� (~p1; : : : ; ~pk)j+max
z2 ~K

jzj � jx� ~xj:
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Note, we again do not assume convexity of ~K. However, the boundedness assumption

of ~K is crucial in the proof of the Lipschitz continuity.

An important application of constraints on the portfolio proportion is to enforce

diversi�cation of the portfolio: The investor is not allowed to put an arbitrarily high

ratio of his money in the risky assets. From this point of view the compactness

assumption on ~K is not too restrictive. For instance, we can choose k = d and
~K = [�b1; b1]� � � � � [�bd; bd] with bi > 0. With this choice there is a superhedging

portfolio for � = g(ST ), when g � 0 and gxi(x) � big(x) (Yong, 1999). Thus,

theorem 3.5 guarantees existence of a minimal one.

Note, constraints on the portfolio proportion may also be treated by convex analysis

in the case of a convex and closed set ~K, see e.g. Cvitani�c and Karatzas (1993)

and Karatzas and Shreve (1998). There are two important and novel aspects in the

BSDE approach: (i) convexity can be skipped; (ii) the penalization methods yields a

sequence of auxillary markets with a sound economic interpretation. Contrary, the

family of auxillary markets introduced by Cvitani�c and Karatzas (1993) via duality

theory is rather technical.

Example 4.5 (Constraints on the number of shares held) We now consider

constraints on the number of shares held by an investor. To the best of our knowledge

this kind of constraint cannot be tackled with any other known approach to optimal

superhedging.

Suppose ~K � Rd is closed. De�ne

�(!; t; x; p) = min
i=1;:::;d

jSi
t(!)jd ~K

�
p

St(!)

�

where,
p

St(!)
=

�
p1

S1
t (!)

; : : : ;
pd

Sd
t (!)

��
Then

Kt(!) = R�

�
p;

p

St(!)
2 ~K

�
is the zero set of �. Clearly, this constraints the vector of the numbers of shares

held by an investor to belong to ~K . We check that this constraint is admissible.

Obviously, �(�; x; p) is progressively measurable, since S is. Moreover,

E

Z T

0

�(t; 0; 0)2dt � d ~K(0)
2 � E

Z T

0

jS1
t (!)j

2dt <1:
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Lipschitz continuity may be derived from the fact that the distance function is Lip-

schitzian with constant 1. Thus,

j�(!; t; x; p)� �(!; t; ~x; ~p)j � min
i=1;:::;d

jSi
t(!)j �

���� p

St(!)
�

~p

St(!)

����
� min

i=1;:::;d
jSi

t(!)j

 
dX

k=1

(pk � ~pk)
2

(Sk
t (!))

2

!1=2

� jp� ~pj

Two typical examples are

1. No fractions of a stock may be held: ~K =Zd.

2. Illiquid market: ~K = [�l1; u1]�� � �� [�ld; ud], i.e. only a maximum number of

ui (resp. li) shares of the ith asset can be bought (resp. sold) by an investor.

Example 4.6 (Borrowing Constraints) Prohibition of borrowing from the bond

can be formulated in terms of the portfolio proportion with the choice

~K =

(
z;
X
i

zi � 1

)
;

as suggested in Karatzas and Shreve (1998). Note, that the set ~K is not compact.

So it is not covered by example 4.4. ~K is, however, convex, and the constraint can,

thus, be treated by convex analysis.

We shall now consider a more general constraint on borrowing: The investor must

not borrow an arbitrarily large amount from the bond, but a maximum amount of

a dollars. Obviuosly, the choice a = 0 covers prohibition of borrowing. For a 6= 0

this constraint cannot be formulated as a deterministic constraint on the portfolio

proportion. So it cannot be treated by the convex analysis approach.

De�ne

�(!; t; x; p) =

 
dX

i=1

pi � a� x

!
+

:

It is straightforward that � satis�es the conditions of de�nition 3.3. Its zero set is

Kt(!) =

(
(y; p); x�

X
i

pi � �a

)
:

Recall, given a portfolio (x; �;C), Xx;�;C �
P

i
�i is the amount of money invested

in the bond. So (X
x;�;C

t ; �t) 2 Kt just means maximal borrowing of a dollars.
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We conclude this section with the following example: Suppose an investor sells an

American put option on the �rst stock �t = (q�S1
t )+, i.e. the buyer has the right to

sell one stock S1 to the seller for the strike price q at any time 0 � t � T . In order

to superhedge his obligation the seller invests in a way that the wealth process stays

above the barrier �t. We assume for simplicity that the bond is constant 1. Then, of

course, the seller can achieve his goal with initial capital q by investing his q dollars

in the bond at time 0 and doing nothing until time T . At time T he consumes

q � (q� S1
T )+. This strategy is also in accordance, for instance, with the borrowing

constraints, the no short-selling constraint, incompleteness, and the constraint that

no fractions of a risky asset may be held. So, theorem 3.5 ensures the existence of

an optimal superhedging strategy for the American put option under each of these

constraints on the portfolio (or even under combinations of these constraints).

5 Conclusion

We presented a penalization technique based on BSDEs to prove existence of optimal

superhedging strategies under constraints. Since we do not have to pass to a dual

problem, the convexity assumption on the constraint set, which is imposed in most

papers, can be skipped. Several examples demonstrate the generality and power of

the BSDE approach.
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