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Abstract

The aim of this work is twofold. We show the construction of an objective relative
acceleration for a two-component mixture and prove that its incorporation in the
momentum source requires additional terms in partial stresses and in the energy.
This may be interpreted as an influence of tortuosity in the theory of saturated
poroelastic materials and a connection of tortuosity with fluctuations of the kinetic
energy on a mesoscopic level of observation. The linearization of such a model yields
Biot’s equations used in poroacoustics.

We demonstrate as well that results for the propagation of acoustic waves in
saturated poroelastic media are qualitatively similar for Biot’s model and for the
simple mixture model in which both the tortuosity and the Biot’s coupling between
partial stresses are neglected. It is also indicated that the coupling constant of
Biot’s model obtained by means of the Gassmann relation may be too large as it
leads to very small differences in the speed of propagation of the P1-wave for small
and large frequencies which contradicts the data for soils.

1 Introduction

A celebrated property of the Biot’s model of two-component porous materials is related
to equations of motion containing a contribution of the relative acceleration. Linear
equations describing such a model in a chosen inertial frame of reference have the following
form (e.g. [1] [2])

o S 0 F 0 S
pg% = \° gradtres—l—Zus div eS+QgTad€+7T (VF - VS) —pP12 <% - %) (1)
a F 8 F 8 o
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and e denotes the macroscopical Almansi-Hamel deformation tensor of the skeleton,
its trace, tre”, is the volume change (small deformations!) of the skeleton, ¢ is the
volume change of the fluid and this is related to the increment of fluid content, (,
by the relation (2)3. p5, pb are constant initial mass densities connected to the true mass

densities p5 %, pi'® in the following way
po = (1 —mno) 3%, py =nop ™, (3)



where ny is the initial porosity. v, vf" are macroscopic velocities of both components,

ie. v —v¥ is the seepage velocity. The material parameters A%, 1%, k, Q, 7, p12 are
constant.

The literature on Biot’s model is far from being unique in relation to the notation
and this creates a lot of confusion. The above material parameters which we use further
in this work are characteristic for the formulation of a two-component mixture. Usually
in soil mechanics use is being made of the total bulk stress T = T + TF, and the fluid
partial stress is related solely to the pore pressure p. Namely T = —ngpl.

For this reason the material parameters are introduced, for instance, in the following
way [3]

2
K =X+ 2p +pir+20Q, G:=p’, (4)
1 K
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On the other hand in the standard reference book on linear acoustics of porous materials
[4] the following form of the set (1) is used
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with the following relations among parameters

p:p€+pg’ puw:pgRa pw:ﬁ(l)g—plz), (6)
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Still another set of parameters is used by Allard [5], where pi12 = —pa, P52 = po, p5 = p1,

ete.

Let us return to the set (1). The parameter pio describing the contribution of the
relative acceleration is usually related to the tortuosity of the porous material. For
example, in the works [6], [7] the following approximate relation between this parameter,
the porosity ng, and the tortuosity parameter a € [1,00), is proposed

1/1
= 1-a), a=g(a+1). 7)

It is easy to show that the model (1) is nonobjective. This means that the change of
the reference frame to a noninertial system (a time dependent change of observer)

xX*=0(t)x+c(t), O'=07" (8)



yields constitutive contributions in these equations following from the presence of the
relative acceleration. These contributions appear additionally to the usual centrifugal,
Coriolis, Euler and translational accelerations which are characteristic for the continuum
mechanics in noninertial frames (e.g. I-Shih Liu [8]).

This violation of objectivity is a bothering feature because solutions of practical
problems must then depend on a chosen reference: we obtain entirely different solutions
in, say, a laboratory reference, and in a moving reference on a turntable. This problem
has been investigated in the paper [9].

The question arises if one could overcome this difficulty by assuming that the nonob-
jectivity follows from the linearization of some objective nonlinear equations. If this
was the case one would have to describe porous materials by Biot’s equations solely in
inertial reference systems and a time dependent change of reference would require solely
an addition of classical acceleration terms and ignoring contributions from the relative
acceleration. We investigate some aspects of this question in the present work.

In the next section we introduce the notion of an objective relative acceleration. We
follow here the same line as D. Drew et al [10] who have considered a problem of suspen-
sions of bubbles in a fluid. In contrast to that work, we apply a Lagrangian description
(e.g. see [11]). Then we show that indeed a nonlinear poroelastic two-component model
yields the Biot’s model by linearization.

In the third section we provide some thermodynamical arguments to show that a
nonlinear objective model with a contribution of relative accelerations is thermodynam-
ically admissible if we add some nonlinear contributions to partial stresses and to the
free energy. They reflect in the simplest manner the existence of fluctuations of the
microstructural kinetic energy caused by the heterogeneity of momentum in the repre-
sentative elementary volume. The existence of such fluctuations as a result of tortuosity
of porous materials has been indicated by O. Coussy [12]. There exist some attempts to
derive the Biot’s model with the contribution of relative acceleration by means of Hamil-
ton’s principle based on the fluctuation kinetic energy. As the true variational principle
does not hold for dissipative systems the dissipation through fluctuation and diffusion is
accounted for by a pseudo-potential and a pseudo-variational principle. This does not
seem to be the right way of handling irreversible processes. For this reason we rely rather
on the nonequilibrium thermodynamics in our considerations.

For completeness we show in the fourth section the conditions for propagation of
acoustic waves (hyperbolicity) and, in the fifth section, differences in the behavior of bulk
monochromatic waves in porous materials within the linear Biot’s model and a simpli-
fied model (the so-called ”simple mixture model”) where the coupling through relative
accelerations is left out.

Let us mention in passing that the lack of relative accelerations in the model does
not mean that the influence of tortuosity is neglected. Certainly, the permeability of
the material described by the parameter 7 in our notation contains an influence of the
morphology of the porous materials and this includes an influence of tortuosity.



2 Objective relative acceleration

We consider a two-component continuum consisting of a solid skeleton and of a fluid. The
motion of the skeleton is assumed to be described by the following twice continuously
differentiable function

x=f%(X,t), XeB, teT, (9)

where B denotes the reference configuration of the skeleton and 7 is the time interval.
The velocity, acceleration and the deformation gradient of the skeleton are defined by the
relations

ofs ox
%S S .

_ ot _X S._ S
50 X =0 F~ := Grad f~. (10)

Certainly, the value F¥ = 1 corresponds to the reference configuration for, say, t = ¢, in
which % (X, ) = X.

The motion of the fluid is described by the transformation of the Eulerian velocity
field vI" = v (x,t) defined on the space of current configurations f° (B, t) of the skeleton.
We have

vi=vP (£5(X 1), 1) = %" (X, 1). (11)
The acceleration of the fluid is then given by

a ¢F ’ ’
%"= -+ X7 Grad ", X7 = F5 (17 - %5), (12)
where X is the so-called Lagrangian velocity of the fluid with respect to the skeleton.
We proceed to determine the transformation rules for the above quantities specified
by the relation (8). The relations (10) and the time differentiation of the relation (8) yield
the following quantities in the new reference system

F5* — OF%, %% = 0%%+ Ox+¢, %% =0x°+20%° + Ox+¢,  (13)

where the dot denotes the time derivative.
We assume that the transformation rule for the velocity field of the fluid component
has the same form as it does for the skeleton

% = 0% + Ox + ¢. (14)
Consequently
=0 (%" -%%) = X=X (15)

Bearing these relations in mind we can now easily derive the transformation of the
acceleration of the fluid. We obtain immediately

¥ = % (O>’<F+(')x+é) + X . Grad (O)&F+Ox+é> = (16)

— 0% +20%" +Ox +¢,



where the definition of the Lagrangian velocity has been used.
Due to the presence of contributions dependent solely on the choice of the frame we

say that velocities %%, % and accelerations %°, %" are nonobjective. Consequently, their

difference is also nonobjective. We have
(™ — %5 = O (% — %5) + 20 (xF — %9). (17)

For this reason the difference of accelerations cannot be used as a constitutive variable in
a construction of the macroscopic model of a two-component system.

In the paper [10] a method has been proposed to overcome these difficulties in the
Eulerian description of suspensions. We shall use a similar way in the Lagrangian de-
scription. If we take the gradient of the transformation relations for velocities we obtain

Crad %% = O Grad%® + OF° = O =Grad (£ — O%%) F¥.,

Crad£"* = O Grad%" + OF° = O =Grad (£ — 0%") FS". (18)
Consequently, we can write

20 (%" - %%) =(2-3) O (¥ — %%) +30 (" — £%) =

= (2 —3) Grad (¥ — O%") X" + 3 Grad (x** — 0%%) X*, (19)

where 3 is arbitrary.
Substitution of this relation in (17) yields

£ — %5 — (2 —3) XF . Grad %™ — X . Grad %% = (20)
-0 (xF — %5 (2 5)XF . Grad ¥ — 3XF . Grad>’c5> .

It means that the quantity

8 d e ’
= (%" = %%) + X Grad %" — (2 — 3) X" - Grad %" — ;X" - Grad %x° =

o

()'(F _ }'(S) _ (1 _ 3) XF . Grad %f — 3XF - Grad )'(S, (21)

S

is objective, i.e.
a, = Oa,. (22)

We call this quantity an objective relative acceleration. As an objective variable it
can be incorporated into the set of constitutive variables. Obviously, there exists a class
of such accelerations specified by the constitutive coefficient j3.

It is easy to see that a linear momentum source p in an isotropic material would
contain a term plya, ~ p‘fQ% ()’(F —)'(S) as required by the relations (1) of the Biot’s
model. The open question is if the second law of thermodynamics admits this type of
contribution in a fully nonlinear model. We address the next section to this problem.



3 Thermodynamical admissibility

A nonlinear poroelastic two-component model requires the formulation of field equations
for the following fields

Fo={p" %% %" F$ T,n} for (X,t)eBxT, (23)

where pf is the partial mass density of the fluid per unit volume in the reference con-
figuration of the skeleton, i.e. in the current configuration it is given by the relation
pf = pF'J5=1 J% := det F®. T is the absolute temperature of the medium common for
both components, and n is the current porosity. Other symbols have the same meaning
as before.

The partial mass density of the skeleton in the reference configuration, p°, does not
appear among the fields because it is constant in a homogeneous material without mass
exchange between components.

These fields are assumed to fulfil the following set of balance equations (e.g. see: [14])

op* .
RF:= L 4 Div (pFXF) —0, (24)
o%S
M5 .= pS% —DwvPS—p=0, (25)
F F 8)'(F a2 +F . F ~
M" :=p W—FX -Gradx" | — DivP" +p =0, (26)
E:= % +DivQ — PY. Grad%x® — P" - Gradx" — (F¥"p) - X" =0,  (27)
p=p"+p",
OFS
F .= 5 " Grad%° =0, (28)
A
N := aat” +DivI— A =0, A,:i=n—ng, (29)

where P¥ P¥ denote the first Piola-Kirchhoff partial stress tensors, p is the momentum
source, ¢ is the specific internal energy per unit mass of the mixture, Q is the heat flux
vector, ng describes the so-called equilibrium porosity, J is the porosity flux, and 7 is the
porosity source.

The porosity balance equation (29) yields the model essentially beyond the frame of
Biot’s model due to the contribution of relaxation source n. It has been introduced some
years ago [15] and analyzed in numerous papers. For instance, the applicability in the
theory of abrasion has been discussed by N. Kirchner (e.g. [16]).

In order to obtain field equations from the above balance equations we have to specify
constitutive relations for these quantities, i.e

C:={P° P" p,e,QnpJ n}, (30)



must be functions of constitutive variables. In this work the set of constitutive variables
is chosen as follows

V= {pF,FS,XF,An,T, G,a,,} . G :=GradT. (31)
Once the function
C=C(V), (32)

is given, we obtain a closed system of differential equations for fields F.

It has been shown earlier ([13], [14]) that the existence of coupling between partial
stresses requires a constitutive dependence on some gradients of fields. Analysis has been
performed for the model with a dependence on the porosity gradient. It was shown that
within a linearized model one obtains the Biot’s coupling described by the constant Q).

We shall not include this point in the thermodynamical analysis of this work. It
may be shown that the existence of such a dependence yields possibilities of additional
couplings but it has no influence on the thermodynamical admissibility of a dependence
on the relative acceleration. Simultaneously the analysis is much simpler without these
additional gradient constitutive variables. Consequently, the constitutive variable N :=
Grad n does not appear in the list (31).

We say that constitutive relations (32) satisfy the second law of thermodynamics
if the following entropy inequality

%—i—DiszO, n=n), H=H(), (33)
is satisfied by all solutions of field equations. In this inequality 7 is the specific entropy
and H its flux.

This requirement is equivalent to the following inequality which must hold for all
fields

% +DivH-A""RF — A" . M® — A" - MF — A°E — AT.F — A"N>0, (34)

where
AN AT A AT AT (35)

are Lagrange multipliers dependent on constitutive variables V.

The exploitation of the second law of thermodynamics in the general case is tech-
nically impossible. Therefore we make simplifying assumptions sufficient for the second
law to be satisfied and yielding explicit limitations on constitutive relations. They are as
follows:

1° The material is isotropic. Consequently, scalar constitutive functions, for instance,
depend on vector and tensor variables solely through invariants. This assumption will be
applied in some steps of our proofs. Some relations are simpler in a general form and then
we do not introduce this limitation.

2° The dependence on the relative velocity XF is at most quadratic. This assump-
tion is related to the structure of the nonlinear contribution to the objective relative
acceleration. We motivate its form further.



3° The dependence on the temperature gradient G is linear. We could skip this as-
sumption on the cost of some technicalities but the experience with the thermodynamical
construction of poroelastic models shows that it does not yield any undesired results.

4° The dependence on the deviation of porosity A, from its equilibrium value ng is
quadratic.

5° The dependence on the relative acceleration a, is linear.

6° Higher order combinations of variables G, XF ,A,,a, can be neglected.

As we see further these assumptions limit thermodynamical considerations to a vici-
nity of the thermodynamical equilibrium similar to this appearing in the classical Onsager
thermodynamics.

Bearing these assumptions in mind we can write the following representations of
constitutive functions

— partial stresses

1 , ,
P = P5 (Vg, A,) + 505 (Ve)F*XF @ XF, Vg :={p" F* T},

1 . .
P" =P (Vg A,) + §UF (Ve) X" @ X", ng=np(Ve), (36)
— internal energy and entropy

pe = peo Vi, Ap) + %Ed (Vi) (FSXF> . (FSXF> ;

1 e L
pn = pno (Ve, An) + 57l (Vi) (FSXF) . (FSXF) ; (37)
— fluxes of energy, entropy, porosity

Q = QX' — KG+Q.F*a,,
H = HyX'+ HG+H,Fa,, (38)
J = X+ JrG+J,F7a,,

where all coefficients are functions of variables Vg,
— momentum source

F57p = Iy X" + ;G — p),FTa,, (39)

with coefficients dependent again on variables V.

The above simplifying assumption yields an additional structure of these relations
which we do not need to specify at this stage.

The notation of some coefficients in the above relations corresponds to this which is
customary in the literature.

The contributions with the coefficients €4, n4 to the energy and entropy are motivated
by fluctuations of the microstructural kinetic energy caused by the tortuosity. We do not
introduce any additional microstructural variable describing changes of tortuosity. For this
reason a macroscopic influence of tortuosity can be solely reflected by the seepage velocity
which in our model corresponds to the Lagrangian velocity X¥. The classical kinetic
energy in this model is given by % (pSf(S X5 4 pf R xF ) Consequently, the correction



1eq (X = %%) - (% — %%) may be considered as an added mass effect resulting from
tortuosity.

As we see further, the dependence of partial stresses on this velocity is then required
by the consistency of the model with the second law of thermodynamics.

The exploitation of the second law of thermodynamics (34) is standard. We apply
the chain rule of differentiation to constitutive laws. We skip here rather cumbersome
technical details.

Linearity of the second law of thermodynamics with respect to time derivatives

dp" OF° 0A, 0%% 0%" OT 0G
ot ot ot ot ot ot ot

yields
A Ve i R L (FSX) - (F5X") (40)
0 2 \ 0pF OpF ’
r Opmo dpeg
AP = —Af
0 opF opF
(910770 8p€0 1 877d (98d - .
F __ A€ - A€ Sy F\ . S~r F
A" =gFF ~NoFF T3 \grF ~ A aEF (FX> (FX> (41)
n_ Opmo | .Opeo
A" = 25, A I (42)

(0% = pla) A + P, A" = — (ny — Aeq) FSXF + pl, ASFIX" —
— Div (H,F®) 4+ A® Div (Q.F®) + A" Div (J,F®) =0, (43)

oF vS € 7 € 7
(0" = pla) A + ploAY = (g — Neg) FIXT — pl, ATFSXY +

+ Div (H,F®) — A* Div (Q.F®) — A" Div (J,F®) =0, (44)
Opmo _ \eOpco | L (00 _ (0% (psgr) . (psxr) =
ar N 8T+2(8T AaT)<FX) (FX>*O‘ (45)

These identities still contain linear contributions of Grad F°, A,,, quadratic contri-
butions of the latter as well as quadratic contributions of Lagrangian velocity. As they
should hold for arbitrary fields coefficients of these contributions must vanish separately.
After easy analysis we obtain

Ha = O, Qa - 07 Ja = 07 (46)

S

DAY = AT — gESKF, e T NE = N0

PS5 = ply <1+§)

The second law of thermodynamics is also linear with respect to the following spatial
derivatives

Grad %°, Grad %I, Grad p*", Grad F¥, Grad G, Grad A,,. (48)

(47)



We have listed them in the order of the further analysis. This yields a set of identities
and leaves a residual inequality which is essentially nonlinear. It defines the dissipation
in the system and has the following form

. (8HV Qv 00

_ n— 'F.
5 57 AaTJrHT)X G+

OHr 0K ,0Jr
+<6—T+A6—T—A aT)G'G—&— (49)

+AT XE - XE + A" > 0.
Hence the state of thermodynamical equilibrium defined by D = 0 appears if
G=0, X=0 a=0, (50)

i.e. the temperature gradient, relative motion (diffusion), and the relaxation of porosity
cause the deviation from the equilibrium.
Clearly the assumption 4° yields the linearity of n and A™ with respect to A,. In
addition, the above inequality yields homogeneity of these functions, i.e. we can write
A
i=—— A"=\"A,, (51)

T

where 7, A\ can be solely functions of variables Vg. Consequently, we obtain as well

0P oJr
37 = 0, T = 0. (52)
It is worth mentioning that due to (46) the relative acceleration does not contribute
to the dissipation. This property of the model follows from the fact that the model does
not possess any independent field of tortuosity which could relax to the thermodynamical
equilibrium.
Now we return to the coefficients of spatial derivatives of fields. The vanishing coef-
ficient of Grad %” yields the following results

APSFST 4+ (8’”70 _AC 8’)50) FT 4 (—HV +ATQy + AP + pFAgF) 1=0,(53)

OF*s OFS
877d 855[ 877d 85d
_ - AE_ — e As_ — 4
)i ar =% o Mo =Y (54)
and 8€d F and 8ed g pS P
2 — A® 111 Tld _ psZEd ) P
(aﬂf afu) e <apF oo ) “O\T T ET ) (55)
. USAE_U(US+LiUF>
P
3= _2 0 g ’ (56)
Piz (1 + Z_F> + A
where
[:=trC*% II:= % (I? —txC%), IIT:=detC* C%:=F"F% (57)
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are main invariants of the Cauchy-Green deformation tensor C%.
The coefficient of Grad %% yields

dpmo dpeg

£ S F\ _ £

A (P0+P0)—<8FS—A8FS , (58)
877d c 8€d .

arrr Mo Y (59)
1Aa(chJrch)——O 1+£ — %y — P, A (60)
5 = —P12 oF D —p°Y — praih.

Consequently, bearing (54) and (59) in mind,

877d c (9851 .
o~ M ops = 0. (61)

Next we consider the coefficient of Grad p*'. We have

— A® — A" — A" | X —F°X" —p— F°X" =0, (62
<5‘pF op* apF g V05 opF - (62)
OHr oK 0Jr
— + AN —=0, —=0. 63
opF * opF T 0pF (63)
Similarly, the coefficient of Grad F* yields
OHv Qv oo CF | FApPP@S—T o % F s F
— A —AN'— X AP F X = =0 —
sym { (aFS oFs " §Fs e @A HPE Y
— sym {(HV — A AP g XF} ~0, (64)
OHr (0K dJr
oFs T ars =% gps =0 (65)
where the components of tensors 2, 2 in Cartesian coordinates are given by the rela-
tions
- OPy, ; - p° OPE ,
:gKL = OF%; E%XAIZ, Eixr = _p_F ané; l?\/[X]\Ij[' (66)

Under our assumptions the contribution of Grad A,, does not yield any restrictions.
Finally, the last condition follows from the vanishing coefficient of Grad G and it has
the form

Hp + A°K =0, Jp=0. (67)
Inspection of the results (63), (65) for thermal coefficients yields

1 K
N=N(T) = N= ie Hr=-3 (68)

11



where the standard argument (e.g. [14]) has been used.

It is not quite clear what limitations on partial stress tensors are imposed by con-
ditions (62), (64). Derivatives of partial stresses with respect to the mass density p’ as
well as with respect to the deformation gradient F° seem to restrict elastic properties of
the system in equilibrium. This does not seem very plausible. Hence we assume that the
coefficient y vanishes, i.e.

b= 0. (69)

Then the multipliers of momentum equations vanish as well. As the consequence of

(45), (47), (55), (61) we obtain
—ply =4 —Tng = const. = g4 = const., g =0. (70)
It is convenient to introduce the following notation
Y =e—Tn, (71)
o = pp — %551 (FSXF) . (FSXF) .
Then, for Lagrange multipliers we have

Fo_ _18/)1%
T 0p*

1 dpiho n 1 0po

p __ e
A T OFS’ T 0A,

A AT = — MDA, (72)

and the relation (45) implies the following classical formula for the internal energy

e=v-To (73)
Simultaneously the relations (62), (64) yield
OHy Qv F 0P
—A® — AN =0, =——==0
opF opF To9pf 7
OHy . 0Qy Fpf . B
2111 <81H A aHI)+p A"~ (Hy — A°Qy) =0, (74)
21]16—(1)—@—0 = d=J®, &= t (75)
oII1 = = 0, 0 — const.

These relations yield the following integrability condition for the multiplier AP"

AP” A"
0 +J58

PF 8_pF 575 —0 = A=A (T, pf), Pf — JS—lpF‘ (76)

Consequently, integration of (72); leads to the following additive splitting of the free
energy
1 1 e L
pp = pF¢F—+p5¢S-§AWTA§4—§gd(F?XF)-(FSXT), (77)
Wf = Wf(Tpf), o% =y (T.FF).

12



The above separation property is characteristic for the so-called simple mixtures.
In addition, integration in (74); yields
Qv prr

_ : _l _FF'F
Hy -5 = -2 e HfT<prX>, (78)

where we have accounted for the relations (67) and (68).
Inspection of relations (70), (56) and (60) leads immediately to the following identi-
fication of constitutive coefficients coupled to the relative acceleration

€d = _p?2a US = _zﬁp(l)% UF = -2 (1 - 3) p(1)2 (79)

Simultaneously, relation (53) with (71), (72), (77) and (78) for partial stresses P§
and relation (58) for partial stresses P{ yield

apSwS

PS5 = s+ BALTIFST — 30 FIXS @ X%, 3= TA"®J 5, (80)
8¢F d rd
Pr = _ptF28—pFJSFS*T — BAGTIFSTT — (1 —3) o9, F5X5 @ X5,
t

Hence, as mentioned in the introduction, the partial stresses do not possess a coupling
term characteristic for the Biot’s model and this fallacy of the model can be removed by
additional constitutive variables.

For practical purposes it is convenient to transform equations of the model to Eu-
lerian coordinates. We write them in an arbitrary noninertial reference system. The
set of balance equations (24) has then the form

— mass balance for the fluid component

9p; i (AFoF
a—; +div (pf v") =0, (81)
— momentum balance for the skeleton

o S
o <% +Vs~gradvs) =divT® + p/b® + J¥ My grad T + = (v — v7) —

~pin g7 (7 = v%) = (1= 3) (v = ¥9) - grad v 5 (v =) v 52

— momentum balance for the fluid

o F
pf <%+VF~gradvF) :djVTF+pbe—JS*IHTgradT—ﬂ'(VF—VS)—i-

12 {% (v =v?) = (1 =3) (v = v*) -grad v —5 (v/' = v7) - grad VS] 5
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— energy balance

opie
ot

+ div (pev® + q) = T7 - grad v —TF . grad vi'— 84
p g g

— (VF — VS) . {7T (VF — VS) + J5 Iy grad T—

— P12 %(VF—VS) —(1-13) (VF—VS) -gradvF—g(vF—vS)-gradvs]},

— porosity balance

OJ5 1A, ~ J5IA,
T + div (JS_IAHVS +J) +f =0. (85)

The external forces p?b®, pf'bl", called apparent body forces, contributing to mo-
mentum balance equations have the following structure

bS—pt(bS+1), i b" =p; (b +i"),
iS = E420 (v —¢ ( )(x—c), (86)
i"=é+2Q (v —¢ ( )(x—c), Q::OOTE—QT,
where pby | pI'bE are true (e.g. gravitational) body forces, and pfi°, pf'if" are called in-

ertial body forces. In order of appearance in the above relations, they consist of the
inertial force of relative translation, Coriolis force, Euler force, centrifugal force. They
depend on the matrix of angular velocity €2 of the noninertial system with respect to an
inertial one. Certainly, the inertial body forces vanish in an inertial reference system. It
should be mentioned that the partial accelerations appearing in the above partial momen-
tum balance equations combined with apparent body forces are objective, i.e. invariant
with respect to the transformation (8).
The remaining notation used above is as follows

pf =0T o= 4ol pra=pl 5T m =T 5 (87)

while the Cauchy stress tensors T, T are given by the following constitutive relations

3 anS 8@/}5 ¢S
TS = J5IPFST = 2% | ———B°+ I1-B%) B+ ——JII1
J Pe | "or oIl ( ) oITl (88)

+0A,1 — 3p12 (VF — VS) ® (VF — VS) ., BY =F°F7,

T = J5'PFF" = —p"1 - BA 1 — (1 —3) pr2 (v = V) ® (vF = v) (89)

pF — pF2 8¢F
"t opf
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with the free energy given by
pb = pp S (T, 1,11, I11) + pf 0" (T, pf) — pro (v = v5) - (v =v®) . (90)
The energy ¢ and the energy flux vector q are given by

£=1) — T%, q=J""FQ=J5"Qy (v —v®) — JS 'K grad T, (91)

and the porosity flux has the form
j=J"F T =@ (v = 7). (92)

It is easy to see that the linearization of the above set for isothermal processes without
the source of porosity leads to Biot’s equations (1) without the coupling constant Q.

There remains the question of practical estimation of additional parameters p?, and
3. The added mass coefficient p{, has been extensively studied in literature concerning
Biot’s model. The parameter 3 is new. There seem to exist various possibilities for its
estimation connected to the fact that it appears in contributions which may be time
independent. As an example let us consider a stationary isothermal process in which, in
a chosen inertial frame of reference, the skeleton does not move (i.e. v¥ = 0). Such a
flow of the fluid through a porous material is described by the mass balance and by the
momentum balance for the fluid. For simplicity we neglect changes of porosity. Then we
have

div (p; v") =0, (93)

[pf—i—Z(l—;,)plg} vl gradvl’® = —gradp’ — [7r+(1—5)p12divvF] vl
p" = " (o).

The correction of the permeability coefficient © driven by volume changes of the fluid
div vl seems to be very small. However the correction of mass density appearing on
the left-hand side of this equation may be essential and measurable. For instance, in an
irrotational flow (rot vi" = 0) we have approximately

1
grad |ng (p — po) + 3 (pF+2(1—3) pro) v - vI | + vl = 0. (94)

where p = p!"/n is the pore pressure and py its constant reference value. If the pressure
increment is of the order of, say, 10 £Pa the velocity of the fluid must be of the order of
1 m/s to make both contributions of the similar order. Practically measurable would be
the influence of 3 for much smaller velocities which seem to be plausible at least for rocks.
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4 Propagation of fronts of acoustic waves in Biot’s
model

As already mentioned, the linearization of the above presented model yields the contri-
bution of the difference of accelerations in Biot’s model written in a chosen inertial frame
of reference. Consequently, one can ask the question if such a contribution as well as the
contribution of the coupling of stresses reflected by the material parameter () essentially
influence the results for the propagation of acoustic waves in porous materials. There
exist even claims in the literature that the added mass effect is necessary for the existence
of the so-called Biot’s wave.

In the next two sections, we present an example of analysis of weak discontinuity
(acoustic) waves for Biot’s model as well as the ”simple mixture” model in which both
the coupling @) and the tortuosity coefficient (a — 1) are assumed to be zero. Similarly to
Biot’s model the latter model has already a rather extensive literature (for the review of
results, see: [17], [18]).

The main aim of this analysis is to show that differences between these two models are
solely quantitative. This has a particular bearing in applications to such complex problems
as the propagation of surface waves which play an important role in nondestructive testing
of porous materials.

Let us repeat the set of equations of the Biot’s model (1), (2) with a small modification
of the notation. For the fields v°, v, e®, ¢, we have the field equations

v ov" S S S 1S F s
pnﬁ%—plng)\ gradtre® + 2p° dive” + Qgrade + 7 (v —v%),  (95)

ovl ov?®
pr—g tPg = kpp grade + Qgradtre® — m (v —v°) |

where

S
8@% = symgrad VS, % = div VF7 (96)

pu = poll—r(1—a), po=r(l—a)p], pe=rap;,
1/1 F

a = —<——|—1), r:p—%.
2 \no Po

We begin the analysis of this system by proving its hyperbolicity. To this aim we
consider the propagation of the front S of the weak discontinuity wave, i.e. of a singular
surface on which

[Vl =0, [[v]] =0 (97)

where [[...]] denotes the jump of the quantity. On such a surface the accelerations may
be discontinuous and we call their jumps the amplitudes of discontinuity

e[ - (5]
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Then the following compatibility conditions hold

[radv]] = —=a®@m, [[aradv¥]] = —a’ &, (99)

Oe

gaae’)) = 2 [2] ) o, (fgmac) -1 [[£]]n

where ¢ is the speed of propagation of the surface S and n its unit normal vector. The
latter gives, of course, the direction of propagation of the wave.
Bearing (96) in mind we obtain immediately

[[grade®]] = 52 (a ®n+n®a’)@n, (100)
1.s

lerade]) = -

- nn.
We evaluate the jump of field equations (95) on the surface S. It follows immediately
[puch —Mnen—p*1+n® n)] a® + [p12021 —(n® n} al’ =0,
[p12021 —Qn® n} a’ + [p22021 - /ﬁpgn ® n} al" =0. (101)

This is clearly an eigenvalue problem. We say that the system (95) is hyperbolic if
the eigenvalues ¢ are real and the corresponding eigenvectors |a [ S af } linearly indepen-
dent. We prove that this is indeed the case.

It is convenient to separate the transversal and longitudinal parts of the problem
(101). The transversal part follows if we take the scalar product of the equations with
a vector n; perpendicular to n. We obtain

(p1ic® — ) af + prac®a’l = 0,
pi2al + pnal = 0,
af :=a%-n;, af:=a n,. (102)

Hence we have for the speed of the front

e (103)
P11P22 — P12

As pay > 0, pu® > 0 it follows the first condition for hyperbolicity of the set (95)
a—r(l—a)>0. (104)

This condition is obviously fulfilled because a is not smaller than 1.

The speed of propagation (103) describes the shear wave. It is easy to see that in
the particular case without the influence of tortuosity a = 1 this relation reduces to the
classical formula ¢ = /uS/p5. In this case, according to (102)y, the amplitude in the
fluid a is zero, i.e. the shear wave is carried solely by the skeleton.
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We proceed to the longitudinal part. To this aim we take the scalar product of the
relations (101) with the vector n. It follows

[puc2 - ()\S + 2us)} a’ - n+ [p1202 — Q] al"'n = 0, (105)
|:p1202 - Q} a’ - n+ |:p2202 — /{pg] al'n = 0,
and the dispersion relation is as follows
Q 2
r[(1=r(1—a)c®—cp| [ac® = chy] — lr (1—a)c®— p—S] =0, (106)
0
where
A 4245
Chy 1= %, Cho 1= K. (107)

£0

The eigenvalues of this problem have the form

CQer[a—yal(1—a)] A+ VB, (108)

where
A:=rack, +[1—r(1—a)]rch, — 2%7” (1—a), (109)
0
QQ
B:=A%—4rfa—r(1—a) [0?310?327” - ﬁ] :
Po

It can be easily shown that under the condition (104) B > 0 for all a > 1, @ > 0.
However, ¢ defined by (108) is positive solely if the additional condition on Q is satisfied

Q< pos\/?cmcpg = \/ng (A 4 2u9). (110)

This is the second condition for hyperbolicity.

In the particular case a = 1, (Q = 0 we have ¢ equal to either c¢p; or cpy which means
that the set is unconditionally hyperbolic.

The two solutions for ¢? define two longitudinal modes of propagation, P1 and P2.
The P2-mode, called the Biot’s wave or the slow wave in the theory of porous materials,
is also known as the second sound and it appears in all two-component systems described
by hyperbolic field equations. For instance, it is known in the theory of binary mixtures of
fluids in which it is applied to describe dynamical properties of liquid helium as discovered
by L. Tisza in 1938 [19]. For porous materials, it has been discovered by Ya. Frenkel in
1944 [20].

5 Biot’s model vs. the simple mixture model on
example of monochromatic acoustic waves

The above analysis yields solely the propagation properties of the wave front S. We do
not learn anything about, for instance, the attenuation of the waves. For this reason we
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proceed to analyze monochromatic waves. As we see the speeds of propagation obtained
above follow in the limit of frequency w — oc.

We seek solutions of equations (95) which have the form of the following monochro-
matic waves

vi=VS¢, v =vVFg, e =E°E, ¢=FEFE, (111)
E:=explilk -x—wt)],

where V¥, VI ES, EF are constant amplitudes, k is the wave vector, w real frequency.
Substitution of this ansatz in field equations yields the following compatibility con-
ditions

[p1w?1-Mk @k — 4 (A1 + k@ k) + inwl] VI+
+ [pr2w’l — Qk @ k — imwl] VI =0, (112)
[p12w21 —Qk®k — iﬂwl} \VAuE {pgguﬂl — HpOFk ® k + iﬂwl} vE=o.

As usual, the problem of existence of such waves reduces to the eigenvalue problem
with the eigenvector [VS ,VE } As before we split the problem into two parts: in the
direction k; perpendicular to k (transversal modes) and in the direction of the wave
vector k (longitudinal modes).

For transversal modes (monochromatic shear waves) we have

[p11w2 — 1ok + imu] V4 [p12w2 — imu] vi =0, K =k-k,
[p12w2 — imu} V4 [p22w2 + iww] vE =0, (113)

VE=VS.k,, VI=vVFI.k,.

The dispersion relation can be written in this case in the following form

w 2
w {(1011/922 — pls) (E) - MSP22} +

. w2
+ur {(,011 + P22 + 2p12) (E) — MS} =0, (114)
i.e.
2 wra + 1% s
(5> - o &, &=k (115)
k wr[a—r(l—a)]—%zg(l—kr) 04

Consequently, neither the phase speed w/ Re k nor the attenuation Im k of monochromatic
shear waves is dependent on the coupling coefficient Q.
In the two limits of frequencies we have then the following solutions

2 S
w0 lim(w) a lim (Imk) = 0,

w0 \Rek/) — p§ +pb’ w0
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Ww—00 lim(w>2= e p
w—oo \Rek pi1pe2 — Pl

lim (Im k) r 1/«
1m m = s .
w—00 21/%9#3@2 a—r(l—a)

(116)

The first result checks with the results of the classical one-component model com-
monly used in soil mechanics. The speed in the second one is identical with this of formula
(103). Hence the propagation of the front of shear waves is identical with the propagation
of monochromatic waves of infinite frequency. Let us notice that the attenuation in this

limit is finite.

We demonstrate further properties of these monochromatic waves on a numerical

example.
For longitudinal modes we obtain the dispersion relation

[p11w2 — ()\S + Zus) E* + iww} [p22w2 — kph k* + imu] —
- (p12w2 — Qk‘2 — z'7rw)2 =0,

or, after easy manipulations,

w{[l —ri-a) (£) —ci,l} {a () —c§,2}+

1 2 2
——w{r(l—a) (E) —%} = 0.
r k Po
Let us check again two limits of frequencies: w — 0, and w — oo.

In the first case we obtain

w
0: =li ( ) ;
L= =01 \Re k

s {(1+r)cg — TChy — Cpy —1—2%} =0, lim0 (Imk) = 0.
0 v

Obviously, we obtain two real solutions of this equation

w C%l"‘“ﬁ?‘i‘?% B )‘S+2M5+POF“+2%

2
li ( ) - 2 — = Po
w0 \Rek/ |, or L+ p3 + b
: w \2 5
i (o) |, © =m0

(117)

(118)

(119)

(120)

These are squares of speeds of propagation of two longitudinal modes in the limit of zero
frequency. Clearly, the second mode, P2-wave, does not propagate in this limit. Both
limits are independent of tortuosity. The result (120) checks with the relation for the
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speed of longitudinal waves used in the classical one-component model of soil mechanics
provided @ = 0.

In the second case we have

) w
W—00: Cu :=Ilim ,

w—oo \Rek

r{[l =71 —a)c — i} {ack, — cpo} — {T(l —a)c2, — ,0%} = 0. (121)

This coincides with the relation (106). Consequently, the limit w — oo gives indeed the
properties of the front of acoustic longitudinal waves in the system.
Simultaneously we obtain the following attenuation in the limit of infinite frequencies

7TP1

lim (Imk) = ——— 122
wl—{rolo(m ) 2p€rf2’ ( )
L[ 2 Q
Pl = Cxo |:1+T_g(CP1+TCP2+2§):|7
2 2
2 Cp2 2 Cp1 Q Q
B = (0m Bt (1o ) walg (- 26 ).

Hence both limits of attenuation for the P1-wave and P2-wave are finite.
We proceed to the presentation of a numerical result in the whole range of frequencies
w € [0,00). We use the following numerical data
cpr = 2500 2,  cpp =1000 2, cg = 1500 =,
py = 25002 r=01 7=10°2 (123)

m3s’

Q = 08GPa, ny=04, a=1.75.

Speeds cp1, cps, cg, the mass density pf (i.e p5® = 4167 % for the porosity ng = 0.4)
and the fraction 7 = pl'/p5 possess values typical for many granular materials under a
confining pressure of a few atmospheres and saturated by water. In units standard for
soil mechanics the permeability 7 corresponds to app. 0.1 Darcy. The coupling coefficient
() has been estimated by means of the Gassmann relation (e.g. [21]). The tortuosity
coefficient a = 1.75 follows from Berryman formula (7).

Transversal waves described by the relation (115) are characterized by the following
distribution of speeds and attenuation in function of frequency (Fig.1). The solid lines
correspond to the solution of Biot’s model and the dashed lines to the solution of the
simple mixture model.

It is clear that the qualitative behavior of the speed of propagation is the same in
both models. It is a few percent smaller in Biot’s model than this in the simple mixture
model in the range of high frequencies. A large quantitative difference between these
models appears for the attenuation. In the range of higher frequencies it is much smaller
in the Biot’s model, i.e. tortuosity decreases the dissipation of shear waves.
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Figure 1: Speed of propagation and attenuation of monochromatic S-waves for two
values of the tortuosity coefficient a : 1.75 (Biot),1.00 (simple mizture).

The latter property is illustrated in Fig.2 where we plot the attenuation of the front
of shear waves, i.e. lim Im £k, as a function of the tortuosity coefficient a. This behavior of

w—00

attenuation indicates that damping of waves created by the tortuosity, which is connected
in the macroscopic model to the relative velocity of components, is not related to scattering
of waves on the microstructure. It is rather related to the decrease of the macroscopic
diffusion velocity in comparison with the difference of velocities on the microscopic level
due to the curvature of channels and volume averaging. Fluctuations are related solely
to this averaging and not to temporal deviation from time averages (lack of ergodicity!).

attenuation of the front of shear waves [1/m]

o = N W R O ®» N 0 ©

3
tortuosity coefficient a

Figure 2: Attenuation of the front of shear waves in function of the tortuosity
coefficient a.

We proceed to longitudinal waves. The solid lines on the following Figures correspond
again to Biot’s model, the dashed lines to the simple mixture model. In order to show
separately the influence of tortuosity a and of the coupling () we plot as well the solutions
with a = 1 (dashed dotted lines) and the solutions with @ = 0 (dashed double dotted
lines).
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Even though similar again the quantitative differences are much more substantial for
Pl-waves (Fig.3). This is primarily an influence of the coupling through partial stresses
described by the parameter (). The simple mixture model (Q = 0,a = 1) as well as Biot’s
model with @ = 0 yield speeds of these waves different only a few percent (lower curves
in the left diagram). The coupling @ shifts the curves to higher values and reduces the
difference caused by the tortuosity. This result does not seem to be very realistic because
the real differences between low frequency and high frequency speeds were measured in
soils to be rather as big as indicated by the simple mixture model. This may be an
indication that Gassmann relations give much too big values of the coupling parameter
@ with respect to these indeed appearing in real granular materials.

Both the tortuosity a and the coupling ) reduce the attenuation quite considerably
as indicated in the right Figure.
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Figure 3: Speed of propagation and attenuation of monochromatic P1-waves for various
coupling parameters () and tortuosity coefficients a.
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Figure 4: Speed of propagation and attenuation of monochromatic P2-waves for various
coupling parameters ) and tortuosity coefficients a.

In spite of some claims in the literature the tortuosity a does not influence the exis-
tence of the slow (P2-) wave (Fig. 4). Speeds of this wave are again qualitatively similar
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in Biot’s model and in the simple mixture model. The maximum differences appear in the
range of high frequencies and reach some 35 percent. The same concerns the attenuation
even though quantitative differences are not so big (app. 8 percent).

6 Conclusions

The analysis presented in this work yields the following conclusions.

1° As demonstrated in the second section, it is possible to construct a relative acce-
leration for a two-component model of a poroelastic material in such a way that it trans-
forms as an objective quantity. Additional contributions to the difference of partial ac-
celerations are nonlinear and contain a single scalar constitutive parameter j3.

As shown in the third section the linear dependence of the source of momentum on
such a relative acceleration is thermodynamically admissible provided the following con-
ditions are fulfilled. The partial stress tensors contain additional contributions quadratic
in the relative velocity with material coefficients determined by the combination of two
parameters appearing in the contribution of the relative acceleration: the tortuosity co-
efficient a and the parameter 3. The internal energy contains an additional contribution
of the kinetic energy of relative motion with the constitutive coefficient dependent solely
on tortuosity a. Such a model fulfils the second law of thermodynamics and the principle
of material objectivity.

Linearization of the above described model yields Biot’s contribution of relative ac-
celerations. This is, of course, not objective anymore. Consequently, Biot’s model can be
used solely in inertial frames of reference. In noninertial frames the transition from the
nonlinear model yields apparent body forces but not additional terms which would follow
by the transformation of the system of Biot’s equations.

2° We have demonstrated on the example of acoustic waves that tortuosity a and the
coupling parameter ) have a quantitative but not qualitative influence on results. We
have compared results for Biot’s model with these for the simple mixture model in which
the tortuosity a = 1 and the coupling parameter () = 0. We have proven that both models
are hyperbolic provided the parameter () satisfies a condition bounding this parameter
from above. In particular, both models predict the existence of the P2-wave. Speeds and
attenuations of monochromatic P1-, P2- and S-waves are qualitatively the same but there
are quantitative discrepancies which we discuss below.

3° Tortuosity introduced to the model through the relative acceleration yields dissi-
pation solely due to the modification of the relative motion. Namely if we assume the
permeability coefficient m = 0 the dissipation in isothermal processes without relaxation
of porosity vanishes. This is due to the fact that tortuosity, in contrast to porosity, is not
introduced as a field described by its own field equation. This is an explanation of a rather
unexpected behavior of attenuation of monochromatic waves. Inspection of figures shown
in this work makes clear that the presence of tortuosity a # 1 yields a smaller attenuation
rather than bigger as it would be in the case of a dissipative field. This may be explained
by the fact that tortuosity reduces the relative velocity v — v¥ and, consequently, it
reduces the contribution to dissipation 7 (vF —v¥) - (v — v¥).

4° We have demonstrated that a rather moderate value of the parameter () suggested
by the classical Gassmann relation for granular materials leads to an unreasonable in-
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crement of speeds of propagation and reduction of attenuation. In addition, the speed
of propagation of monochromatic P1-waves becomes very flat as a function of frequency.
This contradicts observations in soil mechanics and geotechnics and indicates that the
Gassmann relation predicts too big values of this parameter. The situation would improve
if we used the model proposed in [13]. This model contains a constitutive dependence
on the porosity gradient which yields a modification of Gassmann relations [21] and a
considerable reduction of the parameter ().
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