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Sharp asymptotics for Kawasaki dynamicson a �nite box with open boundaryA. Bovier �F. den Hollander yF.R. Nardi z6th April 2004AbstractIn this paper we study the metastable behavior of the lattice gas in two and threedimensions subject to Kawasaki dynamics in the limit of low temperature and low density.We consider the local version of the model, where particles live on a �nite box and arecreated, respectively, annihilated at the boundary of the box in a way that reects anin�nite gas reservoir. We are interested in how the system nucleates, i.e., how it reachesa full box when it starts from an empty box. Our approach combines geometric andpotential theoretic arguments.In two dimensions, we identify the full geometry of the set of critical droplets forthe nucleation, compute the average nucleation time up to a multiplicative factor thattends to one in the limit of low temperature and low density, express the proportionalityconstant in terms of certain capacities associated with simple random walk, and computethe asymptotic behavior of this constant as the system size tends to in�nity. In threedimensions, we obtain similar results but with less control over the geometry and theconstant.A special feature of Kawasaki dynamics is that in the metastable regime particles movealong the border of a droplet more rapidly than they arrive from the boundary of the box.The geometry of the critical droplet and the sharp asymptotics for the average nucleationtime are highly sensitive to this motion.AMS 2000 subject classi�cations. 60K35, 82B43, 82C43, 82C80.Key words and phrases. Lattice gas, Kawasaki dynamics, metastability, critical droplet,discrete isoperimetric inequalities, potential theory, Dirichlet form, capacity.Running title: Sharp asymptotics for Kawasaki dynamics.Acknowledgment. The authors thank Michiel van den Berg (Bristol, United Kingdom)for discussions on capacity estimates. FRN was supported by a fellowship from NWOwhile being a postdoc at EURANDOM. AB and FdH were partially supported throughthe \Dutch-German Bilateral Research Group on Random Spatial Models from Physicsand Biology", which is �nanced by NWO and DFG. AB and FdH thank the Isaac NewtonInstitute in Cambridge, United Kingdom, for hospitality in the Summer of 2003.�Weierstrass-Institut f�ur Angewandte Analysis und Stochastik, Mohrenstrasse 39, 10117 Berlin, Germany,and Institut f�ur Mathematik, Technische Universit�at Berlin, Strasse des 17. Juni 136, 10623 Berlin, GermanyyEURANDOM, P.O. Box 513, 5600 MB Eindhoven, The NetherlandszDipartimento di Matematica, Universit�a di Roma \La Sapienza", Piazzale Aldo Moro 2, 00100 Roma, Italy1



1 Introduction and main resultsIn this paper we study the metastable behavior of the lattice gas in two and three dimensionssubject to Kawasaki dynamics at low temperature and low density. Particles live on a �nitebox, hop between nearest-neighbor sites, have an attractive interaction when they sit next toeach other, and are created, respectively, annihilated at the boundary of the box in a waythat reects an in�nite gas reservoir. We are interested in how the system nucleates, i.e., howit reaches a full box when it starts from an empty box. Our goal is to improve on earlier workby combining a detailed analysis of the energy landscape for the dynamics with the potentialtheoretic approach to metastability that was developed in Bovier, Eckho�, Gayrard, and Klein[5] and further exposed in Bovier [3].Our main theorems sharpen those obtained by den Hollander, Olivieri, and Scoppola [9] intwo dimensions and by den Hollander, Nardi, Olivieri, and Scoppola [8] in three dimensions.In particular, in two dimensions we identify the full geometry of the set of critical droplets,compute the average nucleation time up to a multiplicative factor that tends to one in thelimit of low temperature and low density, express the proportionality constant in terms ofcertain capacities associated with simple random walk, and compute the asymptotic behaviorof this constant as the system size tends to in�nity. In three dimensions, we obtain similarresults but with less control over the geometry and the constant.Our results are comparable with those derived by Bovier and Manzo [6] for the Isingmodel on a �nite box in two and three dimensions with periodic boundary conditions subjectto Glauber dynamics at low temperature. This work sharpened earlier results by Neves andSchonmann [11] in two dimensions and by Ben Arous and Cerf [4] in three dimensions.Kawasaki di�ers from Glauber in that it is a conservative dynamics: particles are conservedin the interior of the box. This creates a complication in controlling the growing and theshrinking of droplets, because particles have to travel between the droplet and the boundaryof the box. Moreover, it turns out that in the metastable regime particles move along the borderof a droplet more rapidly than they arrive from the boundary of the box. This leads to a shapeof the critical droplet that is more complicated than the one for Ising spins under Glauberdynamics. This complexity needs to be handled in order to obtain the sharp asymptotics. Fora critical comparison of Glauber and Kawasaki we refer to den Hollander [7].The outline of the paper is as follows. In Section 1 we de�ne the model, recall earlierresults, and state our main theorems. In Section 2 we consider two dimensions, collect the keygeometric facts that underlie our analysis, and prove our result identifying the full geometryof the set of critical droplets. In Section 3 we use this full geometry to prove our sharpasymptotics for the average nucleation time. In Section 4 we show to what extent theseresults can be extended to three dimensions.1.1 Hamiltonian and Gibbs measureLet � � Z2 be a large square box, centered at the origin. Let@�� = fx 2 �: 9 y =2 �: jy � xj = 1g;@+� = fx =2 �: 9 y 2 �: jy � xj = 1g; (1.1.1)be the internal, respectively, external boundary of �, and put�� = � n @��;�+ = � [ @+�: (1.1.2)2



With each site x 2 � we associate an occupation variable �(x), assuming the values 0 or 1,indicating the absence or presence of a particle at x. A lattice con�guration is denoted by� 2 X = f0; 1g�. Each con�guration � 2 X has an energy given by the HamiltonianH(�) = �U X(x;y)2��;� �(x)�(y) + �Xx2� �(x); (1.1.3)where ��;� = f(x; y) : x; y 2 ��; jx� yj = 1g (1.1.4)is the set of non-oriented bonds in ��. The interaction consists of a binding energy �U < 0for each nearest-neighbor pair of particles in ��. In addition, there is an activation energy� > 0 for each particle in �.The Gibbs measure associated with H is��(�) = e��H(�)Z� ; � 2 X ; (1.1.5)with inverse temperature � > 0 and partition sumZ� = X�2X e��H(�): (1.1.6)1.2 Kawasaki dynamicsWe next de�ne Kawasaki dynamics on �, with a boundary condition that mimics the e�ect ofan in�nite gas reservoir outside � with density�� = e��� ; (1.2.1)in accordance with the activation energy � appearing in (1.1.3).Let b = (x ! y) denote an oriented bond, i.e., an ordered pair of nearest-neighbor sites.De�ne ��; orie = fb = (x! y) : x; y 2 �g;@��; in = fb = (x! y) : x 2 @+�; y 2 @��g;@��; out = fb = (x! y) : x 2 @��; y 2 @+�g; (1.2.2)and put ���; orie = ��; orie [ @��; in [ @��; out. Two con�gurations �; �0 2 X with � 6= �0 arecalled communicating con�gurations, written � $ �0, if there exists a bond b 2 ���; orie suchthat �0 = Tb�, where Tb� is the con�guration obtained from � as follows:{ b = (x! y) 2 ��; orie: (Tb�)(z) = 8<: �(z) if z 6= x; y;�(x) if z = y;�(y) if z = x: (1.2.3){ b = (x! y) 2 @��; in: (Tb�)(z) = � �(z) if z 6= y;1 if z = y: (1.2.4){ b = (x! y) 2 @��; out: (Tb�)(z) = � �(z) if z 6= x;0 if z = x: (1.2.5)3



These transitions correspond to particle motion in �, creation and annihilation in @��, re-spectively. Note that, for b 2 ��; orie, Tb� is invariant under a change of orientation of b, whilefor b 2 @��; out and b 2 @��; in it is not.The Kawasaki dynamics is de�ned to be the continuous-time Markov chain (�t)t�0 on Xwith transition ratesc�(�; �0) = 1f�$�0g e��f[H(�0)�H(�)]_0g; 8 �; � 2 X ; � 6= �0: (1.2.6)This is a standard Metropolis dynamics with an open boundary: along each bond touching@�� from the outside, particles are created with rate �� and are annihilated with rate 1,reecting the activation energy, while inside �� particles are conserved and jump at a ratethat depends on the change in energy associated with the jump, reecting the binding energy.Note that a move of particles inside @�� does not involve a change in energy because theinteraction acts only inside �� (see (1.1.3)).The measure �� de�ned in (1.1.5) is the reversible equilibrium of the dynamics with tran-sition rates c� de�ned in (1.2.6):��(�)c�(�; �0) = ��(�0)c�(�0; �) 8 �; �0 2 X ; � 6= �: (1.2.7)1.3 Rough description of nucleation in two dimensions1.3.1 Metastable regime and critical droplet sizeIn two dimensions, we will be interested in the metastable regime� 2 (U; 2U); � !1: (1.3.1)In this regime, droplets tend to grow slowly: single particles attached to one side of a droplettypically detach before the arrival of a next particle (because eU� � e��), while bars of twoor more particles typically do not detach (because e�� � e2U�).As was pointed out in den Hollander, Olivieri, and Scoppola [9], Section 1.2.3, the energyE(`) of an `� ` droplet in �� equals (recall (1.1.3) and see Fig. 1)E(`) = �U [2`(`� 1)] + �`2 = 2U`� (2U ��)`2; (1.3.2)which is maximal at ` = U=(2U ��):
.....................................................................................................................................................................................................................................................................
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The critical droplet size is therefore given by`c = � U2U ��� (1.3.3)(d�e denotes the upper integer part), provided we assume thatU2U �� =2 N (1.3.4)in order to avoid ties. Throughout the sequel we assume that (1.3.4) is in force. Thus, an(`c � 1)� (`c � 1) droplet is subcritical while an `c � `c droplet is supercritical.1.3.2 Basic geometric de�nitionsTo state what is known about nucleation in two dimensions, we need some basic geometricde�nitions:De�nition 1.3.1 (a) A path ! is a sequence ! = (!1; : : : ; !k), k 2 N, of communicatingcon�gurations, i.e., !i 2 X for i = 1; : : : ; k and c�(!i; !i+1) > 0 for i = 1; : : : ; k � 1. For�; �0 2 X , we write ! : � ! �0 to denote a path from � to �0. For � 2 X , we write � 2 ! when! visits �. For A � X , we write ! � A when ! stays inside A.(b) For �; �0 2 X , a path ! : � ! �0 is called a U -path if(i) H(�) = H(�0);(ii) maxiH(!i) � H(�) + U;(iii) j!i \ �j = j� \ �j for all i: (1.3.5)(c) The con�guration space X can be partitioned asX = j�j[n=0Vn; (1.3.6)where Vn = f� 2 X : j� \ �j = ng (1.3.7)is the set of con�gurations with n particles, called the n-manifold.(d) For A � X , the communication height between �; �0 2 A inside A is�A(�; �0) = min! : �!�0!�A max�2! H(�): (1.3.8)We write �(�; �0) = �X (�; �0).(e) For A � X , the communication level set between �; �0 2 A inside A isSA(�; �0) = n� 2 A : 9! : � ! �0; ! � A; ! 3 � : max�2! H(�) = H(�) = �A(�; �0)o: (1.3.9)We write S(�; �0) = SX (�; �0).(f) For � 2 X , the law of (�t)t�0 starting from �0 = � is denoted by P�. For A � X ,�A = infft > 0: �t 2 A; �t 6= �0g (1.3.10)is the �rst hitting time of A (the restriction �t 6= �0 is put in because the dynamics runs incontinuous time). 5



Each con�guration can be decomposed into maximally connected components, called clus-ters. The following sets of con�gurations will determine the geometry of the critical droplet,as will become clear later on.De�nition 1.3.2 (a) Let Q denote the set of con�gurations having one cluster consisting ofan (`c � 1)� `c quasi-square anywhere in �� with a single particle attached anywhere to oneof its sides.(b) Let D denote the set of con�gurations that can be reached from some con�guration in Qvia a U -path, i.e.,D = n�0 2 Vnc : 9 � 2 Q : H(�) = H(�0); �Vnc (�; �0) � H(�) + Uo; (1.3.11)where nc = `c(`c � 1) + 1 is the volume of the clusters in Q.(c) Let C� = Dfp, where (�)fp denotes addition of a free particle anywhere in � (see Fig. 2).(d) Let �� = H(C�) = H(Dfp) = H(D) + � = H(Q) + �= �U [(`c � 1)2 + `c(`c � 2) + 1] + �[`c(`c � 1) + 2]= 2U [`c + 1]� (2U ��)[`c(`c � 1) + 2] (1.3.12)denote the energy of the con�gurations in C�.As we will see shortly, Q plays the role of the set of canonical protocritical droplets for thenucleation, D � Q the set of protocritical droplets, and C� the set of critical droplets. Thinkof D as the set of con�gurations the dynamics can reach after hitting Q before the creationof the next free particle in @�� (which takes a time e�� � eU�). This particle moves thecon�guration into C� and completes the formation of the critical droplet (= critical cluster+ free particle) that triggers the nucleation. If subsequently the free particle moves to thecritical cluster and attaches itself properly (i.e., in a corner), then the dynamics has \movedover the hill" and proceeds to �ll ��.
`c

`c−1

1
0

ΛFig. 2. A canonical critical droplet: an element of Qfp � Dfp = C�.6



1.3.3 Nucleation time and critical dropletsLet � = f� 2 X : �(x) = 0 8x 2 �g;� = f� 2 X : �(x) = 1 8x 2 ��; �(x) = 0 8x 2 @��g; (1.3.13)denote the con�gurations where � is empty, respectively, �� is full and @�� is empty. Weassume that � is so large that H(�) < H(�) = 0: (1.3.14)In this case, � is the global minimum of H. The main result known about nucleation in twodimensions reads as follows.Theorem 1.3.3 (den Hollander, Olivieri, and Scoppola [9], Theorem 1.53 and Proposition4.24)(i) �(�;�) = �� and S(�;�) � C�.(ii) lim�!1P��e(���Æ)� < �� < e(��+Æ)�� = 1 8 Æ > 0: (1.3.15)(iii) lim�!1P�(�C� < �� j �� < ��) = 1: (1.3.16)Theorem 1.3.3(i) identi�es �� as the communication height for the nucleation and C� as asubset of the communication level set for the nucleation. Theorem 1.3.3(ii) identi�es thenucleation time to exponential order in �, with exponent ��. Theorem 1.3.3(iii) states thatC� is a gate for the nucleation.1.4 Sharp description of nucleation in two dimensions1.4.1 Goal and backgroundThe goal of the present paper is to sharpen Theorem 1.3.3 in two ways:(I) Equation (1.3.11) de�nes D as a certain neighborhood of Q de�ned in terms of energiesand communication heights. We will describe the con�gurations in D geometrically andelaborate on the gate structure of C� = Dfp.(II) We will sharpen (1.3.15) by computing the average nucleation time up to a multiplicativefactor that tends to one as � ! 1 and by showing that the limit law is exponential.This will require the knowledge obtained in (I).To achieve (II), we will apply the potential theoretic approach to metastability developed inBovier, Eckho�, Gayrard, and Klein [5] and further exposed in Bovier [3]. There it was shownthat, for reversible Markov processes exhibiting metastability, the computation of averagemetastable exit times and of corresponding small eigenvalues of the generator reduces to thecomputation of certain capacities. The advantage of this reduction is that the variationalrepresentation of capacities given through the Dirichlet form allows for a sharp computationof these capacities up to multiplicative errors that tend to one as the small parameters in thetheory tend to zero. Roughly speaking, the reason why this happens is that in metastablesystems the full Dirichlet form e�ectively reduces to a Dirichlet form involving only a tinyfraction of the state space, namely, the communication level set and its immediate vicinity.7



In Bovier and Manzo [6] it was shown that this situation arises for the Ising model withGlauber dynamics in �nite volume in the limit of low temperature. For that model thesituation turns out to be relatively simple, because the communication level set is completelydisconnected, implying that the full Dirichlet form reduces to a sum of zero-dimensionalDirichlet forms. We will show that in our model the same approach can be followed, eventhough the structure of the communication level set is far more complicated. In particular, inour model this set contains plateaus, wells embedded in these plateaus, and dead-ends. Thus,the reduced Dirichlet forms remain multi-dimensional. However, we will be able to expressthem in terms of certain hitting probabilities of simple random walk. The latter will turn outto be suÆciently manageable so as to allow for a computation of the asymptotic behavior ofthe reduced Dirichlet forms as �! Z2.The idea behind the potential theoretic approach is explained in Section 3.3. Certainspeci�c geometric information is needed for this approach to work, which is gathered in Section2, but this information is relatively limited.Throughout the paper we assume that `c � 3. The case `c = 2 is trivial: Q = D isthe set of con�gurations consisting of three particles forming a cluster anywhere in ��, C� isthe set of con�gurations obtained from these by adding a free particle anywhere in �, and�� = �2U + 4�.1.4.2 Geometry of protocritical dropletsOur �rst theorem identi�es the full geometry of the con�gurations in D (see Fig. 3) and willbe proved in Section 2.2.Theorem 1.4.1 D = �D [ eD, where{ �D is the set of con�gurations having one cluster consisting of an (`c�2)�(`c�2) squareanywhere in �� with attached to it four bars of lengths �ki satisfying1 � �ki � `c � 1; Xi �ki = 3`c � 3; (1.4.1){ eD is the set of con�gurations having one cluster consisting of an (`c � 3) � (`c � 1)rectangle anywhere in �� with attached to it four bars of lengths eki satisfying1 � eki � `c � 1; Xi eki = 3`c � 2: (1.4.2)
12� 12

�Q
-U -path 12� 12

�DFig. 3. Con�gurations in �Q and �D for `c = 14. A similar pictureapplies for eQ and eD with a 11� 13 rectangle in the center.8



Compare De�nitions 1.3.2(a) and 1.4.1. Write Q = �Q[ eQ, where{ �Q are those con�gurations where the single particle is attached to one of the longestsides of the (`c � 1)� `c quasi-square.{ eQ are those con�gurations where the single particle is attached to one of the smallestsides of the (`c � 1)� `c quasi-square.Then �Q consists of precisely those con�gurations in �D where one �ki equals 1 and the othersare maximal. Similarly, eQ consists of precisely those con�gurations in eD where one eki equals1 and the others are maximal. We will see in Section 2.2 that the con�gurations in �D; eD arisefrom those in �Q; eQ via a motion of particles along the border of the droplet. This property isspecial for Kawasaki dynamics.1.4.3 Minimal gates and entrance distributionTo formulate our sharpening of Theorem 1.3.3 we need some more de�nitions.De�nition 1.4.2 Fix �; �0 2 X .(a) The set of paths realizing the minimax in �(�; �0) (recall (1.3.8)) is denoted by (� ! �0)opt.(b) A set W � X is called a gate for � ! �0 if W � S(�; �0) and ! \ W 6= ; for all! 2 (� ! �0)opt.(c) A set W � X is called a minimal gate for � ! �0 if it is a gate for � ! �0 and for anyW 0 (W there exists an !0 2 (� ! �0)opt such that !0 \W 0 = ;.(d) A priori there may be several (not necessarily disjoint) minimal gates. The union of allthe minimal gates G(�; �0) = [W minimal gate for �!�0 W (1.4.3)is called the essential gate for � ! �0.(e) The con�gurations in S(�; �0) n G(�; �0) are called dead-ends.The notion of minimal gate for �! � is important: on its way from � to � the dynamicspasses through each of the minimal gates for � ! � with a probability tending to one as� ! 1, i.e., (1.3.16) holds with C� replaced by any of the minimal gates, or any union ofthem. Thus, the essential gate G(�;�) plays the role of the minimal set of con�gurations inS(�;�) the dynamics can see on its way from � to �. For an elaborate dicussion of essentialgates and their role for metastable transition times, we refer the reader to Manzo, Nardi,Olivieri and Scoppola [10].Our second theorem extends Theorem 1.3.3(i{ii) and will be proved in Section 3.5.Theorem 1.4.3 (i) S(�;�) ) G(�;�) ) C�.(ii) lim�!1P�(�Q < �C� < �� j �� < ��) = 1: (1.4.4)(iii) lim�!1P�(��C�� = � j �C� < ��) = 1jDj 8 � 2 D (1.4.5)with �C�� the time just prior to �C�. 9



Theorem 1.4.3(i) shows that S(�;�) has dead-ends and that the essential gate G(�;�) islarger than the set of critical droplets C�. Theorem 1.4.3(ii) says that Q is hit prior to C�.Theorem 1.4.3(iii) says that the entrance distribution of C� is uniform, i.e., the protocriticaldroplets in D, seen just prior to the creation of the free particle in @��, occur with equalprobability. (Incidentally, the exit distribution is not uniform and turns out to be hard tocompute.)Let @�4 C� denote the set of con�gurations in C� where the free particle sits in @�4 �, theinternal boundary of � without its four corners. This set is a minimal gate. Indeed, forany � 2 @�4 C� there exists an ! 2 (� ! �)opt that avoids @�4 C� n �, namely, any ! thatenters � at site � \ @�4 �, sees the protocritical droplet � \ �� 2 D inside ��, moves towardsthis protocritical droplet without returning to @�4 �, and attaches itself `properly' (i.e., in acorner). Similarly, any subset of C� where the free particle sits on some ring of sites aroundthe protocritical droplet is a minimal gate. We have no full classi�cation of the minimal gates.Therefore we have no full classi�cation of G(�;�) either.1.4.4 Sharp asymptoticsOur third and fourth theorem extend Theorem 1.3.3(iii) and will be proved in Sections 3.3{3.4.Theorem 1.4.4 There exists a constant K = K(�; `c) such thatE �(��) = Ke��� [1 + o(1)] � !1: (1.4.6)Moreover, P� (�� > t E �(��)) = [1 + o(1)] e�t[1+o(1)]; t � 0; � !1: (1.4.7)Theorem 1.4.4 provides the sharp asymptotics for the average nucleation time and states thatthe law of the nucleation time is exponential. The latter is typical for \success only occursafter many unsuccessful attempts".In Section 3.3 we will derive a representation for the constant K in terms of certaincapacities associated with two-dimensional simple random walk. This representation willdepend on the geometry of C� and its immediate vicinity, i.e., those � 2 X nC� for which thereis an �0 2 C� such that � $ �0. In Section 2.3 we will see that this immediate vicinity isactually rather complex, due to the fact that when the free particle attaches itself improperlyto the protocritical droplet (i.e., not in a corner) it triggers a motion of particles along theborder of the droplet. Consequently, no easily computable formula for K is available.It turns out, however, that the behavior of K for large � can be computed explicitly.Theorem 1.4.5 As �! Z2, K(�; `c) � 14�N(`c) log j�jj�j (1.4.8)(� means that the ratio of the left and the right side tends to 1) withN(`c) = 13(`c � 1)`2c(`c + 1) (1.4.9)the cardinality of D = D(�; `c) modulo shifts.10



The intuition behind Theorem 1.4.5 is as follows. The average time it takes for the dynamicsto enter C� when starting from � is1jDj 1j@��;inj e��� [1 + o(1)] � !1; (1.4.10)where jDj counts the number of protocritical droplets and j@��;inj counts the number ofdirected bonds from @+� to @�� along which the free particle can be created (recall (1.2.2)).Let �(�; `c) be the probability (averaged w.r.t. the uniform distribution for the protocriticaldroplet on D and the uniform distribution for the free particle entering on @��;in) that thefree particle moves from @�� to the protocritical droplet and attaches itself properly (i.e., ina corner). This is the probability that the dynamics after it enters C� moves onwards to �rather than returns to �. Then 1�(�; `c) [1 + o(1)] � !1 (1.4.11)is the average number of times a free particle just created in @�� attempts to move to theprotocritical droplet and attach itself properly before it �nally manages to do so. The averagenucleation time is the product of (1.4.10) and (1.4.11), and so we conclude thatK(�; `c) = 1jDj j@��;inj�(�; `c) : (1.4.12)Now, we have jDj � j�jN(`c) �! Z2: (1.4.13)Furthermore, we have j@��;inj�(�; `c) � 4�log j�j �! Z2: (1.4.14)Indeed, as we will see in Section 3.4, the right-hand side of (1.4.14) is the probability forlarge � that a particle detaching itself from the protocritical droplet reaches @�� before re-attaching itself. (Due to the recurrence of simple random walk in two dimensions, for large� this probability is independent of the shape and the location of the protocritical droplet,as long as it is far from @��.) By reversibility, the reverse motion has the same probability,which explains (1.4.14). (If the free particle attaches itself `improperly' to the protocriticaldroplet, then it may cause some wandering around of the dynamics or it may again detach itselffrom the protocritical droplet. But since for large � the free particle has a small probabilityto escape from the protocritical droplet and return to @�, it must eventually attach itself`properly'. We refer to Section 3.5 for details.) Combine (1.4.12{1.4.14) to get (1.4.8).The asymptotics in (1.4.8) does not depend on the shape of �, e.g. it would be the sameif � were a large circle rather than a large square.1.5 Extension to three dimensionsThe metastable regime, replacing (1.3.1), is� 2 (U; 3U); � !1; (1.5.1)and we assume that 2U3U �� =2 N: (1.5.2)The analogue of De�nition 1.3.2 reads (see den Hollander, Nardi, Olivieri, and Scoppola [8]Eqs. (1.3.7), (1.3.11), (2.0.15), (2.0.17), (2.0.18) and (2.0.21)):11



De�nition 1.5.1 (a) Let Q denote the set of con�gurations having one cluster consisting ofan (mc � 1) � (mc � Æc) �mc quasi-cube anywhere in �� with, attached anywhere to one ofits faces, an (`c � 1) � `c quasi-square with, attached anywhere to one of its sides, a singleparticle. Here, Æc 2 f0; 1g depends on the arithmetic properties of U and �, while`c = � U3U ��� ; mc = � 2U3U ��� ; (1.5.3)are the two-dimensional critical droplet size on a face, respectively, the three-dimensionalcritical droplet size, replacing (1.3.3). Note that mc 2 f2`c � 1; 2`cg.(b) For � 2 (2U; 3U), let D denote the set of con�gurations that can be reached from somecon�guration in Q via a 2U -path, i.e.,D = n�0 2 Vnc : 9 � 2 Q : H(�) = H(�0); �Vnc (�; �0) � H(�) + 2Uo; (1.5.4)where nc = mc(mc � Æc)(mc � 1) + `c(`c � 1) + 1 is the volume of the clusters in Q. For� 2 (U; 2U), use U instead of 2U in (1.5.4).(c) Let C� = Dfp denote the set of con�gurations obtained from D by adding a free particleanywhere in � (see Fig. 4).(d) Let �� = H(C�) = H(Dfp) = H(D) + � = H(Q) + �= U [mc(mc � Æc) +mc(mc � 1) + (mc � Æc)(mc � 1) + 2`c + 3]� (3U ��)[mc(mc � Æc)(mc � 1) + `c(`c � 1) + 2] (1.5.5)denote the energy of the con�gurations in C�.

Fig. 4. An element of Qfp � Dfp = C� for `c = 10, mc = 20 and Æc = 0.As is shown in den Hollander, Nardi, Olivieri, and Scoppola [8], Theorem 1.5.1, the resultsin Theorem 1.3.3 carry over from two to three dimensions. Unfortunately, we are not ableto identify the full geometry of D, and hence of C� = Dfp, because the motion of particles12



along the border of the droplet is much more complex in three than in two dimensions, i.e.,the analogue of Fig. 3 is not fully understood (see e.g. [8], Figure 7). Consequently, we haveno result extending Theorems 1.4.1. Theorem 1.4.3 carries over. The following two theorems,proved in Sections 4.2{4.3, extend Theorems 1.4.4{1.4.5.Theorem 1.5.2 There exists a constant K = K(�; `c;mc; Æc) such thatE �(��) = Ke���[1 + o(1)] � !1: (1.5.6)Moreover, P� (�� > t E �(��)) = [1 + o(1)] e�t[1+o(1)]; t � 0; � !1: (1.5.7)We will derive a representation for the constant K in terms of certain capacities associatedwith three-dimensional simple random walk. As in two dimensions, this representation is socomplex that no easily computable formula for K is available. We will deduce the followingasymptotics, which is similar in spirit to the one obtained in two dimensions but less complete.Theorem 1.5.3 As �! Z3,K(�; `c;mc; Æc) � 1M(`c;mc; Æc)N(`c;mc; Æc) 1j�j ; (1.5.8)where N(`c;mc; Æc) is the cardinality of D = D(�; `c;mc; Æc) modulo shifts, and M(`c;mc; Æc)satis�es the bounds �(mc � dpmc e) �M(`c;mc; Æc) � �(mc + 3) (1.5.9)with �(m) the capacity of the m�m�m cube for simple random walk on Z3.The interpretation of the asymptotic formula forK is similar as in two dimensions. Insteadof (1.4.12), we have K = 1jDj j@��;inj�(�; `c;mc; Æc) (1.5.10)with �(�; `c;mc; Æc) the analogue of �(�; `c) in two dimensions (de�ned below (1.4.10)). Bythe transience of simple random walk in three dimensions, j@��;inj�(�; `c;mc; Æc) convergesto a limit M(`c;mc; Æc) as �! Z3.The lower bound in (1.5.9) comes from the fact that all protocritical droplets contain acube of side length mc �pmc. The upper bound comes from the fact that all protocriticaldroplets are contained in a cube of side length mc + 1 and that as long as the free particleis at distance � 2 from the protocritical droplet no border motion is possible (as shown inSection 4.1). Since �(m) � �m m!1; (1.5.11)with � the capacity of the unit cube for standard Brownian motion on R3 , which satis�es� 2 (2�; 2�p3), we have good control over M(`c;mc; Æc) for mc large, i.e., for � close to 2U .We have no formula for N(`c;mc; Æc) analogous to (1.4.9). It would be nice to know itsasymptotics for mc large.
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2 Geometry in two dimensionsIn this section we collect the key geometric facts that underlie our analysis. In Section 2.1 weintroduce some geometric de�nitions. In Section 2.2 we prove Theorem 1.4.1, which identi�esthe full geometry of the set of protocritical droplets. In Section 2.3 we obtain the structure ofthe communication level set for the nucleation. In Section 2.4 we prove two global geometricfacts that will be needed in Section 3.2.1 Some geometric de�nitionsFree particles and 1-protuberances are de�ned as follows:{ For x 2 ��, let NN(x) = fy 2 �� : jy� xj = 1g be the set of nearest-neighbor sites of xin ��.{ A free particle in � 2 X is a site x 2 � \ @�� or a site x 2 � \ �� such thatPy2NN(x)\�� �(y) = 0, i.e., a particle not in interaction with any other particle (re-member from (1.1.3) that particles in the interior boundary @�� have no interactionwith particles in the interior ��).{ A 1-protuberance in � 2 X is a site x 2 � \ �� such that Py2NN(x)\�� �(y) = 1.{ A corner in � 2 X is a site x 2 �� n � such that Py2NN(x)\�� �(y) � 2.Given a con�guration � 2 X , consider the set C(�) � R2 de�ned as the union of theclosed unit squares centered at the sites inside �� where � has a particle. The maximalconnected components C1; : : : ; Cm, m 2 N, of C(�) are called clusters of � (two unit squarestouching only at the corners are not connected). There is a one-to-one correspondence betweencon�gurations � � �� and sets C(�). A con�guration � � � is characterized by a set C(�),depending only on �\��, plus possibly a set of particles in @��, namely, �\@��. Thus, we areactually identifying two di�erent objects: a con�guration � 2 X and the pair (C(�); �\@��).For � 2 X , let j�j be the number of particles in �, (�) the Euclidean boundary of C(�),called the contour of �, and j(�)j the length of (�), i.e., the number of broken bonds in �.Then the energy associated with � is given byH(�) = U2 j(�)j � (2U ��)j� \ ��j+�j� \ @��j: (2.1.1)For convenience we identify a con�guration � 2 X with its support supp(�) = fx 2 �: �(x) =1g and write x 2 � to indicate that � has a particle at x.Throughout the paper we assume that the square box � � Z2 is large enough to amplyaccommodate the critical droplet (say, it has side length � 2`c).{ An `1 � `2 rectangle is a cluster with side lengths `1; `2 � 1. We use the convention`1 � `2 and collect rectangles in equivalence classes modulo translations and rotations.{ A bar is a 1 � k rectangle attached to a side of length `2 of an `1 � `2 rectangle with1 � k � `2. A bar is called a row if k = `2, i.e., a row is a bar that �lls a side of arectangle. A column is called a row too.{ A quasi-square is an ` � (` + Æ) rectangle with ` � 1 and Æ 2 f0; 1g. A square is aquasi-square with Æ = 0. 14



{ If � is a con�guration with a single contour, then we denote by CR(�) the rectanglecircumscribing �, i.e., the smallest rectangle containing �. We write@�CR(�) = fx 2 CR(�) : 9 y =2 CR(�) : jy � xj = 1g;@+CR(�) = fx =2 CR(�) : 9 y 2 CR(�) : jy � xj = 1g; (2.1.2)to denote the interior, respectively, external boundary of CR(�), and putCR�(�) = CR(�) n @�CR(�);CR+(�) = CR(�) [ @+CR(�): (2.1.3){ Given �, we say that it is possible to move a particle from row r�(�) � @�CR(�) to rowr�0(�) � @�CR(�) via corner c�;�0(�) 2 @�CR(�) if (see Fig. 6 below)jc��0(�) \ �j = 0; jr�(�) \ �j � 1; 1 � jr�0(�) \ �j � jr�0(�)j; (2.1.4)where ��0 2 fne; nw; se; swg with n = north, s = south, etc. By convention, cornersare not part of rows. If equality holds in the last inequality, then we need to place thebar in the row opposite to r�(�), say r�00(�), a distance 1 away from c�0�00(�) in order tobe able to accommodate the shift of the bar in r�0(�) that is necessary to accomodatethe particle that moves around the corner.2.2 Protocritical droplets: Proof of Theorem 1.4.1The proof of Theorem 1.4.1 will be given in two steps:(i) �D [ eD � D;(ii) �D [ eD � D: (2.2.1)Proof of (i): Recall the de�nition of U -path in (1.3.5) and the de�nitions of �Q; eQ and �D; eD inSection 1.4. To prove (i) we must show that for all � 2 �D [ eD,(i1) H(�) = H( �Q[ eQ);(i2) 9! : �Q[ eQ ! � : maxi H(!i) � H( �Q [ eQ) + U; j!i \ �j = nc for all i: (2.2.2)Proof of (i1): Any � 2 �D [ eD has a single contour (�) inside �� of length j(�)j = 4`c andvolume j� \ ��j = `c(`c � 1) + 1 = nc, while j� \ @��j = 0 (see Fig. 3). Thus, by (2.1.1), His constant on �D [ eD. Since �Q[ eQ � �D [ eD, this completes the proof of (i1).Proof of (i2): Note that, because �Q and eQ are connected via a U -path (disconnect the 1-protuberance and re-attach it to one of the neighboring sides of the (`c�1)�`c quasi-square),we haveD = f� 2 X : 9U -path from �Q to �g = f� 2 X : 9U -path from eQ to �g: (2.2.3)First we prove that for any � 2 �D there exists an ! : �Q ! � such that maxiH(!i) �H( �Q) + U and j!i \ �j = nc for all i. We start the path from some � 2 �Q. Then, recallingthe labelling in Theorem 1.4.1, we have 15



{ �k1(�) = 1 contained in re(�);{ �k2(�) = `c � 2 contained in rn(�);{ �k3(�) = �k4(�) = `c � 1 contained in rw(�) [ cnw(�) and rs(�) [ csw(�), respectively.Here, without loss of generality, we assume that the 1-protuberance is attached to re(�) andproceed anti-clockwise. Using the mechanism described in Figs. 5 and 6, we move �k2(�)��k2(�)particles from rn(�) to re(�), one by one. After that we move �k3(�) � �k3(�) + �k4(�) � �k4(�)particles from rs(�) [ csw(�) to re(�). Finally, we move �k3(�) � �k3(�) particles from rw(�) [cnw(�) to rs(�) [ csw(�). The result is a con�guration � 2 �D.
+U 0 0 -UFig. 5. Translation of a bar on a side of a rectangle at cost U .

+U 0 -U +U 0 -UFig. 6. Motion of a particle around a corner of a rectangle at cost U .Next we prove that for any � 2 eD there exists an ! : eQ ! � such that maxiH(!i) �H( eQ) + U and j!i \ �j = nc for all i. We start the path from some � 2 eQ. We have{ ek1(�) = 1 contained in re(�);{ ek2(�) = ek4(�) = `c � 1 contained in rn(�) and rs(�);{ ek3(�) = `c � 1 contained in rw(�) [ cnw(�) [ csw(�).We move ek2(�) � ek2(�) particles from rn(�) to re(�). After that we move ek3(�) � ek3(�) +ek4(�) � ek4(�) particles from rs(�) [ csw(�) to re(�). Finally, we move ek3(�) � ek3(�) particlesfrom rw(�)[ cnw(�) to rs(�)[ csw(�). The result is a con�guration � 2 eD. This completes theproof of (i2).Proof of (ii): By (2.2.2), all con�gurations in �D [ eD are connected via a U -path. Since�Q [ eQ � D \ ( �D [ eD), in order to prove (ii) it suÆces to show that �D [ eD cannot be exitedvia a U -path (recall (2.2.3)).Call a path clustering if all the con�gurations in the path consist of a single cluster andno free particles. Below we will prove that for any � 2 �D [ eD and any �0 connected to � by aclustering U -path, (a) CR(�0) = CR(�);(b) CR�(�0) = CR�(�): (2.2.4)16



What (2.2.4) says is that neither �D nor eD can be exited via a clustering U -path. From this inturn we deduce that for any � 2 �D [ eD and any �0 connected to � by a U -path we must havethat �0 2 �D[ eD, which is what we want to prove. The argument for the latter goes as follows.Detaching a particle costs 2U unless the particle is a 1-protuberance, in which case the costis U . The only con�gurations in �D[ eD having a 1-protuberance are those in �Q[ eQ (recall theremarks made below Theorem 1.4.1). If we detach the 1-protuberance from a con�gurationin �Q [ eQ, at cost U , then we obtain an (`c � 1) � `c quasi-square plus a free particle. Sincenow only moves at zero cost are allowed, only the free particle can move. Since in a U -paththe particle number is conserved, the only way to regain U and complete the U -path is tore-attach the free particle to the quasi-square, in which case we return to �Q [ eQ.REMARK: Note that the motion of particles along the border a droplet may shift the droplet.Indeed, from any con�guration in �Q [ eQ the 1-protuberance may detach itself and re-attachitself to a di�erent side of the quasi-square or rectangle (recall Fig. 3). Thus, the U -path mayshift the protocritical droplet to anywhere in ��.Proof of (a): Fix � 2 �D[ eD. Since all particles are either in CR�(�) or in some bar in @�CR(�),it is geometrically impossible to modify CR(�) without detaching a particle.Proof of (b): The proof is done in two steps.1. Let us �rst consider clustering U -paths along which we do not move a particle from CR�(�).Along such paths we only encounter con�gurations in �D [ eD or con�gurations obtained from�D [ eD by breaking one of the bars in @�CR(�) into two pieces, at cost U (because there is noparticle outside CR(�) that can help to lower the cost). From the latter only moves at zerocost are possible, so no particle can be detached, and the only way to regain U and completethe U -path is to restore a bar.2. Let us next consider clustering U -paths along which we move a particle from a corner ofCR�(�). This move costs 2U , which exceeds U . The overshoot U must be regained by lettingthe particle slide next to a bar that is attached to a side of CR�(�) (see Fig. 7). Since thereare never two bars attached to the same side, we can at most gain U . This is why it is notpossible to move a particle from CR�(�) other than from a corner.From here only moves at zero cost are allowed. There are no 1-protuberances presentanymore, because only the con�gurations in �Q[ eQ have a 1-protuberance. Thus, no particleoutside CR�(�) can move, except the one that just detached itself from CR�(�). This particlecan move back, in which case we return to the same con�guration �. In fact, all possible movesat zero cost consist in moving the \hole" just created in CR�(�) along the side of CR�(�),until it reaches the height of the top of the bar attached to this side of CR�(�), after which itcannot advance anymore at zero cost (see Fig. 7). All these moves do not change the energy,except the one that returns the particle to its original position and regains U .
+U 0 0 0Fig. 7. Creation and motion of the hole at cost 0.17



This proves our claim in (2.2.4), completes the proof of (ii) in (2.2.1), and hence of Theorem1.4.1.We saw above that U -paths cannot exit D = �D [ eD, but can make a crossover between �Dand eD. This crossover can, however, only occur between �Q and eQ. A schematic picture of Dtherefore is:
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Fig. 8. Dumb-bell shape of D = �D [ eD for U -paths.2.3 Structure of the communication level set2.3.1 Optimal pathsWe begin by giving a precise description of (� ! �)opt, the set of optimal paths for thenucleation (recall De�nition 1.4.2(a)).Proposition 2.3.1 (den Hollander, Olivieri, and Scoppola [9], Proposition 4.24)(i) �(�;�) = ��.(ii) S(�;�) � C�.Proof. The proof is di�erent from that in [9]. It follows the line of argument in [8]. We writeout the details because the argument is needed later on.(i) We prove that �(�;�) � �� and �(�;�) � ��.�(�;�) � ��: All we need to do is to construct a path that connects � and � withoutexceeding energy ��. This is done in three steps.1. We �rst show that the con�gurations in Q are connected to � by a path that stays below��.Lemma 2.3.2 For any �1pr 2 Q there exists an ! : �1pr ! � such that max�2!H(�) < ��.Proof. Fix �1pr 2 Q. Note that, by (1.3.12), we have H(�1pr) = �� ��. First, we detachthe 1-protuberance from the (`c � 1) � `c quasi-square, which costs U and raises the energyto ����+U(< ��), move the particle to the boundary of the box, which costs nothing, andmove it out of the box, which pays �. We are then left with a quasi-square of energy�� � 2� + U: (2.3.1)Second, we detach a particle from a corner of the quasi-square, which costs 2U , and move itout of the box, which pays �. Thus, the energy increases by 2U � � when detaching andremoving a particle from a corner of the quasi-square. We repeat this operation another `c�318



times, each time picking particles from the bar on the same shortest side. To guarantee thatwe never reach energy ��, we have the condition that(2U ��)k + 2U < 2�� U for 0 � k � `c � 3; (2.3.2)or 3 � `c < U2U �� + 1: (2.3.3)The second inequality holds by the de�nition of `c in (1.3.3), the �rst inequality by ourexclusion of `c = 2 (recall the statement made just prior to Theorem 1.4.1). Third, detachingthe last particle costs U instead of 2U . To guarantee that we still do not reach energy ��, wehave the condition that (2U ��)(`c � 2) + U < 2�� U; (2.3.4)which is weaker than (2.3.2) because 2U � � < U . Removal of the last particle pays �, sothat we arrive at energy(�� � 2� + U) + (2U ��)(`c � 2) + (U ��) = �� � 2� + (2U ��)(`c � 1); (2.3.5)which is strictly smaller than (2.3.1) by the second inequality in (2.3.3). Thus, removal of arow of length `c� 1 from the (`c� 1)� `c quasi-square in �1pr 2 Q lowers the energy (see Fig.9).
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saddleFig. 9. Cost of adding or removing a row of length `.We now have a square of side length `c � 1. It is obvious that we can remove further rowswithout encountering new conditions, until we reach �. ~2. For �1pr 2 Q, let �2pr be the con�guration obtained from �1pr by attaching an extraparticle next to the 1-protuberance, thereby forming a 2-protuberance. We next show that�2pr is connected to � by a path that stays below ��.Lemma 2.3.3 For any �1pr 2 Q there exists an ! : �2pr ! � such that max�2!H(�) < ��.19



Proof. Fix �1pr 2 Q. Note that H(�2pr) = �� � 2U . First, we create a particle, which costs� and raises the energy to �� � 2U +�(< ��), move it to the droplet, which costs nothing,and attach it next to the 2-protuberance, which pays 2U , thereby forming a bar of length 3.This operation pays 2U ��. We can repeat this operation another `c� 3 times until the rowis �lled. By that time we have a square of side length `c and energy�� � 2U � (2U ��)(`c � 2): (2.3.6)Second, we create another particle and attach it anywhere to the square to form a new 1-protuberance. This operation costs � � U . We must make sure that we can still create aparticle without reaching energy ��, which gives us the condition(�� U) + � < 2U + (2U ��)(`c � 2); (2.3.7)or `c > U2U �� ; (2.3.8)which holds by the de�nition of `c and the non-degeneracy hypothesis in (1.3.4). Third, wecreate another particle and attach it next to the new 1-protuberance. This brings us to energy�� � U � (2U ��)`c; (2.3.9)which is below the energy of �2pr by (2.3.8). It is obvious that we can add further rows withoutencountering new conditions, until we reach �. ~3. We can now conclude the proof of �(�;�) � �� by constructing a bridge between �1pr and�2pr that does not exceed ��. Namely, create a particle at the boundary, which costs � andraises the energy to ��, move it to the droplet, which costs nothing, and place it next to the1-protuberance, which pays 2U . The desired path ! : �! � is realized by tracing the pathin Lemma 2.3.2 in the reverse direction, back from � to �1pr, going over the bridge from �1prto �2pr, and then following the path in Lemma 2.3.3 from �2pr to �. This ! will be called thereference path through � for the nucleation.�(�;�) � ��: The proof comes in three steps.1. The �rst crucial ingredient in the proof is the following observation:Lemma 2.3.4 Any ! 2 (�! �)opt must pass through a con�guration consisting of a single(`c � 1)� `c quasi-square somewhere in ��.Proof. Any path ! : � ! � must cross the set V`c(`c�1). As shown in Alonso and Cerf[1], Theorem 2.6, in V`c(`c�1) the unique (modulo translations and rotations) con�guration ofminimal energy is the (`c � 1)� `c quasi-square, which we denote by � and which has energyH(�) = �� � 2� + U: (2.3.10)All other con�gurations in V`c(`c�1) have energy at least ���2�+2U . To increase the particlenumber starting from any such con�guration, we must create a particle at cost �. But theresulting con�guration would have energy �� ��+ 2U(> ��) and thus would lead to a pathexceeding energy ��. ~2. The second crucial ingredient in the proof is the following observation:20



Lemma 2.3.5 Any ! 2 (�! �)opt must pass through Q.Proof. Follow the path until it hits the set V`c(`c�1). According to Lemma 2.3.4, the con-�guration in this set must be an (`c � 1) � `c quasi-square. Since we need not consider anypaths that return to the set V`c(`c�1) afterwards, a �rst step beyond the quasi-square must bethe creation of a new particle. This brings us to energy�� ��+ U: (2.3.11)Before any new particle is created, we must lower the energy by at least U . The obviouslyonly possible way to do this is to move the particle to the quasi-square and attach it to oneof its sides, which reduces the energy to �� �� (2.3.12)and gives us a con�guration in Q. ~3. It now suÆces to show that to reach � from Q we must reach energy ��. This goes asfollows. Starting from Q, it is impossible to reduce the energy without lowering the particlenumber. Indeed, this follows from Alonso and Cerf [1], Theorem 2.6, which asserts that theminimal energy in V`c(`c�1)+1 is realized (although not uniquely) by the con�gurations in Q.Since any further move to increase the particle number involves the creation of a new particle,the energy must reach ��.This completes the proof of Proposition 2.3.1(i).(ii) Our �nal observation is the following:Lemma 2.3.6 The set of con�gurations in V`c(`c�1)+1 that can be reached from � by a paththat stays below �� and for which it is possible to add a particle without exceeding �� coincideswith the set D de�ned in De�nition 1.3.2(b).Proof. From step 2 above it is clear that the de�nition of D precisely assures that theassertion holds true. Indeed, by Lemma 2.3.5, any ! 2 (� ! �)opt crosses V`c(`c�1)+1 inQ. Once it is in Q, before the arrival of the next particle, which costs �, it can reach allcon�gurations that have the same energy, the same particle number, and can be reached atcost � U < �. ~By adding a particle to a con�guration in D we arrive in C� = Dfp, the set de�ned inDe�nition 1.3.2(c). This completes the proof of Proposition 2.3.1(ii). ~We conclude the following:Proposition 2.3.7 Any ! 2 (�! �)opt passes �rst through Q, then possibly through DnQ,and �nally through C�.Proof. Combine Lemmas 2.3.5{2.3.6 and Proposition 2.3.1(i). ~
21



2.3.2 Motion on C�The next proposition will be important later on.Proposition 2.3.8 (i) Starting from C�nQfp, the only transitions that do not raise the energyare motions of the free particle, as long as the free particle is not attached to the protocriticaldroplet.(ii) Starting from Qfp, the only transitions that do not raise the energy are motions of thefree particle and motions of the 1-protuberance along the side of the quasi-square where it isattached, as long as the free particle is at lattice distance � 3 from the protocritical droplet.When the lattice distance is 2, either the free particle can be attached to the protocriticaldroplet or the 1-protuberance can be detached from the protocritical droplet and attached tothe free particle, to form a quasi-square plus a dimer. From the latter con�guration the onlytransition that does not raise the energy is the reverse move.(iii) Starting from C�, the only con�gurations that can be reached by a path that lowers theenergy and does not decrease the particle number are those where the free particle is attachedto the protocritical droplet.Proof. Obvious. The restriction in (i) that the free particle must be at lattice distance � 3from the protocritical droplet is needed for the following reason: If the protocritical dropletis a con�guration in D n Q and the free particle sits at lattice distance 2 from a corner ofa bar, diagonally opposite the particle that sits in the corner of the bar, then at zero costthis particle may detach itself from the bar and slide inbetween the quasi-square and the freeparticle. For (iii) note the following: if we start from the con�guration described above andslide the remaining particles in the bar one by one, all at zero cost except the last one, whichpays U , then we reach a con�guration where the free particle is attached to the protocriticaldroplet with the bar shifted. ~For � 2 C�, we write � = (�̂; x) with �̂ 2 D the protocritical droplet and x 2 � the positionof the free particle. Let us denote the con�gurations that can be reached from � = (�̂; x)according to Proposition 2.3.8(iii) by{ CG(�̂) if the particle is attached in @�CR(�̂).{ CB(�̂) if the particle is attached in @+CR(�̂),
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Fig. 10. Good sites (G) and bad sites (B) for `c = 14.22



Let CG = [�̂2D CG(�̂); CB = [�̂2D CB(�̂): (2.3.13)The next proposition shows that when we reach CG we have made it \over the hill", whilewhen we reach CB we have not.Proposition 2.3.9 (i) If � 2 CG, then there exists an ! : � ! � such that max�2!H(�) < ��.(ii) If � 2 CB, then there are no ! : � ! � or ! : � ! � such that max�2!H(�) < ��.Proof. (i) If � 2 CG, then its energy is either �� � 2U or �� � U , depending on whether theparticle was attached in a corner or as a 1-protuberance. In the latter case we can move theparticle at no cost into a corner and gain an extra �U . After that it is possible to create anew particle and re-attach it, which leads to energy �� � 2U � (2U � �). We can continuein this way, �lling up all rows in @�CR(�), until we reach either an `c � `c square or an(`c � 1) � (`c + 1) rectangle, depending on whether � arose from �D or eD (recall Fig. 3). Inthe �rst case we can proceed along the reference path for the nucleation constructed in theproof of Proposition 2.3.1. In the latter case, however, we can connect to this reference pathas follows. The energy of the (`c� 1)� (`c+1) rectangle is ��� 2U � (2U ��)(`c� 3). Thisis lower than �� ��, because `c � 3. Create a particle, which costs �, and attach it to oneof the longest sides of the rectangle, which pays U . Now slide particles along the corner ofthe rectangle, following the mechanism described in Figs. 6 and 7, until an `c � `c square isreached. This costs U and keeps the energy below ��. From there again proceed along thereference path for the nucleation.(ii) If � 2 CB, then H(�) = ���U , so as long as the energy stays below �� it is impossible tocreate a new particle before further lowering the energy. But there are no moves available tolower the energy. The only moves available are those where the particle that was last attachedis moving along the side or is detached again, which brings us back to C�, or those starting amotion of particles along the border of the droplet (as in Fig. 6), which may or may not bringus back to C�. In both cases the cost is U and the energy returns to ��.An example of a path from CB to � that does not return to C� is obtained as follows.Suppose that �̂ 2 D is such that one bar completes one side of @�CR(�̂), and suppose that thefree particle attaches itself on top of that bar, forming a 1-protuberance (see Fig. 3). Thenthe energy is �� � U . Slide this bar to the end of the side it is attached to (at cost and gainU) and slide the two bars on the neighboring sides to the end as well (at cost and gain U).Then the energy is again �� � U . Now move the shorter bar on top of the longer bar via amotion as in Fig. 6. When the last particle of the bar is moved, it can be detached (at costU) and re-attached (at gain 2U). Then the energy is �� � 2U . Now create a free particle (atcost �), move it to the droplet (at cost 0), and attach it in a corner of the droplet (at gain2U). Continue \downhill" in this way, adding on successive rows as in the reference path thatwas used above, until � is reached. ~Proposition 2.3.9(ii) shows that the con�gurations in CB are wells, i.e., their energy is< ��, but to move to either � or � the energy must return to ��. The con�gurations of theform \quasi-square plus dimer" described in (ii) in the proof of Proposition 2.3.8 are elementsof S(�;�) but not of C�. Indeed, the only possible move at zero cost is the one where thefree particle jumps back to the quasi-square. Thus, we see that{ C� is a union of plateaus, index by �̂ 2 D; each plateau consists of a protocritical droplet�̂ and a collection of positions of the free particle, indexed by �n (�̂[@+�̂); each plateau23



has wells and dead-ends when the free particle is within distance 1 of the protocriticaldroplet.This property is special for Kawasaki dynamics. We will not attempt to describe the wellsand dead-ends in full detail. For our sharp asymptotics of the average nucleation time we willnot need this detail.2.3.3 Graph structure of the energy landscapeLet us summarize what we have shown so far:Theorem 2.3.10 View X as a graph whose vertices are con�gurations and whose edges con-nect communicating con�gurations. Let{ X � be the subgraph of X obtained by removing all vertices � with H(�) > �� and alledges incident to these vertices;{ X �� be the subgraph of X � obtained by removing all vertices � with H(�) = �� and alledges incident to these vertices;{ X� and X� be the connected components of X �� containing � and �, respectively.Then(i) X� 6= X�, and so X� and X� are disconnected in X ��.(ii) D � X�, CG � X�, CB � X �� n (X� [ X�).Propositions 2.3.7{2.3.9 and Theorem 2.3.10 will play a crucial role in Section 3.3, wherewe derive sharp estimates for the average nucleation time. We will see that they are in factall that is needed for these estimates.2.4 Two global geometric factsIn Sections 2.2{2.3 we have analysed the geometry of the con�gurations on and incident to C�that are relevant for the nucleation. This will be suÆcient for the computation of the averagenucleation time. To make full use of the results of Bovier, Eckho�, Gayrard, and Klein [5], wemust establish two further facts, both concerning the global geometry of the energy landscape.Proposition 2.4.1 below shows that there are no valleys in the energy landscape whosedepth equals or exceeds the communication height between �;�.Proposition 2.4.1 For all � 2 X n f�;�g,�(�; f�;�g) �H(�) < �� = �(�;�): (2.4.1)Proof. This is the analogue of Proposition 3.4.6 in den Hollander, Nardi, Olivieri, andScoppola [8] for three dimensions. The proof can be carried over to two dimensions verbatim.~Proposition 2.4.2 below shows that � is a proper metastable con�guration because it liesat the bottom of its valley:Proposition 2.4.2 If � 2 X n� is such that�(�;�) � �(�;�); (2.4.2)then H(�) > 0. 24



Proof. Recall that nc = `c(`c � 1) + 1. De�neV�nc = [0�n�nc Vn; V>nc = X n V�nc: (2.4.3)First, we claim that if � satis�es (2.4.2) and H(�) � 0, then � 2 V�nc . Indeed, since�(�; f�;�g) = �(�;�) ^�(�;�), it follows from (2.4.1{2.4.2) that �(�;�) < �� +H(�). So,if H(�) � 0, then �(�;�) < ��. But in the proof of Proposition 2.3.1(i) we have shown that�(�;�) � �� for all � 2 V>nc (nc is the volume of the clusters in D).Second, we claim that � is the only con�guration in V�nc with zero energy, while all othercon�gurations have strictly positive energy. Indeed, inserting the isoperimetric inequalityj� \ ��j � �(�)4 �2 8 � 6= � (2.4.4)into (2.1.1), we getH(�) � U2 j(�)j � (2U ��)j� \ ��j� U2 4pj� \ ��j � (2U ��)j� \ ��j= (2U ��)pj� \ ��j �2 U2U �� �pj� \ ��j�> (2U ��)pj� \ ��j �2(`c � 1)�p`c(`c � 1) + 1�> (2U ��)pj� \ ��j (`c � 1) > 0: (2.4.5)
~3 Average nucleation time in two dimensionsIn this section we analyze the average nucleation time. Section 3.1 recalls the de�nition ofDirichlet form and capacity, and provides an a priori estimate for capacities between arbitrarysets. Section 3.2 shows that f�;�g is a metastable pair in the proper sense, and providesthe link between the average nucleation time and the capacity of the pair f�;�g. Section 3.3contains the proof of Theorem 1.4.4 in two steps: (1) a priori estimates of the equilibriumpotential associated with the capacity of the pair f�;�g; (2) reduction of the Dirichlet formfor this capacity to one involving simple random walk. Section 3.4 gives the proof of Theorem1.4.5, Section 3.5 of Theorem 1.4.3.3.1 Dirichlet form and capacityIn the proof of Theorem 1.4.4, a key role is played by the Dirichlet formE�(h) = 12 X�;�02X ��(�)c�(�; �0)[h(�) � h(�0)]2; h : X ! [0; 1]; (3.1.1)where �� is the Gibbs measure de�ned in (1.1.5) and c� are the transition rates of the Kawasakidynamics de�ned in (1.2.6). Given two non-empty disjoint sets A;B � X , the capacity of thepair A;B is de�ned by CAP�(A;B) = minh : X![0;1]hjA�1; hjB�0 E�(h); (3.1.2)25



where hjA � 1 means that h(�) = 1 for all � 2 A and hjB � 0 means that h(�) = 0 for all� 2 B. The right-hand side of (3.1.2) has a unique minimizer h�A;B, called the equilibriumpotential of the pair A;B, given byh�A;B(�) = P�(�A < �B); � 2 X n (A[ B) (3.1.3)(recall (1.3.10)). This is the solution of the equation(c�h)(�) = 0; � 2 X n (A[ B);h(�) = 1; � 2 A;h(�) = 0; � 2 B: (3.1.4)Moreover, CAP�(A;B) = X�2A��(�) c�(�;X n �)P�(�B < �A) (3.1.5)with c�(�;X n �) =P�02Xn� c�(�; �0) the rate of moving out of �. This rate enters because �Ais the �rst hitting time of A after the initial con�guration is left (recall (1.3.10)). Note from(3.1.1{3.1.2) that CAP�(A;B) = CAP�(B;A): (3.1.6)The following elementary estimate will be important. Here �(A;B) = min�2A;�02B �(�; �0)is the communication height between the pair A;B.Lemma 3.1.1 For every non-empty disjoint A;B � X there exist constants 0 < C1 � C2 <1 (depending on A;B) such that for all �,C1 � e��(A;B) Z� CAP�(A;B) � C2: (3.1.7)Proof. The proof uses basic properties of communication heights.Upper bound: The upper bound is obtained from (3.1.2) by picking h = 1K(A;B) withK(A;B) = f� 2 X : �(�;A) � �(�;B)g: (3.1.8)The key observation is that if � ! �0 is a transition from K(A;B) to X nK(A;B), then(1) H(�0) < H(�);(2) H(�) � �(A;B): (3.1.9)To see (1), suppose that H(�0) � H(�). Clearly,H(�0) � H(�) () �(�0;F) = �(�;F) _H(�0) 8F � X : (3.1.10)But � 2 K(A;B) tells us that �(�;A) � �(�;B), hence �(�0;A) � �(�0;B) by (3.1.10), andhence �0 2 K(A;B), which is a contradiction.To see (2), note that (1) implies the reverse of (3.1.10):H(�) � H(�0) () �(�;F) = �(�0;F) _H(�) 8F � X : (3.1.11)Trivially, �(�;B) � H(�). We claim that equality holds. Indeed, suppose that equality fails.Then we get H(�) < �(�;B) = �(�0;B) < �(�0;A) = �(�;A); (3.1.12)26



where the two equalities come from (3.1.11), while the second inequality uses that �0 2 X nK(A;B). Thus, �(�;A) > �(�;B), which contradicts � 2 K(A;B). From �(�;B) = H(�) weobtain �(A;B) � �(A; �) _ �(�;B) = �(�;B) = H(�), which proves (2).Combining (3.1.9) with (1.1.5), (1.2.6) and (1.2.7), we �nd that��(�)c�(�; �0) � 1Z� e���(A;B) 8 � 2 K(A;B); �0 2 X nK(A;B): (3.1.13)Hence CAP�(A;B) � E�(1K(A;B)) � C2 1Z� e���(A;B) (3.1.14)with C2 = jf(�; �0) : � 2 K(A;B); �0 2 X nK(A;B)gj.Lower bound: The lower bound is obtained by picking any path ! = (!0; !1; : : : ; !K) thatrealizes the minimax in �(A;B) and ignore all the transitions that are not in this path, i.e.,CAP�(A;B) � minh : !![0;1]h(!0)=1;h(!K )=0 E!� (h); (3.1.15)where the Dirichlet form E!� is de�ned as E� in (3.1.1) but with X replaced by !. Due to theone-dimensional nature of the set !, the variational problem in the right-hand side can besolved explicitly by elementary computations. One �nds that the minimum equalsM = "K�1Xk=0 1��(!k)c�(!k; !k+1)#�1 ; (3.1.16)and is uniquely attained at h given byh(!k) =M k�1Xl=0 1��(!l)c�(!l; !l+1) ; k = 0; 1; : : : ;K: (3.1.17)We thus have CAP�(A;B) �M� 1K mink=0;1;:::;K�1��(!k)c�(!k; !k+1)= 1K 1Z� mink=0;1;:::;K�1 e��[H(!k)_H(!k+1)]= C1 1Z� e���(A;B) (3.1.18)
with C1 = 1=K. ~Lemma 3.1.1 is a typical a priori bound for capacities. In particular, the use of one-dimensional subgraphs is a tool that with little e�ort produces rough estimates, which can belifted to sharp estimates with some more e�ort, as we will see later on.3.2 Metastable pair, link between average nucleation time and capacityIn Bovier, Eckho�, Gayrard, and Klein [5] metastability is de�ned in terms of properties ofcapacities, namely: 27



De�nition 3.2.1 Consider a family of Markov chains, indexed by �, on a �nite state spaceX . A set M� X is called metastable iflim�!1 max�=2M ��(�)[CAP�(�;M)]�1min�2M ��(�)[CAP�(�;Mn �)]�1 = 0: (3.2.1)For our model we have:Lemma 3.2.2 The set f�;�g is metastable in the sense of De�nition 3.2.1.Proof. The numerator in (3.2.1) can be bounded above by e(��Æ)�=C1, via Proposition 2.4.1and Lemma 3.1.1. The denominator, on the other hand, can be bounded below by e��=C2(the minimum being attained at �). Therefore the ratio is bounded above by e�Æ�(C2=C1).~Lemma 3.2.2 allows us to apply the theory in Bovier, Eckho�, Gayrard, and Klein [5]. Toobtain our sharp estimate of E �(��), we will use the following key relation:Proposition 3.2.3 E �(��) = 1Z� CAP�(�;�) [1 + o(1)] as � !1.Proof. Bovier, Eckho�, Gayrard, and Klein [5], Theorem 1.3(i), written in our notation,states that E �(��) = ��(R�)CAP�(�;�) [1 + o(1)] � !1; (3.2.2)where R� = f� 2 X : P�(�� < ��) � P�(�� < ��)g : (3.2.3)It follows from the proof of Lemma 3.3.1 below that for large enough �,R� = f� 2 X : �(�;�) � �(�;�)g (3.2.4)and hence, via Proposition 2.4.2, min�2R�n�H(�) > H(�) = 0: (3.2.5)This in turn implies that ��(R�)=��(�) = 1 + o(1). Since ��(�) = 1=Z� , we get the claim.~Proposition 3.2.3 shows that the computation of E�(��) revolves around getting sharp boundson Z� CAP�(�;�). From Lemma 3.1.1 we know that C1 � e���Z�CAP�(�;�) � C2. In whatfollows we narrow down the constants.3.3 Average nucleation time: Proof of Theorem 1.4.4In this section we will show how to turn the geometric information obtained in Theorem 2.3.10into sharp bounds on Z�CAP�(�;�). We follow the general strategy outlined in Bovier andManzo [6] and Bovier [3]:{ Note that all terms in the Dirichlet form in (3.1.1) involving con�gurations � withH(�) > ��, i.e., � 2 X n X �, contribute at most Ce�(��+Æ)� for some Æ > 0 and can beneglected. Thus, e�ectively we can replace X by X �.28



{ Show that h��;� = O(e�Æ�) on X� and h��;� = 1�O(e�Æ�) on X� for some Æ > 0.{ Prove sharp upper and lower bounds for h��;� on X �n(X�[X�) in terms of a variationalproblem involving only the vertices and the bonds on and incident to X � n (X� [ X�).The last two steps are carried out in Sections 3.3.1{3.3.2. We identify the resulting variationalproblem with capacities associated with simple random walk. In Section 3.4 we analyse theasymptotics of these capacities for large �.3.3.1 A priori estimates on the equilibrium potentialNote that X� = f� 2 X � : �(�;�) < �(�;�)g;X� = f� 2 X � : �(�;�) < �(�;�)g: (3.3.1)The guiding idea behind the sharp estimate of Z� CAP�(�;�) is that h��;� is exponentiallyclose to 1 on X� and exponentially close to 0 on X�. This is the content of the followingestimate, which will be needed later on.Lemma 3.3.1 There exist C <1 and Æ > 0 such that for all �,min�2X� h��;�(�) � 1� Ce�Æ� ; max�2X� h��;�(�) � Ce�Æ� : (3.3.2)Proof. A standard renewal argument gives the relations, valid for � =2 f�;�g,P�(�� < ��) = P�(�� < ��[�)1� P�(��[� > ��) ; P�(�� < ��) = P�(�� < ��[�)1� P�(��[� > ��) : (3.3.3)For � 2 X� n�, we estimateh��;�(�) = 1� P�(�� < ��) = 1� P�(�� < ��[�)P�(��[� < ��) � 1� P�(�� < ��)P�(�� < ��) (3.3.4)and, with the help of (3.1.5) and Lemma 3.1.1,P�(�� < ��)P�(�� < ��) = Z� CAP�(�;�)Z� CAP�(�;�) � C(�) e�[�(�;�)��(�;�)]� � C(�) e�Æ� ; (3.3.5)which proves the �rst claim with C = max�2X�n� C(�). Note that h��;�(�) is a convexcombination of h��;�(�) with � 2 X� n �, namely, those � that communicate with �. Hencethe claim includes � = �.For � 2 X� n�, we estimateh��;�(�) = P�(�� < ��) = P�(�� < ��[�)P�(��[� < ��) � P�(�� < ��)P�(�� < ��) (3.3.6)and, with the help of (3.1.5) and Lemma 3.1.1,P�(�� < ��)P�(�� < ��) = Z� CAP�(�;�)Z� CAP�(�;�) � C(�) e�[�(�;�)��(�;�)]� � C(�) e�Æ� ; (3.3.7)which proves the second claim with C = max�2X�n�C(�). ~29



Knowing that h��;� is trivial on X� [ X�, it remains to understand what h��;� looks likeon the set X � n (X� [ X�) = f� 2 X � : �(�;�) = �(�;�)g; (3.3.8)which separates X� and X� and contains S(�;�) (recall (1.3.9)). This will be carried out inSection 3.3.2.Before doing so, we �rst show that h��;� is also trivial on X �� n (X� [ X�). This set canbe partitioned into maximally connected components,X �� n (X� [ X�) = I[i=1Xi; (3.3.9)where each Xi is a well in S(�;�), i.e., a set of communicating con�gurations with energy< �� but with communication height �� towards both � and �.Lemma 3.3.2 There exist C <1 and Æ > 0 such that for all i = 1; : : : ; I and all �,max�;�02Xi jh��;�(�)� h��;�(�0)j � Ce�Æ�: (3.3.10)Proof. Fix i = 1; : : : ; I and �; �0 2 Xi. Estimateh��;�(�) = P�(�� < ��) � P�(�� < ��0) + P�(��0 < �� < ��): (3.3.11)First, as in the proof of Lemma 3.3.1, we haveP�(�� < ��0) = P�(�� < ��[�0)1� P�(��[�0 > ��) � P�(�� < ��)P�(��0 < ��)= Z�CAP�(�;�)Z�CAP�(�; �0) � C(�; �0) e�[�(�;�)��(�;�0)]� � C(�; �0) e�Æ� ; (3.3.12)where we use that �(�;�) = � and �(�; �0) < �. Second,P�(��0 < �� < ��) = P�(��0 < ��[�)P�0(�� < ��) � P�0(�� < ��) = h��;�(�0): (3.3.13)Combining (3.3.11{3.3.13), we geth��;�(�) � C(�; �0) e�Æ� + h��;�(�0): (3.3.14)Interchange � and �0 to get the claim with C = maximax�;�02Xi C(�; �0). ~REMARK: We saw in Proposition 2.3.9(i) that for each �̂ 2 D the four bars of bad sites in@+CR(�̂) (see Fig. 10) each form a well. Lemma 3.3.2 shows that h��;� is close to a constanton each of these wells. These are not the only wells, but Lemma 3.3.2 shows that we not needcare too much about wells anyway: only the transitions in and out of the wells contribute tothe Dirichlet form at the order we are after, not those inside the wells. Later we shall seethat we can even ignore the wells altogether, provided we are content with obtaining bounds.Indeed, in Proposition 2.3.8 we saw that the wells only occur when the free particle is atdistance 2 from the protocritical droplet.
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3.3.2 Reduction of the Dirichlet formThe reduction is done in two steps. First we reduce the full Dirichlet form to a Dirichlet forminvolving only the immediate vicinity of the communication level set.Proposition 3.3.3 There exists Æ > 0 such that for � !1,Z�CAP�(�;�) = [1 +O(e�Æ�)]� e����; (3.3.15)where � = minC1;:::;CI minh : X�![0;1]hjX��1; hjX��0; hjXi�Ci 8 i=1;:::;I 12 X�;�02X � 1f�$�0g [h(�) � h(�0)]2: (3.3.16)Proof. First, recalling (1.1.5{1.1.6), (1.2.6) and (3.1.1{3.1.2), we haveZ� CAP�(�;�) = Z� minh : X![0;1]h(�)=1; h(�)=0 12 X�;�02X ��(�)c�(�; �0)[h(�) � h(�0)]2= O �e�(��+Æ)��+ Z� minh : X�![0;1]h(�)=1; h(�)=0 12 X�;�02X � ��(�)c�(�; �0)[h(�) � h(�0)]2:(3.3.17)Next, with the help of Lemmas 3.3.1{3.3.2, we getminh : X�![0;1]h(�)=1; h(�)=0 12 X�;�02X � ��(�)c�(�; �0)[h(�) � h(�0)]2= minh : X�![0;1]h=h��;� on X�[X�[(X1;:::;XI ) 12 X�;�02X � ��(�)c�(�; �0)[h(�) � h(�0)]2= [1 +O(e�Æ�)] minC1;:::;CI minh : X�![0;1]hjX��1; hjX��0; hjXi�Ci 8 i=1;:::;I 12 X�;�02X � ��(�)c�(�; �0)[h(�) � h(�0)]2;(3.3.18)where the error term O(e�Æ�) arises after we replace the approximate boundary conditionsh = 8<: 1�O(e�Æ�) on X�;O(e�Æ�) on X�;Ci +O(e�Æ�) on Xi; i = 1; : : : ; I; (3.3.19)by the sharp boundary conditionsh = 8<: 1 on X�;0 on X�;Ci on Xi; i = 1; : : : ; I: (3.3.20)Finally, by (1.1.5{1.1.6) and (1.2.6{1.2.7) we have��(�)c�(�; �0) = 1f�$�0g e���� for all �; �0 2 X � that are notboth in X� or both in X� or both in Xi for some i = 1; : : : ; I: (3.3.21)Indeed, in each of these cases either H(�) = �� > H(�0) or H(�) < �� = H(�0), because thereare no direct transitions between X�, X� and Xi, i = 1; : : : ; I (use Proposition 2.3.10(i) andrecall the decomposition in (3.3.9)). Combining (3.3.17{3.3.18) and (3.3.21), we arrive at theclaim. ~Next we estimate � in terms of capacities associated with simple random walk.31



Proposition 3.3.4 � 2 [�1;�2] with�1 = X̂�2D CAP�+ �@+�;CR(�̂)� ;�2 = X̂�2D CAP�+ �@+�;CR++(�̂)� ; (3.3.22)where CR++ = (CR+)+ andCAP�+ �@+�; F � = ming : �+![0;1]gj@+��1; gjF�0 12 Xx;x02�+x�x0 [g(x)� g(x0)]2; F � �+; (3.3.23)and x � x0 means that x and x0 are nearest-neighbor sites.Proof. The variational problem in (3.3.16) decomposes into disjoint variational problems forthe maximally connected components of X �. Only those components that contain X� or X�contribute, since for the other components the minimum is achieved by picking h constant.� � �1: The lower bound is obtained from (3.3.16) by removing all transitions that do notinvolve a protocritical droplet and a free particle that is moving. This removal gives� � X̂�2D minCj(�̂); j=1;2;3;4 ming : �+![0;1]gj@G�̂�0; gj@Bj �̂�Cj (�̂); j=1;2;3;4; gj@+��1 12 Xx;x02�+x�x0 [g(x) � g(x0)]2; (3.3.24)where @G�̂ denotes the set of good sites in @�CR(�̂) and @Bj �̂, j = 1; 2; 3; 4, denote the fourbars of bad sites in @+CR(�̂) (see Fig. 10). To see how this bound arises from (3.3.16), pickh(�) = h(�̂; x) = g(x); �̂ 2 D; x 2 �+ n �̂; (3.3.25)and use Proposition 2.3.10(ii) to match the boundary conditions in (3.3.16) (recall the de-composition in (3.3.9)). Note that x 2 @+� in � = (�̂; x) corresponds to � 2 D (i.e., the freeparticle at x is outside �), while x 2 @+�̂ corresponds to � 2 CG(�̂) [ CB(�̂). The right-handside of (3.3.24) may be further bounded below by �1, because the latter has less stringentboundary conditions.� � �2: The upper bound is obtained from (3.3.16) by picking Ci = 0, i = 1; : : : ; I, andh(�) = 8<: 1 for � 2 X�;g(x) for � 2 C++;0 for � 2 X � n [X� [ C++]; (3.3.26)where C++ = f� = (�̂; x) : �̂ 2 D; x 2 � n CR++(�̂)g: (3.3.27)This choice satis�es the boundary conditions in (3.3.16), becauseC++ � C� and C� \ [X� [ ([Ii=1Xi)] = ;: (3.3.28)By Proposition 2.3.10(ii), D � X�, so that h(�) = 1 for � = (�̂; x) with �̂ 2 D and x 2 @+�,which is consistent with the boundary condition gj@+� � 1 in (3.3.23). Moreover, h(�) = 0for � = (�̂; x) with �̂ 2 D and x 2 CR++(�̂), which is consistent with the boundary condition32



gjCR++(�̂) � 0 in (3.3.23) with F = CR++(�̂). Note that, by Proposition 2.3.7, the onlytransitions in X � between X� and C� are those where a free particle is entering at @��. Hence,there are no transitions between X� and X � n [X� [ C++]. Also note that, by Proposition2.3.8(i{ii), the only transitions in X � between C++ and X � n [X� [ C++] are those where thefree particle moves to distance 1 from the protocritical droplet. Thus, (3.3.23) includes all therelevant transitions. ~Propositions 3.3.3{3.3.4 complete the proof of the �rst half of Theorem 1.4.4, with Kidenti�ed as K = 1=� with � de�ned in (3.3.16) and bounded in (3.3.22). The second half,i.e., the exponential limit law in (1.4.7), follows from Bovier, Eckho�, Gayrard, and Klein [5],Theorem 1.3(iv).The capacity de�ned in (3.3.23) is the capacity of the pair f@+�;Dg for continuous-timesimple random walk on �+ where transitions between sites occur at rate 1. In Section 3.4 wewill show that �1 and �2 have the same asymptotics for �! Z2.3.4 Capacity asymptotics: Proof of Theorem 1.4.5As �! Z2, the capacities CAP�+(@+�;CR(�̂)) and CAP�+(@+�;CR++(�̂)) tend to zero in away that depends neither on the shape of the protocritical droplet �̂ nor on its location in �,provided it is far from @+�:Lemma 3.4.1 Write � = BM = [�M;+M ]2 \ Z2. For any " > 0,limM!1 max�̂2Dd(@+BM;�̂)�"M ���� logM2� CAPB+M (@+BM ;CR(�̂))� 1���� = 0 (3.4.1)and limM!1 max�̂2Dd(@+BM;�̂)�"M ���� logM2� CAPB+M (@+BM ;CR++(�̂))� 1���� = 0; (3.4.2)where d(@+BM ; �̂) = minfjx� yj : x 2 @+BM ; y 2 �̂g.Proof. Let us �rst prove (3.4.1). For �̂ 2 D, let y 2 BM denote the center of CR(�̂).The capacity decreases when we enlarge the set over which the Dirichlet form is minimized.Therefore we haveCAPB+M (@+BM ;CR(�̂)) � CAPB+M (@+BM ; y) � CAPB+2M (@+B2M ; 0): (3.4.3)According to R�ev�esz [12], Lemma 22.1, we haveCAPB+2M (@+B2M ; 0) = 4P0(�@+B2M < �0) � 2�log(2M) M !1; (3.4.4)where P0 is the law on path space of the discrete-time simple random walk on Z2 starting at0. This proves the desired lower bound. The factor 4 arises because for the continuous-timesimple random walk underlying our capacities all transitions occur at rate 1.Similarly, by monotonicity we haveCAPB+M (@+BM ;CR(�̂)) � CAPB+M (@+BM ; S`c(y)) � CAPB+"M (@+B"M ; S`c(0)); (3.4.5)33



where S`c(y) is the `c�`c square or (`c�1)�(`c+1) rectangle centered at y containing CR(�̂),and the last inequality uses that d(@+BM ; �̂) � "M . By the recurrence of simple random walk,we have CAPB+"M (@+B"M ; S`c(0)) � CAPB+"M (@+B"M ; 0) M !1: (3.4.6)Therefore the desired upper bound follows from (3.4.4).The proof of (3.4.2) is similar. ~Combining (3.3.22) and Lemma 3.4.1, we �nd�1 = O("M) + X̂�2Dd(@+BM;�̂)�"M CAPB+M (@+BM ;CR(�̂))= O("M) + 2�logM jf�̂ 2 D : d(@+BM ; �̂) � "Mgj[1 + o(1)]= O("M) + 2�logM N(`c) [(1 � ")M ]2 [1 + o(1)] (3.4.7)
and the same expression for �2 (recall that N(`c) is de�ned to be the cardinality of D moduloshifts). Let M ! 1 followed by " # 0, to conclude that � � (2�= logM)N(`c)M2. Sincej�j = M2 and K = 1=�, this proves the claim in Theorem 1.4.5 after we prove the formulafor N(`c) stated in (1.4.9). This is done in Lemmas 3.4.2{3.4.3 below.REMARK: The asymptotics in Lemma 3.4.1 shows that � � 4Px2� Px(�@+� < �x) as �! Z2(recall (3.4.4)). In van den Berg [2] this sum is studied in more detail and for more generaldomains than the square box �.Lemma 3.4.2 j �Dj = 16 (`c � 1)`c(`c + 1)(`c + 2).Proof. We have to count how many di�erent shapes the clusters in �D can take on (recallFig. 3). Return to Theorem 1.4.1. We will do the counting by starting from an `c� `c squareand counting in how many ways `c � 1 particles can be removed from the four bars. We willsplit the counting according to the number k = 1; 2; 3; 4 of corner particles that are removed.k = 1: There are 4 choices for the one corner. Let m1+;m1� denote the number of particlesthat are removed in the two directions away from the corner. Then m+1;m�1 � 0 andm+1 +m�1 = `c � 2. There are `c � 1 ways to choose these. Therefore the contribution toj �Dj is 4(`c � 1).k = 2: There are 6 choices for the two corners. Let m1+;m1� and m2+;m2� denote thenumber of particles that are removed in the two directions away from the two corners. Thenm+1;m�1;m2+;m2� � 0 and m+1 +m�1 +m2+ +m2� = `c � 3. There are (`c � 1)(`c � 2)ways to choose these. Therefore the contribution to j �Dj is 6(`c � 1)(`c � 2).k = 3: There are 4 choices for the three corners. A similar argument as above shows thatthere are 12 (`c � 1)(`c � 2)(`c � 3) ways to remove `c � 4 particles in the two directions awayfrom the three corners. Therefore the contribution to j �Dj is 2(`c � 1)(`c � 2)(`c � 3).k = 4: There is 1 choice for the four corners. There are 16(`c � 1)(`c � 2)(`c � 3)(`c � 4) waysto remove `c � 5 particles in the two directions away from the four corners. Therefore thecontribution to j �Dj is 16(`c � 1)(`c � 2)(`c � 3)(`c � 4).Sum the contributions to get the claim. ~34



Lemma 3.4.3 j eDj = 16 (`c � 2)(`c � 1)`c(`c + 1).Proof. Similar. Start from an (`c�1)� (`c+1) rectangle and count in how many ways `c�2particles can be removed from the four bars. The answer is the same as in Lemma 3.4.2 with`c � 1 replaced by `c � 2. ~It follows from Lemmas 3.4.2{3.4.3 that N(`c) = jDj = j �Dj+ j eDj = 13(`c � 1)`2c(`c + 1), asclaimed in (1.4.9).3.5 Gate for the nucleation: Proof of Theorem 1.4.3(i) We saw in Proposition 2.3.8(ii) that the con�guration consisting of an (`c � 1)� `c quasi-square plus a dimer at distance 1 is a dead-end in S(�;�). Therefore S(�;�) ) G(�;�),which is the �rst part of Theorem 1.4.3(i).To prove the second part of Theorem 1.4.3, we �rst prove that G(�;�) � C�. This needssome argument, because although we know that C� is a gate it is not a minimal gate. Wehave to show that for all � 2 C� there exists a minimal gate W containing �. To do so we �rstneed some de�nitions.For � 2 C�, let �̂ 2 D be the con�guration obtained from � by removing the free particle.For A � � and x 2 �, let d(x;A) denote the lattice distance between x and A. De�ne,recursively, B1(�̂) = fx 2 �: x 62 �̂; d(x; �̂) = 1g (3.5.1)and B2(�̂) = fx 2 �: x 62 �̂; d(x;B1(�̂)) = 1g;�B2(�̂) = B2(�̂); (3.5.2)and B3(�̂) = fx 2 �: x 62 B1(�̂) \ ��; d(x; �B2(�̂)) = 1g;�B3(�̂) = B3(�̂) [ [ �B2(�̂) \ @��]; (3.5.3)and, for i = 4; 5; : : :, Bi(�̂) = fx 2 �: x 62 �Bi�2(�̂); d(x; �Bi�1(�̂)) = 1g;�Bi(�̂) = Bi(�̂) [ [ �Bi�1(�̂) \ @��]: (3.5.4)Note that B1(�̂) \ @�� = ;. The following sets are minimal gates:C�i = f� 2 C� : � = (�̂; x); �̂ 2 D; x 2 �Bi(�̂)g; i = 2; 3; : : : ;C�@�� = f� 2 C� : � = (�̂; x); �̂ 2 D; x 2 @��g: (3.5.5)The union of the minimal gates in (3.5.5) is equal to C�. Therefore indeed C� � G(�;�). Notethat the minimal gates in (3.5.5) are not disjoint. For instance, if the protocritical droplet �̂is at distance 2 from @��, then C�2 and C�@�� have a non-empty intersection.To complete the proof of the second part of Theorem 1.4.3, we must exhibit a con�gurationin G(�;�) that is not in C�. For that we return to the proof of Proposition 2.3.9(ii), wherewe exhibited a path from CB to � that does not exceed energy �� and avoids C�. Thecon�gurations with energy �� visited by this path are elements of G(�;�).(ii) We will show that there exist Æ > 0 and C <1 such that for all �,P� (�Q < �C� < ��j�� < ��) � 1�Ce�Æ� ; (3.5.6)35



which implies (1.4.4). The proof goes as follows.By (3.1.5), CAP�(�;�) = ��(�) c�(�;X n�)P�(�� < ��) with ��(�) = 1=Z� . From thelower bound in Lemma 3.1.1 it therefore follows thatP�(�� < ��) � C1e���� 1c�(�;X n�) : (3.5.7)We will show thatP� (f�Q < �C� < ��]gc; �� < ��) � C2e�(��+Æ)� 1c�(�;X n�) : (3.5.8)Combining (3.5.7{3.5.8), we get (3.5.6) with C = C2=C1.In Proposition 2.3.7 we saw that any path from � to � that does not pass �rst throughQ and then through C� must pass the set V`c(`c�1)+2 � S(�;�) in a con�guration � withH(�) > ��. Therefore there exists a set S, with H(�) � �� + Æ for all � 2 S and some Æ > 0,such that P� (f�Q < �C� < ��gc; �� < ��) � P� (�S < ��) : (3.5.9)Now estimate, with the help of reversibility (recall (3.1.5{3.1.6)),P� (�S < ��) �X�2S P� (�� < ��) =X�2S ��(�)c�(�;X n �)��(�)c�(�;X n�) P� (�� < ��)� 1c�(�;X n�)X�2S e��H(�) � 1c�(�;X n�) jSje�(��+Æ)� : (3.5.10)Combine (3.5.9{3.5.10) to get the claim in (3.5.8) with C2 = jSj.(iii) Let @�C� be those con�gurations in C� where the free particle is in @��. WriteP� ���@�C� = �j�@�C� < ��� = P� ���@�C� = �; �@�C� < ���P� (�@�C� < ��) ; � 2 @�C�: (3.5.11)By reversibility,P� ���@�C� = �; �@�C� < ��� = ��(�)c�(�;X n �)��(�)c�(�;X n�) P� (�� < �@�C�)= e���� c�(�;X n �)c�(�;X n�) P� (�� < �@�C�) ; � 2 @�C�: (3.5.12)Moreover, P� (�� < �@�C�) = X�02X�$�0 c�(�; �0)c�(�;X n �) h��;@�C�(�0); � 2 @�C�; (3.5.13)where h��;@�C�(�0) = � 0 if �0 2 @�C�;P�0(�� < �@�C�) otherwise: (3.5.14)Because D � X� by Theorem 2.3.10(ii), it follows from Lemma 3.3.1 thatmin�02D h��;@�C�(�0) � 1� Ce�Æ�; (3.5.15)36



Moreover, letting @��C� be the set of con�gurations obtained from @�C� by moving the freeparticle from @�� to @��� = @�(��), we havemax�02@��C� h��;@�C�(�0) � Ce�Æ�;c�(�; �0) � e�Æ� 8 � 2 @�C�; �0 =2 D [ @��C�; � $ �0; (3.5.16)because removal of a particle from the protocritical droplet costs at least U . By restrictingthe sum in (3.5.13) to � 2 D and inserting (3.5.15), we getP� (�� < �@�C�) � (1� Ce�Æ�) c�(�;D n �)c�(�;X n �) ; � 2 @�C�: (3.5.17)On the other hand, by inserting (3.5.16), we getP� (�� < �@�C�) � c�(�;D n �)c�(�;X n �) + Ce�Æ� j@��C�j+ e�Æ� jX n (D [ @��C�)j; � 2 @�C�:(3.5.18)Next, we note that for all � 2 @�C�,c�(�;D n �)c�(�;X n �) = O(e�U�) +( 12 if the free particle in @�� sits in a corner;14 if the free particle in @�� sits not in a corner; (3.5.19)because moves of the free particle from @�� do not raise the energy (whether it stays in � orexits �), while all other moves raise the energy by at least U . Combining (3.5.18{3.5.19), weobtain P� (�� < �@�C�) � (1 + Ce�Æ�) c�(�;D n �)c�(�;X n �) ; � 2 @�C�: (3.5.20)Inserting (3.5.17) and (3.5.20) into (3.5.12), we deduce from (3.5.11) thatP� ���@�C� = � j �@�C� < ��� = c�(�;X n �)P�(�� < �@�C�)P�2@�C� c�(�;X n �)P�(�� < �@�C�)= [1 +O(e�Æ�)] c�(�;D n �)P�2@�C� c�(�;D n �) ; � 2 @�C�: (3.5.21)Via (3.5.19) this proves the assertion in (1.4.5), because the free particle is created in @��twice as fast in a corner as not in a corner.4 Extension to three dimensionsThe extension of our results to three dimensions is in principle straightforward and involvesno new ideas. However, the geometry of the communication level set is more diÆcult andwe are unable to fully identify the set D. In Section 4.1 we look at the structure of S(�;�).Section 4.2 gives the proof of Theorem 1.5.2, Section 4.3 of Theorem 1.5.3.4.1 Structure of the communication level setWe use the notation of Section 1.5. 37



Proposition 4.1.1 (den Hollander, Nardi, Olivieri, and Scoppola [8], Eq. (2.0.23) and Propo-sition 3.3.1) �(�;�) = �� and S(�;�) � C�, with �� and C� given by De�nition 1.5.1(c-d).Proof. The argument is similar as for d = 2. A key ingredient is the following fact, shown inAlonso and Cerf [1], Theorem 3.5: the con�gurations consisting of a single (mc � 1)� (mc �Æc)�mc quasi-cube anywhere in �� with, attached anywhere to one of its faces, an (`c�1)�`cquasi-square are the unique (modulo translations and rotations) minimizers of H in Vnc�1.The energy of these con�gurations is �� � 2� + 2U , while all other con�gurations in Vnc�1have energy at least �� � 2� + 3U > �� �� and therefore do not permit the creation of aparticle without exceeding energy ��. Thus, all optimal nucleation paths must visit this set,i.e., the analogue of Lemma 2.3.4 holds. Similarly, Lemmas 2.3.5{2.3.6 and Proposition 2.3.7carry over. ~Thus, the only diÆcult part in identifying the reduced graph X �, analogous to the one inTheorem 2.3.10, is the explicit construction of the set D and the analogues of the sets CB andCG, which remains open. Nonetheless, a few facts about D are easy to establish:Proposition 4.1.2 For all �̂ 2 D,(i) CR(�̂) is contained in a cube of side length mc + 1.(ii) CR(�̂) contains a cube of side length mc � dpmc e.Proof. (i) In den Hollander, Nardi, Olivieri, and Scoppola [8], Proposition 5.2.1, it is shownthat CR(�̂) = CR(�̂0) for all �̂; �̂0 2 D: (4.1.1)Clearly, this is stronger than (i). For reasons of completeness we give the proof of (i).Note that any con�guration in D can, on either of its faces, have a protruding rectanglewith a 1-protuberance attached to it. Indeed, if we �x the number of particles sitting on topof each of the faces of CR�(�̂), then it is clear that these \two-dimensional con�gurations ona face" must minimize their energy. Obviously, none of them can have two 1-protuberances,since detaching one 1-protuberance (which costs 2U) and moving it next to the other 1-protuberance (which pays 3U) would lead to a lowering of the energy. Moreover, if any of thesix clusters attached to the faces is not a rectangle, then none of the other clusters can havea 1-protuberance, since detaching this 1-protuberance (which costs 2U) and moving it into acorner of the cluster that is not a rectangle (which pays 3U) would lead to a lowering of theenergy.From any con�guration of the above form, if we detach the 1-protuberance and place iton top of one of the rectangles in @�CR(�̂), then we raise the energy to �� �� + U . Fromthere, moving any particle except this 1-protuberance costs energy 2U and leads to an energyexceeding ��. Therefore all we can do is move the 1-protuberance around on top of therectangle, until �nally we have to detach it again and re-attach it to CR�(�̂).(ii) All con�gurations in D have volume nc and are \minimal polyominoes", i.e., among thecon�gurations with volume nc their surface is minimal. Pick �̂ 2 D. Let j1; j2; j3 be thesmallest integers such that �̂ is contained in the j1 � j2 � j3 parallelepiped. Then �̂ can beobtained from this parallelepiped by removing j1j2j3�nc unit cubes. By (4.1.1) and De�nition1.5.1(a), we have j1j2j3�nc � m2c� (`c�1)`c�1 (the bound corresponding to the case wherethe (`c � 1) � `c quasi-square is attached to an mc �mc face). Since mc 2 f2`c � 1; 2`cg, itfollows that j1j2j3 � nc � 3m2c=4. Thus, no more than 3m2c=4 unit cubes need to be removedfrom the parallelepiped to obtain �̂. 38



Next, according to Alonso and Cerf [1], Corollary 3.26, all minimal polyominoes can beobtained from their circumscribing parallelepiped by removing a succession of bars, as manyas possible, and then removing a succession of corner cubes. In our case, by (4.1.1), eachbar has length either mc � 1 or mc, so no more than mc bars and mc corner cubes can beremoved. But any such removal can only involve bars and corner cubes that lie in a layer ofthickness at most dpmc e of CR(�̂) (the bound corresponding to the case where the bars forma parallelepiped with an dpmc e � dpmc e face). ~REMARK: Recall from the remark made below (2.2.4) that in two dimensions a U -path canshift the protocritical droplet. In contrast, (4.1.1) shows that in three dimensions a 2U -pathcannot (see [8], Section 5).The two global geometric facts proved in Section 2.4 continue to holds in three dimensionsas well.4.2 Average nucleation time: Proof of Theorem 1.5.2Based on the information obtained so far, we can proceed to estimate Z�CAP�(�;�) in ex-actly the same way as was done in Section 3.3 for two dimensions. Lemmas 3.3.1{3.3.2 andPropositions 3.3.3{3.3.4 carry over verbatim. The resulting reduction of the Dirichlet form,together with Proposition 3.2.3, proves the �rst half of Theorem 1.5.2. As before, the secondhalf follows from Bovier, Eckho�, Gayrard, and Klein [5], Theorem 1.3(iv).4.3 Capacity asymptotics: Proof of Theorem 1.5.3By the transience of simple random walk in three dimensions,lim�!Z3CAP�+ �@+�; F � = CAPZ3(F ) (4.3.1)exists for any �nite nonempty F � Z3. The limit, which is positive and �nite, is the capacityof F . This proves Theorem 1.5.3. The bounds in (1.5.9) come from Proposition 4.1.2 incombination with Proposition 3.3.4.If Fm is a cube of side length m, thenlimm!1 CAPZ3(Fm)m = � (4.3.2)with � the capacity of the unit cube for standard Brownian motion on R3 . This explains(1.5.11). Since 2�R is the capacity of the ball with radius R for standard Brownian motionon R3 , we have that � 2 (2�; 2�p3) as claimed below (3.4.1).References[1] L. Alonso and R. Cerf, The three-dimensional polyominoes of minimal area, Electron. J.Combin. 3 (1996) Research Paper 27.[2] M. van den Berg, Exit and return of a simple random walk, preprint 2003.[3] A. Bovier, Metastability and ageing in stochastic dynamics, in: Dynamics and Random-ness II, Santiago de Chile, 2002 (eds. A. Maas, S. Martinez and J. San Martin), KluwerAc. Publ., Dordrecht, in press. 39
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