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LOCAL ADAPTIVITY TO INHOMOGENEOUS SMOOTHNESS.!. 
RESOLUTION LEVEL 

LEPSKII, O.V. AND SPOKOINY, V.G. 

ABSTRACT. The problem of nonparametric estimation of functions of inhomo-
geneous smoothness is considered. 
The goal is to define the notion of local smoothness of a function f ( ·), to evaluate 
the optimal rate of convergence of estimators (depending on this local smooth-
ness) and to construct an asymptotically efficient locally adaptive estimator. 
We treat local (or 6-local) smoothness properties of a function f 0 at a point t 
as the corresponding characteristics of this function on the interval [t - 6, t + 6]. 
The value 6 measures the "locality" of our procedure. The smaller this value is 
taken the more precise is our resolution analysis. But this value can not be taken 
arbitrary small since we should ce able to restore local smoothness properties of 
a function from the noisy data. 
The main result of the paper describes just the maximal rate of convergence of 
this parameter 6 to zero as the noise level c goes to zero. We call this value the 
resolution level. The value of this level strongly depends on the upper considered 
smoothness {3* what we wish to attain. If K; is the bandwidth corresponding to 
this smoothness {3* then the resolution level 6; can not be chosen less (in order) 
than K;. 
In particular, this yields that it is impossible to improve at the same time the 
accuracy of our procedure (which is measured by the upper smoothness /3*) 
and its local adaptive properties. If we improve the accuracy of estimation at 
subintervals where a function is of high smoothness then we will have a low 
accuracy in a larger vicinity near a point with small smoothness. 
The main results claim that if the parameter of locality 6 is taken less (in order) 
than the resolution level, then the corresponding risk is (asymptotically) infinite. 
After that we construct estimators with a finite asymptotic risk for the case of 6 
coinciding with the resolution level. 

1. INTRODUCTION 

We consider the problem of estimation of functions with inhomogeneous smoothness 
properties. We suppose the simplest nonparametric model "signal + noise" 

dX(t) = J(t) dt + £ dW(t). 
The standard nonparametric minimax approach to the estimation problem (see, e.g., 
Ibragimov and Khasminskii, 1981) is based on the assumption that a function to be 
estimated from noisy data X belongs to some functional class, e.g. Holder, Sobolev, 
Besov, etc. The corresponding rate of convergence of efficient (in asymptotic sense) 
estimators is determined by the parameters of this class. Under this point of view one can 
speak on the global smoothness properties and global rate of convergence of estimators. 
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Besov, etc. The corresponding rate of convergence of efficient (in asymptotic sense) 
estimators is determined by the parameters of this class. Under this point of view one can 
speak on the global smoothness properties and global rate of convergence of estimators. 
But this approach has the evident disadvantage. If the observed function possesses 
inhomogeneous smoothness characteristics, for instance, one part is more smooth than 
another, then the global rate will be defined by the worsest part and the corresponding 
accuracy for the smooth part will be less than if we estimate this function only within 
this part. 
The natural idea is arised to split the whole interval of observation onto the parts with 
different smoothness properties and to estimate the function separately on each part 
with the corresponding smoothing parameters. But under this approach we need in 
some oracle who tells us how to divide the interval of observations and what are the 
corresponding smoothing parameters. 
To bypass this problem one can assume that the smoothness properties vary slowly and, 
therefore, that the smoothness properties are homogeneous within each subinterval with 
a small length 8. After that the estimation problem can be considered separately for 
each subinterval with the adaptive choice of the smoothing parameters. Of course, the 
smaller is the length 8 of each subinterval in our partition, the more accurate is our local 
resolution analysis. But again the question: How small the length of each interval can 
be taken to be able to perform locally adaptive estimation? 
The presented paper is devoted to the complete investigation of this problem. 
We define local smoothness characteristic of a function at a given point as smoothness 
characteristics of this function being restricted on a small interval (of length 8) around 
this point. 
We show that if the level E of the noise is small (goes to zero) then the locality parameter 
8 also can be taken small (goes to zero). Moreover, we describe the maximal rate of 
convergence 8; of this parameter to zero for which we are still able to perform locally 
efficient estimation. We call this value the resolution level. The value of this level 
strongly depends on the upper considered smoothness {3* what we wish to attain. If 11,; 
is the bandwidth corresponding to this smoothness {3* then the resolution level 8; can 
not be chosen less (in order) than 11,;. 
In particular, this yields that it is impossible to improve at the same time the accuracy 
of our procedure (which is measured by the upper smoothness f3*) and its local adaptive 
properties. If we improve the accuracy of estimation at subintervals where a function is 
of high smoothness then we will have a low accuracy in a larger vicinity near a point 
with bad smoothness characteristics. 
Notice also another principal feature of the approach proposed. For the classical mini-
max nonparametric situation the optimal accuracy (rate of convergence) of estimators is 
described by one number which depends on the smoothing parameters of the functional 
class containig f(-) (see Ibragimov and Khasminskii, 1980, Stone, 1980, Bretagnolle and 
Huber, 1976). But in the inhomogeneous situation, since the smoothness properties of 
the function f ( ·) varies from point to point, the corresponding rate of accuracy of esti-
mators also should vary from point to point. Therefore, we treat the risk of an estimator 
le as the sum (or the integral) of pointwise risk and the normalizing factor is taken cor-
responding to the pointwise smoothness characteristics. Such a construction allows to 
combine minimax approach (the function f ( ·) is assumed to be in some very large func-
tional class of functions with inhomogeneous smoothness properties) with more detailed 
pointwise description of the properties of estimators since the rate of an estimator le(·) 
at a point t E [O, 1] depends on the function f(-) and on t (through the corresponding 
smoothness characterists of f at t). From this point of view, an estimator le can be 
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called efficient (or rate efficient) if the corresponding risk is finite on the considered large 
functional class. 
Note also that speaking about the construction of efficient estimators, the cruCial point is 
an adaptive choice of the local smoothness parameters (since one could not expect some 
oracle who informs on the local smoothness properties of a function to be estimated). 
We study the properties of the following natural construction of locally adaptive estima-
tors. We split the whole interval onto subintervals of length equals to the resolution level, 
and then we construct independently an adaptive estimator within each subinterval. Of 
course, the natural idea is to apply locally one of standard (global) adaptive procedures. 
We don't give a survey of existing minimax adaptive procedures and note only the closed 
to the considered framework parers of Efroimovich and Pinsker(1984), Golubev(1987), 
Lepskii(1990,1991,1992), Poljak and Tsybakov(1990). We apply the procedure from Lep-
skii(1991) because only this one is universal and the remainings are valid only for the 
squared losses. We believe that in the case of estimation in L 2 other procedures can be 
applied as well. 
We believe also that the nonlinear wavelet procedure introduced into statistics by Donoho 
and Johnstone(1992), Kerkicharjan and Picard(1993) posesses some locally adaptive 
properties but the relating consideratios beyond the scope of the present paper. 
The paper is organized as follows. In Section 2 we give the main definitions and results, 
in Section 3 we prove the results and in Section 4 we discuss the possible directions to 
develop the results obtained. 

2. DEFINITION AND THE MAIN RESULTS 

2.1. Local Smoothness Characteristics. We start with the notion of a local smooth-
ness characteristic of a function f( · ). We define local smoothness in the Holder sense 
but other ones can be taken as well, for instance, based on Sobolev norm. We choose 
the approach based on Holder norm since we think it better corresponding to intuitive 
feeling of smoothness properties. 
Let /3, L be some positive, m = L/3 J (i.e. 0 < f3 - m ::; 1 ), a = f3 - m, and let I be some 
subinterval of [0,1]. We say that f E ~(/3,L,I) if IJCm)(s)-f(m)(t)I ~Is- tla, Vs,t E 
I. 
Our definition of a local smoothness characteristic of a function f ( ·) involves three pa-
rameters: /3*, L, 8. The value /3* can be treated as the upper considered smoothness (the 
maximal number of derivatives) for a given function. The number L plays the role of 
a Liptschitz constant, and for us only important that 0 < L < oo. At last, the value 
8 measures "locality" of our procedure. We understand local smoothness properties of 
a function f ( ·) at a point t as properties of this function considered on the interval 
[t - 8, t + 8]. 

Definition 1. Given /3*,L,8 and a function J(-) define a function 131(·,8) with 

f31(t, 8) =sup {/3 ~ /3* : f E ~ (/3, L, [t - 8, t + 8])}. (2.1) 

Of course, to be correctly defined the corresponding set in (2.1) should be nonempty. 
Hence we consider below only functions with this property. 

Definition 2. Given /3*, L, 8 we say that a function J(-) belongs to the class ~(a) if for 
any t E [O, 1] one has f E ~ (/3, L, [t - 8, t + 8]) with some 8 ):-~ 0. 
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To illustrate this notion we give some examples. 
Example 1. Consider the function J(t) = I~ - ti. This function is locally linear 
everywhere except the point ~ and for /3* ~ 2, L ~ 2 one has 

{ /3*' f31(t, 8) = 1, 

Example 2. Let now f(t) = C It - ti with a large C > 0. Then as above we have 
f31(t,8) = (3* fort r/:. a- 8, ! + 8]. But fort E [!- 8, ! + 8] one has 

ln 2C/ L 
/3 f ( t, 8) = 1 - ln(28)-1 

if this value is positive. Otherwise (if 2£ > 2
1
6 ) this function does not lie in ~(a). 

Therefore, (31( t, 8) is well defined for large C only if 8 is small enough. 
Example 3. Let n ~ 1 and f(t) = 1 2~ - (t - k~l )I for t E [ k~ 1 , *], k = 1, ... , n. If 
8 < 2

1n, then /31(t,8) = /3* fort r/:. [*- 8, ~ + 8] and /31(t,8) = 1 otherwise. 

We use below some simple properties of the function f31(t,8) and the classes ~(8). 

Lemma 1. The following statements hold: 
( 1) If a function f ( ·) is constant on the interval I = [ c 1 - 28, c 1 + 28) , then 

f31(t,8) = /3*, 

(2) If 8' :::; 8 , then f31(t, 8') ~ f31(t, 8); 
(3) If 8' :::; 8 , then ~( 8') ~ ~( 8). 

Proof. Obvious. D 

2.2. Statistical Model and Estimation Problem. We consider the simplest non-
parametric model "signal + white noise": 

dX(t) = f(t)dt + c:dW(t) (2.2) 

where an unknown function f ( ·) is to be estimated for t E [O, 1) , £ is a small parameter 
(the error level) and W = (W(t)) is a standard Wiener process. 
Moreover, not to deal with the boundary effect, we suppose that the process X = (X(t)) 
is observed on the larger interval [-80 , 1+80 ]. Such assumptions allow us to simplify the 
exposition and to emphasize in more clear form the main ideas and results. Of course, 
more realistic models with discrete nongaussian errors can be considered as well, but we 
concentrate in this paper on the simplest case of the model (2.2). 
Now we define the estimation problem. We distinguish below between two cases: esti-
mation in LP-norm for 1 :::; p < oo and in sup-norm. 
First some notations. Let I be some subinterval of [O, 1). Denote for a function f ( ·) on 
[O, 1) 

II! Ollp,1 
II! 01100,1 

[ 
1 ;; l 1/p m 

1
11(tWdt , 

sup lf(t)I. 
tEl 

We suppress the index I for I= [O, 1]. 

1:::; p < oo; 
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Given c and (3 ~ 0 , put 

{
~ c 2P+l ' 1 ~ p < 00 

ip,({3) = (cp) ,;~., p = oo 
We use also the notation <p; = <pE:(f3"'). 
It is well known that <pE:(/3) is the minimax rate of convergence of estimators of the 
function JO by the observations from (2.2) on the H older class ~((3, L) (or some other 
functional classes type of Sobolev, Besov etc.) with the smoothness parameter /3. But we 
don't suppose f (-) to possess some global smoothness properties described by a unique 
/3. In the contrary, we assume this parameter to vary from point to point. Therefore, the 
following definition of the risk of estimator seems to be natural. 

Definition 3. Let ]E:(·) be some estimator of J(·). Given 8 > 0, we define the risk {or 
8-local risk) of this estimator for p < oo as 

(p) (- · ) - II 1E: 0 - 1 ( ·) lip RE: JE:( ), 8 - sup E1 (f3 ( 8)) 
JE'£(6) <pE: j ·, p 

(2.3) 

and for p = oo as 

R~oo) (JE:(. ), 8) = sup E J II ],~-~ ( f~]) II 
JEE(6) <pE: J ·, 

00 

2.3. Main Results. We give separately the main results for the cases p < oo and 
p = 00. 

Theorem 1. (p < oo ). Let 1 ~ p < oo and 

For each a E (0, 1) , any sequence 8E: > 0 with 8E: ~ab; and any estimators ]E:(·) 

lim R(P) (' (·) 8) > Ci E:-+0 e J e ' e - aP/2 
Theorem 2. (p = oo ). Let 

For each a E (0, 1) , any sequence 8e > 0 with 8e ~ a8; and any estimators feO 

lim R~00 ) (JE:(·), be) ~ Cl e-+O ya 
Here and below by C with index or not we denote some absolute constants depending 
possibly on (3*, L but not on c, a. 
Remark. The results of Theorems 1 and 2 claim that the locality parameter 8 can not 
be taken less (in order) than b;. We call this value the resolution level. 
The next two results claim existence of estimators fe( ·) with a finite asymptotic risk if 
the parameter of locality be is taken not less (in order) than the resolution level 8;. 
Theorem 3. (p < oo ). Given a E (0, 1) and a sequence 8e with 8e ~ a8; = ac 2/C 2/3*+1) 

there exist such estimators fe ( ·) that 

lim R~P) (fe( · ), 8€) ~ C/22 • E:-+0 aP 
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Theorem 4. (p = oo ). Given a E (0, 1) and a sequence be with be 2: ab; = 
( )

2/(2r+i) A 

a s Jin 1 / s there exist such estimators f e ( ·) that 

2.4. Construction of locally adaptive estimators. Now we define the structure of 
the upper estimators fe(-) from Theorems 3 and 4. First denote 

l~p<oo 

p= 00 

We will write ""; as well as ""e(f3*). 
Now introduce the family of kernel estimators Uc(·, {3), 0 < {3 ~ {3*} with 

where for simplicity a kernel J( (·)is taken universal for all {3 and we suppose J( to satisfy 
the following properties: 

(1) J( is supported on [-1, 1); 
( 2) J K 2 ( s) ds < oo; 
(3) J K(s) ds = 1; 
(4) for each 1 ~ m ~ Lf3J 

J K(s) sm ds = 0. 

Remark. Typically the bandwidth ""e(f3) and the rate sequence 'Pe(f3) are chosen to 
satisfy the balance relation 

cp,(B)~ = { :j;;f, l~p<oo 

p = 00 

but through our definition one has 

l~p<oo 

p = 00 

Let 

( 1)-l 
he= ln e 

and Be be the he-net of the interval [O, {3*] : 

Be = {{3 2: 0 : f3 = /3* - khe , k = 0, 1, 2, ... } . 

By Be (f3) for any f3 E Be we denote the subset of Be containing all /3' ~ {3, 
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Let now Le be the partition of the interval [O, 1] onto subintervals of length be/2. We 
construct our estimators Je ( ·) in the following way. For each I E Le we determine adap-
tively the corresponding smoothness characteristic f3e(I) and then take feO coinciding 
on I with the kernel estimator le ( ·, /3) for /3 = f3e(I) , 

Je(t) = L le (t, f3e(I)) 1 (t EI)· 
IEI,. 

To choose f3e(I) we apply the procedure from Lepskii(91): 

where 

with 

f3e(I) =sup {!3 E Be : Ille ( ·, /3) - le ( ·, ,6')11p,J ~ Ca<.pe(/3') V/3' E Be(f3)} 

{ 

2L + 2(1+Cp)1/p' 

c - Fi?. 
a - 2L+ _8_ 

v;;/2' 
Gp = llKllP E l~IP, 

l~p<oo 

p = 00 

~ rv N(0,1) 

3. PROOF OF THEOREMS 

3.1. Proof of Theorem 1. First define a function g ( ·) on [- ~, ~] as follows 

{ 
1, ltl ~ 1/4 

g(t) = 4 G - !ti), 1/4 ~ !ti ~ 1/2 · 

This function is obviously continuous and piecewise linear, and g (± ~) = 0. 
Below we refer to the following Bayes problem. Let the observation model £ (a) be 
described by the stochastic equation 

dX ( t) = ±g ( t) dt +a dW ( t), t E [-~ ~i 2'2 
and the parameter set consists of two functions ±g ( · ). Define the loss function l for an 
estimator g ( ·) at the point ±g ( ·) as follows 

z (fJ - ±g) = ]_
118 

19 (t) - ±g (tW dt = ]_
118 

lfJ (t) =r= 11P dt. 
-1/8 -1/8 

Denote by b (a) the solution of the Bayes problem for this model and the uniform prior 
7r (i.e. 7r(±g) = 1/2 ): 

1 
b(a) = i~f 2" [E9l(g- g) + E_ 9 l(g + g)]. 

Obviously b (a)> 0 for each a> 0. 
Now we turn to the proof of the theorem. Define for each c > 0 the value f3e in such a 
way that 

(3.1) 

Later we write also ~e instead of 8be and <.pe instead of <.pe (f3e) = c 2~!i 1 • Obviously 

<.pe l~e I.Be' 
<.p e .Jj5:; = c (3.2) 
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Let now Ie be the partition of the interval [O, 1) onto the subintervals of length ~e· 
Without loss of generality we suppose card Ie = 1/ ~e· 
For each I E Ie we construct the function g 1 ( ·) on I with 

91 (t) = IIIP. g c ~~I) , t EI, (3.3) 

where III = 88e = ~e and c1 is the center of I. 
Now we introduce the set Ge of functions le on [O, 1) of the form 

le(t) = L 01g1(t) l(t EI) 
lEic 

where 0 = ( 0 I) 1 Eic is a vector with coordinates 0 I = ± 1. 
Evidently these functions le belong to the set :E( 8) for any small 8 > 0 and we show 
below that even being restricted on this finite set Ge the risk of arbitrary estimators le 
is greater than ca-P12. 
First we notice that by the construction each function le from Ge is constant on the 
intervals [c1 - 28e, c1 + 28e), IE Ie. Through Lemma 1 this yields 

(3.4) 

Now put for any estimators le 

l (J, - f,) = ~ f :~· \f, (t) - J, (t)lp dt (3.5) 

and let 

From (3.4) follows that 

and it suffices to state that 
,.,., I *IP C1 

. l'\-e ~ 'Pe aP/2. 

Let Ile be the uniform measure on the finite set Ge. Of course, Ile can be represented as 
the direct product of measures 7r 1 , 

(3.6) 

where 7r1 is for each I E Ie the uniform measure on the two-points set {±g1 (·)} of 
functions on I. 
Denote by Re (Ile) the Bayes risk for this prior Ile and the loss function from (3.5), 

ne (Ile)= il!f ~ G L Efsl (le - le). 
Jc car e fs EGc 

Now we decompose the whole Bayes risk Re (Ile) on the sum of Bayes risks for the 
submodels corresponding to each subinterval I E Ie. This can be done because of the 
direct product structure of the original model (2.2) and the priors Ile as well as the 
additive structure of losses (3.5). Namely, let E 1 be the submodel corresponding to the 
interval I i.e. E 1 describes the observations (Xe (t), t EI). Denote 

re ( 7r I) = i_nf ~ [ E g 1 l I (le ,I - g I) + E _ g 1 h (le ,I + g I) ] 
f c,I 
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where 

h (1,,1 - ±ur) = L:~· 11,,1(t) - ±ur(t)I' dt 
and fe,I is an estimator of the signal ±y1 for the model E1 (i.e. by the observations 
Xe(t), t E I). Obviously these observations are sufficient for this subproblem and one 
can not improve the risk of observations taking into account the observations beyond I. 

Lemma 2. The following assertions are satisfied: 
(1) 

Re(Ile)= Lre(7r1). 
!EI,, 

(2) 
re (7r1) = IIl/3,,p+l b (c- 1 IIl/3,,+l/2) = ~~eP+lb(l). 

Proof. The first assertion is based on (3.5), (3.6) and the structure of the model (2.2). 
The second assertion is obtained by simple renormalization arguments, the definition 
(3.3) and the equalities III = ~e and ~~c+ 1 / 2 = € (see M.Low, 1991). We omit the 
details. D 

Therefore, 

Re~ Re (Ile)= L re (7r1) =card Le ~~eP+ 1b(l) = b(l) (~~e)p = b(l) (<pe)p. 
!EI,. 

But from (3.1) and (3.2) 

Finally 
R > (,.,.,*)P b(1)s-p'2- 1-

e - Te aP/2 
and the theorem follows. 

3.2. Proof of Theorem 2. First notice that without loss of generality on can suppose 

8e = ao;. 
Define now the values ~o /30 <pe by the equalities 

(3.7) 

We will use later the relation 

cp,$,=of:f. 
Let again Le be the partition of [O, 1] onto intervals I of length ~e and again we suppose 

cardLe = ~; 1 • 

Let the function y ( ·) be defined on [-!, ! ] as before in the proof of Theorem 1. Put for 
each I E Le 

/3 (t - CJ) YI ( t) = Yo III c Y ~ , t EI, 

c1 being the center of I, III = ~0 its length, and a constant y0 will be chosen later. 
Let also the function h ( ·) on [O, 1] coincide with y1 on I and vanishe outside I. 
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Introduce the finite parameter set Ge of function on [O, 1] with 

where Jo= 0. 
By Ile we denote the prior on Ge with 

Now we reduce again the whole problem to the subproblem corresponding to the finite 
subset Ge. First note that as before one has for each f E Ge 

Define the loss of an estimator le at a point f E Ge as follows 

(le - f) = sup sup Ile - f I· 
lEic tE[cr-6c,cr+6c] 

Similarly to that in the proof of Theorem 1 

Now notice that through (3. 7) 

and it remains to verify that 

R~ (le)= cp-; 1 [!Eal (le)+ ~e L E1 l (le - J)] Z C > 0, 2 2 /Eic 

where we write E 0 instead of E10 , and the observations X from (2.2) coincide with sW 
under the measure P0 • 

Denote 

By Girsanov's formulae 

dP1r ( ) Ze,l = dPo X . 

Z,,, =exp { C 1 1 g1(t) dW(t) - £; 2 1 gi(t) dt}. 

But 

with 

11/2 
a 2 = g~ g2(t) dt 

-1/2 

and hence 

(3.8) 

(3.9) 
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with te = v'ln c- 1 and 

Ce,1 = - 1-f, g1(t) dW(t) f"V N(O, 1). atec 1 
(3.10) 

Moreover, (e,I are independent for different IE 1e. Put 

{ l (!,) 2'. ~Yo\O,} , 
and let Ae be the complement of Ae. Since 

l U1) = go IIl 13
e = Yo'Pe 

then under Ae we have 

Hence we obtain through (3.8) 

But, if Ze ~ C , then 

1 ( Ae) + Z e 1 ( Ae) ~ 1 ( Ae) + C 1 ( Ae) = C + ( 1 - C) 1 ( Ae) ~ C 

and thus 
R~ (le) ~ ~c Po (Ze ~ C). 

Now the assertion of the theorem follows immediately from the fact that 

Ze--+ 1 

under the measure P0 • Recall that Zeis the average of i.i.d. random variable Ze,I defined 
by (3.9) and (3.10), and it suffices to verify that 

c --+ 0. 
But 

and 
2 2 ( )2 4 0'2 /J..eEoZe,I = 8a c 2r+ 1 - --+ 0, c --+ 0 

for a 2 < 213;+1 • Finally, if the constant g0 was chosen properly, then the result follows. D 

Before to prove Theorems 3, 4 we recall some simple technical properties of the kernel 
estimators fe ( ·, /3). First denote 

1 j (u-t) Ke(/3) * J( t) = ~e(/3) J( ~e(/3) J( U) du 

and 
J~e(/3) te (t, /3) = [fe(t, /3) - E1 fe (t, /3)] · c 
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Lemma 3. The following statements hold: 
(1) 

E j J e ( t, f3) = J( e ( f3) * J ( t); 
(2) For any subinterval I of [0, 1] , any {3 > 0 , and any function J(-) such that 

J(-) E ~ (f3, L, Io) with b = K,e(f3) one has 

llJ( ·) - IC (f3') * J(-)llp,I ~ L IK,e ({3')1
111

' \:/{3' ~ {3; 

(3) The distribution of the process Ee(·,f3) = (Ee(t,{3), t E [0,1]) under the mea-
sure P1 does not depend on f and coincides with the distribution of the process 
(E (~eC/1)), t E [0,1]) where 

E ( s) = j K ( u - s) dW ( u), 

(W( u), u ~ 0) being a standard Wiener process. 
( 4) Let p E [1, oo) and let I be any subinterval of[O, 1]. Then 

E llEe(·, f3)ll:,1 = E IE(O)lp =Gp 

where Gp= [J K 2(s)dst12 EIN(O,lW; 

E II Ee(·, !3)11;~1 ~ G2p 

for some constant G2p ~ G;; 
Moreover, given r ~ 1 , there exists such a constant G ( r) that 

with 

(5) Let p = oo. Then 

2 1 
E II Ee(·, f3)ll 00 ~ G ln K,e(f3) 

and 

P (Ill,(·, .6)11 00 ~ U llKll) ~ C K,~,6) exp {-~
2

} 
with llI<ll 2 = J K 2( s) ds. 

Proof. These assertions describe well known properties of the kernel estimator (see ??). 
The proof is standard and straightforward and we omit it. D 
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3.3. Proof of Theorem 3. We use essentially the additive structure of the loss function 
(2.3). Namely, 

II 
Je(·) - J(·) lip sup EJ = 

JEE 'Pe(f3J(·,8e)) p 

supEJ 1 Lllfe(·,Be(I))-J(-)llP S 
JEE card'Ie lEie 'Pe(f3J(·, De)) p,I 

S 1 L supEJllfe(·,Be(J))-J(-)llP . 
card'Ie lEie JEE 'Pe(f3J(·,8e)) p,l 

(3.11) 

Hence it is enough to state that each summand in this sum is bounded by a universal 
constant C2 • 

Let us fix some IE 'Ie and some f E :E, and put 

f3 f3E:(I), 

/3 J = sup { /3 s /3 * : f ( ·) E :E ( /3, L ,i) } , 
i = l,;,; being the ~;-neighborhood of I. Because III = 8e/2 and~; S 8e/2, for each t EI 
the interval [t-80 t+8e] contains i. This obviously implies f3J(t,8e) s /3J and hence 
permits to reduce through (3.11) the assertion of the theorem to the following statement: 

sup EJ I le(-, {3) - J(-) llP S C. 
JEE 'Pe(f3 J) I p, 

(3.12) 

We arrive to the typical problem of adaptive estimation. The function f ( ·) to be estimated 
is supposed (being restricted on the interval i ) to belong to some smoothness class 
:E (/3, L) with unknown /3 , and we claim possibility of adaptive estimation. But we 
cannot refer to the famous result on adaptive estimation, for example, Lepskii(91) since 
the length of the interval I is not fixed and goes to zero with the rate of bandwidth 
corresponding to the upper smoothness /3*. 
Before to prove (3.12) we notice that one can assume /3J to take its value in BE:. Otherwise 
we can replace /3 J by the closest from below /3j E BE: (i.e. 0 s /3 J - /3j s he ) and easy to 
check that 1 s <pg (!3.f) /<pg (/3 J) s C, where, in particular, C = e2 can be taken. 
To prove (3.12) we decompose this expression onto two parts relating to the events 
{ f3 ~ /3 J } and { f3 < /3 J } : 

E1 J,(·:.l~ ;(-) [,, = R;(f) + R;(f) 

with 

and 

We start with R:(f). The definition of f3 implies 

{B 2'. (3 J} (;; {II f,(., 8) - f,(., (3 J lll,,l ~ c .<p,((3 J)} . 
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Hence under the event {8 ~ (31 } we obtain through (i) and (ii) of Lemma 3 

< aP/2 ° 

Here we used the equalities 

l11:e (f31 )l.a1 

'Pe(/31 hf ll:e(f31) 

Now we estimate R;(f). One has 

R;(f) = L l'Pe(f31 )I? E ll!e(·,B)- JOllP 
1

1 (8 = f3) ~ 
,BE B,, (,BJ) p' 

~ L l'Pe(f31)l-P [E1 ll!e(·,B)- JOll 2
P
1 

P1 (8 = !3)]
112 

,BEB,,(,81) p, 

. For each (3 as before we get (using also (iv) of Lemma 3) 

and thus 

(3* - f3 
k= . 

he 

Then we have for Te(f3) defined in Lemma 3 

(3.13) 

(3.14) 

(3.15) 
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Let now (3' E B,((3) (i.e. (3' s; (3, (3' E B, ) and 

k' = (3* - (3' 

z, (f3'' f3) 
<p,((3') = <p,(f3) . 

Similarly to (3.15) we obtain 

28
1 

..2L { 2(k' - k) } Z (f3' f3) = ,:-~- 2 .B+1 = exp . 
e ' ~ (2(3' + 1)(2(3 + 1) 

(3.16) 

Again straightforwardly from the definition of f3 

{8 = f3 - h,} ~ LJ {11J,(·,f3')- J,(·,/3)llp,l Z Ca<pe(f3')} · (3.17) 
/3'EBc(/3) 

Applying (i) - (iii) of Lemma 3 and (3.13) we derive 

llJ,( ·, {3') - J,( ·, f3)11p,I s; 
s; llJ,( ·, (3') - E, j,( ·, (3')11p,I + llf,( ·, f3) - E J j,( ·, f3)11p,I + 

+ 11!0 - K,((3') * !Ollp,/ + 11!0 - K,((3) * !Ollp,/ s; 
,:- ,:-

< ~ lll,(·,f3')llp,1+ ~ lll,(·,f3)llp,1+ 

+ L [1A:,(f3')( + IA:,(f3)1 13) s; 

< ~ [r,o,(,8') 11€,(" ,B')llp,1 + rp,(,8) 11€.C ·, .B)llp,1] + 
+ L [<p,((3') + <p,(f3)]. (3.18) 

Recall that Ca = 2L + /.72(1 + Cp) 11P and by definition <p, (13') s; <p,(13) for /3' s; /3. 
Hence (3.17) and (3.18) readily imply 

Pf (8 = /3 - h,) s; L P (Ille(·, {3')11:,/ Z 1 +Gp) + 
/3'EBc(/3) 

+ L p (Ille(·, f3)ll:,1 2 (1 +Gp) z:(f3', f3)) . (3.19) 
/3 1 eB~(/3) 

Through (iv) of Lemma 3 and (3.15) for each r 2 1 

L p (Ill,(·, (3')11:,J - Gp 2 1) s; 
/3'EBc(/3) 

< L E \lll,(·,/3')11:,1- cplr+l s; 
/3'EBc(/3) 

< L C(r) < 
/3'EBc(/3) IT,(f3'W -

00 

{ -4k'r } 
s; k~ C( r) exp (2(3' + 1 )(2(3* + 1) s; 

{ 
-4kr } 

< C exp (2(3 + 1)(2(3* + 1) · (3.20) 
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Similarly through (3.16) 

2: P (ll~e(·,B)ll:.1 ~ (1 +Gp) z:(B',B)):::; 
/3'EBc(/3) 

:::; L p (ll~e( ·, B)ll:,1 - Gp ~ z: (B', B)) :::; 
/3'EBc(/3) 

< P'E~(P) IT,(B')i' ~~l/3', B)lr+l ::; 

~ G() { -4kr -2(k'- k)(r+ 1)} < 
:::; k~ r exp (2/3 + 1)(2/3* + 1) - (2/3' + 1)(2/3 + 1) -

::; C exp t2B + ~)~~~. + 1)}. (3.21) 

Combining (3.19) - (3.21) we conclude 

(

A ) { -4kr } P1 f3 = f3 - he :::; G exp (2/3 + l)(2/3* + l) :::; G exp {-2kp} 

if r ~ ~p(2/3* + 1)2
• 

Substituting this inequality in (3.14) and using again (3.16) we arrive to the final calcu-
lation 

and the theorem follows. D 

3.4. Proof of Theorem 4. Given f E ~ we have the following representation for the 
risk of the estimator /e(·) "at the point" J(-) : 

Re(!)= E1 sup llfe(·,Be(J))- J(-) II . 
IEic 'Pe(B1(·,0e)) oo,I 

Similarly to above denote for each I E Le 

f31(I) =sup {/3 :::; B* : J(-) E ~(/3, L,Io)} 

with 6 = Ke(f3*). Arguing as in the case of p < oo we infer that the following assertion is 
sufficient for the whole theorem: 

Fix for a moment some I E Le and denote 

8 = Be(I), 
!31 = B1(I). 

oo,/ 

G 
:::; y1a· 
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Further, 

llJe(·,fl) - J(-)lloo,J = llJe(·,fl) - J(·)lloo,J l (J3 ~ 81) + 

+ ll!e(·,8) - 1011
00

,11 (8 < 81). 

Using the definition of fl and (ii) of Lemma 3 we derive 

llJe( ·,fl) - JOlloo,l 1 (J3 ~ 81) ~ 
< Ca'Pe(81) +life(·, 81) - J(-)11 00 ,1 ~ 

::; C.cp,(.81) + L li<,(,81 )IP! + ~ 11€,( ·, .81 )I loo I ::; 
"-e(81) ' 

::; ~cp,(.81) [c. + t1, 11€,( ·, .81 )11 00.I] · (3.22) 

(Here we used the notation te = Fnf and the relations (3.1)). 

Now consider the loss corresponding to the inverse event {fi < 81 }. The definition of fl 
yields 

(3.23) 

and 

{fl = 8} ~ U { llJe( ·, 8') - fe( ·, 8+) lloo,J > Ca'Pe(f3')} (3.24) 
(3 1 EB1t(f3) 

with 8+ = f3 +he. 
Using the definition Ca= 2L + . b, similarly to the case of p < oo we obtain 

y a/2 

{8 = 8} ~ LJ Ae,1(8', 8) 
(3 1 EB1t(f3) 

with 

where for each 8' < 8 

(a') ( CT) 2*T-~ 
Ze (8',8) = ~e(~) = cyln s ~ c- 1

. 

Now, again by (ii) of Lemma 3 for each 8 < 81 

with 

(3.25) 

(3.27) 

(3.28) 

(3.29) 
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and, therefore, through (3.23) - (3.29) 

<p-;l(f31) llJe(-,fl) - J(-)lloo,I 1 (f3 < f31) ~ 

~ L Ze({3, f31 )<p-; 1(f3) llfe( ·, {3) - J(-)lloo,J 1 (f3 = {3) ~ 
{3EB.,(f31) 

~ L L c- 1(e,1(f3)l(Ae,1(f3',f3)). 
{3EB.,(f31) f3'EB.,(f3) 

The next step is to evaluate the risk for the whole interval [O, 1]. Put 

R-;(f) = E1 ;~f., <p-; 1(f31(J)) llJe (-,f3e(I))-JOlloo,Jl (f3e(I) < f31(I)) · 

From (3.30) and (3.26) 

R-;(f) ~ cj 1E sup L L (e,1(f3)l(Ae,1(f3',f3))~ 
!EI., {3EB., f3'EB.,(f3) 

(3.30) 

< cj 1E L L (e(f3)l(Ae(f3',f3)) (3.31) 
{3EB., f3'EB.,(f3) 

where through (3.29) 

(3.32) 

and 

Ae(f3',{3) ~ LJ Ae,1(f3',{3)~ 
IEI., 

~ {llEe(·,{3')1100 > 4te} U {llEe(·,f3+)ll00 > 4te} · (3.33) 

Using Cauchy - Schwartz inequality we get from (3.31) 

R-;(f)~C 1 L L [E1C?(f3)P1(Ae(f3',f3))] 112
• (3.34) 

f3EB., f3'EB.,((J) 

By (3.32) and (v) of Lemma 3 for c small enough 

[E1 C?(mJ 112 < c + ~ [~ 1n .. ; 1(.aiJ1'2

::; 

~ C [1n ~ + 2 
ln ~1 < £. 

vfa72ln ~ a 2(3 + 1 c - Va 
Using once more ( v) of Lemma 3 we have also 

< _!!___exp {- ( 4te)2} < 
~e(f3) 2 -

::; co-'''+' exp {-8 ln ~} ::; Co6
• (3.35) 

Since the cardinality of Be is not greater than (3* /he = (3* ln; we conclude through (3.33) 
- (3.35) that 

c ---r 0. (3.36) 
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It remains to estimate the risk Rt(!) with 

R~(f) = E1 :~R cp; 1 ({3,(J)) llJs (·,fie(I)) - JOIL>,I 1 (fis(J) ~ f31(I)) • 

We deduce straightforwardly from (3.22) that it suffices to verify only the following 
assertion: 

(3.37) 

Let Ne be the cardinality of Is. Then 
2 1 _ __a_ 2 

N = - < -E 2tr•+1 < E-
E 0£ - a 

if Eis small enough. 
For each f E ~by (v) of Lemma 3 

P1 (sup tl ll~s (-,{3,(J))lloo,I > u) ~ 
IEI,. e 

< Ne sup P1 (Ills(-, f31(I))ll 00 > Ute) ~ 
IEI,. 

< E_ 2_g_ exp {- u
2 

ln !} < 
Ke(f3) 2 E -

and obviously 

E -+ O, 

that implies (3.37). D 
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