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AbstractFor scalar di�usion models with unknown drift function asymptotic equivalencein the sense of Le Cam's de�ciency between statistical experiments is considered forlong-time asymptotics. A local asymptotic equivalence result is established with anaccompanying sequence of simple Gaussian shift experiments. Corresponding glob-ally asymptotically equivalent experiments are obtained as compound experiments.The results are extended in several directions including time discretisation.1 IntroductionDi�erent statistical models often exhibit comparable features when they are consideredunder some natural asymptotics. In nonparametric statistics the problems of estimating asignal in Gaussian white noise, a regression function or a density of i.i.d. observations canall be handled by the same techniques, e.g. using kernel smoothers or projection methods,and the asymptotic minimax properties for the estimation risk usually coincide. The longstanding experience that under an asymptotic point of view these models are statisticallyof the same kind has found its proper mathematical justi�cation in 1996, when Brown andLow (1996) and Nussbaum (1996) proved the asymptotic equivalence of these models inthe sense of Le Cam's theory of equivalent statistical experiments. In essence this meansthat any decision function developed for one model can be carried over, at least in anabstract way, to a decision function in the other models with exactly the same asymptoticrisk properties. This is an important conceptual gain compared to the situation beforewhere asymptotic results had to be proved each time separately.In parametric statistics Le Cam's theory has been successfully applied to a huge varietyof experiments because in this case it usually reduces to the property of local asymptoticnormality (LAN) and its modi�cations (Le Cam and Yang 2000). The asymptotic equiv-alence for nonparametric experiments is conceptually more demanding and by now theclass of models that are provably asymptotically equivalent to the three core models ofsignal detection, regression and density estimation is still limited. Grama and Nussbaum(1998) have proved asymptotic equivalence for generalised linear models, which has re-cently been extended to a wider nonparametric class in J�ahnisch and Nussbaum (2003).Brown, Cai, Low, and Zhang (2002) consider speci�cally nonparametric regression withrandom design and provide a constructive asymptotic equivalence result. Certain asymp-totic equivalence results have already been obtained for di�usion models. For asymptot-ically vanishing di�usion coeÆcients an equivalence result has been proved for di�usionsobserved on a suitable random time interval by Genon-Catalot, Laredo, and Nussbaum(2002), while Milstein and Nussbaum (1998) obtain asymptotic equivalence for such adi�usion model and its Euler discretisation. More closely related to our work is the studyof a null-recurrent di�usion model with long-time asymptotics by Delattre and Ho�mann1



(2002). The authors prove asymptotic equivalence to Gaussian models, which have thesame structure as ours with the exception of an additional mixing random variable, thatcan be explained in analogy with the parametric LAMN-property. To overcome technicaldiÆculties for proving analogous results for further nonparametric models, the concept ofasymptotic equivalence is sometimes reduced to its weak form, see Drees (2001) for anapplication to lower bounds in extreme value theory.One class of standard models in mathematical statistics is certainly given by nonlinearautoregressive processes of the formXt+1 = f(Xt) + "t+1; t = 0; : : : ; T; ( ("t)t2N� N(0; 1) i.i.d.)and the corresponding continuous time di�usion modelsdXt = b(Xt) dt+ dWt; t 2 [0; T ]; (W Brownian motion) (1.1)with unknown drift functions f and b, respectively. Under ergodicity assumptions and forlarge T it is well known that the methodology developed for nonparametric regression canbe used for inference on the drift function, for an overview see Taniguchi and Kakizawa(2000) for autoregressive processes and Kutoyants (2003), Fan (2003) for di�usions. Inthis paper we corroborate the folklore that 'autoregression is just regression' by showingstrong asymptotic equivalence of the scalar di�usion model (1.1) with a signal detectionor Gaussian shift model, which can be interpreted as a regression model with randomdesign. Our result is established for the scalar di�usion model because we need to employtools from stochastic analysis that are neither available for time series analysis nor formultidimensional di�usion processes.Let us briey introduce some basic notation such that we can announce the main results.For some �xed constants C; A;  > 0 we consider the nonparametric drift class� := nb 2 Liploc(R) ��� jb(x)j � C(1 + jxj); 8jxj > A : b(x) sgn(x) � �o; (1.2)where Liploc(R) denotes the set of locally Lipschitz continuous functions b : R ! Rand sgn(x) := x=jxj. A standard result in the theory of stochastic di�erential equa-tions asserts that for b 2 � and a Brownian motion W on some �ltered probabilityspace �
;A; (At)t�0;P� there exists to a given initial value a unique strong solution(X(t); [0; T ]) of equation (1.1), e.g. Karatzas and Shreve (1991). Moreover, the existenceof a stationary solution, unique in law, is ensured with invariant marginal density�b(x) = Cb exp�2Z x0 b(y) dy�; x 2 R; (1.3)where Cb > 0 is a normalising constant. Considering in a �rst step drift functions b in ashrinking neighbourhood around b0 2 �, we obtain the local asymptotic equivalence resultfor T !1 of the stationary di�usion experiment given by (1.1) with the accompanyingGaussian shift experimentsdZx = b(x)p�b0(x) dx+ T�1=2dBx; x 2 R; (1.4)where B denotes a Brownian motion on the real line and �b0 is the invariant density from(1.3). The analogous regression experiment to (1.4) consists of observing the function b on2



a design with density �b0 , which can be considered random or deterministic in the sensethat it determines the distance between two design points. The main idea of the proofis to de�ne a coupling of the original di�usion experiment with another di�usion-typeexperiment corresponding to a deterministic design. The implementation of this idea isheavily based on the local time of the di�usion process.The local asymptotic equivalence result has already several implications for the statisticaltheory of di�usion processes. In particular, it can be used to obtain asymptotically sharplower risk bounds. For instance, the lower bound of Theorem 1 in Dalalyan and Kutoyants(2002) follows immediately. In order to transfer also global results like upper risk boundsto the di�usion case, an equivalence result should be obtained for all parameters b 2 �.We have to impose on the drift functions some minimal regularity larger than 1=2 toobtain such a global result, cf. Brown and Zhang (1998). Furthermore, since the varianceof the local time does not decay suÆciently rapidly, the general global equivalence resultcan only be established for drift functions that behave nicely far away from the origin. Toavoid too much technicalities we therefore consider a global class �0 � � of drift functionsof regularity larger than 1=2 that coincide with some known function b0 2 � outside acompact interval I.In absence of a variance stabilising transform the globally equivalent experiments will beof compound type. The �rst accompanying sequence is given by the observationsdXt = b(Xt) dt+ dWt; t 2 [0; S]; (1.5)dZx = b(x)p��S(x) dx + (T � S)�1=2 dBx; x 2 I; (1.6)where W and B are independent Brownian motions, ��S is a suitable estimator of �bbased on the observation (X(t); t 2 [0; S]) and S = S(T ) 2 (0; T ) satis�es limT!1(T �S(T ))=S(T )p = 0 for all p > 1. The second accompanying sequence is given solely interms of Gaussian experiments:Ux =p�b(x) + T�1=4( ~Bx + �); x 2 I; (1.7)dZx = b(x)Ux dx+ T�1=2dBx; x 2 I; (1.8)where the Brownian motions B and ~B and the random variable � � N(0; 1) are indepen-dent.The local and global equivalence results are derived in Section 2 and 3, respectively. Inorder to retain a clear presentation, a uniform variance bound on the local time and theconstruction of global estimators have been deferred to the Appendix. In Section 4 wediscuss extensions of the theory developed so far. First, we consider the di�usion modelwith a general, but known di�usion coeÆcient �, for which similar results are obtained.Next, we treat the case of discrete observations of the sample path in the di�usion modeland the corresponding Euler discretisation. Conditions for asymptotic equivalence andsuÆciency are given for sampling distances tending to zero. Finally, we present a Gaussianshift experiment dZx = b(x)p��(x) dx+ T�1=2 dBx; x 2 R;with a Brownian motion B and some function ��, which is globally less informative thanthe di�usion model (1.1) such that risk upper bounds obtained for this simple modelimmediately transfer to the di�usion case. In order to convey concisely the main ideasand to save space, the results in this section are stated in a more informal way.3



2 Local equivalence2.1 The general ideaWe shall show that for drift functions b in a shrinking neighbourhood of the drift functionb0 the statistical experiment induced by observing the di�usion processdXt = b(Xt) dt+ dWt; t 2 [0; T ]; (2.1)is for T ! 1 asymptotically equivalent to the statistical experiment induced by theobservation dZx = b(x)p�0(x) dx+ T�1=2 dBx; x 2 R; (2.2)where �0 is close to the density of the invariant measure of the di�usion process in (2.1)uniformly over the neighbourhood and B denotes a Brownian motion on the real axis.The main idea of the proof is to perturb the di�usion model (2.1) in such a way thatin each state x 2 R the local time, that is the amount of time spent by the process inx until time T , is at least T�0(x) and to provide no information on b(x) after the localtime has attained the level T�0(x). At those states x, where the local time does not reachthe level T�0(x), additional information on b(x) is revealed. The model thus obtained canbe considered as a regression model for b with �xed deterministic design of density T�0.It is Gaussian and has the same likelihood process as the model in (2.2), which impliesstatistical equivalence of the associated statistical experiments.The intuitive explanation why this approach succeeds is that the di�usion model, like anautoregressive time series model, exhibits two sources of randomness. Firstly, the design,that is how often the states are visited by the process, is random. Secondly, the driftb can merely be observed after contamination by white noise dW . As it turns out, the�rst source of randomness is less severe than the second and we do not lose too muchinformation by assuming that each state x is visited up to time T with a density accordingto the approximate expectation T�0(x) of the local time. However, it is evident that thisprocedure can only work for neighbourhoods around b0 that shrink with increasing T suchthat the true expectation T�b converges to T�0 in a suitable manner.2.2 Local experiments2.1 De�nition. For a drift b0 2 � and any density �0 2 L1(R) we introduce their localneighbourhood with parameters "; �; � > 0�";�;�(b0; �0) :=nb 2 � ��� �Z (b� b0)2(y)p�b(y)dy�1=2 � ";�Z (b� b0)2(y)j�b(y)� �0(y)j dy�1=2 � �; Z j�b(y)� �0(y)j dy � �o:Here �b denotes the invariant density of the di�usion process with drift b.2.2 Remark. It is natural to consider neighbourhoods around (b0; �b0), but it is by nomeans necessary for the calculations to enforce �0 = �b0 . For the globalisation the moregeneral approach has the advantage of permitting the usage of separate estimators forfunctions b and �b. 4



We now de�ne precisely the local experiments E1 and F1 , for which we shall prove asymp-totic equivalence. Note that we de�ne the Gaussian shift experiment on the space RL2(R)and not on C(R) via the natural interpretation of the di�erentials as integrators for L2(R)-functions. Of course, the law is already characterised by the integration of the functions1l[0;y], y 2 R, which corresponds to the signal in white noise interpretation on the spaceC(R) up to the knowledge of the value at zero.2.3 De�nition. We de�ne the di�usion experiment localised around (b0; �0)E1 := E1(b0; �0; T; "; �; �) := (C([0; T ]);BC([0;T ]); (PTb )b2�";�;�(b0;�0));where PTb denotes the law of the stationary di�usion process with drift b on the canonicalspace C([0; T ]).The Gaussian shift experiment localised around (b0; �0) is given byF1 := F1(b0; �0; T; "; �; �) := (RL2(R);B
L2(R)R ; (QTb )b2�";�;�(b0;�0));where QTb denotes the law of the Gaussian shift experimentdZx = b(x)p�0(x) dx+ T�1=2 dBx; x 2 R;�i.e., �Z f(x)b(x)p�0(x) dx+ T�1=2 Z f(x) dBx; f 2 L2(R)��with a Brownian motion B on the real line.In order to pursue our procedure of changing the design appropriately, we need to in-troduce the so-called local time of a di�usion process X. We refer to Revuz and Yor(1999), Chapter VI for the details. We are going to use that the local time Lyt (X) of thedi�usion process X at the point y 2 R up to time t � 0 can be constructed such that(Lyt ; y 2 R; t � 0) is a process which is continuous in t and c�adl�ag in y (Revuz and Yor1999, Theorem VI.1.7). Henceforth we shall work with this process, which satis�esLyt (X) = lim"#0 1" Z t0 1l[y;y+")(Xs) ds; Pb-a.s.By assuming the usual conditions of the �ltration (At)t�0, we can suppose that Lyt (X)is At-measurable for (At)t�0-adapted processes X. The main property we need is thefollowing extended occupation time formula (Revuz and Yor 1999, Ex. VI.1.15):Z T0 f(t;Xt; !) dt = Z �Z T0 f(t; y; !) dtLyt (X)� dy; Pb-a.s. (2.3)where f : R+�R�
! R+ is any measurable function and dtLyt (X) denotes integrationwith respect to the increasing integrator t 7! Lyt (X).We can now introduce the local experiment F2 for which we shall show asymptotic equiv-alence with E1. We briey recall the conditions guaranteeing the existence of a weaksolution of a stochastic di�erential equation with a functional form of the drift.5



2.4 Proposition. Consider the stochastic di�erential equationdXt = b(X; t) dt+ dWt; t 2 [0; T ];with a progressively measurable functional b : C(R+)�R+ ! R. Then a weak solution withsome prescribed initial distribution � exists if jb(f; t)j � K(1+kfk1) holds with a suitableconstant K > 0 for all f 2 C(R+) and t 2 [0; T ]. The law of the solution is obtained by achange of the Wiener measure on (C([0; T ]);BC([0;T ])) with initial distribution � using theGirsanov density ZT (X) = exp�Z T0 b(X; s) dXs � 12 Z T0 b(X; s)2 ds�:Proof. This is the generalisation of Proposition 5.3.6 given in Remark 5.3.8 of Karatzasand Shreve (1991).2.5 Remark. Under suitable ergodicity assumptions, the linear growth condition on thedrift can certainly be dropped and a corresponding uniqueness result will probably hold,but we do not want to deviate further into that direction. We just assume linear growth inthe de�nition of � and work with the solution de�ned in terms of the Girsanov density.2.6 De�nition. We de�ne the local experiment F2 byF2 := F2(b0; �0; T; "; �; �) := �C([0; T ])�RL2(R);BC([0;T ])
 B
L2(R)R ; ( ~QTb )b2�";�;�(b0;�0)�;where ~QTb is uniquely de�ned by~QTb (A�B) := ZAKTb (f;B)RTb (df); A 2 BC([0;T ]); B 2 B
L2(R)R :Here, RTb denotes the law of the weak solution Y of the stochastic di�erential equationdYt = �b(Yt)1lfLYtt (Y )�T�0(Yt)g + b0(Yt)1lfLYtt (Y )>T�0(Yt)g� dt+ dWt; t 2 [0; T ];on the canonical space C([0; T ]) with initial distribution Y0 � �0, given by Proposition2.4. The probability KTb (f; �) is the law of the Gaussian shift experimentdV fx = b(x)(T�0(x)� LxT (f))1=2+ dt+ dBx; x 2 R;where B denotes a two-sided Brownian motion on R independent ofW and Y0 and (A)+ :=max(A; 0).2.7 Remark. In the preceding de�nition we have to choose a measurable version of themapping (f; x) 7! LxT (f) on a set of functions f with RTb -probability one in order to havethe Markov kernel property of KTb . This is certainly possible since by the equivalence ofRTb with the Wiener measure this property is satis�ed when using a c�adl�ag-version in xof the Brownian motion local time LxT (W ) as discussed earlier.Finally, we need to introduce yet another experiment which is constructed so as to beequivalent to E1, but to be de�ned on the same space C([0; T ])�RL2(R) like F2 .6



2.8 De�nition. We de�ne the local experiment E2 byE2 := E2(b0; �0; T; "; �; �) := �C([0; T ])�RL2(R);BC([0;T ])
 B
L2(R)R ; ( ~PTb )b2�";�;�(b0;�0)�;where ~PTb is uniquely de�ned by~PTb (A�B) := ZAKTb0(f;B)PTb (df); A 2 BC([0;T ]); B 2 B
L2(R)R ;with the same notation as for F2 .2.3 Likelihood ratio and equivalent experimentsIn the sequel we shall often use the likelihood ratio or Radon-Nikodym derivative for thelaws of di�usion-type processes on the space C([0; T ]). The next theorem is an adaptationof Theorem 7.7 in Liptser and Shiryaev (2001) to our purposes, see also Theorem IV.4.23in Jacod and Shiryaev (2003).2.9 Theorem. Suppose (X(1)t ; t 2 [0; T ]) and (X(2)t ; t 2 [0; T ]) are scalar di�usion-typeprocesses that satisfydX(i)t = �(i)(X(i); t) dt+ dWt; t 2 [0; T ]; X(i)0 = �(i); i = 1; 2;with progressively measurable functionals �(i) : C([0; T ])� R+ ! R and with a standardWiener process W .Then these processes have mutually absolutely continuous distributions PX(i) on the canon-ical space (C([0; T ]);BC([0;T ])) if for i = 1; 2P�Z T0 (�(i)t (X(i))2 dt <1� = 1 and P�Z T0 (�(1)t � �(2)t )2(X(i)) dt <1� = 1;�(1) and �(2) are independent of W and have mutually absolutely continuous distributionson R.In this case the likelihood ratio �T (X(1);X(2))(X) = dPX(1)dPX(2) (X) is given bydP�(1)dP�(2) (X0) exp�Z T0 (�(1)t � �(2)t )(X) dXt � 12 Z T0 ��(1)t (X)2 � �(2)t (X)2� dt�;which under PX(2) is in law equal todP�(1)dP�(2) (�(2)) exp�Z T0 (�(1)t � �(2)t )(X(2)) dWt � 12 Z T0 (�(1)t � �(2)t )2(X(2)) dt�:2.10 Remark. This representation of the likelihood gives another indication why ourlimiting experiment F1 is natural for the di�usion experiment E1 : the Fisher informationat b0 in functional directions h and h0 is for T !1 of orderIh;h0(b0) = Eb0hZ T0 h(Xt)h0(Xt) dti+ o(T ) = T Z h(x)h0(x)�0(x) dx + o(T ):7



From the de�nition of the Kullback-Leibler divergence (or relative entropy, denoted byKL) the following result is immediate, compare also with the expression for the Hellingerdistance (Jacod and Shiryaev 2003, Theorem IV.4.23).2.11 Corollary. Under the conditions of Theorem 2.9 the Kullback-Leibler divergencebetween the laws of X(1) and X(2) is given byKL(PX(1);PX(2)) = �Ehlog�dP�(1)dP�(2) (�(2))�i+ 12 EhZ T0 (�(1)t � �(2)t )2(X(2)) dti:With these tools at hand we obtain the �rst equivalency results. We only need to knowthat two general dominated experiments G 1 = (
;A; (P�)�2�) and G 2 = (
0;A0; (Q�)�2�)are statistically equivalent i� the laws of the likelihood processes under the dominatingmeasures P0 and Q0 coincide (Strasser 1985, Cor. 25.9):L��dP�dP0 ��2� ���P0� = L��dQ�dQ0 ��2� ���Q0�:2.12 Proposition. The statistical experiments E1 and E2 are equivalent.Proof. By Theorem 2.9 the measures PTb and PTb0 are equivalent for all b; b0 2 � such thatthe likelihood process for E1 is well de�ned. Moreover, in experiment E2 we use the kernelKTb0 which is independent of b such that the Radon-Nikodym derivatived~PTbd~PTb0 (X;V ) = KTb0(X; dV )Pb(dX)KTb0(X; dV )Pb0(dX) = dPTbdPTb0 (X)depends only on the �rst coordinate. Consequently, the likelihood processes coincide.2.13 Proposition. The statistical experiments F1 and F2 are equivalent.Proof. Let us determine the likelihood process for F2 under the dominating measure ~QTb0.We �rst note thatlog� d ~QTbd ~QTb0 (Y; V )� = log�KTb (Y; dV )RTb (dY )KTb0(Y; dV )RTb0(dY )� = log�dKTb (Y; �)dKb0(Y; �)(V )�+ log� dRTbdRTb0 (Y )�holds. Both log-likelihood functions consist of a stochastic integral with respect to aBrownian motion and its quadratic variation term under the dominating measure ~QTb0.Let us calculate up to sets of probability zero the quadratic variation term in the log-likelihood log( dRTbdRTb0 ) given in Theorem 2.9 using the occupation time formula (2.3):Z T0 �b(Yt)1lfLYtt (Y )�T�0(Yt)g + b0(Yt)1lfLYtt (Y )>T�0(Yt)g � b0(Yt)�2 dt= Z T0 (b� b0)2(Yt)1lfLYtt (Y )�T�0(Yt)g dt= Z Z T0 (b� b0)2(y)1lfLyt (Y )�T�0(y)g dtLyt (Y ) dy= Z (b� b0)2(y)min(T�0(y); LyT (Y )) dy:8



Similarly, the quadratic variation term in log( dKTb (Y;�)dKTb0(Y;�)) is given byZ (b� b0)2(x)(T�0(x)� LxT (Y ))+ dx:Putting the two identities together, we have proved that the quadratic variation term inlog( d ~QTbd ~QTb0 ) equals R (b� b0)2(y)T�0(y) dy and is thus deterministic.The preceding calculations remain valid when b is replaced by b0 + �(b � b0) for any� 2 R. Hence using Eb0[ d ~Qbd ~Qb0 ] = 1, we conclude that, under ~Qb0 , the Laplace transformEb0[exp(�M(b � b0))] of the stochastic integral termM(h) := Z T0 h(Yt)1lfLYtt (Y )�T�0(Yt)g dWt + Z h(x)(T�0(x)� LxT (Y ))1=2+ dBx; h 2 L2(R);is equal exp��22 R (b�b0)2(y)T�0(y) dy�. Therefore the random variableM(b�b0) is Gaus-sian with variance T R (b � b0)2�0. The covariation between two such stochastic inte-grals with b replaced by b1 and b2, respectively, is by the occupation time formula againT R (b1� b0)(b2 � b0)�0. Moreover, using the Cram�er-Wold device it then follows that therandom process �M(b� b0); b 2 �";�(b0)� under ~QTb0 is Gaussian with zero mean.Since the likelihood process of the Gaussian shift experiment F1 under QTb0 is given by�exp�T Z (b� b0)(x)p�0(x) dBx � T 22 Z (b� b0)2(x)�0(x) dx�; b 2 �";�(b0)�;the laws of the two likelihood processes coincide and the experiments are equivalent.2.14 Remark. The main idea in the preceding proof was to show that the likelihood ratiosassociated to the experiments E2 and F2 (as random processes indexed by b) have the samelaw. At the �rst look it seems that the experiment generated by the Itô processdYt = �b(Yt)1lft��b(Y )g + b0(Yt)1lft>�b(Y )g� dt+ dWt; t 2 [0; T ];dYt = �T Z (b� b0)2(y)�0(y)dy � Z T0 (b� b0)2(Yt)dt�1=2+ dt+ dWt; t 2 (T; T + 1);�b(Y ) = inf nt � T : Z t0 (b� b0)2(Ys) ds > T Z (b� b0)2(y)�0(y) dyo;Y0 = �0;satis�es the same property and therefore can be used instead of F2 . Unfortunately, thisassertion is false: for a �xed value of b the loglikelihood of the process Y is a Gaussianrandom variable, but if we consider the same loglikelihood as a process indexed by b, it isno longer Gaussian.2.15 Remark. For future reference we list further experiments that are equivalent to F1and F2 for parameters b 2 �";�(b0):dYx = b(x) dx+ T�1=2�0(x)�1=2 dBx; x 2 R;dYx = (b(x)� b0(x))p�0(x) dx+ T�1=2 dBx; x 2 R;dYx = b(F�1�0 (x)) dx+ T�1=2 dBx; x 2 (0; 1);where F�(x) = R x�1 �(y) dy and dB is Gaussian white noise. For the proof it suÆces tocheck that the laws of the likelihood processes coincide.9



2.4 Asymptotic equivalenceBy Corollary 59.6 in Strasser (1985) the Le Cam distance � between experiments de�nedon the same measurable space can be estimated by a uniform bound on the total variationdistance between the corresponding probability measures. An application of this couplingtechnique allows to prove the main theorem on local asymptotic equivalence.2.16 Theorem. If for T ! 1 the asymptotics "(T ) = o(T�1=4), �(T ) = o(T�1=2) and�(T ) = o(1) hold, then the following convergence holds true uniformly over all b0 2 �:limT!1��E1�b0; �0; T; "(T ); �(T ); �(T )�;F1�b0; �0; T; "(T ); �(T ); �(T )�� = 0:Proof. By Propositions 2.12 and 2.13 it suÆces to prove the asymptotic equivalence forthe experiments E2 and F2. Their families of measures ( ~PTb ) and ( ~QTb ) are de�ned on thesame measurable space �C([0; T ])�RL2(R);BC([0;T ])
B
L2(R)R �. We infer (with short-handnotation) �(E1 ;F1) = �(E2 ;F2) � supb2�";�;�(b0;�0)k~PTb � ~QTb kTV ;k�kTV denoting the total variation norm. Since the measures ( ~PTb ) and ( ~QTb ) correspondto di�usion-type processes with di�erent initial distributions, we use the representations(Kallenberg 2002, Theorem 18.10)~PTb = Z ~PTb;x �b(x) dx and ~QTb = Z ~QTb;x �b(x) dxwith the corresponding laws for deterministic initial values x 2 R and infer by the triangleinequality k~PTb � ~QTb kTV � k�b � �0kL1(R) + Z k~PTb;x � ~QTb;xkTV �b(x) dx:Because of �(T )! 0 the �rst term tends to zero uniformly.Since the square of the total variation is bounded by two times the Kullback-Leiblerdivergence (Deuschel and Stroock 1989, Eq. (3.2.25)), it suÆces for the second termto prove that R KL( ~QTb;x; ~PTb;x)�b(x) dx tends to zero uniformly. By Corollary 2.11 thisexpression equals up to the factor 1=2Z Eb;xhZ T0 (b� b0)2(Yt)1lfLYtt (Y )>T�0(Yt)g + Z (b� b0)2(y)(T�0(y)� LyT (Y ))+ dyi�b(x) dx= EbhZ (b� b0)2(y)�(LyT (Y )� T�0(y))+ + (T�0(y)� LyT (Y ))+� dyi= Z (b� b0)2(y)Eb�jLyT (Y )� T�0(y)j�dy:Since we are in the stationary case, a bias-variance decomposition yields in combinationwith Proposition 5.1 from AppendixEb[jLyT (Y )� T�0(y)j] � T j�b(y)� �0(y)j+ (CT�b(y))1=2:10



Hence, we obtain the uniform convergence result over �"(T );�(T );�(T )(b0; �0)EbhZ (b0 � b)2(y)jLyT (Y )� T�0(y)j dyi� Z (b0 � b)2(y)�T j�b(y)� �0(y)j+pCT�b(y)� dy� T�2(T ) +pCT 1=2"2(T ) ���!T!1 0;which proves the assertion.2.17 Corollary. The preceding asymptotic equivalence result holds in particular for thelocal parameter subclass~�";T (b0; �0) := nb 2 � ��� �Z (b� b0)2(y)p�b(y) dy�1=2 � "; k�1=2b � �0��1=2b k1 � T�1=2o;when " = "(T ) = o(T�1=4) for T !1.Proof. Just note that for any b 2 ~�";T (b0; �0)Z (b�b0)2(y)j�b(y)��0(y)j dy � k�1=2b ��0��1=2b k1 Z (b�b0)2(y)p�b(y) dy � "2(T )T�1=2holds and equally R j�b � �0j � T�1=2 R �1=2b . T�1=2 follows uniformly over b by theuniform exponential decay of �b. Therefore ~�"(T );T (b0; �0) � �"(T );�(T );�(T )(b0; �0) followswith �(T ) = "(T )T�1=4 = o(T�1=2) and �(T ) = O(T�1=2) = o(1).2.18 Proposition. The statistical experiment F1(b0; �0; T; "; �; �) is for � = o(T�1=2) andarbitrary "; � > 0 asymptotically equivalent to the experiment induced by observingdYx = (b(x)� b0(x))p�b(x) dx+ T�1=2dBx; x 2 R;where �b is the invariant density corresponding to b, dB is Gaussian white noise on L2(R)and the parameters b belong to the the same neighbourhood �";�;�(b0; �0).Proof. Since the two concerned experiments are de�ned on the same space, the resultfollows if we show that the Kullback-Leibler divergence between the likelihood ratios tendsto zero. This divergence is given by T2 R (b(x)� b0(x))2(p�b(x)�p�0(x))2 dx. Using thegeneral inequality (A � B)2 � jA2 � B2j for A; B > 0, the condition on � yields theresult.3 Globalisation3.1 Main resultA common way of globalising a local equivalence result makes use of the variance stabilis-ing transformation (see Grama and Nussbaum (1998) for the exact de�nition). In our casethis amounts to seeking a functional T whose di�erential DT (b)[h] at the point b = b011



is equal to p�b0 h. Indeed, for such a functional the Kullback-Leibler divergence betweenthe laws of the Gaussian random measures dZx = �b(x)� b0(x)�p�b0(x) dx+ T�1=2dBx,x 2 R and d �Zx = �T (b)(x)� T (b0)(x)� dx+ T�1=2dBx, x 2 R is equal toT2 ZR�T (b)(x)� T (b0)(x)�DT (b0)[b� b0](x)�2dxand, at a heuristic level, tends to zero if the functional T is suÆciently regular. Thisyields the asymptotic equivalence of the two Gaussian shift experiments corresponding toZ and �Z. Furthermore, it permits to infer the asymptotic equivalence of the experimentscharacterised by the observations dZx = b(x)p�b0(x) dx + T�1=2dBx, x 2 R and dZx =T (b)(x) dx+ T�1=2dBx, x 2 R, the latter being independent of b0.Unfortunately, following Delattre and Ho�mann (2002) we can show that such a transfor-mation does not exist. Indeed, let us consider the simple case when b is unknown only ona compact interval I. Then the di�erential of the operator S : L2(I)! L2(I), S(b) = p�bat the point h 2 L2(I) is obviously given byDS(b)[h] = lim"!0 p�b+"h �p�b" ;where the convergence is understood in the mean square sense. We �ndDS(b)[h](x) =p�b(x)ZI h(y)�Fb(y)� 1lfy�xg� dy; x 2 I;where Fb is the distribution function corresponding to the invariant density �b. Therefore,the equality DT (b)[h1] = h1p�b = h1S(b) would imply that T is twice continuouslydi�erentiable and D�DT (b)[h1]�[h2] = D�DT (b)[h2]�[h1] for any h1; h2 2 L2(I). This lastequality can be rewritten in the form h1DS(b)[h2] = h2DS(b)[h1]; h1; h2 2 L2(I), which isevidently not true. This contradiction results essentially from the nonlocal character of themapping S. This indicates why the global asymptotic equivalence with a Gaussian shiftexperiment of the form dZx = T (b)(x) dx+ T�1=2dBx might be impossible to establish.Nevertheless, we give below an equivalence result which is global and involves a mixedGaussian white noise experiment. The main idea is to replace in the Gaussian shift exper-iment dZx = �b(x)� b0(x)�p�b(x)dx + T�1=2dBx the invariant density �b by a randomapproximation, which is independent of B and has the advantage of being observable.3.1 De�nition. The parameter class �0 = �0(�;L;m; b0; I) consists of drift functionsb 2 � satisfyingb(x) = b0(x); 8x 62 I; jb(x)� b(y)j � Ljx� yj�; 8x; y 2 I;where I = [�D;D] � R is a compact interval, b0 is a �xed known function and � 2 (0; 1).3.2 Remark. Let us briey explain why we restrict to the case when b(x) is known forx 2 Rn I. Since the variance under PTb of the local time LxT �LxS is of order (T �S)�b(x),condition (3.2) requires the existence of an estimator �bS(T ) such thatlimT!1ZREbh�b(x)� �bS(T )(x)�2ip(T � S(T ))�b(x) dx = 0 (3.1)12



uniformly in b. Standard arguments yield that the Mean Squared Error (MSE) of estimat-ing b(x) by a kernel method with bandwidth h is of order h2�+(S(T )h�b(x))�1. Thereforethe optimal choice of a bandwidth is h = (S(T )�b(x))�1=(2�+1). Even for this oracle choiceof h the MSE is of order (S(T )�b(x))�2�=(2�+1) and the integral (3.1) is not �nite for� > 1=2. Fundamentally, this obstruction is due to the relatively slow decay of the vari-ance of local time compared to its expectation: limjyj!1pVar[LyT (Y )]=E[LyT (Y )] =1.Note that although the functions in � are locally Lipschitz continuous, the H�older restric-tion of order � is of di�erent nature: it is uniform over x 2 I and over b 2 �0.3.3 De�nition. For any ' > 0 we denote by bQT;'b the measure induced by the process(Z;U) on the canonical space RL2(I) � C(I), where(dZx = b(x)Ux dx+ T�1=2dBx; x 2 I;Ux =p�b(x) + '( ~Bx + �); x 2 I:with (B; ~B) being a two dimensional Brownian motion and � = '�1U0 � N (0; 1) arandom variable independent of (B; ~B). The accompanying experiment is then H ('; T ) =�RL2(I) � C(I);B
L2(I)R 
 BC(I); fbQT;'b gb2�0�.3.4 De�nition. The statistical experiment de�ned by observing a sample path of thestationary di�usion process (1.1), when the parameter set is �0, is denoted by E(T ).We can now announce the main theorem of this section, whose proof is deferred to theend of the section.3.5 Theorem. Let b0 2 � and �0 be de�ned as above. If � > 1=2, then the statisticalexperiments E(T ) and H (T�1=4; T ) are asymptotically equivalent as T !1.3.6 Remark. The inspection of the proof of Theorem 3.5, combined with the fact that thetotal variation is bounded by two times the square root of the Kullback-Leibler divergence,shows that the �-distance between the experiments E(T ) and H ('; T ) tends to zero at therate T 14� �2�+1+'T 14�+2+'�1T� �2�+1 . Therefore the rate-optimal choice of ' is '(T ) = T�1=4and we have �(E(T );H (T�1=4; T )) � CT (1=2��)=(4�+2).3.2 De�nition of experimentsWe start by introducing some probability measures that will be repeatedly used in thissection. Some have already been de�ned in the previous section, but for present purposeswe need to specify their dependence not only on b, but also on other parameters. In thissection, the substitution of the subscript b of any probability measure by 0 indicates thatwe consider that measure for b identically equal to zero, e.g. bQT;'0 = bQT;'b ��b�0, but themeaning of �0 has not changed.Let QTb;�0 denote the law of the Gaussian shift dZx = b(x)p�0(x) dx+ T�1=2 dBx on thecanonical space RL2(R). The log-likelihood of this family of measures is de�ned bylQT (b; �0; Z) = log�dQTb;�0dQT0;�0 (Z)� = pT ZRb(x)p�0(x) dZx � T2 ZRb2(x)�0(x) dx:13



Let ~QTb;b0;y0;�0 denote the law of the process (Y; V ) given by De�nition 2.6 with initialcondition Y0 = y0. The log-likelihood of this family of measures is~lQT (b; �0; Y; V ) = log�d ~QTb;b0;y0;�0d ~QT0;b0;y0;�0 (Y; V )�= Z T0 b(Yt)1lfLYtt (Y )�T�0(Yt)gdYt + ZRb(x)�T�0(t)� LxT (Y )�1=2+ dVx � T2 ZRb2(x)�0(x) dx:It is noteworthy that this log-likelihood does not depend on y0 and b0.Recall that PTb;x and ~PTb;x are de�ned as in De�nitions 2.3 and 2.8, except that the ini-tial condition is X0 = x. The log-likelihoods of the families of measures (PTb;x0)b2�0 and( ~PTb;x0)b2�0 will be denoted by lPT (b;X) and ~lPT (b;X), respectively. Note that although ~Pb;x0is a measure on the product space C([0; T ])�RL2(R), the log-likelihood ~lPT (b;X) dependsonly on the �rst component.3.7 De�nition. Let ~E = �C([0; T ])�RL2(R);BC([0;T ])
 BL2(R)R ; �~PTb �b2�0�.Let us �x S in the interval (0; T ) and de�ne the compound experiment G = G (S; T;�0)as follows: we observe a sample path of the stationary di�usion process X with driftb up to time S, we compute an estimator ��S(�) = ��S(X; �) 2 C(R) of the invariantdensity �b, and then we observe a realisation of the conditionally Gaussian process dZx =b(x)p��S(x) dx+(T�S)�1=2dBx, x 2 R. In order to avoid subtle questions of measurability,we assume that ��S takes its values in a countable set M = f�1; �2; : : :g � C(R).3.8 De�nition. The experiment G is de�ned rigorously asG (S; T ) := �C([0; S])�RL2(I);BC([0;S]) 
B
L2(I)R ; (RS;Tb )b2�0�;where RS;Tb is the measure characterised byRS;Tb (A�B) = 1Xi=1 QT�Sb;�i (B)PSb (A \ f��S = �ig); A 2 BC([0;S]); B 2 B
L2(I)R :3.3 Asymptotic resultsOur program in this section is as follows. We split the di�usion path observed up totime T into two parts: a path observed over [0; S] and another over [S; T ]. We provethat replacing the second path by a conditionally (to the �rst path) Gaussian observationwe get an asymptotically equivalent experiment. Then we substitute this conditionallyGaussian experiment by another one not involving anymore the observed path over [0; S].In the last step we apply this method in the converse direction, that is, making use ofestimators based on the Gaussian observations, we replace the di�usion experiment over[0; S] by a conditionally Gaussian one.One method of carrying out this program consists in reducing the global equivalenceproblem to a local one via Lemma 9.3 of Nussbaum (1996), or its extension of Lemma1, Delattre and Ho�mann (2002). However, this requires a local asymptotic equivalence14



result between the di�usion starting at a �xed point x and a Gaussian shift, uniformlyin x. Achieving the result by this technique seems to be more technical than what we dobelow.3.9 Proposition. Let S = S(T ) 2 (0; T ) be such that for some estimator �bS of b basedon the observations (Xt; t 2 [0; S]) and taking values in a countable set B = fb1; b2; : : :gthe following condition is satis�ed:limT!1 supb2�0EbhZR(b(x)��bS(T )(x))2jLxT (X)�LxS(T )(X)� ��S(T )(x)(T �S(T ))j dxi = 0: (3.2)Then the experiments E(T ) and G (S(T ); T ) are asymptotically equivalent as T tends toin�nity.Proof. To prove this result we introduce an auxiliary compound experiment ~G . It is gen-erated by the observation of a sample path of a stationary di�usion with drift b up totime S = S(T ) and an Itô process similar to the one of De�nition 2.6, except that �0 andb0 are replaced by the estimators ��S and �bS respectively.More precisely, the statistical experiment ~G = ~G (T ) is de�ned on the space �C([0; T ])�RL2(R);BC([0;T ])
B
L2(R)R � by the family of probability measures~RS;Tb (A�B) = 1Xi;j=1ZA\f(��S;�bS)=(�i;bj)g ~QT�Sb;bj ;f(S);�i(B)PSb (df);for any A 2 BC([0;S]); B 2 BC([S;T ]) 
 B
L2(R)R . The above integral is well de�ned since themapping y 7! ~QT�Sb;bj ;y;�i(B) is measurable (in fact, it is continuous).It is easy to check (see the proof of Proposition 2.13 for similar calculations) that thelog-likelihood log dRS;TbdRS;T0 (X;Z) of the family of measures fRS;Tb gb2�0 is given bylRT;S(b; Z;X) = lQT�S(b; ��S(X; �); Z) + lPS (b;X); (X;Z) 2 C([0; S])�RL2(R):Likewise, the log-likelihood of the family of measures f ~RS;Tb gb2�0 is given by~lRT;S(b; Y; V;X) = ~lQT�S(b; ��S(X; �); Y; V ) + lPS (b;X);where (Y; V ) 2 C([S; T ])�RL2(R) and X 2 C([0; S]). We have proved in Proposition 2.13,that L�(lQT�S(b; �i; Z))b2�0��QT�S0;�i � = L�(~lQT�S(b; �i; Y; V ))b2�0�� ~QT�S0;bj;y;�i� for any j 2 N andfor any y 2 R. This impliesL�(lQT�S(b; �i; Z))b2�0��QT�S0;��S(f)� = L�(~lQT�S(b; �i; Y; V ))b2�0�� ~QT�S0;�bS(f);f(S);��S(f)�for any f 2 C([0; S]), and consequentlyL�(lRT;S(b; Z;X))b2�0��RT;S0 � = L�(~lRT;S(b; Y; V;X))b2�0�� ~RT;S0 �:We infer that the experiments G and ~G are equivalent.15



In order to show �(E;G ) ! 0, it suÆces to prove �(~E ; ~G )! 0 because the experimentsE and ~E are also equivalent: their likelihood ratios coincide (cf. Proposition 2.12). Theexperiments ~E and ~G are de�ned on the same probability space and the Kullback-Leiblerdivergence between the respective laws is (see Corollary 2.11)12 EbhZ TS (b(Xt)� �bS(Xt))21lfLXtt (X)�LXtS (X)>��S(Xt)(T�S)g dt+ ZR�b(x)� �bS(x)�2���S(x)(T � S)� (LxT (X)� LxS(X)�+dxi= 12 EbhZR(b(x)� �bS(x))2jLxT (X)� LxS(X)� ��S(x)(T � S)j dxi:By condition (3.2), this expression tends to zero uniformly in b 2 �0 when T !1. Thiscompletes the proof of the proposition.To pursue the globalisation, we replace the Gaussian shift experimentdZx = b(x)q��S(T )(x) dx+ (T � S(T ))�1=2dBx (3.3)by a simple experiment not involving the estimators �bS(T ) and ��S(T ). Note also that sinceb is known outside I, the observations (Zx; x 62 I) of the Gaussian shift experiment arevoid (they do not contain any information on the unknown parameter b(x); x 2 I).3.10 De�nition. The experiment G 1 = G 1(S; T ) is for S 2 (0; T ) de�ned on C([0; S])�RL2(I) � C(I) by the family of product measures bRS;Tb (A � B) = PSb (A) bQT�S;'(T )b (B);for any A 2 BC([0;S]) and for any B 2 B
L2(I)R 
 BC(I). In other words, G 1 is induced byobserving (dZx = b(x)Ux dx + (T � S)�1=2dBx; x 2 I;Ux =p�b(x) + '(T ) ( ~Bx + �); x 2 I; (3.4)where B, ~B are independent Brownian motions and � � N(0; 1) is independent of (B; ~B).3.11 Proposition. Assume that the estimators ��S are continuously di�erentiable on Iand satisfy the conditions of Proposition 3.9. Moreover, let for S(T ) 2 (0; T ), '(T ) > 0the assumptionslimT!1'(T )�2 supb2�0 ZI Ebh�(p�b(x) )0 � (q��S(T )(x))0�2idx = 0;limT!1'(T )�2 supb2�0Ebh�p�b(0) �q��S(T )(0)�2i = 0;limT!1'(T )2(T � S(T )) supb2�0 ZI Ebh��bS(T )(x)� b(x)�2i dx = 0be satis�ed. Then the statistical experiments G (S(T ); T ) and G 1(S(T ); T ) are asymptoti-cally equivalent as T tends to in�nity.Proof. In what follows we consecutively replace experiments by (asymptotically) equiva-lent ones until we reach the experiment G 1 .16



Recall that G is de�ned by observing a di�usion path up to time S and a realisation ofthe Gaussian process Z given by (3.3). If we replace in G the observations Z bydZx = �b(x)� �bS(x)�p��S(x) dx + (T � S)�1=2dBx; x 2 I; (3.5)we shall obtain an equivalent experiment, since it has exactly the same likelihood ratio.Then we replace these observations bydZx = �b(x)� �bS(x)�p�b(x) dx+ (T � S)�1=2dBx; x 2 I; (3.6)in view of the fact that the Kullback-Leibler divergence between the corresponding mea-sures is up to some multiplicative constant equal to(T � S)ZI Ebh�b(x)� �bS(x)�2�p�b(x)�p��S(x)�2i dx;which tends to zero as T ! 1 uniformly in b 2 �0, according to the assumption ofProposition 3.9 and the inequality (p�b � p��S)2 � j�b � ��S j. It is evident that thestatistical experiment8><>:dZx = �b(x)� �bS(x)�p�b(x) dx+ (T � S)�1=2dBx; x 2 I;dUx = (p��S(x))0dx+ 'd ~Bx; x 2 I;U0 =p��S(0) + ' �: (3.7)with independent Brownian motion ~B and � � N (0; 1) is equivalent to (3.6), since thesample paths of the process U do not contain any information on b. The �rst two assump-tions of the proposition yield the equivalence of experiment (3.7) and8><>:dZx = �b(x)� �bS(x)�p�b(x) dx+ (T � S)�1=2dBx; x 2 I;dUx = (p�b(x))0dx+ 'd ~Bx; x 2 I;U0 =p�b(0) + ' �:An equivalent form of this experiment is(dZx = �b(x)� �bS(x)�p�b(x) dx+ (T � S)�1=2dBx; x 2 I;Ux =p�b(x) + ' ( ~Bx + �); x 2 I: (3.8)Computing the Kullback-Leibler divergence and using the third assumption of the propo-sition, one can easily check that experiment (3.8) is asymptotically equivalent to theexperiment (dZx = �b(x)� �bS(x)�Ux dx+ (T � S)�1=2dBx; x 2 I;Ux =p�b(x) + ' ( ~Bx + �); x 2 I: (3.9)This completes the proof of the proposition, since the laws of likelihood processes of theexperiments (3.9) and (3.4) coincide.Having obtained the asymptotic equivalence between E and G 1, we aim to replace the �rstpart of the compound experiment G 1, which is the ergodic di�usion, by a conditionallyGaussian experiment. To do so, we assume that b�T;S(T ) and bbT;S(T ) are estimators of �b andb based on the observations (Zx; Ux; x 2 I) and taking their values in countable subsets ofC(I). We denote by bET�S;'b the expectation with respect to the measure bQT�S;'b inducedby the processes in (3.4). 17



3.12 Proposition. Let ' = '(T ) and S = S(T ) be such that the assumptionslimT!1 supb2�0 bET�S;'b hZI �b(x)�bbT;S(x)�2�pS�b(x) + Sj�b(x)� b�T;S(x)j�dxi = 0; (3.10)limT!1 supb2�0 bET�S;'b hZR���b(x)� b�T;S(x)�� dxi = 0; (3.11)limT!1 supb2�0 S bET�S;'b hZI �b(x)�bbT;S(x)�2�qb�T;S(x)� Ux�2 dxi = 0; (3.12)are ful�lled. Then the statistical experiments G 1(S(T ); T ) and H ('(T ); T ) are asymptoti-cally equivalent as T tends to in�nity.Proof. Recall that the experiment G 1 is characterised by the observations (X;Z(1); U),where X is de�ned by (1.1) and (Z(1); U) are as in (3.4) with B replaced by B(1).Let G 2 be the statistical experiment de�ned by the observations (Y; V; Z(1); U), where Z(1)and U are as above, Y0 � b�T;S and(dYt = �b(Yt)1lfLYtt (Y )�Sb�T;S (Yt)g +bbT;S(Yt)1lfLYtt (Y )>Sb�T;S (Yt)g� dt+ dWt; t 2 [0; S];dVx = b(x)�Sb�T;S(x)� LxS(Y )�1=2+ dx+ dB 0x; x 2 I:In these formulae, we assume that bbT;S(x) is equal to b0(x) = b(x) for any x 62 I and theBrownian motions W; B 0 are mutually independent and independent of (B(1); ~B; �).The total variation distance between the laws describing the experiments G 1 and G 2 iscontrolled by (see the proof of Theorem 2.16)bET�S;'b hZR(b(x)�bbT;S(x))2EbjLxS(X) � Sb�T;S(x)j dxi+ bET�S;'b kb�T;S � �bkL1 :From Proposition 5.1 we know Varb(LxS) � CS�b(x). By the Cauchy-Schwarz inequal-ity EbjLxS(X) � S(T )�b(x)j � CpS�b(x). So assumptions (3.10) and (3.11) yield theasymptotic equivalence of G 1 and G 2 .Repeating the same arguments as those used in Proposition 3.9 for establishing the equiv-alence between G and G 1 , we can prove that the experiment G 2 is equivalent to8><>:dZ(2)x = �b(x)�bbT;S(x)�pb�T;S(x) dx+ S�1=2dB(2)x ; x 2 I;dZ(1)x = b(x)Ux dx+ (T � S)�1=2dB(1)x ; x 2 I;Ux =p�b(x) + '(T ) ( ~Bx + �); x 2 I; (3.13)where B(2) is a Brownian motion independent of (B(1); ~B; �). Once again considering theKullback-Leibler divergence, one checks that the statistical experiment (3.13) is asymp-totically equivalent to8><>:dZ(2)x = �b(x)�bbT;S(x)�Ux dx+ S�1=2dB(2)x ; x 2 I;dZ(1)x = b(x)Ux dx + (T � S)�1=2dB(1)x ; x 2 I;Ux =p�b(x) + '(T ) ( ~Bx + �); x 2 I;18



provided that (3.12) is satis�ed. This last experiment, in turn, is equivalent to8><>:dZ(2)x = b(x)Ux dx+ S�1=2dB(2)x ; x 2 I;dZ(1)x = b(x)Ux dx+ (T � S)�1=2dB(1)x ; x 2 I;Ux =p�b(x) + '(T ) ( ~Bx + �); x 2 I; (3.14)since their likelihood functions coincide. The same argument yields the equivalence of(3.14) and H ('; T ) from De�nition 3.3, with Bx = �pS B(2)x + pT � S B(1)x �=pT andZx = �S Z(2)x + (T � S)Z(1)x �=T .3.4 Proof of Theorem 3.5First of all, note that under the conditions imposed on b and b0, all the stochastic dif-ferential equations introduced in previous sections have a weak solution. To establish theresult of the theorem, it suÆces to check that for some S(T ) 2 [0; T ] the conditions ofPropositions 3.9-3.12 are ful�lled with '(T ) = T�1=4.Set S(T ) = T=2. SinceEb(LxT�LxS(T )) = (T�S(T ))�b(x) and the variance of the local timeat x between time instants S(T ) and T is bounded by C(T � S(T ))�b(x), the estimators�bS(T ) and ��S(T ) proposed in Appendix satisfy (3.2) as soon as S(T )�2�=(2�+1)�pT � S(T )+(T � S(T ))=pS(T )� tends to zero. This convergence holds (for S(T ) = T=2) if and onlyif � > 1=2.To verify the conditions of Proposition 3.11 we use the obvious relation (p�b(x))0 =b(x)p�b(x) and the bounds (5.3)-(5.6). We infer that the desired conditions are ful�lledif '(T )�2T�2�=(2�+1) and T 1�2�=(2�+1)'(T )2 tend to zero. This is obviously the case for'(T )2 = T�1=2 and � > 1=2. The veri�cation of the conditions of Proposition 3.12 isachieved similarly using Lemma 5.5.4 Extensions and generalisations4.1 General di�usion coeÆcientLet us consider the model with non-constant di�usion coeÆcientdXt = b(Xt)dt+ �(Xt) dWt; t 2 [0; T ]: (4.1)If we suppose continuous-time observations, �2(x) is perfectly identi�able at all points xwhere the local time LxT (X) is nonzero. Let us for simplicity assume that the di�usioncoeÆcient � is known everywhere, satis�es �� � �(x) � ��, x 2 R, for some constants�� � �� > 0 and that � is di�erentiable with a continuous bounded derivative. Then thestochastic di�erential equation (4.1) has for any initial value a unique strong solution andfor all b 2 � a stationary solution with invariant density�b;�(x) = Cb;��(x)�2 exp�Z x0 2b(y)�2(y) dy�; x 2 R;19



where Cb;� > 0 is a normalising constant.Since � is known, the experiment of observing�Xt := H(Xt); t 2 [0; T ]; with H(x) = Z x0 1�(v) dv;is clearly equivalent to that of observing directly (Xt; t 2 [0; T ]), the stationary solutionof (4.1). By Itô's formula we infer that �X is the stationary solution of the equationd �Xt = �b( �Xt) dt+ dWt; t 2 [0; T ]; with �b(x) := � b� � �02 ��G�1(x)�:By transformation, the invariant density ��b of �X is given by (�b;� Æ G�1)(G�1)0. Apply-ing Theorem 2.16, we conclude that the experiment of observing (4.1) is asymptoticallyequivalent to the Gaussian white noise experimentdZx = � b� � �02 ��G�1(x)�q�b0;��G�1(x)���G�1(x)� dx+ T�1=2dBx; x 2 R;for shrinking neighbourhoods as in Theorem 2.16 in terms of the transformed quantities �b,�b0 and ��b0 . By regarding the likelihood process, it follows that observing dZ is equivalentto observing d ~Zx = � b� � �02 �(x)q�b0;�(x) dx+ T�1=2dBx; x 2 R;which in turn is equivalent to observingdVx = b(x)q�b0;�(x) dx+ T�1=2�(x)dBx; x 2 R :The asymptotic equivalence with the latter Gaussian white noise experiment can be ex-plained intuitively by adopting the viewpoint of regression. The random design followsthe density �b0;�, while the observation noise at the point x has level T�1=2�(x). Finally,note that under our rather restrictive assumptions on � the same globalisation procedureas for constant di�usion coeÆcients can be applied.4.2 Time discretisationWe show that the di�usion experiment based on continuous-time observations is asymptot-ically equivalent to its discrete counterpart, provided that the sampling distance decreasesat the appropriate rate. Let P(T ) = f0 = t0 < t1 < : : : < tN(T ) = Tg be a grid on theinterval [0; T ]. Set di = ti+1 � ti and jP(T )j = maxi=0;:::;N(T )�1 di.We consider the autoregression experiment de�ned by observing (y1; : : : ; yN) fromyi+1 = yi + di b(yi) +pdi �i; i = 0; : : : ; N � 1; y0 � �b; (4.2)where �i are i. i. d. with �1 � N(0; 1) and independent of y0. We introduce the functionbP : C([0; T ])� [0; T ]! R; bP(x; t) = N�1Xi=0 b(x(ti))1l[ti;ti+1[(t):20



For b 2 � this function is progressively measurable and the stochastic di�erential equationdXPt = bP(XP ; t) dt+ dWt; t 2 [0; T ]; XP0 � �b; (4.3)has a weak solution de�ned by Proposition 2.4. One checks that the laws of the likelihoodprocesses of the experiments (4.2) and (4.3) coincide, therefore these experiments areequivalent. According to Corollary 2.11, the �-distance between the stationary di�usionexperiment (1.1) and the experiment (4.3) tends to zero ifEb�N(T )�1Xi=0 Z ti+1ti �b(Xt)� b(Xti)�2dt� (4.4)tends to zero uniformly in b. If we assume that b is H�older continuous with exponent �,then (4.4) is up to a multiplicative constant bounded byN(T )�1Xi=0 Z ti+1ti Eb�(Xt �Xti)2��dt � N(T )�1Xi=0 Z ti+1ti 4Ebh�Z tti b(Xs) ds�2� + (Wt �Wti)2�idt:Using the linear growth condition and the boundedness of all moments of Xt under Pbuniformly over b, one �nds that (4.4) tends to zero as soon asPN�1i=0 d�+1i � T jP(T )j� ! 0.We infer that if the mesh size jP(T )j satis�es T jP(T )j� ! 0 as T !1, then the statisticalexperiments (1.1), (4.3) and (4.2) are asymptotically equivalent. Since (XPt0 ; : : : ;XPtN ) is asuÆcient statistics in the experiment (4.3), the asymptotic equivalence between (4.3) and(1.1) entails the asymptotic suÆciency of (Xt0 ; : : : ;XtN ) in (1.1). As we have already men-tioned in Introduction, analogous results for the di�usion experiment with asymptoticallyvanishing di�usion coeÆcient are obtained in Milstein and Nussbaum (1998).Moreover, since we have shown that the total variation distance betweenPTb and the law ofXP on �C([0; T ]);BC([0;T ])� tends to zero, the same holds true for the restrictions of thesemeasures to the sub-�-algebra generated by the discrete observations at time instants ti,i = 0; : : : ; N(T ). This implies that the experiments de�ned by observing (XPt0 ; : : : ;XPtN )and (Xt0; : : : ;XtN ) are asymptotically equivalent. Since observing (XPt0 ; : : : ;XPtN ) is equiv-alent to observing the whole path XP , and (4.3) is asymptotically equivalent to (1.1), weget the asymptotic equivalence of the discretely sampled di�usion experiment and thedi�usion experiment based on continuous-time observations, as soon as T jP(T )j� ! 0.Note that, although these kinds of discretisation results can be expected, Brown, Wang,and Zhao (2002) have discovered and studied surprising results on the nonequivalence inthe parametric setup for GARCH time series and their di�usion limits in the context ofstochastic volatility models.4.3 A less informative experimentWe present an accompanying sequence of simple white noise experiments that is globallyless informative for the asymptotics T ! 1 than our di�usion experiment. Let us �rstconsider the local experimentF<1 := F<1 (b0; T; "; �; �) := (RL2(R);B
L2(R)R ; (QT;<b )b2�";�;�(b0;�b0));21



where QT;<b denotes the law of the Gaussian shift experimentdZ<x = b(x)p��(x) dx+ T�1=2 dBx; x 2 R; (4.5)with a Brownian motion B on the real line and a measurable function �� : R! [0;1)satisfying ��(x) � �b0(x) for all x 2 R, b 2 �";�;�(b0; �b0). Hence, F1 with the centre(b0; �b0) and F<1 are de�ned on the same measurable space and only di�er in the choice of�b0 and ��, respectively.We claim that the experiment F<1 is less informative than F1. In fact, it suÆces to constructa Markov kernel K : RL2(R)�B
L2(R)R ! [0; 1] such that QT;<b = K 
 QTb holds for allb 2 �";�;�(b0; �b0), see Section 49 in Strasser (1985) or Theorem 2.2 in Le Cam and Yang(2000). Hence, using �� � �b0 and setting for ' 2 RL2(R)G'(f) := '�� ���b0 �1=2f�+ Z T�1=2�1 � ��(x)�b0(x)�1=2f(x) d �Bxwith a Brownian motion �B on R, we �nd that G' is a random functional on L2(R) andwe de�ne the Markov kernel K(';A) := P �B(G' 2 A), where P �B denotes the law of theBrownian motion �B. Using short-hand notation for the functionals, we obtainZ K(';A)QTb (d') = QTb 
P �B��� ���b0 �1=2 dZ< + T�1=2�1 � ���b0 �1=2 d �B� 2 A�= PB 
P �B��b�1=2� dx+ T�1=2�� ���b0 �1=2dB + �1� ���b0 �1=2d �B�� 2 A�= P ~B��b�1=2� dx+ T�1=2d ~B� 2 A�with a new Brownian motion ~B. Consequently, F<1 is a randomisation of F1 and thusF1 is more informative than F<1 . Under the asymptotics of Theorem 2.16, we concludeby transitivity that the localised di�usion experiment E1 is asymptotically also moreinformative than F<1 uniformly over b0 2 �, which means in terms of the Le Cam-de�ciencyÆ limT!1 supb02�0 Æ�E1(b0; �b0; T; "(T ); �(T ); �(T ));F<1 (b0; �b0 ; T; "(T )�(T ); �(T ))�= 0:Of course, for the uniformity in the last result we have to assume �� � �b0 for all b0 2 �0,which we shall also do subsequently.In a second step, we take advantage of the fact that the laws in F<1 do not depend anymoreon the centre of localisation so that we can apply the usual globalisation procedure, cf.Lemma 9.3 and its proof in Nussbaum (1996). Let us denote by F< the global whitenoise experiment with the law in (4.5) and with the parameter class �0 from De�nition3.1. We claim that F< is asymptotically less informative than E. Following the proof ofProposition 3.9, we use an estimator �bT=2 from the observation of the di�usion experimentuntil time T=2 such that the local neighbourhood is attained asymptotically:limT!1 infb2�0PT=2b ��bT=2 2 �"(T );�(T );�(T )(b)� = 1:Therefore the di�usion experiment E(T ) is asymptotically more informative than observ-ing (dXt = b(Xt) dt+ dWt; t 2 [0; T=2];dZ<x = b(x)p��(x) dx+ (T=2)�1=2 dBx; x 2 R :22



As in Section 5.3, we construct estimators for b based on the observation of Z< and inferlike in Proposition 3.12 that the latter experiment is more informative than F< .As an application, the result that the global di�usion experiment E is asymptotically moreinformative than the white noise experimentF< can be used to infer optimal minimax ratesfor the drift estimation under an Lp(I)-loss function and with a standard nonparametricclass of prescribed regularity contained in �0. Choosing �� = infb2�0 �b, we observe thaton the compact interval I the function �� is strictly positive such that it can be boundedfrom above and below by a constant factor times some density �b on I. Therefore, whenusing the local equivalence result for the asymptotic lower bound (cf. the methodologyin Korostelev and Tsybakov (1993)) and the global de�ciency result for the asymptoticupper bound, the risk bounds will merely di�er by a constant factor. We suspect that fora pointwise loss function the asymptotic de�ciency yields in many cases even the exactasymptotic constants, provided the lower bound is proved locally around the parameterb0 ful�lling �b0(x0) = ��(x0) for the point x0 under consideration. Another possibility todetermine exact asymptotic constants is to use the compound experiment G and to followthe methodology developed by Nussbaum (1996) for the Pinsker constant.5 Appendix5.1 Variance of local time5.1 Proposition. There is a constant C > 0 only depending on the class � such thatV arPb[LyT (Y )] � C�b(y):Proof. For simplicity we shall omit the index b everywhere in the proof. Let us intro-duce the transition density p(x; y; t) = P(Yt 2 dy jY0 = x) and the Markov transitionoperators Ptf(x) = R f(y)p(x; y; t)dy for functions f in the space L2(�) of functionssquare-integrable with respect to the invariant measure. Its generator L has in our casethe divergence form representation Lf = 12��1(�f 0)0 for f in the domain D(L) of L, seeRevuz and Yor (1999) for further details. We �ndVar(LyT (Y )) = Z T0 Z T0 p(y; y; jt� sj)�(y) dt ds� T 2�(y)2= Z T0 2(T � u)(p(y; y;u)�(y)� �(y)2) du� 2T�(y)Z T0 (p(y; y;u)� �(u)) du:In order to evaluate the integral we make use of the formula for operator semigroups inBanach spaces (Engel and Nagel 2000, Lemma II.1.3)Z T0 PtLf dt = PTf � f; 8 f 2 D(L): (5.1)23



Let us introduce the distribution function F�(x) := R x�1 �(�) d� andGy(x) := Z xy 2�(y)�(u) �1l[y;1)(u)� F�(u)� du:Then formally LGy(x) = Æy(x)� �(y) holds and thusZ T0 p(x; y; t)� �(y) dt = Z T0 PtLGy(x) dt = PTGy(x)�Gy(x): (5.2)This formula can be justi�ed by using a smoothing function h 2 C1(R) with h � 0,R h = 1 and compact support and then settingGy;"(x) := Z xy Z u�1 2�(�)�(z) �"�1h�"�1(y � �)� � Z "�1h�"�1(y � v)��(v) dv� d� du:Then Gy;" lies in the domain of L and satis�esLGy;"(x) = "�1h�"�1(y � x)�� Z "�1h�"�1(y � v)��(v) dv:Applying formula (5.1) to Gy;" and then letting "! 0 gives the representation (5.2).By the contraction property of (Pt)t�0 we �ndlimT!1 Z T0 p(x; y; t)� �(y) dt = E�[Gy(X0)]�Gy(x):Now a simple calculation yieldslimT!1 Z T0 p(y; y; t)� �(y) dt = Z 2�(y)�(u) �(1� F�(u))21l[y;1)(u) + F�(u)21l(�1;y](u)� du:The conditions on the class � ensuresupx�0 F�(x)�(x) � K and supx�0 1� F�(x)�(x) � Kwith the constant K = 12 + exp(2CA(1+A))2C(1+A) . Using this estimate we obtain for y � 0Z 1y 2�(y)�(u) (1 � F�(u))2 du � K2 Z 1y 2�(y)�(u) du � 2K2�(y);Z y�1 2�(y)�(u) (F�(u))2 du � Z 0�1 2K2�(y)�(u) du + Z y0 2�(y)�(u) du� 2K2�(y) + 2Z y0 exp�2Z yu b(v) dv�du:According to the conditions in (1.2), in each estimate the right hand side is uniformlybounded over �. We apply the symmetric argument for y � 0. Finally, we observe thatpb(y; y; t)� �b(y) � 0 follows for all y 2 R and t > 0 from the fact that pb(x; y; t)� �b(y)is the continuous kernel of the nonnegative operator Pt(Id��0) with �0f = E�[f(X0)]on L2(�). 24



5.2 Estimators in the model of ergodic di�usionLetX = fXt; t 2 [0; S]g be a sample path of a stationary di�usion process satisfying (1.1).Let K : R ! R be a smooth kernel function with support in [�1; 1]. We shall use thestandard kernel estimator of �b de�ned as follows:e�S(x) = 1ShS Z S0 K�x�XthS � dt; x 2 R;where hS = S�1=(2�+1) is the bandwidth leading to a rate optimal estimator. It is evidentthat this estimator is di�erentiable and its derivative equals:e�0S(x) = 1Sh2S Z S0 K 0�x�XthS � dt; x 2 R:5.2 Lemma. There exist some positive constants m and L1 such thatm � �b(x) � m�1; j�0b(x)� �0b(y)j � L1jx� yj�; 8x; y 2 I; 8 b 2 �0:Proof. Use the uniform boundedness of b on I and the formula �0b(x) = 2b(x)�b(x).5.3 Lemma. For any real p > 1, there is some positive constant C1 depending only on�;L1;m; p such that for any x 2 I we haveEb��e�S(x)� �b(x)�2p� � C1S�p; Eb��e�0S(x)� �0b(x)�2p� � C1S�2p�=(2�+1):Proof. Using standard arguments, the bias in both cases can be bounded as follows:��Eb[e�S(x)]� �b(x)�� � Ch�+1S ; ��Eb[e�0S(x)]� �0b(x)�� � Ch�S:Let us evaluate the variance term of e�0S(x):Eb��e�0S(x)�Eb[e�0S(x)]�2p� = S�2ph�4pS Eb��Z S0 hK 0�x�XthS ��EbK 0�x�XthS �i dt�2p�:We introduce the functiongx(u) = 2�b(u) ZRK 0�x� yhS ��b(y)�1lfu>yg � F�(u)� dy:The Itô formula applied to the function R �0 gx(u) du and to the di�usion X yieldsZ XSX0 gx(u) du = Z S0 gx(Xt) dWt + Z S0 �K 0�x�XthS ��EbhK 0�x�XthS �i� dt:This equality combined with the Burkholder-Davis-Gundy inequality (Revuz and Yor1999, Theorem IV.4.1) leads to the estimateEb��e�0S(x)�Eb[e�0S(x)]�2p� � CS�2ph�4pS Eb��Z XS0 gx(u) du�2p +�Z S0 g2x(Xt) dt�p�:25



The integration by parts formula yieldsjgx(u)j = 2hS�b(u)���� Z 1�1K 0(v)�b(x� vhS)�1lfu>x�vhSg � F�(u)�dv����� 2hS���K�x� uhS ����+ 2h2S�b(u)���� Z 1�1K(v)�0b(x� vhS)�1lfu>x�vhSg � F�(u)�dv����� 2hS���K�x� uhS ����+ Ch2S:This term is uniformly in b 2 �0 bounded by ChS. Therefore, we getEb��e�0S(x)�Eb[e�0S(x)]�2p� � C(ShS)2p�Eb[X2pS ]+Eb��Z S0 ���K�x�XthS ����2 dt�p�+Sph2pS �:The �rst expectation in the right hand side is uniformly bounded, while the second onecan be estimated as follows:Eb��Z S0 ���K�x�XthS ����2 dt�p� = Eb��ZR���K�x� yhS ����2 LyS(X) dy�p�= hpS Eb��Z 1�1 ��K(v)��2 Lx�vhSS (X) dv�p�� 2hpS supjvj�1Eb[Lx�vhSS (X)p]:Using the fact that the expectation of the local time LyS(X) is equal to S�b(y) and thecentred moments of order p are bounded by CSp=2 (Kutoyants 2003, (1.35), page 30,), weget the estimateEb��e�0S(x)�Eb[e�0S(x)]�2p� � C�(ShS)�2p + (ShS)�p + S�3p=2h�pS + S�p�:In the right hand side of this inequality, the largest term is obviously (ShS)�p and itdecreases to zero at the rate S�2p�=(2�+1). The evaluation of the variance of e�S(x) is evensimpler and will be omitted.Due to the compactness property derived from Arzela-Ascoli theorem, there exists a �nitesubset M = ff1; : : : ; fNg of C1(I) such that for any b 2 �0 there exists fb 2M such thatsupx2I jfb(x)� �b(x)j+ supx2I jf 0b(x)� �0b(x)j � S�1=2. Since all the functions �b; �0b; ��1b ,b 2 �0 are uniformly bounded on I, the same holds for the elements of M. That ism � f(x) � 1=m and jf 0(x)j � m0 for any x 2 I and for any f 2 M. Let ��S be theestimator of �b de�ned as follows��S = argminf2M�jf(0) � e�S(0)j+ kf � e�SkL4 + kf 0 � e�0Sk(2�+1)=2�L4 �;in the case when the minimiser is not unique, we choose the one having the smallest index.Obviously, this estimator takes a �nite number of values.5.4 Lemma. There exists a constant C depending only on the parameters describing theset �0, such that the following inequalities hold:Eb����S(0) � �b(0)�2� � CS�1; (5.3)ZI Eb����S(x)� �b(x)�4� dx � CS�2; (5.4)ZI Eb����0S(x)� �0b(x)�4� dx � CS�4�=(2�+1): (5.5)26



Proof. The proof of these estimates follows from Lemma 5.3 and the de�nition of ��S usingstandard arguments (see, for instance, Nussbaum (1996), page 2424).Using this estimator ��S and the formula b(x) = �0b(x)=2�b(x), we de�ne the estimator �bSof the drift b by �bS(x) = ��0S(x)=2��S(x). Since ��S 2M, we havej�bS(x)� b(x)j � j�0b(x)� ��0S(x)j2�b(x) + j��0S(x)j j�b(x)� ��S(x)j2�b(x)��S(x)� C�j�0b(x)� ��0S(x)j+ j�b(x)� ��S(x)j�for any x 2 I. An obvious consequence of this inequality and Lemma 5.4 issupb2�0 ZI Eb���bS(x)� b(x)�4� dx � CS�4�=(2�+1): (5.6)5.3 Estimators in the conditionally Gaussian modelLet (Z;U) be given by (3.4). The aim in this subsection is to construct estimators of band �b based on the observations (Ux; Zx; x 2 I). Let K be a kernel de�ned as in theprevious subsection, h = hT�S = (T �S)�1=(2�+1) and let m be the constant from Lemma5.2. We de�nebbT;S(x) = 1h8><>:RI K�x�yh � 1�U�1y dZy ; if x > 0 and infy2I Uy > pm=2;RI K�x�yh + 1�U�1y dZy ; if x � 0 and infy2I Uy > pm=2;0; if infy2I Uy � pm=2:Of course, this de�nition is used when x 2 I; for x 62 I the estimator bbT;S(x) is de�ned tobe equal to b0(x). The estimator of �b is simply b�T;S = �bbT;S .5.5 Lemma. For any p > 0 there exist some constants c; C > 0 such thatsupb2�0 ZI bET�S;'b ��bbT;S(x)� b(x)�2p� dx � C((T � S)�2p�=(2�+1)+ e�c'�2);supb2�0 ZI bET�S;'b ��b�T;S(x)� �b(x)�2p� dx � C((T � S)�p + e�c'�2):Proof. The �rst inequality can be obtained by evaluating the L2p-risk of the classicalkernel estimator on the event finfx2I Ux > pm=2g and by bounding the probability ofthe event finfx Ux � p�1=2g using the inclusion finfx Ux � p�1=2g � fsupx2I(�+ ~Bx) �'�1pm=2g and the fact that supx2[0;D]Bx has the same law as jBDj.To show the second inequality, one checks �rst, using standard arguments, that the expec-tation of any power 2p of supx2I j R x0 (b�bbT;S)(v) dvj is bounded by C(T�S)�p. Afterwards,the explicit expression of the mapping b 7! �b yields the estimate���b(x)� �bb(x)�� � ��b(x) + �bb(x)� supx2R��1 � e2R x0 (b�bb)(v)dv��:To end up, one uses the inequality jea�1j � 2a, 8 a 2 [�1; 1] for bounding the expectationon the event W = fsupx2Rj R x0 (b � bbT;S)(v) dvj < 1g and the Chebyshev inequality forbounding the same expectation on Wc. 27
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