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Abstract

For scalar diffusion models with unknown drift function asymptotic equivalence
in the sense of Le Cam’s deficiency between statistical experiments is considered for
long-time asymptotics. A local asymptotic equivalence result is established with an
accompanying sequence of simple Gaussian shift experiments. Corresponding glob-
ally asymptotically equivalent experiments are obtained as compound experiments.
The results are extended in several directions including time discretisation.

1 Introduction

Different statistical models often exhibit comparable features when they are considered
under some natural asymptotics. In nonparametric statistics the problems of estimating a
signal in Gaussian white noise, a regression function or a density of i.i.d. observations can
all be handled by the same techniques, e.g. using kernel smoothers or projection methods,
and the asymptotic minimax properties for the estimation risk usually coincide. The long
standing experience that under an asymptotic point of view these models are statistically
of the same kind has found its proper mathematical justification in 1996, when Brown and
Low (1996) and Nussbaum (1996) proved the asymptotic equivalence of these models in
the sense of Le Cam’s theory of equivalent statistical experiments. In essence this means
that any decision function developed for one model can be carried over, at least in an
abstract way, to a decision function in the other models with exactly the same asymptotic
risk properties. This is an important conceptual gain compared to the situation before
where asymptotic results had to be proved each time separately.

In parametric statistics Le Cam’s theory has been successfully applied to a huge variety
of experiments because in this case it usually reduces to the property of local asymptotic
normality (LAN) and its modifications (Le Cam and Yang 2000). The asymptotic equiv-
alence for nonparametric experiments is conceptually more demanding and by now the
class of models that are provably asymptotically equivalent to the three core models of
signal detection, regression and density estimation is still limited. Grama and Nussbaum
(1998) have proved asymptotic equivalence for generalised linear models, which has re-
cently been extended to a wider nonparametric class in Jahnisch and Nussbaum (2003).
Brown, Cai, Low, and Zhang (2002) consider specifically nonparametric regression with
random design and provide a constructive asymptotic equivalence result. Certain asymp-
totic equivalence results have already been obtained for diffusion models. For asymptot-
ically vanishing diffusion coefficients an equivalence result has been proved for diffusions
observed on a suitable random time interval by Genon-Catalot, Laredo, and Nussbaum
(2002), while Milstein and Nussbaum (1998) obtain asymptotic equivalence for such a
diffusion model and its Euler discretisation. More closely related to our work is the study
of a null-recurrent diffusion model with long-time asymptotics by Delattre and Hoffmann
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(2002). The authors prove asymptotic equivalence to Gaussian models, which have the
same structure as ours with the exception of an additional mixing random variable, that
can be explained in analogy with the parametric LAMN-property. To overcome technical
difficulties for proving analogous results for further nonparametric models, the concept of
asymptotic equivalence is sometimes reduced to its weak form, see Drees (2001) for an
application to lower bounds in extreme value theory.

One class of standard models in mathematical statistics is certainly given by nonlinear
autoregressive processes of the form

Xt_|_1 = f(Xt) —|— 5t-|—17 t = 0, .. ,T, ( (5t)t€N ~ N(O, 1) lld)
and the corresponding continuous time diffusion models
dX: = b(Xy)dt +dW,, t€[0,T], (W Brownian motion) (1.1)

with unknown drift functions f and b, respectively. Under ergodicity assumptions and for
large T' it is well known that the methodology developed for nonparametric regression can
be used for inference on the drift function, for an overview see Taniguchi and Kakizawa
(2000) for autoregressive processes and Kutoyants (2003), Fan (2003) for diffusions. In
this paper we corroborate the folklore that 'autoregression is just regression’ by showing
strong asymptotic equivalence of the scalar diffusion model (1.1) with a signal detection
or Gaussian shift model, which can be interpreted as a regression model with random
design. Our result is established for the scalar diffusion model because we need to employ
tools from stochastic analysis that are neither available for time series analysis nor for
multidimensional diffusion processes.

Let us briefly introduce some basic notation such that we can announce the main results.
For some fixed constants C, A, v > 0 we consider the nonparametric drift class

2= {b € Linwo(R)| o(2)] < O(1 + |ol), VIa| > 4 b(a)sgn(e) < -7}, (12)

where Lip,,.(R) denotes the set of locally Lipschitz continuous functions b : R — R
and sgn(z) := z/|z|. A standard result in the theory of stochastic differential equa-
tions asserts that for b € 3 and a Brownian motion W on some filtered probability
space (Q,A, (At)tzo,P) there exists to a given initial value a unique strong solution
(X(t), [0,T]) of equation (1.1), e.g. Karatzas and Shreve (1991). Moreover, the existence

of a stationary solution, unique in law, is ensured with invariant marginal density

we(z) = Ch exp(Z /0-'” b(y) dy), z € R, (1.3)

where Cp > 0 is a normalising constant. Considering in a first step drift functions b in a
shrinking neighbourhood around by € 32, we obtain the local asymptotic equivalence result
for T — oo of the stationary diffusion experiment given by (1.1) with the accompanying
Gaussian shift experiments

dZ, = b(z)\/us, (z) dz + T~Y/2dB,, z € R, (1.4)

where B denotes a Brownian motion on the real line and pp, is the invariant density from
(1.3). The analogous regression experiment to (1.4) consists of observing the function b on
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a design with density up,, which can be considered random or deterministic in the sense
that it determines the distance between two design points. The main idea of the proof
is to define a coupling of the original diffusion experiment with another diffusion-type
experiment corresponding to a deterministic design. The implementation of this idea is
heavily based on the local time of the diffusion process.

The local asymptotic equivalence result has already several implications for the statistical
theory of diffusion processes. In particular, it can be used to obtain asymptotically sharp
lower risk bounds. For instance, the lower bound of Theorem 1 in Dalalyan and Kutoyants
(2002) follows immediately. In order to transfer also global results like upper risk bounds
to the diffusion case, an equivalence result should be obtained for all parameters b € .
We have to impose on the drift functions some minimal regularity larger than 1/2 to
obtain such a global result, cf. Brown and Zhang (1998). Furthermore, since the variance
of the local time does not decay sufficiently rapidly, the general global equivalence result
can only be established for drift functions that behave nicely far away from the origin. To
avoid too much technicalities we therefore consider a global class ¥ C ¥ of drift functions
of regularity larger than 1/2 that coincide with some known function by € ¥ outside a
compact interval 1.

In absence of a variance stabilising transform the globally equivalent experiments will be
of compound type. The first accompanying sequence is given by the observations

dZ, = b(z)\/ks(z)dz + (T — S)"Y?dB,, z¢cl, (1.6)

where W and B are independent Brownian motions, fig is a suitable estimator of up
based on the observation (X(t), ¢t € [0,S5]) and S = S(T) € (0,T) satisfies limy 00 (T —
S(T))/S(T)» = 0 for all p > 1. The second accompanying sequence is given solely in
terms of Gaussian experiments:

Us = V(@) + TH4(Bz +€), z€l, (1.7)
dZ, = b(z)Uydz + T~%dB,, zcl, (1.8)

where the Brownian motions B and B and the random variable ¢ ~ N(0,1) are indepen-
dent.

The local and global equivalence results are derived in Section 2 and 3, respectively. In
order to retain a clear presentation, a uniform variance bound on the local time and the
construction of global estimators have been deferred to the Appendix. In Section 4 we
discuss extensions of the theory developed so far. First, we consider the diffusion model
with a general, but known diffusion coefficient o, for which similar results are obtained.
Next, we treat the case of discrete observations of the sample path in the diffusion model
and the corresponding Euler discretisation. Conditions for asymptotic equivalence and
sufficiency are given for sampling distances tending to zero. Finally, we present a Gaussian
shift experiment
dZ, = b(x)\/pe(x) dz + T7*dB,, z cR,

with a Brownian motion B and some function u,, which is globally less informative than
the diffusion model (1.1) such that risk upper bounds obtained for this simple model
immediately transfer to the diffusion case. In order to convey concisely the main ideas
and to save space, the results in this section are stated in a more informal way.
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2 Local equivalence

2.1 The general idea

We shall show that for drift functions b in a shrinking neighbourhood of the drift function
by the statistical experiment induced by observing the diffusion process

is for T' — oo asymptotically equivalent to the statistical experiment induced by the
observation

dZ, = b(z)y/uo(z)dz + T"Y?dB,, zcR, (2.2)
where g is close to the density of the invariant measure of the diffusion process in (2.1)
uniformly over the neighbourhood and B denotes a Brownian motion on the real axis.

The main idea of the proof is to perturb the diffusion model (2.1) in such a way that
in each state z € R the local time, that is the amount of time spent by the process in
z until time T, is at least Tuo(z) and to provide no information on b(z) after the local
time has attained the level T'uo(z). At those states z, where the local time does not reach
the level T'uo(z), additional information on b(z) is revealed. The model thus obtained can
be considered as a regression model for b with fixed deterministic design of density T uo.
It is Gaussian and has the same likelihood process as the model in (2.2), which implies
statistical equivalence of the associated statistical experiments.

The intuitive explanation why this approach succeeds is that the diffusion model, like an
autoregressive time series model, exhibits two sources of randomness. Firstly, the design,
that is how often the states are visited by the process, is random. Secondly, the drift
b can merely be observed after contamination by white noise dW. As it turns out, the
first source of randomness is less severe than the second and we do not lose too much
information by assuming that each state z is visited up to time T" with a density according
to the approximate expectation Tuo(z) of the local time. However, it is evident that this
procedure can only work for neighbourhoods around by that shrink with increasing 7' such
that the true expectation Ty converges to Ty in a suitable manner.

2.2 Local experiments

2.1 Definition. For a drift by € ¥ and any density po € L*(R) we introduce their local
neighbourhood with parameters e, (,n > 0

1/2

emelbo ) i={be 3| ([0 - b)) <e,
(f6-so20)mts) — watw)lds) " <, [nte) - palo)l < .

Here py, denotes the tnvariant density of the diffusion process with drift b.

2.2 Remark. It is natural to consider neighbourhoods around (bo, s, ), but it is by no
means necessary for the calculations to enforce po = up,. For the globalisation the more
general approach has the advantage of permitting the usage of separate estimators for
functions b and py.



We now define precisely the local experiments E; and F;, for which we shall prove asymp-
totic equivalence. Note that we define the Gaussian shift experiment on the space R” ()
and not on C(R) via the natural interpretation of the differentials as integrators for L?(R)-
functions. Of course, the law is already characterised by the integration of the functions
Ijo,y1, ¥ € R, which corresponds to the signal in white noise interpretation on the space
C(R) up to the knowledge of the value at zero.

2.3 Definition. We define the diffusion ezperiment localised around (bo, uo)

E =E (b07 Ho, T7 &,1, C) = (C([Oa T]); BC([O,T]); (Pz)bezs,mc(bo,uo))a
where PL denotes the law of the stationary diffusion process with drift b on the canonical
space C([0,T1]).

The Gaussian shift ezperiment localised around (bo, o) is given by

F, .= (b07,u’07 T757777 C) = (RLZ(R)algﬂ%L (R)a (Qz)bezs,mc(bo,uo))7

where QF denotes the law of the Gaussian shift ezperiment

dZ, = b(z)y/uo(z)dz + T~Y?dB,, =z €R,

i.e., /f(m)b(a:)w/,uo(m) dz + T‘l/z/f(a:) dB,, f € Lz(R)))
with a Brownian motion B on the real line.

In order to pursue our procedure of changing the design appropriately, we need to in-
troduce the so-called local time of a diffusion process X. We refer to Revuz and Yor
(1999), Chapter VI for the details. We are going to use that the local time LY(X) of the
diffusion process X at the point y € R up to time ¢ > 0 can be constructed such that
(LY, y € R, ¢t > 0) is a process which is continuous in ¢ and cadlag in y (Revuz and Yor
1999, Theorem VI.1.7). Henceforth we shall work with this process, which satisfies

1 [t

LX) = hfgl - Iiyyte)(Xs) ds, Pp-as.
€ 0

By assuming the usual conditions of the filtration (A:)i>0, we can suppose that Lf(X)
is A;-measurable for (A;)¢>0-adapted processes X. The main property we need is the
following extended occupation time formula (Revuz and Yor 1999, Ex. VI.1.15):

/ftXt, )dt = //fty, )d,LY(X ))dy, Po-as. (2.3)

where f : Ry x Rx Q — R, is any measurable function and d;LY(X) denotes integration
with respect to the increasing integrator ¢ — LY (X).

We can now introduce the local experiment F, for which we shall show asymptotic equiv-
alence with E;. We briefly recall the conditions guaranteeing the existence of a weak
solution of a stochastic differential equation with a functional form of the drift.
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2.4 Proposition. Consider the stochastic differential equation
dXt :b(X,t)dt—l—th, te [O,T],

with a progressively measurable functional b : C(RY)xR* — R. Then a weak solution with
some prescribed initial distribution u ezists if |b(f,t)| < K(1+||f|leo) holds with a suitable
constant K > 0 for all f € C(R") and t € [0,T). The law of the solution is obtained by a
change of the Wiener measure on (C([0,T]), Be(jo,r7)) with initial distribution u using the
Ghirsanov density

T T
1
Zr(X) = exp(/ b(X,s)dX, — 5/ b(X,s)? ds).
0 0
Proof. This is the generalisation of Proposition 5.3.6 given in Remark 5.3.8 of Karatzas
and Shreve (1991). O

2.5 Remark. Under suitable ergodicity assumptions, the linear growth condition on the
drift can certainly be dropped and a corresponding uniqueness result will probably hold,
but we do not want to deviate further into that direction. We just assume linear growth in
the definition of . and work with the solution defined in terms of the Girsanov density.

2.6 Definition. We define the local experiment Fy by
]F2 = ]Fz (bo,ll,l,o7 T757')7, C) = (C([O, T]) X RLZ(R)ygc([O,T]) ® B]]%L (R)7 (Qg‘)bezsm,c(bo,uo))7

where QE 18 uniquely defined by
Qf(4x B)i= [ K[, B)RI(d), A€ Bogom, B e B,
A

Here, R denotes the law of the weak solution Y of the stochastic differential equation
4Ye = (b2 ) <rumpr + 0Dyt rgy) &+ W 8 € (0,7,

on the canonical space C([0,T]) with initial distribution Yy ~ po, given by Proposition
2.4. The probability KT (f,s) is the law of the Gaussian shift ezperiment

AV = b(z)(Tpo(z) — L&(f))*dt + dB,, z€R,

T

where B denotes a two-sided Brownian motion on R independent of W and Yy and (A), :=
max(A4,0).

2.7 Remark. In the preceding definition we have to choose a measurable version of the
mapping (f,z) — LEZ(f) on a set of functions f with Ry -probability one in order to have
the Markov kernel property of K. This is certainly possible since by the equivalence of
RT with the Wiener measure this property is satisfied when using a cadlag-version in x
of the Brownian motion local time L%(W) as discussed earlier.

Finally, we need to introduce yet another experiment which is constructed so as to be
) 2(R) -
equivalent to E;, but to be defined on the same space C([0,T]) x R” ®) like F,.
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2.8 Definition. We define the local ezperiment Ey by
E; := Ea(bo, o, T £,1,¢) = (C([0, T1) x R”®), Bopo,my @ BE™ ™, (PY )y, . (so))

where f’g 18 uniquely defined by
P{(Ax B):= / KX (f, B)PL(df), A€ Beom, B e B,
A

with the same notation as for Fy.

2.3 Likelihood ratio and equivalent experiments

In the sequel we shall often use the likelihood ratio or Radon-Nikodym derivative for the
laws of diffusion-type processes on the space C([0,7]). The next theorem is an adaptation
of Theorem 7.7 in Liptser and Shiryaev (2001) to our purposes, see also Theorem 1V.4.23
in Jacod and Shiryaev (2003).

2.9 Theorem. Suppose (Xt(l), t €10,T)) and (Xt(z), t € [0,T]) are scalar diffusion-type
processes that satisfy

dx =o)X tydt +dW,, tel0,T], X =¢€9, i=12,
with progressively measurable functionals o : C([0,T]) x Rt — R and with a standard
Wiener process W.

Then these processes have mutually absolutely continuous distributions P x ;) on the canon-

ical space (C([0,T1]), Be(o,7)) of fori=1,2

P(/ (aﬁ’)(X(’))z dt < oo) =1 and P(/ (ail) - agz))z(X(z))dt < oo) =1,
0

0

D) and €2 are independent of W and have mutually absolutely continuous distributions

on R.

In this case the likelihood ratio Ar(X™®) X2))(X) = ZIIZXEI;
x(2

(X) is given by

dP ) T o @ LT Wme @) e
2 (Xo)exp( | (of — af)(X)dx, - 5 | (adV(X)? — (X)) dt),
&) 0 0

which under P x(2) is in law equal to

dP ) T 1 /7
o (€ exp( / (of) — ™) (X®) dW, — 5 / (o — o)X ) dt).
&) 0 0

2.10 Remark. This representation of the likelihood gives another indication why our
limiting experiment Fy 1s natural for the diffusion experiment |, : the Fisher information
at by in functional directions h and h' 1s for T — oo of order

Inp(bo) = Es, [ /0 ' h( XK (X;) dt] +o(T)=T / h(2)k (2)po(z) dz + o(T).

7



From the definition of the Kullback-Leibler divergence (or relative entropy, denoted by
KL) the following result is immediate, compare also with the expression for the Hellinger

distance (Jacod and Shiryaev 2003, Theorem 1V.4.23).

2.11 Corollary. Under the conditions of Theorem 2.9 the Kullback-Leibler divergence
between the laws of X and X3 is given by

dP 1 T
= - € ¢ - (1) _ @2 x (@
KL(P ), Pxe) = B [log (de)(f ))]+2E[/0 (o = o)X @) dt].

With these tools at hand we obtain the first equivalency results. We only need to know
that two general dominated experiments G; = (Q, A, (Pg)sco) and Gy = (', A', (Qs)sco)
are statistically equivalent iff the laws of the likelihood processes under the dominating
measures Pg and Qg coincide (Strasser 1985, Cor. 25.9):

£((52).0 ] Pe) = £((5). 0 | @)

2.12 Proposition. The statistical experiments E; and E, are equivalent.

Proof. By Theorem 2.9 the measures P{ and Pb are equivalent for all b, by € 3} such that
the likelihood process for [E; is well defined. Moreover, in experiment £, we use the kernel
Kg; which is independent of b such that the Radon—Nikodym derivative

dP¥ (X,V) = KT(X,dV)Py(dX)  dPT
dPL " KL(X,dV) Py (dX)  dP

(X)

depends only on the first coordinate. Consequently, the likelihood processes coincide. [

2.13 Proposition. The statistical experiments F; and Fy are equivalent.

Proof. Let us determine the likelihood process for Fy under the dominating measure QZ;
We first note that

oo (235 5:) = o EEEATRED) < (L0 ) G )

holds. Both log-likelihood functions consist of a stochastic integral with respect to a
Brownian motion and its quadratic variation term under the dominating measure QZ;
Let us calculate up to sets of probability zero the quadratic variation term in the log-

likelihood log(

o

dRT ) given in Theorem 2.9 using the occupation time formula (2.3):

T 2
/0 L Y CALTE PR 0) N
T
/ (b= bo) (YO Lp 2 vy ragy 4

// (b — b0) () Lz vy <Tpoyy LY (V) dy
— [~ b () min(Tho(y), 1Y) dy.



dKT(Y,e)
dK{ (Y,e)

Similarly, the quadratic variation term in log( ) is given by

[ 6= 8 @)Thale) ~ L))y do

Putting the two identities together, we have proved that the quadratic variation term in

log(dqg) equals [(b— bo)?(y)Tpo(y) dy and is thus deterministic.

The preceding calculations remain valid when b is replaced by by + A(b — bo) for any
A € R. Hence using EbO[dQ

Ep, [exp(AM (b — by))] of the ‘stochastic integral term

| = 1, we conclude that, under Qbo, the Laplace transform

M(R) ;:/0 AYO 1% oy < v th+/h(m)(Tuo(m)—L;(Y))}szBz, h € L*(R),

is equal exp(>‘2—2 J(6—00)%(y) T po(y) dy). Therefore the random variable M (b—bg) is Gaus-
sian with variance Tf(b — bo)?uo. The covariation between two such stochastic inte-
grals with b replaced by b; and b,, respectively, is by the occupation time formula again
T [(b1 — bo)(ba — bo)po. Moreover, using the Cramér-Wold device it then follows that the
random process (M(b —bg), b€ Ee,n(bo)) under QZ; is Gaussian with zero mean.

Since the likelihood process of the Gaussian shift experiment F; under QZ; is given by

(exp (7 / (b— bo)(2)y/o() dB, / b— bo)X(z)po(2) dz ), b € Tn(b)),

the laws of the two likelihood processes c01nc1de and the experiments are equivalent. [

2.14 Remark. The main tdea in the preceding proof was to show that the likelihood ratios
assoctated to the ezperiments By and Fy (as random processes indezed by b) have the same
law. At the first look it seems that the experiment generated by the Ité process

dY; = (b(Y2)Lir<r, vy + bo(Ye) Liesryv)y) dt + dW, t€[0,T],
1/2

dnz(T [0 b2 wnalw)iy - /T<b—bo>2<mdt) dt+dW,, te (1,7 +1),

n) =it {e< 7 (b= b (V) ds > T [(6- b0 hals) o}
Yo = &o,

satisfies the same property and therefore can be used instead of Fy. Unfortunately, this
assertion is false: for a fized value of b the loglikelihood of the process Y is a Gaussian

random variable, but if we consider the same loglikelihood as a process indezed by b, it 1s
no longer Gaussian.

2.15 Remark. For future reference we list further experiments that are equivalent to Iy
and Fy for parameters b € ¥, ,(bo):

dy, = b( )daz + T 2u0(2)"Y?dB,, z€R,

dY, = — bo(z))/ po(z) dz + T~Y2dB,, =z €R,
dy, = b(Fuo (a:))da:—l—T 1/2de, z € (0,1),
where F,( f w(y) dy and dB is Gaussian white noise. For the proof it suffices to

check that the la'ws of the likelihood processes coincide.



2.4 Asymptotic equivalence

By Corollary 59.6 in Strasser (1985) the Le Cam distance A between experiments defined
on the same measurable space can be estimated by a uniform bound on the total variation
distance between the corresponding probability measures. An application of this coupling
technique allows to prove the main theorem on local asymptotic equivalence.

2.16 Theorem. If for T — oo the asymptotics (T) = o(T~**), n(T) = o(T~*/?) and
((T) = o(1) hold, then the following convergence holds true uniformly over all by € X.:

zli—{iloA(El (bo,,uo,T,s(T),n(T),C(T)),E (bO,MO,T,s(T),n(T),C(T))) = 0.

Proof. By Propositions 2.12 and 2.13 it suffices to prove the asymptotic equivalence for
the experiments E, and Fy. Their families of measures (P{) and (Qf) are defined on the
same measurable space (C([O, T)) x RLZ(R), Be(or) ® BELZ(R)). We infer (with short-hand
notation)

A(E,F) = AR, F2) < sup ||P] = Qf|lzv,

bEX, ¢ (bo,i0)

||o||7v denoting the total variation norm. Since the measures (pz) and (QE) correspond
to diffusion-type processes with different initial distributions, we use the representations

(Kallenberg 2002, Theorem 18.10)

Bf = [ Bl mle)do and QF = [ Qf, (o) do

with the corresponding laws for deterministic initial values z € R and infer by the triangle
inequality

IPY — QF llzv < |lus — pol| e (ry + /||f’£z — QL. ||l Tv () dz.

Because of ((T') — 0 the first term tends to zero uniformly.

Since the square of the total variation is bounded by two times the Kullback-Leibler
divergence (Deuschel and Stroock 1989, Eq. (3.2.25)), it suffices for the second term
to prove that fKL(QZz,f’Zz) we(z) dz tends to zero uniformly. By Corollary 2.11 this
expression equals up to the factor 1/2

/Eb,z [/0 (b— bo)z(n)ﬂ{Lft(Y)>Tuo(n)} + /(b —bo)*(y)(Tro(y) — LH(Y))+ dy] po(z) dz
= Ba[ [ (6= 80 (0) (LHY) — Thiolu)+ + (Tioly) — L4(¥))s) o]

— [(- WP @B - Tuolw)] do

Since we are in the stationary case, a bias-variance decomposition yields in combination
with Proposition 5.1 from Appendix

Eb[|L3(Y) — Tho(y)|] < Tlps(y) — po(y)] + (CTus(y))"*.
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Hence, we obtain the uniform convergence result over EE(T),,,(T),c(T)(bO, o)

Ba[ [ (50— 87() B(Y) ~ Tuo(w)] do
< (60— 820) (Tlinle) — molw)] + V/CT ) dy

< Tn*(T) + VOTY?eX(T) 0

which proves the assertion. O

2.17 Corollary. The preceding asymptotic equivalence result holds in particular for the
local parameter subclass

&ﬂmmrzﬁezM/b—% OVl dy) < e, 0" = oyl < T2,
when € = e(T) = o(T~*) for T — co.

Proof. Just note that for any b € EE,T(bO,,UJO)

/(b—bo)z(y)lub(y)—uo(y)|dyS s _:u’Olu’b_l/2||°°/ (b—b0)* () v/ 1(y) dy < €*(T)T 7

holds and equally [|up — po| < T_l/zf,u;/z < T-1/2 follows uniformly over b by the
uniform exponential decay of up. Therefore EE(T),T(bO;,UIO) - EE(T),T’(T),C(T)(bO),u’O) follows
with n(T) = e(T)T~Y* = o(T~Y/?) and ((T) = O(T~?) = o(1). O

2.18 Proposition. The statistical experiment Fy (bo, o, T, €,n, () is for n = o(T~Y/?) and
arbitrary €, ( > 0 asymptotically equivalent to the ezperiment induced by observing

dy, = — bo(2))/e(z) dz + T~Y%dB,, =z € R,

where py, is the invariant density corresponding to b, dB is Gaussian white noise on L*(R)
and the parameters b belong to the the same neighbourhood %, ,, ¢(bo, to)-

Proof. Since the two concerned experiments are defined on the same space, the result
follows if we show that the Kullback-Leibler divergence between the likelihood ratios tends
to zero. This divergence is given by T [(b(z) — bo(z))?(\/ps(z) — \/po(z))? dz. Using the
general inequality (4 — B)? < |A? — B?| for A, B > 0, the condition on 7 yields the
result. O

3 Globalisation

3.1 Main result
A common way of globalising a local equivalence result makes use of the variance stabilis-
ing transformation (see Grama and Nussbaum (1998) for the exact definition). In our case

this amounts to seeking a functional 7 whose differential D7 (b)[h] at the point b = by
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is equal to /i, h. Indeed, for such a functional the Kullback Leibler divergence between
the laws of the Gaussian random measures dZ, = ( — bo(z )w/,ubo Ydz + T~ 1/2de,
z € Rand dZ, = (T(b)(m) — T(bo)(m)) dz + T_l/dez, z € R is equal to

2 [ (T0)E) ~ T)(o) - DT Eo)lo - bo(e)"de

and, at a heuristic level, tends to zero if the functional T is sufficiently regular. This
yields the asymptotic equivalence of the two Gaussian shift experiments corresponding to
Z and Z. Furthermore, it permits to infer the asymptotic equivalence of the experiments
characterised by the observatlons dZs = b(z)\/ s, (z) dz + T~/%dB,, = € R and dZ, =
T (b)(z)dz + T~%dB,, = € R, the latter belng 1ndependent of by.

Unfortunately, following Delattre and Hoffmann (2002) we can show that such a transfor-
mation does not exist. Indeed, let us consider the simple case when b is unknown only on

a compact interval I. Then the differential of the operator S : L*(1) — L*(I), S(b) = /s
at the point h € L?(I) is obviously given by

DS(b)[h] = lim VF e Ve

e—0

where the convergence is understood in the mean square sense. We find

DS = Vi / - ]1{y>z}] dy; z € ‘[7

where Fy is the distribution function corresponding to the invariant density up. Therefore,
the equality DT (b)[h1] = hiy/us = h1S(b) would imply that 7 is twice continuously
differentiable and D (DT (b)[h1])[hs] = D(DT (b)[hs))[h1] for any hi, ks € L*(I). This last
equality can be rewritten in the form hy DS(b)[ha] = ha DS(b)[h1], h1,he € L*(I), which is
evidently not true. This contradiction results essentially from the nonlocal character of the
mapping &. This indicates why the global asymptotic equivalence with a Gaussian shift
experiment of the form dZ, = T (b)(z) dz + T~*/2d B, might be impossible to establish.

Nevertheless, we give below an equivalence result which is global and involves a mixed
Gaussian white noise experiment. The main idea is to replace in the Gaussian shift exper-

iment dZ, = (b( ) — bo(z ) Viw(z)de + T~ 1/2dB_ the invariant density pp by a random

approximation, which is 1ndependent of B and has the advantage of being observable.

3.1 Definition. The parameter class Yo = ¥o(8, L,m, by, I) consists of drift functions
b € 3 satisfying

b(z)=bo(z), VegI;  |bo(z)=b(y)|<Llz—yl’, Vazyel,
where I = [—D, D] C R is a compact interval, by is a fized known function and 8 € (0,1).

3.2 Remark. Let us briefly ezplain why we restrict to the case when b(z) is known for
z € R\ I. Since the variance under P¥ of the local time L% — L% is of order (T — S)us(z),
condition (8.2) requires the existence of an estimator bg(ry such that

lim [ B[ (b(2) — bseny ()] VAT — S(T)ms(s) de = 0 (3.1)

T—o0 R
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uniformly in b. Standard arguments yield that the Mean Squared Error (MSE) of estimat-
ing b(z) by a kernel method with bandwidth h is of order h?? + (S(T)hus(z))~t. Therefore
the optimal choice of a bandwidth is h = (S(T)us(z)) =/ ?8+Y). Even for this oracle choice
of h the MSE is of order (S(T)us(z))~/B+Y) and the integral (8.1) is not finite for
B > 1/2. Fundamentally, this obstruction is due to the relatively slow decay of the vari-
ance of local time compared to its expectation: limyy o /Var[LL(Y)]/E[L%(Y)] = co.

Note that although the functions in 3 are locally Lipschitz continuous, the Holder restric-
tion of order (3 is of different nature: it is uniform over x € I and over b € Y.

3.3 Definition. For any ¢ > 0 we denote by QZ"‘O the measure induced by the process
(Z,U) on the canonical space RF’(D) x C(I), where

{de = b(z)U,dz + T~V2dB,, =z€l,

Uz = /(@) + (B, + €), zel

with (B,B) being a two dimensional Brownian motion and ¢ = 0 Uy ~ N(0,1) a
random variable independent of (B, B). The accompanying experiment is then H(p, T) =

(RL2 x C(I), BEL D g Be(n), {QZ’lp}bezo)'

3.4 Definition. The statistical ezperiment defined by observing a sample path of the
stationary diffusion process (1.1), when the parameter set is ¥o, is denoted by E(T').

We can now announce the main theorem of this section, whose proof is deferred to the
end of the section.

3.5 Theorem. Let by € ¥ and %o be defined as above. If B > 1/2, then the statistical
experiments E(T) and H(T~/* T) are asymptotically equivalent as T — 0o,

3.6 Remark. The inspection of the proof of Theorem 3.5, combined with the fact that the
total variation is bounded by two times the square root of the Kullback-Leibler divergence,
shows that the A-distance between the ezperiments E(T) and H(p,T) tends to zero at the
rate T%_Zﬁ%—l—cpT‘*ﬁ% —I—cp_lT_Zﬁ%. Therefore the rate-optimal choice of o is o(T) = T~/
and we have A(E(T), H(T~/4,T)) < CT(/2-A)/(46+2),

3.2 Definition of experiments

We start by introducing some probability measures that will be repeatedly used in this
section. Some have already been defined in the previous section, but for present purposes
we need to specify their dependence not only on b, but also on other parameters. In this
section, the substitution of the subscript b of any probability measure by 0 indicates that
we cons1der that measure for b identically equal to zero, e.g. Q QZ“O‘I) o» but the
meaning of po has not changed.

Let QE denote the law of the Gaussian shift dZ, = b(z)+/po(z)dz + T~ 1/24B_ on the
canonical space RZ(®), The log-likelihood of this family of measures is defined by

13 (5, 10, Z) = log (dQ?” (Z)) VT [ Ha)ole)dz: ~ 3 [ B(ehuo(s) da.

dQO,Mo
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Let szbo,yo,uo denote the law of the process (Y, V) given by Definition 2.6 with initial
condition Yy = yo. The log-likelihood of this family of measures is

T
0,b0,%0,H0

. dQT
1206, 0,Y,V) = log (S (v )

— | My ¥+ [ W) (Taol) - ()Y Ve~ [ (o) o)

It is noteworthy that this log-likelihood does not depend on yo and b,.

Recall that PZE and pgz are defined as in Definitions 2.3 and 2.8, except that the ini-
tial condition is Xo = z. The log-likelihoods of the families of measures (Pzzo)beﬁo and

(f’zzo Jees, will be denoted by (£(b, X) and l?(b, X), respectively. Note that although f’b,zo
is a measure on the product space C([0,T]) x RE(R) the log-likelihood l?(b, X) depends
only on the first component.

3.7 Definition. Let & = (C((0,T]) x R¥®), Boory @ By ), (PT),5.)-

Let us fix S in the interval (0,7") and define the compound experiment G = G(S, T, o)
as follows: we observe a sample path of the stationary diffusion process X with drift
b up to time S, we compute an estimator fis(s) = fs(X,e) € C(R) of the invariant
density up, and then we observe a realisation of the conditionally Gaussian process dZ, =

z)+/fis(z) de+(T—S)"*?dB,, z € R.In order to avoid subtle questions of measurability,
we assume that s takes its values in a countable set 9 = {p1, o, ...} C C(R).

3.8 Definition. The ezperiment G 1s defined rigorously as
G(Sa T) = (C([Oa S]) X RLZ(I): BC([O,S]) 2y B§L2(1)7 (RbS,T)bEEo)a

ST . :
where R;’" s the measure characterised by

o0

RST A x B Z Q Pb A N {,U,,g = ,Uq}) Ac BC([O,S]); Bc BELZ(I)

3.3 Asymptotic results

Our program in this section is as follows. We split the diffusion path observed up to
time T into two parts: a path observed over [0,S] and another over [S,T]. We prove
that replacing the second path by a conditionally (to the first path) Gaussian observation
we get an asymptotically equivalent experiment. Then we substitute this conditionally
Gaussian experiment by another one not involving anymore the observed path over [0, S].
In the last step we apply this method in the converse direction, that is, making use of
estimators based on the Gaussian observations, we replace the diffusion experiment over
[0, 5] by a conditionally Gaussian one.

One method of carrying out this program consists in reducing the global equivalence
problem to a local one via Lemma 9.3 of Nussbaum (1996), or its extension of Lemma
1, Delattre and Hoffmann (2002). However, this requires a local asymptotic equivalence
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result between the diffusion starting at a fixed point z and a Gaussian shift, uniformly
in z. Achieving the result by this technique seems to be more technical than what we do
below.

3.9 Proposition. Let S = S(T) € (0,T) be such that for some estimator bs of b based
on the observations (Xy, t € [0,S]) and taking values in a countable set B = {by,bs,...}
the following condition is satisfied:

im sup B[ [ (4(a) ~botry (&) 1B50Y) ~ Ery(X) ~ siny(@)(7 — S(T))| de] = 0. (32

T—o0 beTo

Then the experiments E(T) and G(S(T),T) are asymptotically equivalent as T tends to
mfinity.

Proof. To prove this result we introduce an auxiliary compound experiment G. It is gen-
erated by the observation of a sample path of a stationary diffusion with drift b up to
time S = S(T') and an It6 process similar to the one of Definition 2.6, except that o and
bo are replaced by the estimators fig and bg respectively.

More precisely, the statistical experiment G = @(T) is defined on the space (C([O, T)) x
RER), Be(o,r)) ® BELZ(R)) by the family of probability measures

o0

R,"(4 x B) = Z/ o Qe W (B P,
i,5=1Y An{(Zs,b5)=(i.b;)
for any A € B, s , B € Begs,m) ® B ). The above integral is well defined since the

mapping y — Qb i (B) is measurable (1n fact, it is continuous).

It 1s easy to check (see the proof of Proposition 2.13 for similar calculations) that the
log-likelihood log ST (X, Z) of the family of measures {R;" }pesx, is given by

I7.5(b, 7, X) = 17_s(b,is(X,+), 2) + 15(5,X), (X, Z) € C([0,5]) x RV,
Likewise, the log-likelihood of the family of measures {f{f’T}bego is given by
Z?,S(I% Y7 ‘/7 X) = Z?—S(I% ﬂS(Xa ')7 Y7 V) + lg(ba X))

where (Y, V) € C([S T]) x R ) and X € C([0, S]). We have proved in Proposition 2.13,

that £((12_g(b, i, Z)eeso | Qo) = L{(12_g(b, i, Yy V))ees, Q35,5 ;) for any j € Nand
for any y € R. This implies
Q _ 7Q a Y
L1755 pis Z))oeza| Qo gs) = £((12-5(5 16y Y V) oema| Qo i) 05050

for any f € C([0, S]), and consequently
‘C((Z%S(ba Z7 X))bezo ‘Rg,s) = E(([%s(ba Y7 ‘/7 X))bEEO ‘Rg,s) .
We infer that the experiments G and G are equivalent.
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In order to show A(E,G) — 0, it suffices to prove A(fE, @) — 0 because the experiments
E and E are also equivalent: their likelihood ratios coincide (cf. Proposition 2.12). The
experiments E and G are defined on the same probability space and the Kullback-Leibler
divergence between the respective laws is (see Corollary 2.11)

+ [ 00) = Bs(@)) (ms(@)(7 - 8) - (£ (X) - L3(X)), de]
1

= / (b(2) — bs(2))| L3(X) — LE(X) - fis(@)(T — )| da.

1 T . )
R [/s (B(Xe) = bs (X)) Lypxe o) n3e > mstrr-s)) &

By condition (3.2), this expression tends to zero uniformly in b € ¥y when T' — oo. This
completes the proof of the proposition. O

To pursue the globalisation, we replace the Gaussian shift experiment
dZ, = b(z)\/fsiry(z) dz + (T — S(T))"*/?dB, (3.3)

by a simple experiment not involving the estimators ES(T) and fig(). Note also that since
b is known outside I, the observations (Z,, z ¢ I) of the Gaussian shift experiment are
void (they do not contain any information on the unknown parameter b(z),z € I).

3.10 Definition. The ezperiment G; = G1(S,T) is for S € (0,T) defined on C([0, S]) X
RE(D x C(I) by the family of product measures Rf’T(A x B) = P;(A) Z_S’LP(T)(B),
for any A € Be(po,s)) and for any B € BELZ(I) ® Be(ry. In other words, Gy 1s induced by

observing

{dzz = b(z) U, dz + (T — S)~2dB,, =€, -

Us = /() + @(T) (Bs + €), z €,

where B, B are independent Brownian motions and & ~ N(0,1) is independent of (B, B)

3.11 Proposition. Assume that the estimators fig are continuously differentiable on I
and satisfy the conditions of Proposition 8.9. Moreover, let for S(T) € (0,T), ¢(T) > 0
the assumptions

Jim o(T) 7 sup [ Bu[((Vin(@) ) ~ (s (@))] 2 =0,

be Eo

Jim o(T)" sup By | (v (0) — /sy (0))°] =0,

lim o(T)X(T — S(T)) sup / E, [(ES(T)(m) - b(m))z] dz =0

T—o0 beXo JI

be satisfied. Then the statistical ezperiments G(S(T),T) and G1(S(T),T) are asymptoti-
cally equivalent as T tends to infinity.

Proof. In what follows we consecutively replace experiments by (asymptotically) equiva-
lent ones until we reach the experiment Gy .

16



Recall that G is defined by observing a diffusion path up to time S and a realisation of
the Gaussian process Z given by (3.3). If we replace in G the observations Z by

dZ, = (b(z) — bs(z))/zs(z) dz + (T — S)*%dB,, =z €I, (3.5)

we shall obtain an equivalent experiment, since it has exactly the same likelihood ratio.
Then we replace these observations by

dZ, = (b(z) — bs(z))\/ps(z) dz + (T — S)/?dB,, =z € I, (3.6)

in view of the fact that the Kullback-Leibler divergence between the corresponding mea-
sures i1s up to some multiplicative constant equal to

(T~ 5) [B[(bls) ~ Bs(a))” (Viale) — Vis(@)] d,

which tends to zero as T' — oo uniformly in b € 3y, according to the assumption of
Proposition 3.9 and the inequality (\/ms — +/Eis)? < |us — fis|- It is evident that the
statistical experiment

dZ, = (b(z) — bs(z))/pe(z) dz + (T — S)~/2dB,, =z€l,
dU, = (\/} ( ))dz + ¢ dB,, ze€l, (3.7)
Uo = /is(0) + ¢ &.

with independent Brownian motion B and ¢ ~ N(0,1) is equivalent to (3.6), since the
sample paths of the process U do not contain any information on b. The first two assump-
tions of the proposition yield the equivalence of experiment (3.7) and

dZ, = (b(z) — bs(z))/ms(z) dz + (T — §)7Y/2dB,, =z €I,
dU, = (\/w(z))'dz + cde_,,:, z €1,
Uo = +/1(0) + ¢ &.

An equivalent form of this experiment is

dZ, = (b(z) — bs(z))/ps(z) dz + (T — S)"Y2dB,, z €I,
(3.8)
Us = (z)+ ¢ Bz—l—f, zel.

Computing the Kullback-Leibler divergence and using the third assumption of the propo-
sition, one can easily check that experiment (3.8) is asymptotically equivalent to the

experiment

& 3.9
U. = /(o) + 0 (Ba 1 6), vel &9
This completes the proof of the proposition, since the laws of likelihood processes of the
experiments (3.9) and (3.4) coincide. O

{de — (b(z) — bs(2)) Up da + (T — S)"/%dB,, =z €I,

Having obtained the asymptotic equivalence between E and G, we aim to replace the first
part of the compound experiment Gy, which is the ergodic diffusion, by a conditionally
Gaussian experiment. To do so, we assume that ,ZZT,S(T) and /Z;T,S(T) are estimators of up and
b based on the observations (Z,, U,,z € I) and taking their values in countable subsets of
C(I). We denote by EZ_S"‘O the expectation with respect to the measure QZ_S"‘O induced
by the processes in (3.4).
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3.12 Proposition. Let ¢ = ¢(T) and S = S(T) be such that the assumptions

lim sup BI~ [/I (b(z) — br.s(z))" (v/Spe(z) + S|us(z) —ﬁT,s(m)de] =0, (3.10)

T—o0 beTo

lim sup E [/ ‘,ub( — prs(z ‘daz] =0, (3.11)
T—o0 beTo R

lim sup § EI 5% [ / (b(z) — brs(2))* (1/br.s(z) - Uz)zda;] =0, (3.12)
T—o0 beTo I

are fulfilled. Then the statistical experiments Gy (S(T),T) and H(p(T),T) are asymptoti-
cally equivalent as T tends to infinity.

Proof. Recall that the experiment G, is characterised by the observations (X, Z(), U),
where X is defined by (1.1) and (Z() U) are as in (3.4) with B replaced by B(%).

Let G, be the statistical experiment defined by the observations (Y, V, Z(), U), where Z()
and U are as above, Yy ~ 1 s and

4Ye = (DL ry<sansa + sV uz vy s s rgp) 4+ AW, € [0, 5],
dV, = b(z)(Shir,s(z) — L§(Y)) dz + dB,, =€ L.

In these formulae, we assume that ?)\T,s(a:) is equal to bo(z) = b(z) for any a: ¢ I and the
Brownian motions W, B’ are mutually independent and independent of (B! ). B ,€).

The total variation distance between the laws describing the experiments GG; and Gy 1s
controlled by (see the proof of Theorem 2.16)

By | /R(b(a:) —br5(2))"Bo| L3(X) — Spr,s(2)|da] + BY ¥ far,s — s

From Proposition 5.1 we know Vary(L%) < CSup(z). By the Cauchy-Schwarz inequal-
ity Ep|LE(X) — S(T)us(z)| < C+/Sup(z). So assumptions (3.10) and (3.11) yield the
asymptotic equivalence of G; and G,.

Repeating the same arguments as those used in Proposition 3.9 for establishing the equiv-
alence between G and G, we can prove that the experiment G, is equivalent to

2\ = (b(z) — br,s(z)) /Br,s(z) dz + ST2dBY,  z €,
dZ) = b(z) Uy de + (T — 5)"12dBYY, =z, (3.13)

Uz = V :u’b(m) + SD(T) (Bz + 5)7 S I;

where B(?) is a Brownian motion independent of (B(), B, £). Once again considering the
Kullback-Leibler divergence, one checks that the statistical experiment (3.13) is asymp-
totically equivalent to

dz?) = (b(z) — br,s(2)) Us dz + S~2dBY),  zel,
Az = b(z)Updz + (T — §)"Y2dBY, =z el,
Us = V(@) + o(T) (B: +€), z€l,
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provided that (3.12) is satisfied. This last experiment, in turn, is equivalent to

dz3) = b(z) Uy dz + S72dBY,  z e,
dz® = b(a) Uy dz + (T — S)"2dBY,  zel, (3.14)
Us = V(@) + o(T) (Bs +€),  z€l,

since their likelihood functions coincide. The same argument ylelds the e(%ulvalence of

(3.14) and H(g,T) from Definition 3.3, with B, (\/_B ' /\/T and
= (8§28 + (T - 5)Z)/T. O

3.4 Proof of Theorem 3.5

First of all, note that under the conditions imposed on b and bg, all the stochastic dif-
ferential equations introduced in previous sections have a weak solution. To establish the
result of the theorem, it suffices to check that for some S(T') € [0,T] the conditions of
Propositions 3.9-3.12 are fulfilled with o(T) = T~/%,

Set S(T') = T'/2. Since Eb(L%—L"g(T)) = (T—S(T))us(z) and the variance of the local time
at z between time instants S(7T") and T is bounded by C(T — S(T'))us(z), the estimators
7)5( 7y and /15( T) proposed in Appendix satisfy (3.2) as soon as S(T' )_w/(zﬂ"'l)( T—-S(T)+
(T — S(T))/+/S(T)) tends to zero. This convergence holds (for S(T') = T/2) if and only
if B > 1/2

To verify the conditions of Proposition 3.11 we use the obvious relation (\/us(z))' =
b(z)+/ps(z) and the bounds (5.3)-(5.6). We infer that the desired conditions are fulfilled
if o(T)~2T—28/(28+1) and T*~2P/(26+1),(T)? tend to zero. This is obviously the case for
@©(T)? = T7*/? and B > 1/2. The verification of the conditions of Proposition 3.12 is
achieved similarly using Lemma 5.5.

4 Extensions and generalisations

4.1 General diffusion coefficient

Let us consider the model with non-constant diffusion coefficient

If we suppose continuous-time observations, o?(z) is perfectly identifiable at all points =
where the local time L%(X) is nonzero. Let us for simplicity assume that the diffusion
coefficient o is known everywhere, satisfies 0, < o(z) < o*, z € R, for some constants
o* > o, > 0 and that o 1s differentiable with a continuous bounded derivative. Then the
stochastic differential equation (4.1) has for any initial value a unique strong solution and
for all b € 3} a stationary solution with invariant density

fo () = Cb,ga(m)_z exp(/z 2b(y) dy), z €R,

o o%(y)
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where Cp, > 0 is a normalising constant.
Since o i1s known, the experiment of observing
1
dv,
o(v)

is clearly equivalent to that of observing directly (X;,t € [0,T]), the stationary solution
of (4.1). By Itd’s formula we infer that X is the stationary solution of the equation

X, = H(X;), te[0,T], with H(z) = /-’”

_ R — b !
dX, = 5(X,) dt + dW,, tc[0,T], with b(z):= (— - %) (G~(z)).
o
By transformation, the invariant density ug of X is given by (up, 0 G71)(G7!). Apply-
ing Theorem 2.16, we conclude that the experiment of observing (4.1) is asymptotically
equivalent to the Gaussian white noise experiment

b !
dZe = (2= 2) (67 () bt (G (2))7 (G () du + T/2dB,, 2 € R,
o
for shrinking neighbourhoods as in Theorem 2.16 in terms of the transformed quantities b,

bo and g, - By regarding the likelihood process, it follows that observing dZ is equivalent

~ b o 1
_(Z_° -1/2
dz, = (U 5 )(az)w/,ubo,,(a:) de + T *dB,, =z¢€R,

which in turn is equivalent to observing

dV, = b(z)4/ b0 (2) dz + T~ %0 (2)dB,, =z € R.

The asymptotic equivalence with the latter Gaussian white noise experiment can be ex-
plained intuitively by adopting the viewpoint of regression. The random design follows
the density us, -, while the observation noise at the point z has level T~'/20(z). Finally,
note that under our rather restrictive assumptions on o the same globalisation procedure

to observing

as for constant diffusion coefficients can be applied.

4.2 Time discretisation

We show that the diffusion experiment based on continuous-time observations is asymptot-
ically equivalent to its discrete counterpart, provided that the sampling distance decreases
at the appropriate rate. Let P(T) = {0 = to < t1 < ... < ty(r) = T} be a grid on the
interval [0, T]. Set d; = t;y1 — t; and [P(T")| = max;—o,.. . n(1)-1d;.

We consider the autoregression experiment defined by observing (yi,...,yn) from
Yiy1 = ¥i + di b(ys) + \/Z’fi; 1=0,...,N—1, yo~ s, (4.2)

where &; are i.i.d. with & ~ N(0,1) and independent of yo. We introduce the function

2

0, T x [0,T] = R,  b7(z,8) = 3 b(a(t:))Mgssene()-

s
Il
o
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For b € ¥ this function is progressively measurable and the stochastic differential equation
dX? =b"(XP t)dt +dW,, t€[0,T]), XZ ~ ws, (4.3)

has a weak solution defined by Proposition 2.4. One checks that the laws of the likelihood
processes of the experiments (4.2) and (4.3) coincide, therefore these experiments are
equivalent. According to Corollary 2.11, the A-distance between the stationary diffusion
experiment (1.1) and the experiment (4.3) tends to zero if

{ Z / b(X¢) — b(Xs; ))2dt] (4.4)

tends to zero uniformly in b. If we assume that b is Holder continuous with exponent 8,
then (4.4) is up to a multiplicative constant bounded by

tiy1 t 208
Z/ b [(X, — X,.)2] dt < Z/ 4E,, /b(Xs)ds) —|—(Wt—Wti)2ﬂ]dt.

Using the linear growth condition and the boundedness of all moments of X; under P,
uniformly over b, one finds that (4.4) tends to zero as soon as Zf\i_ol df“ < T|P(T)|P — 0.
We infer that if the mesh size |P(T')| satisfies T|P(T)|? — 0as T — oo, then the statistical
experiments (1.1), (4.3) and (4.2) are asymptotically equivalent. Since (X7, ... ,XZIJV) is a
sufficient statistics in the experiment (4.3), the asymptotic equivalence between (4.3) and
(1.1) entails the asymptotic sufficiency of (X4, ..., Xiy) in (1.1). As we have already men-
tioned in Introduction, analogous results for the diffusion experiment with asymptotically
vanishing diffusion coefficient are obtained in Milstein and Nussbaum (1998).

Moreover, since we have shown that the total variation distance between P} and the law of
X?% on (C([O, T)), Bc([o,T])) tends to zero, the same holds true for the restrictions of these
measures to the sub-c-algebra generated by the discrete observations at time instants ¢;,
t=20,...,N(T). This implies that the experiments defined by observing (XZ;, . ,XZIJV)
and (Xi,,. .., Xy ) are asymptotically equivalent. Since observing (XZ;, o ,X?V) is equiv-
alent to observing the whole path X” | and (4.3) is asymptotically equivalent to (1.1), we
get the asymptotic equivalence of the discretely sampled diffusion experiment and the

diffusion experiment based on continuous-time observations, as soon as T'|P(T)|? — 0.

Note that, although these kinds of discretisation results can be expected, Brown, Wang,
and Zhao (2002) have discovered and studied surprising results on the nonequivalence in
the parametric setup for GARCH time series and their diffusion limits in the context of
stochastic volatility models.

4.3 A less informative experiment

We present an accompanying sequence of simple white noise experiments that is globally
less informative for the asymptotics 7' — oo than our diffusion experiment. Let us first
consider the local experiment

Fy = FF (bo, T, €,m,() := (RLZ(R),BEL (R), (Qg’<)bezm,¢(bo,ubo));
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where QZK denotes the law of the Gaussian shift experiment

dZ5 = b(z)\/ps(z) dz + T7Y?dB,, =z €R, (4.5)

with a Brownian motion B on the real line and a measurable function p. : R — [0, 00)
satisfying p«(z) < pp,(z) for all z € R, b € ¥, ¢(bo, us, ). Hence, F; with the centre
(bo, s, ) and FF are defined on the same measurable space and only differ in the choice of
Wy, and ., respectively.

We claim that the experiment Fy is less informative than ;. In fact, it suffices to construct
a Markov kernel K : R B®L — [0, 1] such that QZK = K ® Qf holds for all
b€ Xene(bo, ke, ), see Section 49 in Strasser (1985) or Theorem 2.2 in Le Cam and Yang
(2000). Hence, using p. < pp, and setting for ¢ € R (®)

Guls) = ol(2) ) + [ 77021~ ) p(0) aB

with a Brownian motion B on R, we find that G, is a random functional on L?(R) and
we define the Markov kernel K (¢, A4) := Pg(G, € A), where Pp denotes the law of the
Brownian motion B. Using short-hand notation for the functionals, we obtain

/K(so,A)Q,,T(dgo) - Q7 2 P; (((:T*)”2 d7< + T2 (1 — £o)? dB) c A)

=Py Py (bull2dn + T2 ( (2 )1/2dBO+ (1-£)"%dB)) ¢ 4)
= P ((bul/2dw + T7/2dB) € A)

with a new Brownian motion B. Consequently, Fy is a randomisation of FF; and thus
[F; is more informative than Fy. Under the asymptotics of Theorem 2.16, we conclude
by transitivity that the localised diffusion experiment E; is asymptotically also more
informative than FY uniformly over by € X, which means in terms of the Le Cam-deficiency

)
lim sup §(Ex (bo, oy, T, (T, m(T), C(T)), FS (boy sy, T, e(T)n(T), ¢(T))) = .

T—o0 bo €0

Of course, for the uniformity in the last result we have to assume p, < pp, for all by € 3o,
which we shall also do subsequently.

In a second step, we take advantage of the fact that the laws in F{ do not depend anymore
on the centre of localisation so that we can apply the usual globalisation procedure, cf.
Lemma 9.3 and its proof in Nussbaum (1996). Let us denote by F< the global white
noise experiment with the law in (4.5) and with the parameter class ¥ from Definition
3.1. We claim that F< is asymptotically less informative than [E. Following the proof of
Proposition 3.9, we use an estimator ET/z from the observation of the diffusion experiment
until time 7'/2 such that the local neighbourhood is attained asymptotically:

211}){)10 blenzf0 P (ET/z € z35(T),n(T),<§(T)(b)) = 1.

Therefore the diffusion experiment E(T) is asymptotically more informative than observ-
ing

dXt - b(Xt) dt —|— th, i c [0, T/Z],

dZS = b(z)\/ue(x) dz + (T/2)"/?dB,, =z €R.
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As in Section 5.3, we construct estimators for b based on the observation of Z< and infer
like in Proposition 3.12 that the latter experiment is more informative than F<.

As an application, the result that the global diffusion experiment E is asymptotically more
informative than the white noise experiment F< can be used to infer optimal minimax rates
for the drift estimation under an LP(I)-loss function and with a standard nonparametric
class of prescribed regularity contained in 3. Choosing p. = infpes, up, we observe that
on the compact interval I the function u, is strictly positive such that it can be bounded
from above and below by a constant factor times some density g on I. Therefore, when
using the local equivalence result for the asymptotic lower bound (cf. the methodology
in Korostelev and Tsybakov (1993)) and the global deficiency result for the asymptotic
upper bound, the risk bounds will merely differ by a constant factor. We suspect that for
a pointwise loss function the asymptotic deficiency yields in many cases even the exact
asymptotic constants, provided the lower bound is proved locally around the parameter
bo fulfilling up, (z0) = p«(zo) for the point zo under consideration. Another possibility to
determine exact asymptotic constants is to use the compound experiment G and to follow
the methodology developed by Nussbaum (1996) for the Pinsker constant.

5 Appendix

5.1 Variance of local time

5.1 Proposition. There 1s a constant C > 0 only depending on the class ¥ such that

Varp,[Lp(Y)] < Cps(y).

Proof. For simplicity we shall omit the index b everywhere in the proof. Let us intro-
duce the transition density p(z,y;t) = P(Y; € dy|Yo = z) and the Markov transition
operators P,f(z) = [ f(y)p(z,y;t)dy for functions f in the space L?(u) of functions
square-integrable with respect to the invariant measure. Its generator L has in our case
the divergence form representation Lf = su~'(uf’) for f in the domain D(L) of L, see
Revuz and Yor (1999) for further details. We find

Var(Lz(Y)) :/0 /0 p(y,y; [t — su(y) dtds — T?p(y)?
= [ 27 - el vilnte) — o))

0

< 27(y) [ (pluyvi0) — ) da

In order to evaluate the integral we make use of the formula for operator semigroups in

Banach spaces (Engel and Nagel 2000, Lemma I1.1.3)

T
/ PLfdt=Prf—f, VfeDL). (5.1)
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Let us introduce the distribution function Fy(z) := [*_ u(¢) d¢ and

Gole) = [ 208 (tyo) = o) .

p(u)
Then formally LGy (z) = é,(z) — pu(y) holds and thus

| et —uwydt = [ PLG,=)dt = PrGy(z) - Gyo) (5.2)

This formula can be justified by using a smoothing function A € C®(R) with A~ > 0,
J h =1 and compact support and then setting

B A 7 (9 1,/
Gyel(z) = /y /_oo m(s h(e 'y —¢)) — /5 h(e 'y —v))u(v) dv) d¢ du.
Then G, lies in the domain of L and satisfies

LGy.(z) = "h(e(y —z)) — /5_1h(5_1(y —v))u(v) dv.

Applying formula (5.1) to Gy and then letting £ — 0 gives the representation (5.2).
By the contraction property of (P;);>o we find
T
lim p(z,y;t) — uly) dt = Eu[Gy(Xo)] — Gy(z).

T—o0 0

Now a simple calculation yields

Jim [ ptoit) ~ wt) = [ (1= B0y (0) + BT ami(0))

The conditions on the class ¥ ensure

F,(z)
e u(a) oo p(z)

1-F
<K and supiu(m)<K

with the constant K = + + exp(2CA(1+4))

oy T 2cata) Using this estimate we obtain for y > 0

72D py i< 6 [ ounie) du < 20uty)

p(w)
Y 2u(y) 2 ° Y 2u(y)
| R wras [ aruue a2

<2K?u(y) —|—2/0yexp(2/uyb(v) d’u) du.

According to the conditions in (1.2), in each estimate the right hand side is uniformly
bounded over Y. We apply the symmetric argument for y < 0. Finally, we observe that
(v, y;t) — te(y) > 0 follows for all y € R and ¢ > 0 from the fact that py(z,y;t) — ps(y)
is the continuous kernel of the nonnegative operator P;(Id —IIg) with IIof = E,[f(Xo)]
on L%(p). O
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5.2 Estimators in the model of ergodic diffusion

Let X = {X;, t € [0, S]} be a sample path of a stationary diffusion process satisfying (1.1).
Let K : R — R be a smooth kernel function with support in [—1,1]. We shall use the
standard kernel estimator of y; defined as follows:

1 S IE—Xt
,U,S(fE)—S—hS A K( hs )dt, fEER,

where hg = S~1/(26+1) is the bandwidth leading to a rate optimal estimator. It is evident
that this estimator is differentiable and its derivative equals:

1[5 rz— X,
~ _ !
“S(m)_—Sh%/o K( P )dt, z € R.

5.2 Lemma. There exist some positive constants m and Ly such that

m < :u’b(m) < m_la |,u,§)(a:) - Mé(y)| < L1|:IJ - y|ﬂ7 Vaz,y S I: Vb € Xo.

Proof. Use the uniform boundedness of b on I and the formula y(z) = 2b(z)up(z). O

5.3 Lemma. For any real p > 1, there is some positive constant Cy depending only on
B, Li,m,p such that for any ¢ € I we have

By[(s() —m()”] < ST, By[(Hs() — mia) ] < 5,
Proof. Using standard arguments, the bias in both cases can be bounded as follows:
|Eelis(z)] — m(2)] < ChG™,  [Beliis(2)] — py(a)| < OhS.

Let us evaluate the variance term of fi's(z):

B[ (75 (2) — Bulis(@)))] = S~h3"E, [( / () mae (2)] dt) } |

We introduce the function

anlu) = 5 | K (5 ) ) (g — Fulw)

po ()

The It6 formula applied to the function fo. 9z(u) du and to the diffusion X yields

/XX 9o(u) du = /OS 9:(Xy) dW, + /OS (K(m ;SXt) _E, [K(“’ ;SXt)D dt.

This equality combined with the Burkholder-Davis-Gundy inequality (Revuz and Yor
1999, Theorem IV.4.1) leads to the estimate

B (75 (o) ~ Balis())) < €57h5 g | " gulu) i) " ([ () a)|.
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The integration by parts formula yields

2h o,
o)l = | [ K)o = whs) (saangy = Fulu))do
oh2
< ZhS‘K( )‘—I— / K(v /Lb(m—vhs)(]l{un vhsy — Fu(u ))dv
< 2hs|K (S - )‘+0hg.

This term is uniformly in b € ¥y bounded by Chg. Therefore, we get

B[ 7o)~ BalTs (o)) ] < g (BaxF14E (| () @) | -5 )

The first expectation in the right hand side is uniformly bounded, while the second one

can be estimated as follows:
([ CR 4] - sl [l mos)
= B E,,K/_ll |K(v)|” L (X) dvﬂ

< 2RE sup Ey[LE " (X)P].

lv|<1

Using the fact that the expectation of the local time L%(X) is equal to Sus(y) and the
centred moments of order p are bounded by C'SP/? (Kutoyants 2003, (1.35), page 30,), we
get the estimate

Es[(s(2) — Balfis(2)])”) < C((Shs)™ + (Shs) ™ + 57?57 + 7).

In the right hand side of this inequality, the largest term is obviously (Shg)™® and it
decreases to zero at the rate S=2P#/(26+1) The evaluation of the variance of fis(z) is even

simpler and will be omitted. O

Due to the compactness property derived from Arzela-Ascoli theorem, there exists a finite

subset M = {f1,..., fw} of C(I) such that for any b € ¥y there exists fp € M such that
supgcr | fo(z) — po(z)] + sup,er | fi(z) — py(z)| < S™Y/2. Since all the functions ps, pp, gy ',
b € Yo are uniformly bounded on I, the same holds for the elements of 9. That is
m < f(z) < 1/m and |f'(z)] < m' for any ¢ € I and for any f € 9. Let gg be the
estimator of y;, defined as follows

fis = axgmmin e (1(0) — Fs(0)| + 1S — Fslloe + 17 -

in the case when the minimiser is not unique, we choose the one having the smallest index.

|| (28+1 /2ﬂ)

Obviously, this estimator takes a finite number of values.

5.4 Lemma. There exists a constant C depending only on the parameters describing the
set X, such that the following inequalities hold:

Ey[(ms(0) - m(0))°] < 057, (5.3)
/I Es[(is(z) — pw(2))] dz < €872, (5.4)
/IEb[(ﬂs(w)—uz(w))4] de < C§H/EEH), (5.5)
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Proof. The proof of these estimates follows from Lemma 5.3 and the definition of g using
standard arguments (see, for instance, Nussbaum (1996), page 2424). O

Using this estimator fis and the formula b(z) = w;(z)/2ps(z), we define the estimator bs
of the drift b by bs(z) = as(z)/2as(z). Since gg € M, we have
() — Bs(2)| | |Es(@)| |us(z) — As(z)|
24() 24 () s ()
< C(lu(=) = As(@)] + lus(z) — As(2)])

for any € I. An obvious consequence of this inequality and Lemma 5.4 is

[bs(z) — b()|

IN

sup /Eb[(ES(m) — b(az))4] dz < 0 §~48/(28+1) (5.6)

beXo JI

5.3 Estimators in the conditionally Gaussian model

Let (Z,U) be given by (3.4). The aim in this subsection is to construct estimators of b
and up based on the observations (U, Z,,z € I). Let K be a kernel defined as in the
previous subsection, h = hr_g = (T — S)_l/(zﬂ“) and let m be the constant from Lemma

5.2. We define
~ . [ K(EL-1)UdZ,, ifz>0and infye Uy, > /m/2,
brs(e) = - § LK (532 +1)U;"dZ,, if 2 <0and infye;Uy > v/m/2,
0, if infyer Uy, < 4/m/2.
Of course, this definition is used when z € I; for z ¢ I the estimator ?)\T,s(a:) is defined to
be equal to bo(z). The estimator of y; is simply pr s = Moy -
5.5 Lemma. For any p > 0 there exist some constants ¢,C > 0 such that

S“P/ E; 5[ (br,s(2) — b(z))*] dz < C((T — 5)7o/CE) 4 emo¢"

beXo JI

)7

“ 2

sup [ B [(Ars(o) - m(a)) "] do < C(T-5)7+e 7).

beXo JI

Proof. The first inequality can be obtained by evaluating the L?P-risk of the classical
kernel estimator on the event {infye; U, > 4/m/2} and by bounding the probability of
the event {inf, U, < \/u1/2} using the inclusion {inf, U, < (/p1/2} C {sup,e (€ + B,) >
¢~'y/m/2} and the fact that sup,¢ p) Br has the same law as |Bp|.

To show the second inequality, one checks first, using standard arguments, that the expec-
tation of any power 2p of sup,¢; | [5 (b—br,s)(v) dv| is bounded by C'(T—S)P. Afterwards,
the explicit expression of the mapping b — u yields the estimate

‘Mb(m) - M@(m)‘ < (,ub(a:) + ,wg(a:)) sgg ‘1 — ezfom(b_a(”)d“‘.

To end up, one uses the inequality |e*—1| < 2a,Va € [—1, 1] for bounding the expectation
on the event W = {sup,g | [; (b — br,5)(v) dv| < 1} and the Chebyshev inequality for
bounding the same expectation on W*. 0
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5.6 Remark. So far, the estimators /l;T,s and pir s do not take values in countable subsets
of C(I), but the corresponding modifications in the previous subsection apply here, too.
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