
Weierstra�-Institut

f�ur Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 { 8633

Stochastic Eulerian model for the 
ow simulation in

porous media. Uncon�ned aquifers

Dmitry Kolyukhin 1 and Karl Sabelfeld 1;2

submitted: 23rd March 2004

1 Weierstrass Institute for Applied

Analysis and Stochastics

Mohrenstra�e 39

D { 10117 Berlin

Germany

E-Mail: sabelfeld@wias-berlin.de

2 Institute of Computational Mathematics

and Mathematical Geophysics

Russian Acad. Sci.

Lavrentieva str., 6

630090 Novosibirsk

Russia

No. 912

Berlin 2004

W I A S

1991 Mathematics Subject Classi�cation. 65C05, 76N20.

Key words and phrases. Hydraulic conductivity, Lognormal random �eld, small 
uctuations, Darcy

law, randomized spectral representation.

This work is supported partly by the RFBR Grant N 03-01-00914, HIII N 1271.2003.1, and NATO

Linkage Grant N 978912.



Edited by

Weierstra�-Institut f�ur Angewandte Analysis und Stochastik (WIAS)

Mohrenstra�e 39

10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail: preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstract

This work deals with a stochastic uncon�ned aquifer 
ow simulation in statisti-

cally isotropic saturated porous media. This approach is a generalization of the 3D

model we developed in [13]. In this paper we deal with a 2D model obtained via

depth-averaging of the 3D model. The average hydraulic conductivity is assumed

to be a random �eld with a lognormal distribution. Assuming the 
uctuations in

the hydraulic conductivity to be small we construct a stochastic Eulerian model for

the 
ow as a Gaussian random �eld with a spectral tensor of a special structure

derived from Darcy's law. A randomized spectral representation is then used to

simulate this random �eld. A series of test calculations con�rmed the high accuracy

and computational eÆciency of the method.

1 Introduction

The main diÆculty in evaluation of pollutant transport in porous medium such as, for

instance, aquifers is the extreme heterogeneity of the media. The parameters which locally

describe the transport can be obtained in experiments, but they cannot be simply used

to characterize the transport on large scales. Here we have a classical situation where

there is a lack of knowledge on the local details of the spatial structure, but without

this structure details it is not possible to describe the large scale behaviour. A natural

approximation is based on the stochastic approach: the heterogeneities are modelled as

random �elds with given statistical properties. In hydrogeology this approach is often

used, see, e.g., [6], [24] for the 
ow analysis in saturated zone, or [9], [18], [10], [4] for

the transport of a dissolved pollutant in a saturated aquifer; see also overview in the

books [5] and [11]. Stochastic approach allows for variations in other local properties,

e.g., the hydraulic conductivity and the chemical adsorption coeÆcient (see [7], [3]), or

the degradation constant (see [12]). An asymptotic analysis is undertaken in [19] when

comparing two di�erent averaging procedures.

To our knowledge, in the porous media transport, only one type of stochastic models was

used, namely, the Random DisplacementMethod (RDM) for the hydrodynamic dispersion

equation. It should be stressed that RDM can be applied only if the displacement covari-

ance tensor is known (e.g., from measurements, or numerical simulation), and cannot be

applied if the functionals of interest are evaluated at times comparable with the charac-

teristic correlation scale of the 
ow. In contrast, the Lagrangian stochastic models based

on the tracking particles in a random velocity �eld extracted from numerical solution of

the 
ow equation are free of these limitations, but the computational resources required

are vast. In [17], the �rst Langevin type stochastic model in the form of a stochastic dif-

ferential equation for the position and velocity is constructed. It is worth to mention that

this approach is widely used in the atmospheric transport problems, e.g., see [15],[22].
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In the present paper we further develop the random �eld simulation technique which

allows us to constrtuct samples of the velocity �eld and to simulate the transport of a

passive scalar in porous medium under assumption of small 
uctuations of the hydraulic

conductivity. We deal here with the uncon�ned aquifers. The feature of the 
ow in an

aquifer we use is that it may be approximately viewed as a horizontal 
ow. Therefore un-

der some conditions, we can consider the 
ow characteristics as averaged over the height

and thus turn to a 2D 
ow model. Frequently such situation arises in the case of 
ow

at regional scale [5]. Simulation of random �elds is based on the spectral structure of

the hydraulic conductivity. In [13] we have applied a similar approach to a steady 
ow

in porous media in 3D case. A stochastic Eulerian and a combined Eulerian-Lagrangian

models were also developed by us in [16] for the analysis of relative dispersion of two par-

ticles moving in a turbulent 
ow. A small-perturbation analysis which uses the Kraichnan

simulation technique was made by Schwarze et al. [23].

2 Formulation of the problem

We consider a steady 
ow through saturated porous formation. For a stationary 3D 
ow,

the speci�c discharge is determined by the Darcy law

q
3D(x) = �3D(x)u3D(x) = �K3D(x)r('3D(x)) (1)

where q3D is the so-called Darcy's velocity, or speci�c discharge, u3D is the pore velocity,

�3D, the porosity, '3D, the hydraulic potential '3D = p

�g
+z, p is the 
uid pressure, z is the

height and K3D - is the hydraulic conductivity assumed to be a homogeneous log-normal

random �eld with a given spectral density.

Thus q3D is a random �eld obtained from (1) where '3D is the solution of the following

conservation of mass equation

3X
i=1

@

@xi

�
K3D(x)

@'3D

@xi

�
= 0 : (2)

The functions K3D and �3D are the key parameters of the 
ow. Experimental measure-

ments show high heterogeneous behaviour of K3D in space with the following remarkable

property: when considering K3D as a random �eld, its distribution is well approximated

by a log-normal law.

The porosity �3D is also often considered in some models as a random �eld. However its

variability is in the problems we tackle generally much smaller than that of K3D. We

assume therefore �3D(x) = � = const.

In many groundwater-
ows the vertical 
uctuations are much less compared to the hori-

zontal variations of the velocity �eld. To treat this description, the equations (1) and (2)

are averaged over the vertical coordinate x3 in order to derive an equation describing the

two-dimensional aquifer 
ow. We will consider steady 
ow in uncon�ned aquifer with no

recharge. This situation is described by equations [2], [11]:
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q(x) = � �u(x) = �K(x)�r('(x)) ; (3)

2X
i=1

@

@xi

�
T (x)

@'

@xi

�
= 0 ; (4)

here q is the integrated component of the speci�c discharge and it can be de�ned in words

as volume of water per unit time and per unit length in the horizontal plane, and u is

the depth-averaged pore velocity. The classical aquifer equation in the form (3 ), (4 )

treats only the depth-averaged 
ow conditions, and the head therein is a depth-averaged

head. We use Dupuit assumption [2] that the equipotential surfaces are vertical (i.e.,

' =< '(x1; x2) > is independent of x3). Then in (3),

K(x1; x2) =
1

�

Z �(x1;x2)

0

K3D(x1; x2; x3)dx3

is the average 2D hydraulic conductivity. The transmissivity T is formed as the product

of K and �, the thickness of the aquifer:

T (x1; x2) = �(x1; x2)K(x1; x2) :

It has been assumed here that the transmissivity is a statistically isotropic in the plane.

In developing (3), (4), the head changes in the vertical are ignored which can be considered

as a model in the case of small variation of the changes in the vertical.

We will consider the hydraulic log-conductivity lnK = F + f as a statistically homoge-

neous random �eld with gaussian distribution N(mf ; �f). Here mf = F , and �f is the

standard deviation.

We assume small random perturbations about the mean values for the transmissivity,

lnT = Y + y ;

depth-averaged potential, speci�c discharge and pore velocity components:

' =< ' > +'0 = H + h ; qi =< qi > +q0i; ui =< ui > +u0i; i = 1; 2 :

3 Spectrum of the speci�c discharge

We deal with statistically homogeneous random �elds, and use the Fourier-Stiltjes repre-

sentations, in particular,

f(x) =

Z Z
exp(i(k;x))dZf(k)

h(x) =

Z Z
exp(i(k;x))dZh(k)
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u0j(x) =

Z Z
exp(i(k;x))dZuj(k);

where k = (k1; k2) is the wave number vector, x = (x1; x2) is the position vector, and the

integration is over two-dimensional wave number space.

We assume that lnK is statistically homogeneous and isotropic with the spectrum [11]:

Sff (k) = �2
f�

2=[�(�2 + k2)2]; k = jkj (5)

with the corresponding covariance function

Cff (r) = �2
f�rK1(�r); r = jrj; � = 1:65=If

where K1 is the modi�ed Bessel function, and If is the correlation length.

Assuming small perturbations (�2
f << 1) Gelhar [10] evaluated the speci�c discharge

spectrum using Darsy's law with isotropic hydraulic conductivity

uj = �
K

�
(@'=@xj) = �

KG

�
exp(f)(@'=@xj) = �

KG

�
[1 + f + f2 + :::](@H=@xj + @h=@xj)

(6)

where KG = exp(F ).

Under small perturbation and dropping products of perturbed quantities, the mean-

removed form of (6) is

u0j = �
KG

�
[f(@H=@xj) + @h=@xj]

and using the above Fourier-Stiltjes representation yields

dZuj =
KG

�
(JjdZf � ikjdZh) (7)

where Jj = �@H=@xj - is the mean hydraulic gradient in xj direction, J = (J1; J2).

The following relation follows from (4) (e.g., see [1])

r2h = Jj(@y=@xj): (8)

Indeed, by (4) we �nd that

@2'

@xj2
+
@ lnT

@xj

@'

@xj
= 0; T 6= 0;

and taking the expected values we get

@2H

@xj2
+

@Y

@xj

@H

@xj
+

��
@y

@xj

@h

@xj

��
= 0 :
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After subtracting this from the original 
ow equation (4) we come to the following equa-

tion:

@2h

@xj2
+

@Y

@xj

@h

@xj
+

@y

@xj

@H

@xj
=

��
@y

@xj

@h

@xj

��
�

@y

@xj

@h

@xj
� 0:

From this, due to the small 
uctuation assumption, we ignore the products of 
uctuations,

and since the random �eld Y is homogeneous, @Y
@xj

= 0, we come to the formula (8):

@2h

@xm2
= Jm

@y

@xm
:

The perturbation in lnT [11] can be written as

y = lnK� � hlnK�i = f + ln(1 +
b

B
) � f +

b

B
= f +

h

B
;

� = B + b ; hbi = 0 ; � = '� L = H + h � L

where f = lnK=KG. In the second line, it has been assumed that the 
uctuation in

aquifer thickness, b is small compared to the mean aquifer thickness B. It has also been

assumed that the bottom elevation of the aquifer, L is known precisely.

Then

@2h

@xm2
�
Jm

B

@h

@xm
= Jm

@f

@xm
:

From this one �nds

dZh =
�iJmkm
k2 + iJmkm

B

dZf ; (9)

hence,

dZuj =
KG

�

�
Jj �

kjBJmkm(k
2B � iJmkm)

k4B2 + (Jmkm)2

�
dZf

which implies

Sujul(k) = hdZujdZuli =
K2

G

�2

�
Jj �

kjBJmkm(k2B � iJmkm)

k4B2 + (Jmkm)2

�
��

Jl �
klBJnkn(k

2B � iJnkn)

k4B2 + (Jnkn)2

�
Sff(k); m; n = 1; 2 :

(10)

Under small perturbation assumptions the velocity is modelled as

u(x) =< u(x) > +u0(x) � KGJ=� + u
0(x) :
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4 Simulation of speci�c discharge perturbation ran-

dom �eld

The spectral tensor S(k) takes the form

Sjl(k) = aj(k)al(k) (11)

where

aj(k) =
KG

�

�
Jj �

kjBJmkm(k
2B � iJmkm)

k4B2 + (Jmkm)2

�
(Sff (k))

1=2
:

Now we present simulation formulae in the case of real-valued random �eld with the

spectral tensor fSjl(k)g, see [21].

Let p(k) be an arbitrary density function de�ned on the same wave number space of k.

Sample k according to p(k) and let �k and �k be mutually independent random variables

with zero mean and unit variance, independent of k.

Let

�0k(a) = �k Re(a(k))� �k Im(a(k)) ; �0

k(a) = �k Im(a(k)) + �k Re(a(k)) :

Then we construct the vector random �eld

u(x) =
1p
p(k)

(�0k(a) cos(k;x) + �0

k(a) sin(k;x)) :

Here k is sampled accoding to the density p(k) which is, generally, an arbitrary density

function which can be chosen from rather di�erent arguments. For instance, it is recom-

mended in [21], to use p(k) = a2(k)=
R
R3 a

2(k)dk. We take p(k) = Sff (k)=
R
R3 Sff(k)dk.

It is easy to verify that

h�0k(a)�
0

k(a)jki = h�0

k(a)�
0

k(a)jki = S(k);

and

h�0k(a)�
0

k(a)jki = 0

by de�nition. Using these properties, it is possible to show that the random �eld u has

the desired spectral tensor fSjl(k)g.

We have described the simulation of a random �eld with zero mean u(x) = 0 and with

a given spectral tensor S(k), where no assumption about multidimensional distributions

of the random �eld have been made. In the case of gaussian random �elds the algorithm

can be modi�ed as follows. We simulate i = 1; 2; : : : N independent random �elds with

S(k), then we set
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Figure 1: Samples of speci�c discharge perturbation random �elds u
0

1; u
0

2, for the isotropic

hydraulic conductivity. Left picture: � = 0:6, right picture: � = 2:0. The number of harmonics

was N = 100.

u
(N)(x) =

1
p
N

NX
i=1

"
1p
p(ki)

(�0ki(a) cos(ki;x) + �0

ki(a) sin(ki;x))

#

where

�0ki(a) = �kiRe(a(ki))� �ki Im(a(kki)) ; �0

ki(a) = �ki Im(a(ki)) + �kiRe(a(kki)) :

and ki, �ki, �ki are all sampled independently.

The central limit theorem ensures, under some general assumption [14], that u(N)(x)

converges to an ergodic gaussian random �eld with the spectral tensor S(k), as N !1.

5 Testing the simulation procedure

In this section we present some results of simulation, in particular, we show examples of

the discharge �eld samples with the given spectrum, and compare the simulation results

against the exact solutions. The hydraulic log-conductivity lnK is assumed to be normal

with the mean F = 3:4012 and the spectrum (5). The mean hydraulic gradient is �xed

as J = (J; 0), J = 0:01, �2
f = 0:01. The mean thickness of the aquifer B = 1.

For illustration, we present in Figure 1, one sample of speci�c discharge perturbation

random �eld u01; u
0

2, in the region (x1; x2).
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Figure 2: The functions Cd(r) (left picture) and Cd12(r) (right picture).

5.1 Comparison with exact results

For testing our model we calculate the correlation functions

Cjl(r) = huj(x)ul(x+ r)i

by using Monte Carlo simulation and compare them with the results of numerical inte-

gration

Cjl(r) =

Z
R2

Sjl(k)e
i(r;k)dk : (12)

The expectation was calculated as an arithmetic mean over N = 107 samples, while the

Simpson's rule was used to evaluate the integral (12).

Let us consider the correlations along the diagonal, i.e., let Cdjl(r) = huj(0; 0)ul(r; r)i.

In Figure 2 we plot the function Cd(r) = Cd11(r) + Cd22(r) and the cross correlations

Cd12, � = 1.

The error of calculations is very small, and the curves almost coincide, so that it is hard

to see the di�erence between the curves in both pictures. Of course, the error is relatively

larger for small correlations.
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5.2 Spatial structure of the velocity �eld

Before presenting the calculations for the Eulerian correlation functions of the velocity

�eld, let us make a remark on a similarity property of these functions.

The statistical characteristics of our problem, e.g., the correlation tensor Cjl, depend on

many parameters, especially on the depth B and the correlation length If . However it

can be shown that Cjl depends only on the ratio If=B which essentially simpli�es the

analysis.

Indeed, in the new coordinates k0i = kiIf , I
0

f = If=B, r
0 = r=If the spectral tensor (10)

reads

Sujul(k
0) =

K2
G

�2

 
Jj �

k0jJmk
0

m(k
02 � iJmk0mI

0

f)

k04 + (Jmk0mI
0

f)
2

!
 
Jl �

k0lJnk
0

n(k
02 � iJ 0

nk
0

nI
0

f)

k04 + (Jnk0nI
0

f)
2

!
Sff(k

0); m; n = 1; 2 :

(13)

Sff (k
0) = 2:7225 � (If)

2�2
f=[�(2:7225 + k02)2]; k0 = jk0j ;

hence

Cjl(r) =

Z
R2

Sjl(k)e
i(r;k)dk =

Z
R2

Sjl(k
0)

I2f
ei(r

0;k0)dk0 = Cjl(r
0) :

Thus in the new coordinates, Cjl(r
0) depends only on I 0f .

Note that rigorously, we cannot conclude from this that the Lagrangian correlation func-

tion has the same similarity property on If=B. However our calculations (see �gures

6,7,8) show that this might be true, at least approximately. This agrees also with the well

known approximation that the Eulerian and Lagrangian correlation functions are similar;

see also [5].

For the spatial picture of the velocity �eld, it is convenient to present the following

correlation functions:

C22(r2) = hu2(0)u2(r2)i; C22(r1) = hu2(0)u2(r1)i

for the transversal correlation function in the transversal and longitudinal directions,

respectively.

Analogously, for the longitudinal velocity the functions C11(r1) and C11(r2) are de�ned.

We normalize these functions to unity at zero, and plot the curves as functions on r=If .

The longitudinal component shows a monotone decay in the longitudinal direction, with

a predictable dependence on the height B: for smaller heights the correlation length is

smaller (left picture in Figure 3).

More interesting is the behaviour of the transversal component in the longitudinal direc-

tion (right picture in Figure 3): here we see a region where this function is negative, and
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Figure 3: The longitudinal C11(r1=If) and transverse C22(r1=If) correlation coeÆcients as

functions of the longitudinal coordinate.

this happens for all heights. This implies that the decorrelation is achieved through a

transversal random walk in both directions.

As seen from Figure 4, right picture, for all heights of the layer, the transversal correlations

in transversal direction have a large negative part which implies that the vortices move

in the transversal direction quite symmetrically, with a characteristic size which can be

estimated from this curve (being smaller for smaller heights).

Longitudinal velocity component in transversal direction (Figure 4, left picture) has a

longer correlation length, and negative values appear only for small heights.

Remark.

The spectrum (10) is derived under the assumptions �f << 1 and b << B. In Figure 5

we show the results of numerical calculations of functions �h=If and �h=B, where �h is

the standard deviation of the hydraulic potential � (recall that � = H + h). It is seen

that �h=B grows from 10�6 for small values of If=B, and then slowly approaches 10�2 in

the interval If=B > 1.

These results can be used to analyse the assumption b << B. Note that the two lower

curves have good agreement with the head-variance relationship

�2
h = 0:37�2

fJ
2I2f ln(1:21B=JIf) ; JIf=B << 1 ;

founded by Gelhar [8] for the two-dimensional case and spectrum (5).

6 Lagrangian statistical characteristics

In this section we present the results of numerical simulations for some Lagrangian sta-

tistical characteristics of the 
ow.
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Figure 5: Monte Carlo calculations of functions �h=If and �h=B in uncon�ned aquifer.
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In simulations, lnK was taken as an isotropic gaussian random �eld with the mean

F = 3:4012 and spectrum (5). The mean hydraulic gradient is again �xed as J = (J; 0),

J = 0:01, �2
f = 0:01.

Recall now that we deal with a 
ow in which the head changes in the vertical are very

small. Accordingly the vertical velocity and horizontal velocity changes in the vertical are

also small. Thus let us introduce a Lagrangian trajectory X(t) = (X1(t);X2(t)) starting

at a point x0 as a function satisfying the equation:

dX

dt
= u(X); X(0) = x0 ; (14)

where u is here the depth-averaged pore velocity. It is assumed that the random velocity

�eld u is smooth enough so that there exists a unique solution to (14) which is a vector

random process with a mean hX(t)i.

The displacement covariances are de�ned by

Dij(t) = h(Xi(t)� hXii(t))(Xj(t)� hXji(t))i :

In what follows we deal with the normalized dispersions:

D0

ij = Dij=I
2
f ; i; j = 1; 2

and dimensionless time t0 = t U=If , where U = KGJ=�.

In Fig. 6, the functions D0

11(t
0)=�2

f and D0

22(t
0)=�2

f in uncon�ned aquifers are shown for

various values If=B. The function D0

11(t
0)=�2

f di�ers insigni�cantly for If=B = 1 and

If=B = 100. The behaviour of D0

22(t
0)=�2

f is more sensitive to the increasing of If=B.

Important Lagrangian characteristic is the Lagrangian correlation tensor of velocity:

Rij(� ) = h[(ui(X(t))� hui(X(t))i] [(uj(X(t+ � ))� huj(X(t+ � ))i]i

where X is a Lagrangian trajectory started at the time t.

We have calculated R11(� ) and R22(� ), the Lagrangian correlation functions of the lon-

gitudinal and transverse velocities, respectively. In Figure 7 we plot these functions

normalized by Rii(0), i = 1; 2. It should be noted that the further calculations for values

of If=B smaller than 10 do almost not a�ect the curves after If=B reaches the value of

10. The limit correlation functions (as If=B goes to zero) corresponds to the ordinary

di�usion behaviour. The same is true for the curves presented in Figures 3, 4 and 8.

Our calucations show a superdi�usion behaviour, as also reported in [13]: the transversal

integral time scale de�ned as the integral of the transverse correlation function appears

to be zero which makes impossible the application of the classical Taylor formula relating

the dispersion with the integral of the correlation function. The long negative time corre-

lations lead also to a trapping of particles and a non-Fickian behaviour of the transverse

dispersion, see the right pictures of Figure 6.

Important Lagrangian statistical characteristics are the Lagrangian velocity structure

functions de�ned as [20]

Gij(t) = h�Vi(t)�Vj(t) jX(t0) = x0; i ; i; j = 1; 2 ;

12
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Figure 6: Monte Carlo calculations of functions D
0

11=�
2
f and D

0

22=�
2
f in uncon�ned aquifer are

shown for various values If=B.

where �Vi(t) = ui(X(t; t0;x0))� ui(t0).

In Figure 8, we show the results of calculations of the longitudinal (left picture) and

transverse (right picture) Lagrangian velocity structure functions, for three di�erent values

of If=B.

7 Conclusion

Stochastic Eulerian model for the uncon�ned aquifer 
ow in statistically isotropic porous

media is constructed under the assumption of small 
uctuations of the hydraulic conduc-

tivity, which is considered as a log-normal random �eld with a given spectral density, and

under the Depuit shallow-water 
ow approximation. The randomized simulation approach

developed in [21] is used to construct a vector �eld with a spectral tensor analitically de-

rived from the stochastic Darcy equation. A series of test calculations con�rmed the high

accuracy and computational eÆciency of the method. Calculations of the longitudinal

and transverse dispersions, the Lagrangian correlation functions and the Lagrangian ve-

locity structure functions have been carried out to extract the main statistical features of

the 
ow. The calculations of the eulerian correlation tensor is simpli�ed in dimensionless

coordinates where it shows a similarity behaviour, so that it depends only on the ratio of

the log-permeability correlation length to the mean depth of the 
ow.

13



0 5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

τ’

R
1
1
(τ

’)
 /

 R
2
2
(0

)

I
f
/B=10

I
f
/B=100

I
f
/B=1000

0 5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

τ’

R
2
2
(τ

’)
 /

 R
2
2
(0

)

I
f
/B=10

I
f
/B=100

I
f
/B=1000

Figure 7: Longitudinal (left picture) and transverse (right picture) Lagrangian correlation

functions of velocity.
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functions of velocity.
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