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Abstract

We estimate the volatility function of a diffusion process on the real line
on the basis of low frequency observations. The estimator is based on spec-
tral properties of the estimated Markov transition operator of the embedded
Markov chain. Asymptotic risk estimates for a growing number of observations
are provided without assuming the observation distance to become small.

1 Introduction

Diffusion processes are widely used in physical, chemical or economical appli-
cations to model random fluctuations of some quantity over time. Especially
in mathematical finance it has become very popular to model asset prices by
diffusion processes because this allows the use of strong tools from stochas-
tic analysis for option pricing or risk analysis. Removing seasonal effects and
long-term growth results in time-homogeneous diffusion processes. A typical
time-homogeneous scalar diffusion (X, t > 0) solves the It6 stochastic differ-
ential equation

dXt = b(Xt) dt + O'(Xt) th, t Z 0, (11)

with drift coefficient b(e), volatility or diffusion coefficient o(s) and with a
one-dimensional Brownian motion (Wy, t > 0).

Statistical inference for the volatility function has attracted a lot of interest
recently, see the discussions in (Kleinow 2002) or (Gobet, Hoffmann, and Reif8
2002) for an overview. Especially, in (Kleinow 2002) it is argued on the basis
of empirical data that common parametric assumptions on the coefficients
are highly misspecified in models for financial markets. Moreover, statistical
methods developed for high frequency observations, that is small observation
distances, have been typically applied to daily asset price data over periods of
several years, which should be qualified rather as low-frequency observations.
Therefore, the work (Kessler and Sgrensen 1999) on low-frequency statisti-
cal methods became a popular alternative, but remains restricted to certain
parametric models.

Here, we consider the case of nonparametric inference for the volatility
function o(e) in the case of an unknown drift function b(e) and equidistant
observations (XnA)ogngN with some fixed A > 0. If a linear parametric form
of the drift b(e) is imposed, then the nonparametric inference for o(e) can
be based mainly on the invariant density, which is easy to estimate (Alt-
Sahalia 1996). In (Gobet, Hoffmann, and Reifl 2002) it was shown that for
diffusions with reflections on a compact interval the nonparametric estimation
problems for b(s) and o(s) together can be solved using ideas in (Hansen,
Scheinkman, and Touzi 1998), but it involves some ill-posedness such that the



minimax rate of convergence is N~%/(25%3) for N — oo and regularity s > 1 of
o(e). Moreover, first numerical simulations in the reflected setting have shown
that the spectral estimator outperforms the traditional quadratic variation
estimator already for rather small observation distances A. We generalize this
approach to cope also with diffusions on the entire real line.

The basic ideas are that (a) we can only draw inference on the law of the
embedded Markov chain (X, )n>0, that (b) by spectral calculus its transition
operator determines the infinitesimal generator of the diffusion process and
that (c) this generator encodes rather explicitly the two unknown functions
b(e) and o(e). More specifically, the spectral estimator we propose is based on
estimates of the invariant density and of one eigenfunction and its eigenvalue
of the transition operator of (X,a)n>0, see formula (2.3) below. Leaving the
case of a compact state space, we face several new problems compared with
the situation treated in (Gobet, Hoffmann, and Reif8 2002): (1) the observation
design is degenerate, (2) the invariant densities are not uniformly comparable
and (3) the eigenfunctions are unbounded. Point (1) is overcome by using
warped wavelet functions or equivalently a suitable state transformation. To
avoid problem (2) we work on parameter-dependent function spaces and prob-
lem (3) is treated by smoothing differently at the boundaries. By this approach
we obtain that our spectral estimator also attains the rate N—%/(25%3) ag in
the simpler case of reflected diffusions, provided the coefficients guarantee
that the process is well mixing and the first eigenfunction exists and does not
grow too fast to infinity. For the proof we assume the invariant law of the
diffusion to be known. This is, of course, not realistic, but the estimation of
the invariant density is standard and contributes less to the overall risk than
the spectral estimations, as can also be seen from the lower bound proof in
(Gobet, Hoffmann, and Reifl 2002).

Section 2 introduces the diffusion model and recalls some theory for diffu-
sions, Section 3 presents and discusses the estimator and Section 4 provides the
mathematical results. We adopted (hopefully) standard notation. In particu-
lar, C"(R) denotes the space of r-times continuously differentiable functions
and Cj(R) its subspace such that all derivatives are uniformly bounded in-
cluding the function itself. The relation A < B means that A is bounded by
a multiple of B, independent of the quantities appearing in the expression B.
The relation A ~ B stands for A < B and B < A. A sequence of random
variables that is bounded in probability will be abbreviated by Op(1). Vectors
and matrices are usually set in bold fonts.

2 The diffusion model

In this section fundamental results for one-dimensional diffusions are recalled,
for more details and proofs see e.g. (Karlin and Taylor 1981) or (Bass 1998).
We consider diffusion processes (X, ¢ > 0) solving (1.1). The drift b(s) and
diffusion coefficient or volatility o(s) are assumed to be Lipschitz continuous
functions such that a strong solution exists. We shall henceforth assume the
uniform ellipticity condition

dog,01>0: 0g<o(z) <oy foral zeR (2.1)
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and the mixing condition

zgr_lr_loo b(z) = —oo and zgrzloo b(z) = +oo. (2.2)
These conditions imply the existence of a stationary solution X with invariant
marginal density

u(z) = afg sexp /0 328 &), zcR,

where C' > 0 is a suitable norming constant. Moreover, the solution process is
time-reversible and (-mixing with exponential speed such that for statistical
purposes the hypothesis of stationary observations is reasonable and will be
assumed henceforth.

Diffusions are efficiently described by their Markov transition operators
(Pt)tzo with

P f(z) = E[f(X:) | Xo=2] = /_oo f€)pi(z,8)dE, z R, f e Cp(R),

where p;(z, £) denotes the transition probability density. The operators (P)¢>o
can be extended to the Hilbert space

2 = {7 R R| [ Fe)ule)ds < oo,

on which they form a strongly continuous, self-adjoint semigroup of contrac-
tion operators with infinitesimal generator

Lf(e) = 30°(2)f"(2) + b(2)f'(a), @ €R,
for functions f in the domain (with natural boundary conditions)
D(L)={f € L*(u) | Lf € L*()}-

L is a closed selfadjoint operator with spectrum on the negative real axis
and the spectral mapping theorem asserts P, = exp(tL). In particular, the
eigenfunctions of P, and L coincide and the eigenvalues are transformed like
the operators. The Markov semigroup can be described equivalently by the
invariant density p(e) and the inverse scale density S(e) given by

S(z) = 1o%(@)u(s), @ CR.
Then the infinitesimal generator is given in divergence form by
Li(@) = " ()(SF)(a), @ CR.

Any eigenfunction u € L%(u) of L with eigenvalue v satisfies

S(@)u!(z) = v / w()p(€) &, z R,

— o0



which yields
NI W GHGE:
- W(2uz)

This identity allows to determine the volatility o(e) from quantities accessi-
ble from the embedded Markov chain (X,A)n>0, namely from the invariant
density and a spectral pair (u, e”A) of the transition operator. This approach
was first proposed by (Hansen, Scheinkman, and Touzi 1998) and statistically
analyzed in (Gobet, Hoffmann, and Reif§ 2002).

For this method to work we have to ensure that at least parts of the
spectrum are discrete, that is proper eigenvalues exist. In the sequel we shall
only need that the largest nontrivial (i.e., nonzero) spectral value is discrete,
but to avoid any technicalities we assume o € C'(R) and

lim (a'(:c) — 2b(:c))2 = 00, (2.4)

|z| =00 O'(CE)

which by Section 4.2 in (Hansen, Scheinkman, and Touzi 1998) ensures that
the entire spectrum of L is discrete. In view of our previous assumptions this
is already satisfied if o'(e) is uniformly bounded.

The mathematical analysis of our proposed estimators relies on some addi-
tional growth restrictions for the first nontrivial eigenfunction u; of L, namely

eR. (2.3)

uy € LP(p) and u] € LP(u) (2.5)

for some arbitrary p > 2. For p = 2 this condition is always satisfled because
uy is in the domain of L and thus also of (—L)Y/2:

(=L 2ur ]l = (= L)ur, ur)u = (Sui, ug) ~ (uy, u)a-

Observe the different norms and scalar products employed, where the index p
always refers to L%(p) and no index to L? with respect to the Lebesgue mea-
sure. For the canonical example of a stationary Ornstein-Uhlenbeck process
all eigenfunctions satisfy condition (2.5) even for exponential moments. It is
plausible that this behaviour remains the same whenever the tails of the in-
variant densities are equally small which is to say that the negative drift —b(e)
grows linearly. A formal mathematical result in this direction still lacks and
we can merely provide an example of a sufficient result under nonasymptotic
conditions on the coeflicients.

2.1 Proposition. Condition (2.5) is satisfied for all p < oo if the coefficients
0% € C%(R), b € CL(R) of the diffusion satisfy

ot (2O (DY Lz oyia)) > 0.

zeR\ o?%(z) 202(z)

For constant volatility this reduces to sup, b'(z) < 0.

Proof. By definition 1.2 in (Ledoux 1998) the diffusion process X satisfies the
condition CD(R, o) for some R > 0 under our assumption, which implies that
the Markov semigroup is hypercontractive. It is proved in (Bakry 1994) that
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any eigenfunction u of a hypercontractive semigroup operator has exponential
moments, that is satisfies [ exp(cu®(z))p(z) dz < oo for some ¢, @ > 0.
By Lemma 1.3 in (Ledoux 1998) the condition CD(R, 00) is equivalent to

|o(z)(Pef)'(2)| < e ®Ri(lo(z) f'(2)]), = €R,

for all sufficiently smooth f. For any eigenfunction u of L with eigenvalue v
we thus obtain

o(2)u(2)|e” < e P (lo(e)u(s)]), = €R.

The hypercontractivity of (P;) and ou’ € L?(u) therefore imply ou' € LP(u)
for all p < 0o and by ellipticity also u’ € LP(u). O

3 Construction of the estimators

We describe the spectral estimation procedure using the projection method
in detail. The use of projection methods has the advantage of approximat-
ing the abstract operators by finite-dimensional matrices, for which the spec-
trum is easy to calculate numerically. In addition, mathematical results for
spectral approximation by kernel-smoothed operators seem to be difficult to
obtain. A projection approach was already suggested by (Chen, Hansen, and
Scheinkman 1997) and adopted by (Gobet, Hoffmann, and Reifl 2002). More
specifically, we make use of compactly supported wavelets on the interval [0, 1].
For the notion of wavelet bases on compact intervals and their properties we
refer to (Cohen 2000).

3.1 Definition. Let (1) with multi-indices A = (j,k) be a compactly sup-
ported orthonormal wavelet basis of L%(0,1) including the scaling function
Y_1,0=1. For A = (j, k) we set |\| := j. The approzimation spaces (V) are
defined as the linear span of the wavelets indezed with A:

Vi :=span{n| X € A}.

The L?-orthogonal projection onto Vi will be called TI,. For a function M :
R — [0, 1] we introduce the warped wavelets ¥ (z) := ¥5(M(z)), z € R.

Note that (M) constitutes an orthonormal basis of L2(u) with u(z) =
M'(z), if M is (weakly) differentiable.

The first main idea is to use wavelets warped by the empirical stationary
distribution function of the diffusion process X in order to obtain a regular
autoregressive design, see (Kerkyacharian and Picard 2003) for a similar ap-
proach in classical regression with random design, but note that our density
does not define a Muckenhoupt weight. An equivalent viewpoint is that we
consider the data

1 N

=N 1(_°°7X'n. ](CE)
N+1 = A

Y, := M(X,p), where M(z):

is the empirical stationary distribution function. The transformed observa-
tions (Y,)o<n<n form a permutation of the set {n/(N +1)|1<n < N+ 1}.
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For such equispaced data Mallat’s pyramidal algorithm for computing wavelet
coeflicients is very efficient and widely available. Since the marginal density
does not determine the diffusion process if drift and volatility are both un-
known, we use the dependency structure in the data (Yn) in order to draw
further inference. By the Markov property of diffusion processes, it suffices
to consider the empirical distribution of the transitions X, 1) — Xna or
Y,_1 — Yy, respectively. Furthermore, the time reversibility asserts that the
laws of (X(n_1)a; Xna) and (Xna, X(n—1)a) coincide such that we may sym-
metrize our estimators.

Under the stationarity assumption M converges for N — oo uniformly
to the true distribution function M(z) := f (&) d¢, z € R. We are thus
naturally lead to consider the d1ffus1on process Yt M(Xt), t > 0, with values
in the open unit interval (0, 1), which has natural boundaries and satisfies by
It6’s formula

(e (Y)53(Ye)) b + e (V) (¥:) dW (1)

4, = uar (V) (b (¥3) + 5

The process Y is equivalently described by the following quantities, where we
write far(y) := f(M~'(y)) for any function f:R — R:

invariant measure: Ly (y) = 1¢0,1)(y), (uniform),

scale density: 7 ) =20 (W)of (v),

transition density: Dt y(y n) = (M (y), M~ () par(m) ™1,
inf. generator: Ly f(y) = (3 UM,u,Mf) (y),

)
domain of Ly: D(Ly) ={f € L*(0,1)| Ly f € L*(0,1)}.

Note that quantities without index usually refer to X, whereas those re-
lated to Y carry an index. From the formula for the transition operator
(Piy fu)(M(z)) = (Pif)(z) it follows that any eigenvalue vy of Ly with
eigenfunction uy is also an eigenvalue of L, but with the rescaled eigenfunc-
tion v = uy o M and vice versa.

We thus separate the estimation problem for the volatility function o(e)
of the original process X into the two subproblems of estimating the invari-
ant density p(e) of X and of drawing inference on the Markov transitions of
the transformed diffusion process Y. Of course, the latter is the much more
demanding task, because the invariant density can be estimated classically
under a suitable mixing hypothesis on X.

3.2 Example. The stationary Ornstein-Uhlenbeck process with parameters
a, 0 > 0 satisfies the stochastic differential equation

dXt = —aXt dt + O'th.

It is a Gaussian process with normal stationary law N (0, 5 ) Its generator L
has discrete spectrum Y.(L) = {—an|n > 0} and the ezgenfunctzons are given
by Hermite-type polynomials.

The transformed process Y satisfies the stochastic differential equation

dY; = —20pn (Ys) M~ (Ys) dt + opar (V) AW,
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where by normality par(y) is up to logarithmic terms of order y for y near
zero and of order (1 —y) for y close to one. The eigenfunctions of Ly are
polynomials in M~1(y) such that they have logarithmic singularities and their
derivatives of order r have polynomaial singularities of order r at the boundary.

Recall that by formula (2.3) we can estimate the volatility function o(e)
by a plug-in from estimates of the invariant density u(e) and the inverse scale
density S(e) of the process X. Hence, we make use of the transformation of

this formula v
o2, (y) = 2v1 [ w1y (n) dn
(ur,y) (9)uis(y)

where u; y denotes the eigenfunction of Ly corresponding to the largest non-
trivial eigenvalue v;. By the spectral mapping theorem (eA"l,ul,y) is the

) (3.1)

corresponding spectral pair of the transition operator P y.

Consequently, we are interested in obtaining spectral information about
the transition operator Ppy of Y. Its expansion in the wavelet basis (¢) of
L%(0,1) can be estimated by the symmetrized empirical operator coefficients

N
(Pa)ay = % Z (¢A(Yn—1)¢A’(Yn) + TlJA(YnWA'(Yn—l))-

Note that this is equivalent to estimating the transition operator P of X in
terms of the empirically warped wavelet basis (dzﬁ\‘/f)

N
1 ~ ~ ~ ~
(Pa)ay = ﬁZ(iﬁﬁ/I(X(n_l)A)?ﬁy(XnA) +¢§/I(XnA)¢§/II(X(n—1)A))-
n=1
If we had M = M, this would give an unbiased estimate because of

Efa(M (X (n_1)8)) 3 (M (Xna))] = / 1 / ()b (Mpay (9 m) dndy
= (Pay ¥\, ¥a)-

The eigenfunction u; € L?(u) of Pa with eigenvalue x; satisfies for any
multi-index X the coefficient equation

Z<PAI¢}§\\J7 ¢¥>”<’U,1, Tlfﬁ\\/'[)u = K,1<’U,1, Tl’;\\/[)u
AI

Furthermore, we have u;y = EA<’U,1,’¢}§\‘J>”’¢})\. We therefore calculate the
largest nontrivial eigenvalue &; (i.e. &1 < 1) with eigenvector u; of the sym-
metric |A| X |A|-matrix Paa := (Pa)axea and use the estimators

dry(e) =Y ()aa(z), 1 := A" log(k1).

AEA

Observe that by construction PA,A always has the eigenvector ug = (1,0,...,0)
corresponding to the constant scaling function 1_; ¢ with eigenvalue 1.



Even though formula (3.1) is valid for any nontrivial spectral pair of Ly,
we prefer taking the first nontrivial eigenfunction u;y for two reasons: first,
all other eigenfunctions oscillate such that the denominator vanishes at some
point and the estimate in its neighbourhood is worthless. Second, the spec-
tral estimation quality depends very much on the separation of the eigen-
value from the remaining spectrum (cf. Proposition 4.6) and the spectrum
Y(Pay) = {e®”|v € ©(Ly)} is such that it becomes rapidly very dense for
smaller eigenvalues. Nevertheless, it might be reasonable to use the informa-
tion about the other spectral pairs, compare also the embeddability discussion
in (Hansen, Scheinkman, and Touzi 1998).

The usage of warped basis functions simplifies the design and thus the anal-
ysis of the stochastic error term, but does not overcome the complex structure
of the deterministic approximation error. As proved later, the eigenfunctions of
Ly have logarithmic singularities at the boundary of the unit interval and its
derivatives have even polynomial-type singularities. This is why, theoretically
and in practice, the finite index set A employed in the construction of PA,A
has to be chosen carefully. On the one hand, we have the usual bias-variance
balance that lets us choose the highest resolution level J in accordance with
the smoothness s of the eigenfunction and the number N of observations. On
the other hand we have to take into account the singular behaviour such that
we shall refine more in the neighbourhood of the boundary points. We roughly
choose a maximal frequency level J(y) for wavelets with support in the point
y € (0,1) that satisfies 27(¥) ~ 27 min(y,1 — y)~'** with some small & > 0,
see Proposition 4.3 for details.

It remains to estimate ups, which we propose to do by the — up to trans-
formation — classical projection estimate

1L
pu(y) = Y iy, fa = i1 > oa(Ya).
A< n=0

Equipped with these estimates we use formula (3.1) in order to derive an
estimate 62, of 02, and use the estimated invariant law to transform it to an
estimator 62 of o2, which is our proposed spectral estimator.

Let us summarize our estimation procedure:

1. Form the empirical distribution function M and the transformed obser-
vations Y, = M(Xpa),n=0,1,...,N.

2. Estimate the transition operator by the matrix PA,A of empirical wavelet
coeflicients.

3. Calculate the first nontrivial spectral pair (k;, u;) of PA,A and build the
estimate 41, as of the eigenfunction.

4. Estimate the invariant density pu by some classical method.

5. Derive the estimator 62, by inserting the preceding estimates in formula
(3.1) and transform it back to the real line.

As already mentioned in the introduction, we provide a proof in the case
that the invariant law of X is known, that is M and p are available exactly.



In this case our spectral estimator is given by

52(z) = 2in f(f\/[(z) 1,y () dn
= A (@) (e)

derived from formula (3.1) by plug-in and transformation. To avoid theoretical
complications we must keep 21, |41,y | 2 and ||uard] y||3. uniformly bounded,
e.g. by applying a cut-off for unreasonably large values. Similarly, we guarantee
that the a priori knowledge 62(z) > o2 is fulfilled by changing the denominator
if necessary. Then our main result is the following:

(3.2)

3.3 Theorem. Let us assume that the invariant distribution function M and
its derivative p are known and that s > 2, s € N. Then for 0 € C{(R) and
b € C*Y(R) the spectral volatility estimator 6% from (3.2) satisfies for any
6>0

M~1(1-6)

(2—2JS_|_N—123J)—1/
M~1(é)

5(a) — 0(2)u(z) dz = Op(1).

In particular, we obtain with the asymptotically optimal choice 27 ~ N1/(25+3)

that N*/(2s+3)||52 — 02||L2(K) 1s bounded in probability for any compact set
K CR.

3.4 Remark. For true minimaz results we should have a uniform constant
for all parameters in some smoothness class. This might be feasible, although
very technical, and requires also uniform estimates on the separation of the
spectrum which are usually difficult to obtain. It is not clear whether it is
possible to get rid of the restriction to bounded intervals. In the case of re-
flected diffusion a lower bound proof shows that estimation at the boundary is
definitely more difficult, but whether this holds also in our situation with a u-
weighted loss function is an open question. Following the approach in (Gobet,
Hoffmann, and Reiff 2002) we can extend our procedure to estimate also the

drift coefficient b(e).

4 Mathematical results

4.1 Lemma. Suppose o € C{(R) and b € C*~}(R) with ¥’ € C; *(R) for
some s > 2. Then the inverse scale density Sy of Y 1is s-times differentiable
and satisfies

b T
m(y) ‘ 0<r<s.
pn (Y)

50 ()| ssy<y>\

Proof. The derivatives S(")(z) for r < s are given by

k=0

Applying iteratively the formula u'(z) = 2(—0'(z)+b(z))u(z)/o(z) and using
that o(")(s), 0 < 7 < s, and b(")(s), 1 < r < s, are uniformly bounded, we
obtain

150 (2)| < 18(2)] (o).
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If we now use Sy (y) = Sm(y)pun(y) and thus S5 (y) = (S')m(y), we arrive at

ST < (SO aetwhsar | | (S (w) W) aesar | < Bhamag ™.
By the uniform ellipticity condition on o(e) the assertion follows. O

4.2 Proposition. Suppose ¢ € C{(R) and b € C*1(R) for some s > 2,
and the eigenfunction u of L satisfies u, v’ € LP(u) for some p > 2. Then
the derivatives of the corresponding eigenfunction uy of Ly ezist up to order
s+ 1 and satisfy for any 1 <r<s+1

,u,er_lugf) € L?(0,1) with the weight function w(y) := min(y, 1 — y).

Proof. The LP(u)-integrability of u and u' translates via uy = wups into
uy, uypym € LP(0,1). We now apply the eigenfunction relation

Syuy + Syuy = (Syuy) = vuy € LP(0,1).
From Sy u3 = (S'w™Y)ar = bar we conclude ||(S}) ™ par]|oo < 00 and
Sy (Sy)"'umuy = paruy — v(Sy) T pauy € LP(0,1).

Consequently the estimate S (y)| < |Sy(y)bam(y)py; (v)| from Lemma 4.1
shows that p2,b37ul € LP(0,1) holds. More generally, we use (Syu} )" =

Vugf_l) and ||(.5'1(,r))_1,u]\/[||oo < oo to obtain inductively over 0 < r <'s
Sy(Sl(:))_l,u,M’ugr-l—l) € Lp(O, 1).

Hence, Lemma 4.1 yields that pﬂ'lbﬂu§:+l) lies in LP(0,1) for 0 < r < s.
While bM,u]T/[l is obviously bounded on compact subintervals of (0, 1), we have
by L’Hopital’s rule
b b(z)M
lim _ bu(y)y — lim b(z)M(z) — lim

yo0+ 02 (Ypm(y) eo-o o2(z)u(z) s--oo

b(2)M(z) + b(z)p(a)
2b '

Due to M(z)u'(z) — 0 and b'(z)/b(z) — 0 (1 decays faster than exponen-
tially because of |b(z)| — co and b is bounded) we obtain

bae(y)y ~ oar(¥)par(y) ~ par(y) for y — 0. (4.1)

Together with the symmetric argument for y — 1 we obtain the assertion. [

4.3 Proposition. The projection Ilpuy of the eigenfunction uy of Ly with
A=A, e) :={(, k) |7 < J or w(k277) e (277/¢,20/-9)/ (1=}

satisfies ||(Id —Ly)'/2(1d —IIx)uy ||z2(0,1) < 277° for any J € N, provided

ceC{(R), b € Cg_z(R) and € € (0,(p— 2)/2ps).
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4.4 Remark. By construction of A, we only use wavelet coefficients in Ilpuy
up to the mazimal resolution level 27/¢. Furthermore, the number of indices
contained in A is of order

|A| ~ 927 +Z|{k|k2—] < 2(J—j)/( 2] 22.]/ (1-¢) 5]/ (1-e) oJ
>J >J

such that the variance term will behave as in the case of spatially homogeneous
approzimation.

Proof. Due to ||(Id —L)Y/2f|2, = ||f||%2—|-||531;/2f'||%2 we can separately bound
the norms of (Id —IIp)uy and its derivative. Since the first norm bound
is a much simpler version of the second, we only present the estimate for

||Sll,/2((Id —Ip)uy)||g2. For this note that due to inequalities of the type
155 2 e 10 gllze < 1Sy "l |lr6®=2/%, p> 2,

we only need to bound the L%(§,1 — §)-norm with §(p=2)/2p , 2=7s that is
§ ~ 272J50/(P=2) and thus §/277/¢ = oco.

We use the compact support and the vanishing moment property of the
wavelet functions and its derivatives following the classical approximation
estimates via Taylor expansion. Denoting the supporting interval of 1) by
Gy, that is &, = [k277, (so + k)277], its length by |G| and the L2-Sobolev
space of order 1 by H', we obtain

IS5/ -3 = [ Se(u) (X wav) v

A¢A

</1(Z|6>‘|5/ s-I—l
~ Jo Sa

A¢A

<2 ) s )

loballze S ()4(v)) dy

2

AgA yESH o
~ 3 27 (max Sy (1) / P
AEA yeG, Ss

Since we only need to consider wavelet coefficients (j, k) ¢ A satisfying addi-
tionally w(k277) > & with §/277/% — o0, the corresponding support intervals
G, 1 have a distance of at least max(6,2(7=9)/(1=¢)) — 5,93 > 2-7 from the
boundary. The estimates Sy (y) ~ p2,(y) and pur(y) > w(y) yield

SUPyes; , SY (¥) < (1 S2—j)2 o1

inf,cs, S (v) 23

which gives the bound

155/ 2((1d ~Ta)uy )22 515y S Y 272 ) Sy ()l (0)1? ¢
A¢A A

11



We apply the Holder inequality with £ and ¢ = 25 > 1 and obtain for
j > J by Proposition 4.2

/ Sy (Ol QP d¢

Z/s. Se QPP o) ) (X [ wra(gac)™

k ik
< ||Sl/2 S ||LP(Z2 J,w P 23‘1) L/

< (2—j22_7qs(2(.]— )/(1—5)21)1 2q5)1/q

~

_ o(7-)(a " ~28)/(1—¢)

Consequently, ||Sl/2((Id —TIp)u)||g2 is of order 277¢, provided

22 32 (J-7)(g~t—28)/ 22 J(2s+(g7t—28)/(1—¢))

i>J 7>0
is finite, which is ensured for € < (p — 2)/2ps. O
4.5 Proposition. For any function v € Vy, ||v||z2 = 1, we have
E[||(1d —Ly)"/?(Pan — Paa)vlZ] S N712%,

where we have introduced the operators

Pap =T pPay and Pa v = Z(PA,A((U,¢A'>)A'GA) A%\-
XeA

Proof. The bound on ||(Pa o — Pa a)v||z: is again easy and therefore omitted.
We obtain by the mixing properties of Y, cf. Lemma 5.2 in (Gobet, Hoff-
mann, and Reif} 2002):

E[|15/°((Pa s — Pa A)v)'n;}

/s ) Var[ Y- L S s (Yreayo ) (Yo A )] dy

)\EA n=1
<N- /sy (w(Yo)v(YAw;(y))ﬁdy
AEA
N Y / Sy (4)UAW) WA (v) dy ) E [ (Yo (Yo)o?(¥a)]

AAEA

Because of (4.1) and the logarithmic growth bound on baps we obtain for

MANeAwith i =N >N =jand j' > J

1
[ Sr @A) do] S 5wl 2l it
0

5 22J(jl _ J)22(j1_‘])(%_135)23(.7._‘])/2‘
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For j < j' < J the same term is evidently bounded by 2(37+7)/2,
Inserting these estimates and then proceeding similarly for the expectation
we obtain

B[Sy ((Pan — Pan)v) 3]

SN (g J)22(jI‘J)(%‘135)23(j_J)/2E{fﬁjk(Yo)?ﬁj%'(Yo)vz(YA)
(5,k),(3",k" ) €A
3’ >max(j,J+1)
T N—l Z 2(3J+‘7’)/2E|:¢Jk(YO)¢J’k’(YO)U2(YA):|

(3.%),(3" k')A
3<3'<T

2

< N~192J Z (' — J)22(j’_‘])(%_1—5)23(j—-])/2||/U||%22(J—j’)/(1_5)2j/22j’/2
j'>max(j,J+1)

N 962y 2, 0002092

3<5'<J
5N—123J( Z (j/)22j’(1—&)22(j—J)_|_ Z (j/)22j’(1—%)22j+ Z 22j—|—j’—3])
3<J,5'>0 3>0,5'23 3<5'<J
< NT12%,

O

The next result is essential for the spectral approximation to work. It is
stated as Proposition 2.9 and Corollary 2.13 in (Gobet, Hoffmann, and Reif8
2002).

4.6 Proposition. Suppose a selfadjoint bounded linear operator T on a Hilbert
space has a simple eigenvalue K such that k has distance p from the remaining
spectrum. Let T, be a second linear operator with | T, — T|| < 3p~*. Then the
operator T, has a simple eigenvalue k. and there are normalized eigenvectors
u and u, with Tu = ku, Tou, = K u. satisfying

ke — 5| + [[ue — ull < pll(Te — T)ull.

Proof of Theorem 3.3. We apply the preceding proposition to the Hilbert
space H = D((Id —Ly)'/?), the domain of the operator (Id — Ly )'/? on L?(0, 1),
and with the operators Pa y and PA,A. The functional calculus shows that Ly
and Pay are selfadjoint on H. For any normalized eigenfunction uy of Ppy
we obtain from Proposition 4.3 using Pp yuy = suy and from Proposition
4.5 that

E[||(Id —L)Y2(Paa — Pay)uy|2:] <272 + N712%.
The spectral approximation result in Proposition 4.6 thus gives

E[(&1 - mal? + (14 ~L)Y2(ty — uy)3)1a] S 2727 + N-12¥
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on the random set 2 := {||Pas — Pay|| < 2p~'}. From Propositions 4.3 and
4.5 we infer further for the corresponding H-norms

E[||Pa,a — Pay ]
< 2E[||(Pa,a — Paa)lv,|P] 4 2/|(Id =TTa) Pay + A Pay (Id —T14 ) ||?

S A Su|F|| E[||(Pa,a — Paa)v|?] + [|(Id ~I1) Py |
vEV, ||v||=1

5 2JN—123J _I_ 2—23.] — N—124J _I_ 2—23.]‘

For s > 1 and 27 ~ N/(2s+3) Chebyshev’s inequality implies P(Q \ ) <
N—5/(2543) Since we assess the risk by convergence in probability, the loss of
the estimator on Q \ 2 is not larger than O(N~*/(2s43)),

Keeping |&;| + ||(Id —L)/?4,; y||z2 uniformly bounded, we obtain using
Sy ~ piy

B[94~ 2] +E [liny — s vl[3] +E[lluar(thy —uh 3)l[3] S 27274+ N 1257,

Note that we have bounded the estimation risk for 7; by that of £; due to the
continuity of the log-transformation involved. From

o,

E[||(4},y — 'U'Il,Y):u'?\/IH%Z} <972 L N193

2

} < 9=2Js | p-1937

and the fact that u'l,Y does not vanish inside (0, 1) we infer for any fixed R, § >
0 by the usual triangle inequality argument and the exclusion of explosions

1-§
(2—2Js i N—123J)—1E{/6 &ﬁ/[(y) _ aﬁ/[(y)|2dy /\R} <1

Hence, transforming back to the real line gives

M~1(1-$)

(27275 4 N~1937)1 E[/ 5%(z) - 0*(2)Pp(z) do A R| S 1.

M=)

The fact that dr(X,Y) := E[|X — Y| A R] is a metric for convergence in
probability then gives the result. O
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