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AbstractWe estimate the volatility function of a di�usion process on the real lineon the basis of low frequency observations. The estimator is based on spec-tral properties of the estimated Markov transition operator of the embeddedMarkov chain. Asymptotic risk estimates for a growing number of observationsare provided without assuming the observation distance to become small.1 IntroductionDi�usion processes are widely used in physical, chemical or economical appli-cations to model random 
uctuations of some quantity over time. Especiallyin mathematical �nance it has become very popular to model asset prices bydi�usion processes because this allows the use of strong tools from stochas-tic analysis for option pricing or risk analysis. Removing seasonal e�ects andlong-term growth results in time-homogeneous di�usion processes. A typicaltime-homogeneous scalar di�usion (Xt; t � 0) solves the Itô stochastic di�er-ential equation dXt = b(Xt) dt+ �(Xt) dWt; t � 0; (1.1)with drift coeÆcient b(�), volatility or di�usion coeÆcient �(�) and with aone-dimensional Brownian motion (Wt; t � 0).Statistical inference for the volatility function has attracted a lot of interestrecently, see the discussions in (Kleinow 2002) or (Gobet, Ho�mann, and Rei�2002) for an overview. Especially, in (Kleinow 2002) it is argued on the basisof empirical data that common parametric assumptions on the coeÆcientsare highly misspeci�ed in models for �nancial markets. Moreover, statisticalmethods developed for high frequency observations, that is small observationdistances, have been typically applied to daily asset price data over periods ofseveral years, which should be quali�ed rather as low-frequency observations.Therefore, the work (Kessler and S�rensen 1999) on low-frequency statisti-cal methods became a popular alternative, but remains restricted to certainparametric models.Here, we consider the case of nonparametric inference for the volatilityfunction �(�) in the case of an unknown drift function b(�) and equidistantobservations (Xn�)0�n�N with some �xed � > 0. If a linear parametric formof the drift b(�) is imposed, then the nonparametric inference for �(�) canbe based mainly on the invariant density, which is easy to estimate (A��t-Sahalia 1996). In (Gobet, Ho�mann, and Rei� 2002) it was shown that fordi�usions with re
ections on a compact interval the nonparametric estimationproblems for b(�) and �(�) together can be solved using ideas in (Hansen,Scheinkman, and Touzi 1998), but it involves some ill-posedness such that the1



minimax rate of convergence is N�s=(2s+3) for N !1 and regularity s � 1 of�(�). Moreover, �rst numerical simulations in the re
ected setting have shownthat the spectral estimator outperforms the traditional quadratic variationestimator already for rather small observation distances �. We generalize thisapproach to cope also with di�usions on the entire real line.The basic ideas are that (a) we can only draw inference on the law of theembedded Markov chain (Xn�)n�0, that (b) by spectral calculus its transitionoperator determines the in�nitesimal generator of the di�usion process andthat (c) this generator encodes rather explicitly the two unknown functionsb(�) and �(�). More speci�cally, the spectral estimator we propose is based onestimates of the invariant density and of one eigenfunction and its eigenvalueof the transition operator of (Xn�)n�0, see formula (2.3) below. Leaving thecase of a compact state space, we face several new problems compared withthe situation treated in (Gobet, Ho�mann, and Rei� 2002): (1) the observationdesign is degenerate, (2) the invariant densities are not uniformly comparableand (3) the eigenfunctions are unbounded. Point (1) is overcome by usingwarped wavelet functions or equivalently a suitable state transformation. Toavoid problem (2) we work on parameter-dependent function spaces and prob-lem (3) is treated by smoothing di�erently at the boundaries. By this approachwe obtain that our spectral estimator also attains the rate N�s=(2s+3) as inthe simpler case of re
ected di�usions, provided the coeÆcients guaranteethat the process is well mixing and the �rst eigenfunction exists and does notgrow too fast to in�nity. For the proof we assume the invariant law of thedi�usion to be known. This is, of course, not realistic, but the estimation ofthe invariant density is standard and contributes less to the overall risk thanthe spectral estimations, as can also be seen from the lower bound proof in(Gobet, Ho�mann, and Rei� 2002).Section 2 introduces the di�usion model and recalls some theory for di�u-sions, Section 3 presents and discusses the estimator and Section 4 provides themathematical results. We adopted (hopefully) standard notation. In particu-lar, Cr(R) denotes the space of r-times continuously di�erentiable functionsand Crb (R) its subspace such that all derivatives are uniformly bounded in-cluding the function itself. The relation A . B means that A is bounded bya multiple of B, independent of the quantities appearing in the expression B.The relation A s B stands for A . B and B . A. A sequence of randomvariables that is bounded in probability will be abbreviated by OP (1). Vectorsand matrices are usually set in bold fonts.2 The di�usion modelIn this section fundamental results for one-dimensional di�usions are recalled,for more details and proofs see e.g. (Karlin and Taylor 1981) or (Bass 1998).We consider di�usion processes (Xt; t � 0) solving (1.1). The drift b(�) anddi�usion coeÆcient or volatility �(�) are assumed to be Lipschitz continuousfunctions such that a strong solution exists. We shall henceforth assume theuniform ellipticity condition9 �0; �1 > 0 : �0 � �(x) � �1 for all x 2 R (2.1)2



and the mixing conditionlimx!+1 b(x) = �1 and limx!�1 b(x) = +1: (2.2)These conditions imply the existence of a stationary solution X with invariantmarginal density �(x) = 2C�2(x) exp�Z x0 2b(x)�2(x) dx�; x 2 R;where C > 0 is a suitable norming constant. Moreover, the solution process istime-reversible and �-mixing with exponential speed such that for statisticalpurposes the hypothesis of stationary observations is reasonable and will beassumed henceforth.Di�usions are eÆciently described by their Markov transition operators(Pt)t�0 withPtf(x) = E [f(Xt) jX0 = x] = Z 1�1 f(�)pt(x; �) d�; x 2 R; f 2 Cb(R);where pt(x; �) denotes the transition probability density. The operators (Pt)t�0can be extended to the Hilbert spaceL2(�) = nf : R! R j Z f2(x)�(x) dx <1o;on which they form a strongly continuous, self-adjoint semigroup of contrac-tion operators with in�nitesimal generatorLf(x) = 12�2(x)f 00(x) + b(x)f 0(x); x 2 R;for functions f in the domain (with natural boundary conditions)D(L) = ff 2 L2(�) jLf 2 L2(�)g:L is a closed selfadjoint operator with spectrum on the negative real axisand the spectral mapping theorem asserts Pt = exp(tL). In particular, theeigenfunctions of Pt and L coincide and the eigenvalues are transformed likethe operators. The Markov semigroup can be described equivalently by theinvariant density �(�) and the inverse scale density S(�) given byS(x) = 12�2(x)�(x); x 2 R:Then the in�nitesimal generator is given in divergence form byLf(x) = ��1(x)(Sf 0)0(x); x 2 R:Any eigenfunction u 2 L2(�) of L with eigenvalue � satis�esS(x)u0(x) = � Z x�1 u(�)�(�) d�; x 2 R;3



which yields �2(x) = 2� R x�1 u(�)�(�) d�u0(x)�(x) ; x 2 R: (2.3)This identity allows to determine the volatility �(�) from quantities accessi-ble from the embedded Markov chain (Xn�)n�0, namely from the invariantdensity and a spectral pair (u; e��) of the transition operator. This approachwas �rst proposed by (Hansen, Scheinkman, and Touzi 1998) and statisticallyanalyzed in (Gobet, Ho�mann, and Rei� 2002).For this method to work we have to ensure that at least parts of thespectrum are discrete, that is proper eigenvalues exist. In the sequel we shallonly need that the largest nontrivial (i.e., nonzero) spectral value is discrete,but to avoid any technicalities we assume � 2 C1(R) andlimjxj!1��0(x)� 2b(x)�(x) �2 =1; (2.4)which by Section 4.2 in (Hansen, Scheinkman, and Touzi 1998) ensures thatthe entire spectrum of L is discrete. In view of our previous assumptions thisis already satis�ed if �0(�) is uniformly bounded.The mathematical analysis of our proposed estimators relies on some addi-tional growth restrictions for the �rst nontrivial eigenfunction u1 of L, namelyu1 2 Lp(�) and u01 2 Lp(�) (2.5)for some arbitrary p > 2. For p = 2 this condition is always satis�ed becauseu1 is in the domain of L and thus also of (�L)1=2:k(�L)1=2u1k2� = h(�L)u1; u1i� = hSu01; u01i s hu01; u01i�:Observe the di�erent norms and scalar products employed, where the index �always refers to L2(�) and no index to L2 with respect to the Lebesgue mea-sure. For the canonical example of a stationary Ornstein-Uhlenbeck processall eigenfunctions satisfy condition (2.5) even for exponential moments. It isplausible that this behaviour remains the same whenever the tails of the in-variant densities are equally small which is to say that the negative drift �b(�)grows linearly. A formal mathematical result in this direction still lacks andwe can merely provide an example of a suÆcient result under nonasymptoticconditions on the coeÆcients.2.1 Proposition. Condition (2.5) is satis�ed for all p <1 if the coeÆcients�2 2 C2(R), b 2 C1(R) of the di�usion satisfyinfx2R�(�2(x))0�2(x) �b� (�2(x))02�2(x) �+ 12��2(x)�00 � 2b0(x)� > 0:For constant volatility this reduces to supx b0(x) < 0.Proof. By de�nition 1.2 in (Ledoux 1998) the di�usion process X satis�es thecondition CD(R;1) for some R > 0 under our assumption, which implies thatthe Markov semigroup is hypercontractive. It is proved in (Bakry 1994) that4



any eigenfunction u of a hypercontractive semigroup operator has exponentialmoments, that is satis�es R exp(cu�(x))�(x) dx <1 for some c; � > 0.By Lemma 1.3 in (Ledoux 1998) the condition CD(R;1) is equivalent toj�(x)(Ptf)0(x)j � e�RtPt(j�(x)f 0(x)j); x 2 R;for all suÆciently smooth f . For any eigenfunction u of L with eigenvalue �we thus obtain j�(x)u0(x)jet� � e�RtPt(j�(x)u0(x)j); x 2 R:The hypercontractivity of (Pt) and �u0 2 L2(�) therefore imply �u0 2 Lp(�)for all p <1 and by ellipticity also u0 2 Lp(�).3 Construction of the estimatorsWe describe the spectral estimation procedure using the projection methodin detail. The use of projection methods has the advantage of approximat-ing the abstract operators by �nite-dimensional matrices, for which the spec-trum is easy to calculate numerically. In addition, mathematical results forspectral approximation by kernel-smoothed operators seem to be diÆcult toobtain. A projection approach was already suggested by (Chen, Hansen, andScheinkman 1997) and adopted by (Gobet, Ho�mann, and Rei� 2002). Morespeci�cally, we make use of compactly supported wavelets on the interval [0; 1].For the notion of wavelet bases on compact intervals and their properties werefer to (Cohen 2000).3.1 De�nition. Let ( �) with multi-indices � = (j; k) be a compactly sup-ported orthonormal wavelet basis of L2(0; 1) including the scaling function �1;0 = 1. For � = (j; k) we set j�j := j. The approximation spaces (V�) arede�ned as the linear span of the wavelets indexed with �:V� := spanf � j� 2 �g:The L2-orthogonal projection onto V� will be called ��. For a function M :R! [0; 1] we introduce the warped wavelets  M� (x) :=  �(M(x)), x 2 R.Note that ( M� ) constitutes an orthonormal basis of L2(�) with �(x) =M 0(x), if M is (weakly) di�erentiable.The �rst main idea is to use wavelets warped by the empirical stationarydistribution function of the di�usion process X in order to obtain a regularautoregressive design, see (Kerkyacharian and Picard 2003) for a similar ap-proach in classical regression with random design, but note that our densitydoes not de�ne a Muckenhoupt weight. An equivalent viewpoint is that weconsider the dataŶn := M̂(Xn�); where M̂(x) := 1N + 1 NXn=0 1(�1;Xn�](x)is the empirical stationary distribution function. The transformed observa-tions (Ŷn)0�n�N form a permutation of the set fn=(N + 1) j 1 � n � N + 1g.5



For such equispaced data Mallat's pyramidal algorithm for computing waveletcoeÆcients is very eÆcient and widely available. Since the marginal densitydoes not determine the di�usion process if drift and volatility are both un-known, we use the dependency structure in the data (Ŷn) in order to drawfurther inference. By the Markov property of di�usion processes, it suÆcesto consider the empirical distribution of the transitions X(n�1)� 7! Xn� orŶn�1 7! Ŷn, respectively. Furthermore, the time reversibility asserts that thelaws of (X(n�1)�; Xn�) and (Xn�; X(n�1)�) coincide such that we may sym-metrize our estimators.Under the stationarity assumption, M̂ converges for N ! 1 uniformlyto the true distribution function M(x) := R x�1 �(�) d�, x 2 R. We are thusnaturally lead to consider the di�usion process Yt =M(Xt), t � 0, with valuesin the open unit interval (0; 1), which has natural boundaries and satis�es byItô's formuladYt = �M (Yt)�bM(Yt) + 12(�M)0(Yt)�2M(Yt)� dt+ �M (Yt)�(Yt) dW (t):The process Y is equivalently described by the following quantities, where wewrite fM (y) := f(M�1(y)) for any function f : R! R:invariant measure: �Y (y) = 1(0;1)(y); (uniform);scale density: S�1Y (y) = 2��2M (y)��2M (y);transition density: pt;Y (y; �) = pt(M�1(y);M�1(�))�M(�)�1;inf. generator: LY f(y) = �12�2M�2Mf 0�0(y);domain of LY : D(LY ) = ff 2 L2(0; 1) jLY f 2 L2(0; 1)g:Note that quantities without index usually refer to X , whereas those re-lated to Y carry an index. From the formula for the transition operator(Pt;Y fM )(M(x)) = (Ptf)(x) it follows that any eigenvalue �Y of LY witheigenfunction uY is also an eigenvalue of L, but with the rescaled eigenfunc-tion u = uY ÆM and vice versa.We thus separate the estimation problem for the volatility function �(�)of the original process X into the two subproblems of estimating the invari-ant density �(�) of X and of drawing inference on the Markov transitions ofthe transformed di�usion process Y . Of course, the latter is the much moredemanding task, because the invariant density can be estimated classicallyunder a suitable mixing hypothesis on X .3.2 Example. The stationary Ornstein-Uhlenbeck process with parameters�; � > 0 satis�es the stochastic di�erential equationdXt = ��Xt dt+ � dWt:It is a Gaussian process with normal stationary law N(0; �22�). Its generator Lhas discrete spectrum �(L) = f��n jn � 0g and the eigenfunctions are givenby Hermite-type polynomials.The transformed process Y satis�es the stochastic di�erential equationdYt = �2��M (Yt)M�1(Yt) dt+ ��M (Yt) dWt;6



where by normality �M (y) is up to logarithmic terms of order y for y nearzero and of order (1 � y) for y close to one. The eigenfunctions of LY arepolynomials in M�1(y) such that they have logarithmic singularities and theirderivatives of order r have polynomial singularities of order r at the boundary.Recall that by formula (2.3) we can estimate the volatility function �(�)by a plug-in from estimates of the invariant density �(�) and the inverse scaledensity S(�) of the process X . Hence, we make use of the transformation ofthis formula �2M (y) = 2�1 R y0 u1;Y (�) d�(u1;Y )0(y)�2M(y) ; (3.1)where u1;Y denotes the eigenfunction of LY corresponding to the largest non-trivial eigenvalue �1. By the spectral mapping theorem (e��1 ; u1;Y ) is thecorresponding spectral pair of the transition operator P�;Y .Consequently, we are interested in obtaining spectral information aboutthe transition operator P�;Y of Y . Its expansion in the wavelet basis ( �) ofL2(0; 1) can be estimated by the symmetrized empirical operator coeÆcients(P̂�)�;�0 := 12N NXn=1� �(Ŷn�1) �0(Ŷn) +  �(Ŷn) �0(Ŷn�1)�:Note that this is equivalent to estimating the transition operator P� of X interms of the empirically warped wavelet basis ( M̂� ):(P̂�)�;�0 = 12N NXn=1� M̂� (X(n�1)�) M̂�0 (Xn�) +  M̂� (Xn�) M̂�0 (X(n�1)�)�:If we had M̂ =M , this would give an unbiased estimate because ofE [ �(M(X(n�1)�)) �0(M(Xn�))] = Z 10 Z 10  �(y) �0(�)p�;Y (y; �) d�dy= hP�;Y  0�;  �i:The eigenfunction u1 2 L2(�) of P� with eigenvalue �1 satis�es for anymulti-index � the coeÆcient equationX�0 hP� M� ;  M�0 i�hu1;  M�0 i� = �1hu1;  M� i�:Furthermore, we have u1;Y = P�hu1;  M� i� �. We therefore calculate thelargest nontrivial eigenvalue �̂1 (i.e. �̂1 < 1) with eigenvector û1 of the sym-metric j�j � j�j-matrix P̂�;� := (P̂�)�;�02� and use the estimatorsû1;Y (x) := X�2�(û1)� �(x); �̂1 := ��1 log(�̂1):Observe that by construction P̂�;� always has the eigenvector û0 = (1; 0; : : : ; 0)corresponding to the constant scaling function  �1;0 with eigenvalue 1.7



Even though formula (3.1) is valid for any nontrivial spectral pair of LY ,we prefer taking the �rst nontrivial eigenfunction u1;Y for two reasons: �rst,all other eigenfunctions oscillate such that the denominator vanishes at somepoint and the estimate in its neighbourhood is worthless. Second, the spec-tral estimation quality depends very much on the separation of the eigen-value from the remaining spectrum (cf. Proposition 4.6) and the spectrum�(P�;Y ) = fe�� j � 2 �(LY )g is such that it becomes rapidly very dense forsmaller eigenvalues. Nevertheless, it might be reasonable to use the informa-tion about the other spectral pairs, compare also the embeddability discussionin (Hansen, Scheinkman, and Touzi 1998).The usage of warped basis functions simpli�es the design and thus the anal-ysis of the stochastic error term, but does not overcome the complex structureof the deterministic approximation error. As proved later, the eigenfunctions ofLY have logarithmic singularities at the boundary of the unit interval and itsderivatives have even polynomial-type singularities. This is why, theoreticallyand in practice, the �nite index set � employed in the construction of P̂�;�has to be chosen carefully. On the one hand, we have the usual bias-variancebalance that lets us choose the highest resolution level J in accordance withthe smoothness s of the eigenfunction and the number N of observations. Onthe other hand we have to take into account the singular behaviour such thatwe shall re�ne more in the neighbourhood of the boundary points. We roughlychoose a maximal frequency level J(y) for wavelets with support in the pointy 2 (0; 1) that satis�es 2J(y) s 2J min(y; 1 � y)�1+" with some small " > 0,see Proposition 4.3 for details.It remains to estimate �M , which we propose to do by the { up to trans-formation { classical projection estimate�̂M (y) := Xj�j�J �̂� �; �̂� := 1N + 1 NXn=0 �(Ŷn):Equipped with these estimates we use formula (3.1) in order to derive anestimate �̂2M of �2M and use the estimated invariant law to transform it to anestimator �̂2 of �2, which is our proposed spectral estimator.Let us summarize our estimation procedure:1. Form the empirical distribution function M̂ and the transformed obser-vations Ŷn = M̂ (Xn�), n = 0; 1; : : : ; N .2. Estimate the transition operator by the matrix P̂�;� of empirical waveletcoeÆcients.3. Calculate the �rst nontrivial spectral pair (�1;u1) of P̂�;� and build theestimate û1;M of the eigenfunction.4. Estimate the invariant density � by some classical method.5. Derive the estimator �̂2M by inserting the preceding estimates in formula(3.1) and transform it back to the real line.As already mentioned in the introduction, we provide a proof in the casethat the invariant law of X is known, that is M and � are available exactly.8



In this case our spectral estimator is given by�̂2(x) := 2�̂1 RM(x)0 û1;Y (�) d�û01;Y (M(x))�2(x) ; (3.2)derived from formula (3.1) by plug-in and transformation. To avoid theoreticalcomplications we must keep �̂1, kû1;Y kL2 and k�M û01;Y k2L2 uniformly bounded,e.g. by applying a cut-o� for unreasonably large values. Similarly, we guaranteethat the a priori knowledge �̂2(x) � �20 is ful�lled by changing the denominatorif necessary. Then our main result is the following:3.3 Theorem. Let us assume that the invariant distribution function M andits derivative � are known and that s � 2, s 2 N. Then for � 2 Csb (R) andb 2 Cs�1(R) the spectral volatility estimator �̂2 from (3.2) satis�es for anyÆ > 0 (2�2Js +N�123J)�1 Z M�1(1�Æ)M�1(Æ) j�̂2(x)� �2(x)j2�(x) dx = OP (1):In particular, we obtain with the asymptotically optimal choice 2J s N1=(2s+3)that N s=(2s+3)k�̂2 � �2kL2(K) is bounded in probability for any compact setK � R.3.4 Remark. For true minimax results we should have a uniform constantfor all parameters in some smoothness class. This might be feasible, althoughvery technical, and requires also uniform estimates on the separation of thespectrum which are usually diÆcult to obtain. It is not clear whether it ispossible to get rid of the restriction to bounded intervals. In the case of re-
ected di�usion a lower bound proof shows that estimation at the boundary isde�nitely more diÆcult, but whether this holds also in our situation with a �-weighted loss function is an open question. Following the approach in (Gobet,Ho�mann, and Rei� 2002) we can extend our procedure to estimate also thedrift coeÆcient b(�).4 Mathematical results4.1 Lemma. Suppose � 2 Csb (R) and b 2 Cs�1(R) with b0 2 Cs�2b (R) forsome s � 2. Then the inverse scale density SY of Y is s-times di�erentiableand satis�es jS(r)Y (y)j . SY (y)���� bM(y)�M (y)����r 0 � r � s:Proof. The derivatives S(r)(x) for r � s are given byS(x) = 12�2(x)�(x) =: a(x)�(x); S(r)(x) = rXk=0�rk�a(k)(x)�(r�k)(x):Applying iteratively the formula �0(x) = 2(��0(x)+b(x))�(x)=�(x) and usingthat �(r)(�), 0 � r � s, and b(r)(�), 1 � r � s, are uniformly bounded, weobtain jS(r)(x)j . jb(x)jr�(x):9



If we now use SY (y) = SM(y)�M(y) and thus S 0Y (y) = (S 0)M(y), we arrive atjS(r)Y j . ���(S(r))M(y)��r+1M ��� + ���(S 0)M(y)(�(r�1))M��r+1M ��� . brM��r+2M :By the uniform ellipticity condition on �(�) the assertion follows.4.2 Proposition. Suppose � 2 Csb (R) and b 2 Cs�1(R) for some s � 2,and the eigenfunction u of L satis�es u; u0 2 Lp(�) for some p � 2. Thenthe derivatives of the corresponding eigenfunction uY of LY exist up to orders + 1 and satisfy for any 1 � r � s + 1�Mwr�1u(r)Y 2 Lp(0; 1) with the weight function w(y) := min(y; 1� y):Proof. The Lp(�)-integrability of u and u0 translates via uY = uM intouY ; u0Y �M 2 Lp(0; 1). We now apply the eigenfunction relationSY u00Y + S 0Y u0Y = (SY u0Y )0 = �uY 2 Lp(0; 1):From S 0Y ��1M = (S 0��1)M = bM we conclude k(S 0Y )�1�Mk1 <1 andSY (S0Y )�1�Mu00Y = �Mu0Y � �(S 0Y )�1�MuY 2 Lp(0; 1):Consequently the estimate jS 0Y (y)j . jSY (y)bM(y)��1M (y)j from Lemma 4.1shows that �2Mb�1M u00Y 2 Lp(0; 1) holds. More generally, we use (SY u0Y )(r) =�u(r�1)Y and k(S(r)Y )�1�Mk1 <1 to obtain inductively over 0 � r � sSY (S(r)Y )�1�Mu(r+1)Y 2 Lp(0; 1):Hence, Lemma 4.1 yields that �r+1M b�rM u(r+1)Y lies in Lp(0; 1) for 0 � r � s.While bM��1M is obviously bounded on compact subintervals of (0; 1), we haveby L'Hopital's rulelimy!0+ bM(y)y�2M(y)�M(y) = limx!�1 b(x)M(x)�2(x)�(x) = limx!�1 b0(x)M(x) + b(x)�(x)2b(x)�(x) :Due to M(x)��1(x)! 0 and b0(x)=b(x)! 0 (� decays faster than exponen-tially because of jb(x)j ! 1 and b0 is bounded) we obtainbM(y)y s �2M (y)�M(y) s �M (y) for y ! 0: (4.1)Together with the symmetric argument for y ! 1 we obtain the assertion.4.3 Proposition. The projection ��uY of the eigenfunction uY of LY with� := �(J; ") := f(j; k) j j � J or w(k2�j) 2 (2�J="; 2(J�j)=(1�"))gsatis�es k(Id�LY )1=2(Id���)uY kL2(0;1) . 2�Js for any J 2 N, provided� 2 Csb (R), b0 2 Cs�2b (R) and " 2 (0; (p� 2)=2ps).10



4.4 Remark. By construction of �, we only use wavelet coeÆcients in ��uYup to the maximal resolution level 2J=". Furthermore, the number of indicescontained in � is of orderj�j s 2J +Xj>J jfk j k2�j � 2(J�j)=(1�")gj s 2J +Xj>J 2J=(1�")2�"j=(1�") s 2Jsuch that the variance term will behave as in the case of spatially homogeneousapproximation.Proof. Due to k(Id�L)1=2fk2L2 = kfk2L2+kS1=2Y f 0k2L2 we can separately boundthe norms of (Id���)uY and its derivative. Since the �rst norm boundis a much simpler version of the second, we only present the estimate forkS1=2Y ((Id���)uY )0kL2 . For this note that due to inequalities of the typekS1=2Y u0Y 1[0;Æ]kL2 � kS1=2Y u0Y kLpÆ(p�2)=2p; p > 2;we only need to bound the L2(Æ; 1 � Æ)-norm with Æ(p�2)=2p s 2�Js, that isÆ s 2�2Jsp=(p�2) and thus Æ=2�J=" !1.We use the compact support and the vanishing moment property of thewavelet functions and its derivatives following the classical approximationestimates via Taylor expansion. Denoting the supporting interval of  � byS�, that is Sj;k = [k2�j ; (s0 + k)2�j ], its length by jS�j and the L2-Sobolevspace of order 1 by H1, we obtainkS1=2Y ((Id���)uY )0k2L2 = Z 10 SY (y)�X�=2�huY ;  �i 0�(y)�2 dy. Z 10 �X�=2�jS�js����ZS� u(s+1)Y ����k �kL1S1=2Y (y) 0�(y)�2 dy. 




X�=2� 2�(s+1)j�j�ZS� ju(s+1)Y j2�1=2�maxy2S� S1=2Y (y)� �




2H1sX�=2� 2�2sj�j�maxy2S� SY (y)� ZS� ju(s+1)Y j2:Since we only need to consider wavelet coeÆcients (j; k) =2 � satisfying addi-tionally w(k2�j) � Æ with Æ=2�J=" !1, the corresponding support intervalsSj;k have a distance of at least max(Æ; 2(J�j)=(1�")) � s02�j & 2�j from theboundary. The estimates SY (y) s �2M (y) and �M (y) & w(y) yieldsupy2Sj;k SY (y)infy2Sj;k SY (y) . �1 + S2�j2�j �2 s 1;which gives the boundkS1=2Y ((Id���)uY )0k2L2(Æ;1�Æ) .X�=2� 2�2sj�j ZS� SY (�)ju(s+1)Y (�)j2 d�:11



We apply the H�older inequality with p2 and q = pp�2 > 1 and obtain forj � J by Proposition 4.2Xk: (j;k)=2� ZSj;k SY (�)ju(s+1)Y (�)j2 d�� �Xk ZSj;k SY (�)p=2ju(s+1)Y (�)jpwsp(�) d��2=p�Xk ZSj;k w�2sq(�) d��1=q. kS1=2Y wsu(s+1)Y k2Lp�Xk 2�jw(k2�j)�2sq�1=q. �2�j22jqs�2(J�j)=(1�")2j�1�2qs�1=q= 2(J�j)(q�1�2s)=(1�"):Consequently, kS1=2Y ((Id���)u)0kL2 is of order 2�Js, providedXj�J 2�2(j�J)s2(J�j)(q�1�2s)=(1�") =Xj�0 2�j(2s+(q�1�2s)=(1�"))is �nite, which is ensured for " < (p� 2)=2ps.4.5 Proposition. For any function v 2 V�, kvkL2 = 1, we haveE [k(Id�LY )1=2(P̂�;� � P�;�)vk2L2 ] . N�123J ;where we have introduced the operatorsP�;� := ��P�;Y and P̂�;�v := X�2��P̂�;�(hv;  �0i)�02��� �:Proof. The bound on k(P̂�;��P�;�)vkL2 is again easy and therefore omitted.We obtain by the mixing properties of Y , cf. Lemma 5.2 in (Gobet, Ho�-mann, and Rei� 2002):EhkS1=2Y ((P̂�;� � P�;�)v)0k2L2i= Z 10 S(y) VarhX�2� 1N NXn=1 �(Y(n�1)�)v(Yn�) 0�(y)i dy. N�1 Z 10 SY (y) Eh�X�2�( �(Y0)v(Y�) 0�(y)�2] dy= N�1 X�;�02��Z 10 SY (y) 0�(y) 0�0(y) dy�Eh �(Y0) �0(Y0)v2(Y�)i:Because of (4.1) and the logarithmic growth bound on bM we obtain for�; �0 2 � with j 0 := j�0j � j�j =: j and j 0 > J����Z 10 SY (y) 0�(y) 0�0(y) dy���� . jS�0j�2M (2(J�j0)=(1�"))23j0=223j=2. 22J(j 0� J)22(j0�J)( 12� 21�" )23(j�J)=2:12



For j � j 0 � J the same term is evidently bounded by 2(3j+j0)=2.Inserting these estimates and then proceeding similarly for the expectationwe obtainEhkS1=2Y ((P̂�;� � P�;�)v)0k2L2i. N�1 X(j;k);(j0;k0)2�j0�max(j;J+1) 22J(j 0 � J)22(j0�J)( 12� 21�")23(j�J)=2 Eh jk(Y0) j0k0(Y0)v2(Y�)i+N�1 X(j;k);(j0;k0)2�j�j0�J 2(3j+j0)=2 Eh jk(Y0) j0k0(Y0)v2(Y�)i. N�122J Xj0�max(j;J+1)(j 0 � J)22(j0�J)( 12� 21�" )23(j�J)=2kvk2L22(J�j0)=(1�")2j=22j0=2+N�1 Xj�j0�J 2(3j+j0)=2kvk2L22j=22j0=2. N�123J� Xj�J; j0>0(j 0)22j0(1� 31�" )22(j�J) + Xj>0; j0�j(j 0)22j0(1� 31�" )22j + Xj�j0�J 22j+j0�3J�. N�123J :The next result is essential for the spectral approximation to work. It isstated as Proposition 2.9 and Corollary 2.13 in (Gobet, Ho�mann, and Rei�2002).4.6 Proposition. Suppose a selfadjoint bounded linear operator T on a Hilbertspace has a simple eigenvalue � such that � has distance � from the remainingspectrum. Let T" be a second linear operator with kT" � Tk < 12��1. Then theoperator T" has a simple eigenvalue �" and there are normalized eigenvectorsu and u" with Tu = �u, T"u" = �"u" satisfyingj�" � �j+ ku" � uk . �k(T" � T )uk:Proof of Theorem 3.3. We apply the preceding proposition to the HilbertspaceH = D((Id�LY )1=2), the domain of the operator (Id�LY )1=2 on L2(0; 1),and with the operators P�;Y and P̂�;�. The functional calculus shows that LYand P�;Y are selfadjoint on H . For any normalized eigenfunction uY of P�;Ywe obtain from Proposition 4.3 using P�;Y uY = �uY and from Proposition4.5 that E�k(Id�L)1=2(P̂�;� � P�;Y )uY k2L2� . 2�2Js +N�123J :The spectral approximation result in Proposition 4.6 thus givesE��j�̂1 � �1j2 + k(Id�L)1=2(û1;Y � u1;Y )k2L2�1A� . 2�2Js +N�123J13



on the random set A := fkP̂�;�� P�;Y k < 12��1g. From Propositions 4.3 and4.5 we infer further for the corresponding H-normsE [kP̂�;� � P�;Y k2]� 2 E [k(P̂�;� � P�;�)jV�k2] + 2k(Id���)P�;Y +��P�;Y (Id���)k2. j�j supv2V�; kvk=1E [k(P̂�;� � P�;�)vk2] + k(Id���)P�;Y k2. 2JN�123J + 2�2sJ = N�124J + 2�2sJ :For s � 1 and 2J s N1=(2s+3) Chebyshev's inequality implies P(
 n A) .N�s=(2s+3). Since we assess the risk by convergence in probability, the loss ofthe estimator on 
 n A is not larger than O(N�s=(2s+3)).Keeping j�̂1j + k(Id�L)1=2û1;Y kL2 uniformly bounded, we obtain usingSY s �2ME�j�̂1��1j2�+E�kû1;Y �u1;Y k2L2�+E�k�M(û01;Y �u01;Y )k2L2� . 2�2Js+N�123J :Note that we have bounded the estimation risk for �̂1 by that of �̂1 due to thecontinuity of the log-transformation involved. FromEh



Z �0 (û1;Y � u1;Y )



2L2i . 2�2Js +N�123JE �k(û01;Y � u01;Y )�2Mk2L2i . 2�2Js +N�123Jand the fact that u01;Y does not vanish inside (0; 1) we infer for any �xed R; Æ >0 by the usual triangle inequality argument and the exclusion of explosions(2�2Js +N�123J)�1 EhZ 1�ÆÆ j�̂2M(y)� �2M(y)j2 dy ^Ri . 1:Hence, transforming back to the real line gives(2�2Js +N�123J)�1 EhZ M�1(1�Æ)M�1(Æ) j�̂2(x)� �2(x)j2�(x) dx ^Ri . 1:The fact that dR(X; Y ) := E [jX � Y j ^ R] is a metric for convergence inprobability then gives the result.ReferencesA��t-Sahalia, Y. (1996): \Nonparametric pricing of interest rate derivativesecurities.," Econometrica, 64(3), 527{560.Bakry, D. (1994): \L'hypercontractivite et son utilisation en theorie dessemigroupes. (Hypercontractivity and its usage in semigroup theory).," inBakry, Dominique (ed.) et al., Lectures on probability theory. Ecole d'Ete deProbabilites de Saint-Flour XXII-1992. Berlin: Springer. Lect. Notes Math.1581, 1-114 . 14
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