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Global Solutions to a Penrose-Fife Phase-Field 

Model Under Flux Boundary Conditions 

for the Inverse Temperature1 

by Werner Horn2, Philippe Laurenc;ot3 and Jiirgen Sprekels4 

Abstract. In this paper, we study an initial-boundary value problem for a system of phase-
field equations arising from the Penrose-Fife approach to model the kinetics of phase transitions. 
In contrast to other recent works in.this field, the correct form of the boundary condition for the 
temperature field is assumed which leads to additional difficulties in the mathematical treatment. 
It is demonstrated that global existence and, in the case of only one or two space dimensions, 
also uniqueness of strong solutions can be sliown under essentially the same assumptions on the 
data as in the previous papers where a simplified boundary condition for the heat exchange with 
the surrounding medium has been used. 

1 Introduction 
In this paper, we study the initial-boundary value problem 

<f>t - b.</> E -F;(</>) - F~~</>), in Q := n x (0, +oo), 

(p(e)\ + F;(q,) <Pt= -b. m + g, in Q, 

8</J -=0 an ' :n G) = e- er, on 2:: := r x (0, +oo), 

<P ( ·, 0) = <Po , B ( ·, 0) = 80 , in n , 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

where n is an open bounded subset of 1RN ' 1 ~ N ~ 3 ' with smooth boundary r . 
1This research has been partially supported by the Deutsche Forschungsgemeinschaft (DFG), SPP 

"An wend ungsbezogene Optimierung und Steuerung". 
2Department of Mathematics, UCLA, 405 Hilgard Ave., Los Angeles, CA 90025, USA 
3Laboratoire de Mathematiques, CNRS URA 741, Universite de Franche-Comte, Route de Gray, 

F-25030 Besan~on Cedex, France. 
4lnstitut fiir Angewandte Analysis und Stochastik (IAAS), MohrenstraBe 39, D-10117 Berlin, 

Germany. 
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The system (1.1)-(1.4) constitutes a (generalized) Penrose-Fife model of phase-field 
type for diffusive phase transitions with non-conserved order parameter. In this con-
nection, the fields <P and fJ, respectively, repr~sent the order parameter of the phase 
transition and the absolute temperature, respectively, and all physical constants are 
normalized to unity; moreover, the· 1ocal free energy density F = F ( ¢, fJ) is assumed in 
the form 

F(¢, fJ) = Fo(B) + fJ F1(¢) + F2(¢), (1.5) 

where the function 
p' ( fJ) = - fJ F~' ( fJ) (1.6) 

represents the specific heat. A typical form for the nonlinearities F1 under consideration 
is given by 

F{ ( ¢) = /3( ¢) - s' ( ¢) , (1. 7) 

where s is smooth and where j3 denotes a maximal monotone graph. For example, if 
the order parameter <P represents a phase fraction having only values in the interval 
[O, 1] , the graph j3 denotes the subdifferential of the indicator function of [O, 1] . For 
details of the derivation of the field equations (1.1), (1.2) we refer to [12]. 
Initial-boundary value problems for the field equations (1.1), (1.2) have been studied 
in a number of recent papers. Indeed, the techniques developed in the fundamental 
papers [14] and [15] have been extended into various directions; in this connection, we 
refer to [2], [4-7], and [9-10]. The presently most general results have been established 
in [11]. However, up to the paper [15], where only the spatially one-dimensional case 
has been considered, all of these works share one serious physical drawback: they do 
not assume the correct boundary condition for the temperature field fJ . Typically, the 
linear boundary condition 

8() 
-=B-Br an ' (1.8) 

or a modification thereof, has been considered. However, in the Penrose-Fife model 
leading to the internal energy balance (l.2) the heat flux q is (up to a constant) given 
by q='7m. (1.9) 

We should point out at this place that the classical Fourier law, in which the heat 
flux points in the direction of the negative temperature gradient, does not seem to be 
appropriate in this model; apparently, in this case there is no maximum principle hidden 
in the energy balance (1.2) which could guarantee that the (absolute !) temperature 
fJ stays positive throughout the evolution of the phase transition. On the other hand, 
if the heat flux is given by (1.9), then the law describing the heat exchange with the 
surrounding medium should have the form assumed in (1.3). 

It is the aim of this note to close the gap between mathematical model and physical 
interpretation: we are going to show that, except for the additional restriction that 
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the source g must be non-negative, essentially the same conditions as in the above-
mentioned papers have to be assumed for the functions arising in the model equations 
in order to guarantee the global existence of strong solutions which, at least for space 
dimensions one and two, will also turn out to be unique. 

2 Statement of the Main Results 
Consider the system (1.1)-(1.4). We make the following general assumptions on the 
data of the system. 

{Al) There exist a maximal monotone graph (3 on 1R with domain D(/3) satisfying 
Int(D(/3))-=/= 0 and 0 E (3(0), and a function s satisfying s(O) = 0 which is twice 
continuously differentiable on the closure J of D ((3) , such that 

F{ = /3 - s'. (2.1) 

We also assume that there exist c1 ~ 0, c2 ~ 0 and a> 0 such that 

(2.2) 

( A2) F2 belongs to C2 ( J) and satisfies 

(2.3) 

where M2 ::; 2 a, if F~(O) = 0, and M2 < 2 a, otherwise. 

{A3) p E C1([0, +oo)) is an increasing Lipschitz continuous function satisfying p(O) = 
0 , and there exist constants c3 > 0 and ~00 ~ 0 such that 

(2.4) 

We denote by LP the Lipschitz constant for p, and by p-1 its inverse on (0, +oo) . 

{A4) For each T E [O, +oo), the functions Br and (Br)t belong to L00 (~r) and it 
holds 

Br > 0 a.e. on :Er, :r E L00 (:Er),. 

where ~T := r x (0, T) . 

(2.5) 

{A5) For each TE [0,+oo), it holds g E L00 (Qr) and gt E L 00 (0,T,L2 (D,)), where 
Qr:= n x (0, T). We also assume that g is non-negative in Q. 
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(A6) cfao E H 2 (D,) and ()0 E H 1 (D,) n L00 (D,), respectively, are such that cfao E D(f3) 
almost everywhere in D,, (3°(¢0) E L 2(D,) and 

8cfao = O () O · n an , O > a.e. Ill ~ £ , ;
0 

E L 00 (n). (2.6) 

Remark 1: If D(f3) is bounded, then it suffices to postulate that s E 0 2 (J) and 
that F2 E 0 2( J) is concave in order to ensure that (2.2) and (2.3) are satisfied. 

For some results, we will also need the additional assumption 

(A3') There exist constants c~ > 0, v ~ 2 and ~o > 0 such that 

c~ ~v-2 :S p' ( ~) , 0 :S ~ :S ~o . (2.7) 

We now state the main results of this paper. 

Theorem 1 Suppose that the assumptions (Al) to (A6) are satisfied, and sup-
pose that in addition the following conditions hold: 

(i) D(f3) is open, and f3 E C2(D(f3)), s E C3(J), F2 E C4(J), 

(ii) p E 0 3 ( [O, +oo)) , and ( A3 ') is satisfied with v = 2 , 

(iii) ()r E 0 2 (I' x [O, +oo)), g E 0 2 (f2 x [O, +oo)), 

(iv) f3(cfao) E L 00 (n), ()0 E H 2 (f2). 

Then the system (1.1)-(1.4) has a unique global classical solution 

(¢, e) E O(n x [O, +oo), D(f3) x (o, +oo)) n 0 2
'
1 (f2 x (O, +oo), JR2

). 

The next result is a generalization of the result of Theorem 1. 

Theorem 2 Suppose that the assumptions (Al) to (A6) are satisfied. Then there 
exists a pair ( cp, ()) such that, for each T E (0, +oo) , 

(i) cp E W 1
•
2(0, T, H 1 (f2)) n L00 (0, T, H 2(0)) ( c C(Qr)), cp E D(f3) a. e. in Qr, 

cfa ( · , 0) = cfao , 

4 



(ii) BEL00 (0,T,H1(n))nHX){QT), B>O a.e. in QT, 

p(B) E H1(QT), p(B)(·, 0) = p(Bo), 

1 2 2 (}EL (O,T,H (D,)), 

(iii) ( cjJ,B) satisfies (1.1)-(1.2) almost everywhere in QT, and 

~! = 0, :n G) = p-1('Ya(p(B))) - Br, a. e. on :Er. 

(Here, 18 denotes the trace operator on r). 
Moreover, if also (A3') holds, then, for any TE (0, +oo), (1.3) is satisfied almost 

1 
everywhere on ~T, (} belongs to L00 (QT), B to L2(0, T, H 2(D,)), and both B and 
1 e belong to W 1•2(0, T, L2(n)). 

We supplement Theorem 2 with a partial uniqueness result. 

Proposition 3 Suppose that the assumptions (Al) to (A6) and (A3') are sat-
isfied. If 

(i) D({3) is open, {3 E C 1(D({3)), p E 0 2 ( (0, +oo)) , 

(ii) {3 ( c/Jo) E L 00 
( n) , 

(iii) N E {1, 2}, 

then the solution to (1.1)-(1.4) given by Theorem 2 is unique. 

3 A Regularized System 
In this section, we study the well-posedness of the system (1.1)-(1.4) under the following 
stronger assumptions. 

(B 1) There exist a maximal monotone graph {3 on 1R with open and nonempty domain 
D({3) which is twice continuously differentiable on D({3) and satisfies {3(0) = 0, 
and a function s E C3 (J) satisfying s(O) = 0, where J denotes the closure of 
D ({3) , such that 

F{ = {3 - s'. (3.1) 

We also assume that there exist 11 ~ 0 , 12 ~ 0 and a > 0 such that 

- /1 + ae ~ - s(~), s"(~) ~ /2, V ~ E J, (3.2) 

and we denote by ~ the primitive of {3 vanishing at ~ = 0. 
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(B2) F2 E 0 4 ( J) satisfies 
0 S F~' ( ~) ::::; µ2 , V ~ E J , 

where µ2 s 2 a , if F~ ( 0) = 0 , and µ2 < 2a , otherwise. 

(3.3) 

(B3) p E 0 3 ([0, +oo)) is an increasing Lipschitz continuous function satisfying p(O) = 
0, and there exist ')'3 > 0, ')'4 > 0 and ( 00 ~ 0 such that 

{ (3.4) 

We denote by AP the Lipschitz constant for p and by p-1 its inverse on [O, +oo) , 
and we put f's = min (1'3, ')'4) > 0. 

(B4) Br E 0 2(f x [O, +oo)), and Br> 0 on r x [O, +oo). 

(B5) g E 0 2(0 x [O, +oo)) is non-negative. 

(B6) ( ¢0 , B0 ) E H 2(0, JR?) are such that 

{3( <Po) E L 00 (n), mip. B0 ( x) > 0 . 
xEO 

(3.5) 

We have the following result. 

Proposition 4 Under the assumptions (Bl) to (B6), the problem (1.1)-(1.4) has 
a unique global classical solution 

(¢, B) E O(n x [O, +oo), D({3) x (0, +oo)) n 0 2
'1(D x (0, +oo), JR2

). 

Proof: 
The proof of Proposition 4 consists of two steps. First, employing abstract results of H. 
Amann [2], we prove local existence and uniqueness of a classical solution to (1.1)-(1.4), 
as well as a criterion for its global existence in time which requires uniform estimates for 
the local solution to (1.1 )-(1.4); in the second step, we derive these uniform estimates, 
using essentially the same techniques as in [14] and [9]. 

Step 1: Local existence. 

The local existence part of the proof is very close to that of Proposition 2.1 in [10], as 
well as to those of Theorems 17.3 and 17.4 in [2]. We are going to specify how problem 
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(1.1)-(1.4) fits into the abstract framework developed in [2]. To this end, let 1J := 
D(/3) x (0, +oo)' and let W1 := cP' W2 := p(B). For any x En and w = (w1, w2) E 1)' 
we define 

a(x, w) - ( : (p-I; (w2) l ' 
-F2(w1) (p-l(w2))2 

( ) { 
a(x, w) if 1 S: j = k S: N, a·k x w = . 1 ' 0 otherwise, 

and, for any (y, t) Er x [O, +oo), w = (w1, w2) E 1), 

c(y, t, w) = ( ~ _ p-1 (w2)~ ()r(Y, t) ) · 

- 2 2 2 2 Then, aik E 0 2(0 x V, £(1R )) , and c E C (r x [O, +oo) x V, .C(JR )) , where .C(JR) 
denotes the vector space of (2 x 2)-real-valued matrices. Note that, for each w E 1), 

the family {ajk(·,w), 1 S: j,k S: N} is lower triangular in the sense of [2, Sect. 15]. Fur-
thermore, for each (t, w) E [O, +oo) x 1), the boundary value problem (A(t, w), B(t, w)) 
defined by 

A(t, w)v - - t ~ (aik(·, w) av) , 
j,k=l ax j ax k 

B(t, w)v = - t vi -'Ya (ajk(·, w) :v) + c(·, t, w)Ta(v), 
j,k=l Xk 

is normally elliptic in the sense of [2, Sect. 4]. Here, "Ya and v = (v1, ... , vN) denote 
the trace operator and the outer unit normal vector field to r, respectively. 

Finally, we define f E 0 2(0x[0,+oo)x1) x JR2N,1R2) by 

-F'( ) _ FHw1) 
1 W1 -1 ( ) p W2 

f(x, t, w, z, z') = 
g(x, t) + F{(w1) F;(w1) + F~~~i); + F;'(w1) t(zj) 2 

p W2 j=l 

where w = ( w1, w2 ) , z = (z1, ••• , ZN) , and z' = (z~, ... , z~) . 
The derivative of f with respect to the pair (z, z') clearly satisfies assumption (14.4) 
of [2], that is, for each compact subset K of 1) and any T > 0, there exists a positive 
constant CJ< T such that 

' 
1a(z,z1)/(x, t, w, z, z')I S: cx,T (1 + l(z, z')I), - 2N ( x, t, w, z, z') E n x [O, T] x K x 1R . 
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In addition, also assumption (15.12) of [2] holds. 

We set w0 := (cfa0 , p(80 )). By the continuity of the imbeddings H 2(f2) '--+ L 00 (fl) and 
H 1 (fl) '--+ L4(f2), we have w0 E H 2(f2, JR?). It follows from (3.5) and from the 
continuity of the imbedding H 2 (f2) '--+ W 918

•4 (fl) that 

Wo E w9/B,4 (n, V) = { v E w9/B,4(n, JR?), v(D) c 1)} . (3.6) 

We may then apply the Theorems 14.4, 14.6 and 15.5 of [2] on [O, T] for each positive 
T to obtain 

Lemma 5 Suppose that the assumptions (Bl) to (B6) are satisfied. Then the 
initial boundary value problem 

Wt + A(t, w)w f(t, w, \lw), 
B(t, w)w 0, 

w(·,O) - Wo, 

(3.7) 
(3.8) 
(3.9) 

has a unique maximal classical solution w( ·, w0 ) = ( w1 , w2) on [O, t+( w0 )), that is, 

w E C(D x [O, t+(w0 )), V) n C2
•
1 (n x (0, t+(wo)), JR?), 

and w satisfies (3.7)-(3.9) pointwise. 
Moreover, t+ ( w0 ) = +oo, provided that there exist functions. 

such that 

ai(T) ~ w1(t) < b1(T), 
a2(T) :S w2(t) < b2(T), 

Step 2: Uniform estimates. 

0 :St :ST < +oo, t < t+( w0 ), 

0 :St :ST< +oo, t < t+(wo). 
(3.10) 
(3.11) 

In order to complete the proof of Proposition 4, it remains to check the validity of 
(3.10) and (3.11), respectively. For this purpose, we have to establish L00-estimates 
for w1 and for /3(w1) (implying (3.10)), as well as positive upper and lower bounds for 
w2 . To derive the latter estimates, we follow the idea of [14] and try to obtain some 
L00-estimate for the function 

1 
u := p-l(w2). 

Let T > 0. We are going to prove estimates for W1 in W 1•2 (0, T, H 1(fl)) and in 
Dxi(O,T,H2(fl)), for /3(w1) in L00 (Qr), for w2 in H 1(Qr), in L2(0,T,H2(f2)) and in 
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L 00 (Qr), and for u in L 00 (Qr), which depend only on the global data n, T, a, µ2 , ')'1 , 

')'2 , ')'3 , ')'4 , ( 00 and on constants Ro(T) and R(T) satisfying 

IYIL00 (QT) + IYt!L00(0,T,L2(n)) + l()rlL00 (~T) + l(()r)tlL00 (~T) 
+ lel I + l</>olH2(n) + l,B(</>o)IL2(n) + ls'(</>o)IL2(n) + IF~(O)I 

r L00 (~T) 

+ IF1(0)I + 1eolH1(n) + 1eolL00(n) + I~ I + p(l) + (oo:::; Ilo(T), (3.12) 
O L00 (Q) 

Ro(T) + LB( </>o) IL00 (n) :::; R(T). (3.13) 

For later use, we will pay much attention to how these estimates depend on ')' 4 and 
R(T) . In the sequel, we denote by C, C any positive constant depending only on 
n, T, the constants a, ')'1 , ')'2 in assumption {Bl), µ2 in assumption {B2), ')'3, 

( 00 , AP in assumption (B3), and Ilo(T) satisfying (3.12); moreover, any positive con-
stant depending not only on the abovementioned constants but also on the constant 
')'4 in assumption (B3) and on R(T) satisfying (3.13), will be denoted by D or fJ, 
respectively. 

The required uniform estimates will now be proved in several steps, each stated in the 
form of a separate lemma. To begin with, we recall that the pair w = ( w1, w2 ) given 
by Lemma 5 is a solution to the initial-boundary value problem 

Wit - ~W1 

W2t + ~U 
OW1 

on 
W1 ( ·, 0) 

1 
where u = p-l( w

2
) • We have 

- - F{(w1) ~ F~(w1) u, 
g - F~(w1) Wit, 

OU 1 
0 ' on = ;, - er ' 
</>o , W2 ( ·, Q) = p( ()0), 

Lemm.a 6 There exists a constant C > 0 satisfying 

Proof: 
From (Bl) it follows that 

F1 ( ~) = F1 ( 0) + ~ ( ~) - s ( 0 :::; F1 ( 0) +. ~ j3 ( ~) - ~ s' ( ~) + ~2 e , 
whence, using (3.12), 
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Next, let p : (0, +oo) ---+ R, denote the function defined by 

j.i(p(I)) = p(I), P'(f.) = p-~(f.) , f. > 0, 

that is, 

1
~ 1 

p(~) = p(l) + -1( ) do-. 
p(l) p (]" 

Then 
p(~) S ~, for~ E (0, +oo). (3.20) 

Next, note that {Bl) implies that /3 is non-negative. Therefore, by virtue of (3.1)-
(3.3), 

F1(~) + F2(~) ~ F1(0) + a e - /1 - ~2 e - IF~(O)l l~I ~ - (j' 

whence 
(3.21) 

We now take the scalar product in L2(D.) of (3.14) with wlt, of (3.15) with 1 - u, and 
add the resulting equations to obtain 

:t .l cv;
1
1
2 

+ F1(w1) + F2(w1) + W2 - P(w2)) dx + .l (lw1tl2 +1vu12) dx 

+ fr(~ +Br u) du = h I+ Br) du + .l g ( 1 - u) dx . 

Owing to Poincare's inequality, we find upon integrating over (0, t) , t E [O, T] , 

.l cv;
112 

+F1(w1) + H(w1) +wz - P(w2)) dx + l .l (1w1tl2 + IY';l
2

) dxds 

+ C fo'lulH'(n) ds :.':'. C + ./n(F1(</Jo) + F2(</Jo) + p(Bo) - j.i(p(Bo))) dx. (3.22) 

It follows from (3.19) and from {B2) that 

./n(F1(cfao) + F2(cfao)) dx SC+ .l (IF~(O)l lcfaol + µ2 l1ol 2) dx SC. (3.23) 

We also infer from (B3) and from (B6) that 

{ (p(80 ) - p(p(80 ))) dx s { (AP Bo - p(I) + lp(I) - ~(~~l(f.)I) dx s C. (3.24) Jn Jn 1 + sup~En 1 0 

Combining (3.20)-(3.24), we conclude that 

~ ./n IY'w11 2 dx + ~ l ./n (2 lw1tl 2 + IY'ul2) dxds + C fo' lulH'(n) ds :.':'. C, 

which implies ( 3.18), since lw1 ILoo(o,T,L2(n)) S C + v'f' !wit IL2(QT) • 

Next, we are going to improve the estimates obtained in Lemma 6. 
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Lemma 7 There exists a constant C > 0 satisfying 

{T f (1) 1Uutl
2 

lw1tlL00 (0,T,L2(n)) + l\7witlL2(Qr) + lulL00(0,T,H1(n)) +Jo Jn P
1 

;;, dxds :::; C, (3.25) 

lw1 IL00(0,T,H2(n)) + IF{ ( w1) IL00(0,T,L2(n)) :::; C · (3.26) 

Proof: 
We follow the lines of the proof of Lemma 3.2 in [14]. To this end, we differentiate (3.14) 
with respect to t, take the scalar product in L2(f2) of the resulting equation with w 1t, 

and add the result to the L2(f2)-scalar product of (3.15) with - Ut. Using Lemma 6, 
the positivity of u, the continuity of the trace operator from H 1(f2) into L1(r), as 
well as the assumptions (Bl), (B2), (B4), (B5), we find that 

:t _l ('w;tl 2 

+ IV;l
2 

+ 9 u) dx + :t hor u - !nu) d<7 

+ k (1vwlt12 + p' (~) 1:n dx 

k 9t u dx + £(Br )t u dO" + /n (-F{'(w1) - u F~'( w 1)) lwitl2 dx:::; C. 

Since 
wlt (0) = !l<f>o - F{ ( </>o) - F~~:o) , 

the above inequality yields, after integration over (0, t) , t E [O, T] , 

r (lw1tl
2 

1vu1
2 

) r Jn - 2- + - 2- + g u dx + Jr(Br u - lnu)da 

+ fo'fn(1vwlt1 2 +p'(~) 1:n dxds~c, 
which implies (3.25), since the function ~ 1---+ min Br ~ - ln~ is bounded from below on 

2 
(0, +oo). Next, note that w1 satisfies 

(3.27) 

Thus, we can infer from (3.25) and from the continuity of the imbedding H 1(D) ~ 
L4 (f2) that 

11'2 W1 - Wit - F~ ( w1) ulLoo(o,T,L2(n)) :::; C. 
By assumption (Bl), the function ~ 1---+ 12 ~ + F{(~) is non-decreasing. Therefore, 
(3.27) and the last estimate yield 

ILlw1 IL00 (0,T,L2(n)) + IF{ ( w1) IL00(o,T,L2(n)) :::; C, 
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whence (3.26) follows. D 

Next, we note that (3.26) and the continuity of the imbedding H 2 (D) '-+ L00 (n) imply 
that 

lw1 IL=( Qr) ~ C · 
Therefore, putting h := g - F~(w1 ) wlt, we can conclude that 

lhlv(o,T,L6(n)) :s; C. 

Now, recall that w2 is a solution to the problem 

W2t + b.u = h, 

We are going to prove the following result. 

au 1 
-=--Br. an u 

Lemma 8 There exists a constant C > 0 satisfying 

Proof: 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

The proof makes use of Moser's technique (cf. [1]). To this end, consider the functions 
Pp+l : [O, +oo) -t [O, +oo) defined by 

Pp+1(0) = 0, P~+1(~) = (p + 1) p'(~) e, for~~ 0, 

for any p E [O, +oo) . We then infer from (B3) that 

Pp+l (~) < Ap e+1
, 

f'3 e+i - ( f'3 + Ap) (~1 < Pp+l ( ~) , 
for~~ 0, 
for~~ ( 00 • 

(3.32) 
(3.33) 

Let p E (2, +oo). We take the scalar product in L2(D) of (3.30) with ()P. It follows 

P ! 1 ! in PP+i(B) dx + (p ~Pl)2 in Jve9 J

2 
dx + fr (JP-H da 

< fr Br (JP da + in jhj(JP dx. 

Using Young's and Poincare's inequalities and the continuity of the imbedding H 1(D) '-+ 

L6(D), we obtain 

:tin Pp+i(O) dx + C (in (}3(p-l) dx) ~ ~ CRo(T)1'+1 + (p + 1) in jhj (JP dx. (3.34) 

12 



Next, we infer from Holder's and Young's inequalities that 
- I 4 

(p + 1) 1. lhllf"dx < ~ (1. (}3(p-l)dx) 
3 + C(p + 1) 2lh1I,6(n) (1. ei(p+l)ax) 

3 
' (3.35) 

(p + 1) fn ihllf"dx < ~ (1. (}3(p-l)dx) l + C(p + 1)2 lhl1'1n) (1. ()P+ldx) . (3.36) 

We first take p = 3 in (3.34). It follows from (3.29), (3.33), (3.34), (3.36), and from 
Gronwall's lemma that 

IBID'0 (0,T,L4(n)) ::; C · (3.37) 

We now consider the sequence (pk) of real numbers defined by 

4 
Po = 4, . Pk+ 1 = S Pk, k E N . 

Let k E N, and take p = Pk+l - 1 in (3.34). In view of (3.12), (3.32), (3.33), and 
(3.35), we can conclude that 

sup r (}Pk+I (t) dx ::; c P%+1 max {Ro(T)Pk+I' sup ( r f)Pk (t) dx) i} . 
tE(O,T) Jn iE(O,T) Jn 

Hence, invoking (3.37) and [9, Lemma A.1], we find that 

sup IB(t)ILPk(n) ::; C, \I k EN. 
tE(O,T) 

Taking the limit as k---+ +oo, we obtain (3.31), since p is Lipschitz continuous. D 

The following result is a straightforward consequence of (3.15), Lemma 7 and Lemma 
8. 

Corollary 9 There exists a constant C > 0 satisfying 

Next, we recall that u is a solution to the problem 

'(1) 2 2 p ;, Ut - u !::l.u = -h u , 

We are going to prove the following result. 

au 1 
-=--Br. 
8n u 

Lemma 10 There exists a constant D > 0 satisfying 

13 

(3.39) 

(3.40) 



Proof: 
The proof of Lemma 10 again relies on Moser's technique. For further use, we introduce 
the function CTp : (0, +oo) ---+ lR, p 2:: 1 , by 

Owing to (B3), CTp satisfies 

1- 1'5 + 1'5 es CTp(~) s Ape+ 1 - Ap, for~ E [1,+oo). (3.41) 

Let p E (1, +oo). We take the scalar product in L2 (n) of (3.39) with uP-l. It follows 

!inap(u) dx + p=:l inu lv(u'¥)12 
dx + p jBr u1'+1 da 

- p j uP dCT +pin lhl uP+l dx. (3.42) 

By (3.31), 
u ( x, t) 2:: C > 0 , V ( x, t) E f2 x [ 0, T] . 

Therefore, by virtue of Young's and Poincare's inequalities, 

.!!:_ { ap(u) dx + C lu~ 12. SC Ro(T)P + p { lhl uP+l dx. dt Jn H 1(n) Jn 

Since H 1(n) is continuously imbedded in L 6(D,), we find, after integration over (0, t), 
t E [O, T] , that 

t l t 
in aP( u(t)) dx +Clo (in u3(p+I) dx )' ds:; Cflo(T)P + p lo in !hi uP+l dxds . . (3.43) 

Next, Holder's and Young's inequalities yield 
1 2 Pl in !hi up+! dxds:; p fo' ihlL'(CT) (in u3(p+I) dx) 
6 (in u~(p+l) dx) 

3 
ds 

< ~ (l in u3(p+1) dxds) l + C p2 l lhl1'(n) (in u~(p+J) dx) 
1 

ds. 

The latter estimate, in combination with (3.29) and (3.43), implies 

f aP(u(t)) dx SC (Ro(T)P + p2 sup ( f u~(p+l)(t) dx) ~) . (3.44) 
Jn iE(O,T) Jn 

Consider now the sequence (qk) of real numbers defined by 
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Let k EN, and take p = qk+1 in (3.44). Using (3.41), we obtain 

f uqk+i (t) dx ::;; D .(Ro(T)qk+I + q~+l sup ( f uqk (t) dx) ~) . Jn tE(O,T) Jn 
Moreover, (3.25) and the continuity of the imbedding H 1(f2) C-..t L6 (D) imply that 
lulLoo(o,T,L6(n)) ::;; C. We then infer from [9, Lemma A. l] that 

sup ju(t)lm(n)::;; D, V k EN, 
tE(O,T) 

and (3.40) follows from passing to the limit as k ~ +oo. D 

We are now in the position to complete the proof of Proposition 4: indeed, it follows 
from (Bl), (B2), (3.28) and (3.40), that 

and w 1 is a solution to 

A monotonicity argument ensures that 

8w1= 0 8n · 

lf3(w1)IL00 (Qr)::;; ls'(w1) - F~(w1) ulL00 (Qr) + l/3(</Jo)IL00(n), 

whence, using (3.5) and (3.45), 

(3.45) 

(3.46) 

Then, (3.10) follows from (Bl), (3.28) and (3.46). Finally, (3.11) is a consequence 
of (3.31), (3.40) and the monotonicity of p. The application of Lemma 5, with fJ = 
p-1 ( w2 ) , concludes the proof of the assertion of Proposition 4. D 

4 Proof of Theorems 1 and 2 
Since Theorem 1 is an immediate consequence of Proposition 4, we concentrate on the 
proof of Theorem 2. 

In the sequel, j3 is a maximal monotone graph, and s, F2 , p, g, fJr , <Po and fJ0 

denote functions satisfying the general assumptions (Al) to (A6). We recall that J 
denotes the closure in 1R of the domain D(/3) of j3. In order to prove Theorem 2, we 
are first going to construct suitable approximations of F1 , F2 , p , g , fJr , <Po and 80 , 

so that Proposition 4 can be applied; this will be done in the next lemma. Then we 
will derive uniform estimates for the solutions to the approximate problems, and the 
assertion of Theorem 2 will follow from passage to the limit. 
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The following result follows from standard arguments in approximation theory which 
need not to be repeated here. 

Lemma 11 There exist constants µ2 > 0, a> 0, 11 ~ 0, 1'2 ~ 0, 1'3 > 0, (oo ~ 0, 
AP > 0, depending only on M2 , c1 , c2 , a, c3 , ~00 and LP, and sequences of 
functions Sn, f3n , Fi,n, F2,n , Pn such that the fallowing conditions hold: 

{i) f3n E C1(JR) is an increasing function satisfying 

(3 C lim inf f3n , n_,+oo 

lf3n(x)I ~ lf3°(x)I. 

(4.1) 

(4.2) 
{ii) F1,n, F2,n and Pn satisfy the assumptions {Bl)-{B3) with the above con-

1 
stants and with 14 n = - , and , n 

F1,n(O) = F1 (0), F{,n = s~i - f3n. 

(iii) ().n) converges to A in C 2(J), (Pn) converges to p in C([O, +oo)), and (sn) 
converges to s in C 2( J) . 
Moreover, if also {A3') holds, then there exist constants 1'~ > 0 and (o > 0, 
depending only on c~ and ~o , such that 

(4.3) 

(We recall that, if Y is a Banach space and if (Ae)e2:0 denotes a sequence of operators 
acting on Y , then the notation 

Ao C lim inf Ae 
e_,O 

means that to any (x0, y0) E A0 there exists some sequence (xe, Ye) E Ae such that 
(xe, Ye) converges to (x0, y0) in Y x Y as E tends to zero.) 

A straightforward consequence of Lemma 11, (iii), is that 

- - C hmmf - - · 1 . . ( 1 ) 
p-1 n_,+oo p:;;,l ' (4.4) 

in addition to that, to any compact subset K of J there exists a constant CK,s > 0 , 
depending only on K and s , such that 

(4.5) 

Moreover, we can pick two sequences gn E C 00 (D x [O, +oo)), Br E C 00 (r x [O, +oo)), 
such that the assumptions {B4) and {B5) hold and, in addition, for every T > 0 the 
following conditions are satisfied: 
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(i) (gn) is bounded in vxi (Qr) ' 

(ii) ((gn)t) is bounded in L00 (0, T, L2(0)), 

(iii) (gn) and ((gn)t), respectively, converge in L2(Qr) to g and gt, respectively, 

( 1) (8en) (iv) (er), ep and 8; are bounded in L00 (~r), 

(v) (()¥) converges to er in L2 (~r). 

Finally, we put <Po= <Po, and there exists some sequence (()0) cH2(0) satisfying (B6), 

which converges to B0 in H 1(fl), while the sequences (B(,') and ( :O') , respectively, 

remain bounded in L 00 (D,). 
Since both /3n and the imbedding H 2(D,) C--t L00 (D) are continuous, it follows that 
J3n(<P~) = f3n(<fa0 ) belongs to L00 (D) and that (3.5) holds. It also follows from (4.2), 
(4.5) and (A6) that 

(4.6) 

where, thanks to the continuity of the imbedding H 2 (D) C--t C(n), the subset Kc/Jo = 
<Po(n) of J is indeed compact. 

By virtue of Proposition 4, for each n ~ 1 the problem 

F.' (</Jn) 
<fan = .6.<fan - F' (<fan) - 2

·n in Q = n x (0, +oo) , (4. 7) t l,n (Jn ' 

8</Jn 
--0 8n ·- ' 

</Jn(·, 0) = </J~' 
has a unique classical solution 

on~= r x (0, +oo)' 

en(· 0) = en 
' ' 0 ' 

on n, 

(<fan, en) E C(n x [0,+oo),lR x (0,+oo)) n C2' 1(f2 x (O,+oo),lR2). 

(4.8) 

(4.9) 

( 4.10) 

Now, let T > 0. It follows from (4.6) and from Lemma 11 that we may find some 
positive constant R0 (T) > 0 such that (3.12) holds for (F1,n, F2,n, Pn, gn, (Jr, <Po, ()0), 
uniformly in n EN. Invoking the Lemmas 6 to 8, as well as Corollary 9, we conclude 
that there exists a constant Co > 0 , depending only on n , T , a , ')'1 , ')'2 , µ2 , ')'3 , AP 
and Ro ( T) , such that, for any n ;::: 1, the pair (<fan, en) satisfies the estimate 
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where 

l¢nlL00 (0,r,H2(n)) + l¢~1 IL00 (0,r,L2(0)) + l\7¢~IL2(QT) + IF{,n(q)n)IL00 (0,r,L2(0)) 

+ l(j1LIL00 (0,r,n1(n)) + l()1LIL00 (QT) + IPn(en)IL00 (0,r,n1(n)) + IPn(en)tlL2(QT) 

+ lunlL00 (0,r,H1 (0)) + lunlL2(o,r,H2(0)) ~ Co' 

n 1 
u =en. 

(4.11) 

In fact, it follows from Lemma 11 that Co depends only on n' T' a' C1 ' C2 ' C3 ' Lp 
and Ro(T). Thus, in the sequel we denote by C any positive constant depending only 
on n' T' a' C1' C2' M2' C3' Lp and Ro(T). 
From (4.11) we can infer that (q)n) is equicontinuous in C([O, T], H 1(f2)) and that 
(q)n(t)) is relatively compact in H 1(f2), for any t E [O,T]. Therefore, by the Ascoli 
theorem, (q)n) is a relatively compact set in C([O, T], H 1(f2)), and we may assume that 
there exists some q) E C([O, T], H 1(f2)) such that 

q)n ~ q) in C([O,T],H1(f2)) and a.e. in Qr. ( 4.12) 

Similarly, we infer from ( 4.11) that the sequence (Pn (en)) is relatively compact in 
C([O,T],L2 (f2)). It also follows from (4.11) that (Pn(en)) forms a bounded subset of 
the space 

W = {w E L2(0,T,H1(f2)), Wt E L2(0,T,L2(f2))}. 

A classical compactness result ensures that the imbedding of W in L2(0, T, H 112 (f2)) is 
compact. Since the trace operator 'Ya : H 112(h) ~ L2(I') is continuous, we may assume 
that there exists some ( E L00 (0, T, H 1(f2)) n W 1,2(0, T, L2(f2)) such that 

Pn(en) ~ ( in L 2(Qr) and a.e. in Qr, 
f'a(Pn(en)) ~ 'Ya(() in L 2(Lir) and a.e. on 'Lir. 

( 4.13) 
( 4.14) 

Next, we infer from (4.11), (4.12), Lemma 11 and the continuity of the imbedding 
H 1 ( n) '--7 L 6 ( n) , that we may assume that 

F~,n(cPn) ~ F~(q)) 

s~ ( q)n) ~ s' ( q)) 
in L2(0, T, L6 (f2)), 

in L 2(Qr), 

and that there exists some 'ljJ E L 2 (Qr) such that 

Invoking (4 .. 1), (4.12), (4.16), and using a monotoni~ity argument, we find that 

q) E D(/3), and 'ljJ E /3( q)) a.e. in Qr. 
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Next, we turn our interest to the sequences (Bn) and (un). By (4.11), we may assume 
that there exist functions () E L00 (0, T, H 1 (rl)), u E L2 (0, T, H 2 (D,)) and b E L2(~r) 
such that 

(4.18) 

To complete the proof of Theorem 2, we need to investigate the relationship between 
the functions ( in (4.13), (4.14) and u, (), b in (4.18), respectively. To this end, note 

that (-_I_) is a maximal monotone graph on 1R with domain (0, +oo). Moreover, p-l 

n 1 -u =-----p;;l(Pn(Bn)). 

Therefore, it follows from (4.4), (4.13) and (4.18) that 

1 ( > 0 and u = 1( ) a.e. in Qr. p- ( 
( 4.19) 

Similarly, using Lemma 11, the convergences (4.13), (4.14) and (4.18), and invoking the 
positivity of ( and monotonicity arguments, we can conclude that 

a.e. in Qr, 
( 4.20) 

b = p-1(r8 (()) a.e. on ~r. 

We are now ready to complete the proof of the first part of Theorem 2. Indeed, it is 
easily checked that (F~,n(<Pn) un) converges weakly to F~(cfa)/B in L2 (Qr_) and that 
(F~,n(<Pn) cfa~i) converges to F~(cfa) cfat . Then, (1.1) and (1.2) follow from (4.11) and 
from the convergence results established in (4.12), (4.13), (4.15), (4.16), (4.18), (4.19) 
and (4.20); moreover, the properties (i), {ii), {iii) are a consequence of (4.20), (4.11) 
and of the continuity properties (4.12) and (4.13). 

To confirm the second part of the assertion of Theorem 2, we now assume that p satisfies 
assumption (A3'). Then, for each n 2 1, the function Pn satisfies (4.3). We need the 
following lemma. 

Lemma 12 Suppose that T > 0 is a positive real number, and suppose that w, 
Wr , R and f denote functions having the following properties: 

{i) RE 0 3 ([0, +oo)) is an increasing Lipschitz continuous function with R(O) = 0 
such that there exist (0 > 0, ')'~ > 0 and v 2 2 satisfying 

( 4.21) 

19 



We denote by AR. a Lipschitz constant for n. 
{ii) Wr E c 2(r x [O, T]) ' and. minrx[O,T] Wr = mT > 0 . 

{iii) f E DX)(O, T, L2 (n)). 
{iv) w E C(O x [O, T], (0, +oo)) n C2•1(0 x (0, T), JR) satisfies 

R' (~) 

We put 

Wt 
flw + f w2 

-

aw 1 
an 

- - Wr 
w 

Wm= _min w(x, t). 
nx[O,T] 

in Qr, 

on :ET. 

( 4.22) 

( 4.23) 

Then there exists a positive constant Ceo , depending only on n, 1~ , v, (0 , A'R., 
T, mT, lflLoo(o,T,P(n)), Wm, lwlLoo(o,T,L6(n)) and lw(O) ILoo(n), such that 

( 4.24) 

Proof: 
The proof of Lemma 12 involves similar arguments as those used in the proofs of Lemma 
2.3 in [6] and of Lemma 6.6 in [11]. The proof includes two steps: first, we are going to 
show that w is bounded in Leo(o, T, V(n)) by some constant Ceo,p which depends on 
the same data as Ceo and also on p; this result will then enable us to employ Moser's 
technique and thus to establish the validity of (4.24). 

In the sequel, we denote by Ceo any positive constant depending only on n, T, /~, 

v, (o, A'R., mr, lflLoo(o,T,L2(n)), Wm,. jwlLoo(o,T,L6(Q)) and lw(O) ILoo(n). 

Let k E (v, +oo) . We denote by Rk : [O, +oo) -7 [O, +oo) the function defined by 

Rk(O)=O, R~(.;)=(k+l-v)R'G) e-2
, for.;E(O,+oo). 

We then infer from (4.21) that 

0 < n ( C) < A ck-1 - k'-:. - 'R.'-:. ' (4.25) 

( 4.26) 

We take the scalar product in L2(n) of ( 4.22) with wk to obtain 

k + ~ _ v ! .l Rk(w) dx +I _l w Jv (w~)J2 
dx + rrvr fr wk da 
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~ Ir wk-1 dO" + in If I wk dx. 

Using Young's and Poincare's inequalities, we find that there exists some 8 > 0, de-
pending only on n , Wm , v and mr , such that 

( 4.27) 

Next, we estimate the last term on the right-hand side of (4.27). By Holder's inequality, 

Since H 1(0) is continuously imbedded in L6 (0), it follows from Young's inequality 
that 

k r If I wk dx < ~ lw~ j2 + Coo kk 8-k. Jn · - 2 H 1(n) 
( 4.28) 

Combining ( 4.27) and ( 4.28), we see that 

d
d { Rk(w) dx + ~ jw~ 12 < C00 (m·~/ + kk 8-k). t Jn 2 H 1 (n) -

We conclude from (4.25), (4.26) and from the above inequality that to each k E (v, +oo) 
there exists a positive constant C00 ,k depending on n, T, r~, v, (0 , AR, mr, 
lflL=(o,T,L2(n)), Wm, lwlL=(o,T,L6(n)), lw(O) IL=(n) and k, such that 

( 4.29) 

Next, for any k > v, it follows from Holder's and Young's inequalities and from the 
continuity of the imbedding H 1(0) '--t L6 (0) that 

k in If I wk dx < k l!IP(n) (in w3k dx) i's (in w'f dx) l 

< ~ jw~1 2 . +C00 k6 (f w¥'dx)~, 2 H 1 (n) Jn ( 4.30) 

where 8 > 0 is defined in (4.27). Combining (4.27) and (4.29), invoking (4.25) and 
(4.26) and integrating over (0, t), t E [O, T], we obtain the estimate 

We now consider the sequence (vn) of real numbers defined by 

v0 = 3v, 
4 

Vn+ 1 = 3 Vn + 1 - V . 
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Then Vn ~ 1, for every n ~ 0. We may take k = Vn+l + v - 1 > v in (4.31) and get 

t E [O, T], ( 4.32) 

with 

M = max { 1, ~T , ~o , lw(O) ILoo(n)} . 
Finally, we infer from (4.29) that 

lwlD'0 (o,r,V'o(O)) :S Coo,v0 • (4.33) 

It then follows from (4.32), (4.33) and from [9, Lemma A.l] that 

Since Vn -t oo as n -t oo , the assertion follows from passage to the limit as n -t oo 
in the above inequality. D 

After this preparation, the proof of Theorem 2 can be concluded as follows. In view 
of ( 4.11) and of Lemma 11, for each n ~ 1 the functions ( un, Pn , 8¥, Jn) satisfy the 
assumptions of Lemma 12, uniformly in n E N, where· 

Jn= F~,n(cPn) cP~i _ gn. 

Hence, there exists a constant C00 > 0 such that 

( 4.34) 

We then infer from (4.11) and (4.34) that (8n) is bounded in L 2 (0, T, H 1(0)) and 
that (8;i) is bounded in L2(Qr). A classical compactness result and the continuity 
of the trace operator la : H 112 (0) -t L2 (r) ensure that (8n) converges to 8 almost 
everywhere in Qr and that (r0(8n)) converges to 18(8) almost everywhere on :Er. 
Consequently, (1.3) holds. Finally, the regularity properties are straightforward conse-
quences of (4.11), (4.34) and the Gagliardo-Nirenberg inequality. With this, the proof 
of the assertion of Theorem 2 is complete. D 

5 Uniqueness in One and Two Space Dimensions 
In this section, we are going to prove the assertion of Proposition 3. To this end, suppose 
that (¢1,81) and (c/J2, 82) are two solutions to (1.1)-(1.4) having the properties stated 
in Theorem 2, and let T > 0 be given. Since 

(3(</Jo) E L"'(O.), -F;(,P;) - F~~</J;) E L"'(Qr), 
'/. 
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a monotonicity argument and (1.1) imply that /3(¢i) E L 00 (Qr), i = 1, 2. We also 
know that cPi is continuous on Qr, i = 1, 2. Then, since D(/3) is open, there exists a 
compact subset [ar, l>r] of D(/3) such that 

ar S cPi(x, t) S br in Qr, i = 1, 2. 

Next, since both ei and _!_ belong to L 00 (Qr), i = 1, 2, there exists a positive constant 
ei 

"" satisfying 
1 

0 < - s ei(x, t) s K, a.e. in Qr' i = 1, 2. 
K, 

We put 

K =max { l,B'lc(iaThD' 1F;lc([aThD' IP"lq11/K,KJ)}' P; = t;EW~Kl p'(t;,)' P: = i;IB:/'~KJ p'(t;,)' 

and we define 

Then 

and it holds 

a¢= 0 on ~r, an ' 
(t + b,.u = - F~( ¢1) cPlt + F~( ¢2) cP2t, in Qr, 

au=B On~r. an ' 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
In the sequel, we denote by C or C any constant depending only on n , T, c2 , M 2 , 

ar , br , "" , K , p~ and p~ . 

We take the scalar product in L2(0) of (5.2) with ¢. Using the monotonicity of the 
mapping ~ 1-1 c2 ~ + F{(~), we obtain 

~ ! in ¢2 dx +in l\7</Jl2 dx < c2in1¢12 dx +in l<PI I F~~;i) -F~~:2 ) dx 

< ( c2 + M2 K-) in l<Pl2 dx + K K-
2 in l<PI IOI dx, 

whence :t in ¢2 dx + in IV ¢1 2 
dx ~ C (in ¢2 dx + in (2 dx) . (5.6) 
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Next, we take the scalar product in L2(f2) of (5.4) with (. It follows 

~ ± r (2 dx + r 8 ( do- + r \7 ( . \7 ( -u) dx 
2 dt Jn Jr Jn 

We have 

< .l (ICl IF~(</>1) - F~(<h)l l<Pitl + ICl IF~(</>2)1 l<Ptl) dx 

< M2 l<P1tlL4(n) ICIP(n) l<PIL4(n) + K l(IP(n) l<PtlP(n) · (5.7) 

(5.8) 

. Also, since p is non-decreasing, the function 8 ( is non-negative. Consequently, it 
follows from (5. 7) and (5.8) that 

:t .l (2 dx + C fn i'V(l2 dx 

< C fn i'V(l IY'Bzl l(I dx + C l.Ptlv(n) l(lv(nJ + C l.P1tlL•(nJ l(lv(n) l.PIL•(nJ. (5.9) . 

From Theorem 2, we already know that 82 E Dxi(Qr)nL2 (0, T, H 2 (D)). The Gagliardo-
Nirenberg inequality implies that for NE {1, 2} it holds 

1 1 

l\782IL4(n) ~ C l82l12(n) l82lfoo(n) · 
Hence, \7 82 belongs to L 4 (Qr) . In addition, the Gagliardo-Nirenberg inequality yields 
for NE {1, 2} that 

l l 
ICIL4(n) ~ C ICIH-1(n) l(ll2(n), 

so that fn i\7821 IV(I ICI dx ~ c IV82IL4(n) ICII2(n) ICl11(n). 
Therefore, using Young's inequality, we conclude from (5.9) and (5.10) that 

d f 2 - 2 () 2 1 2 2 
dt Jn ( dx + C l(IH1(n) ~ 2 ICIH1(n) + 2 l</>IH1(n) + C l<PtlP(n) 

+ C (i + l\782II8n) + l<P1tlJ:11(n)) ICli2(n) · 
Integrating over (0, t), t E [O, T], we find: 

l((t)li'(f!) ~ ~ l 1.Plti(n) ds + Cl l.Ptli'(n) ds 

(5.10) 

+Cl ( 1 + IY'Bzli•(n) + l.PHlti(n)) l(li'(f!) ds. (5.11) 
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Next, we infer from [8] that 

l<PtlL2(0,t,L2(0)) < c IF{(c/>1) + F~(cPl) - F{(c/>2) - F~(c/>2 ) 
81 82 L2(o,t,L2(n)) 

< C (I c/>lv(o,t,L2 (n)) + I( lv(o,t,L2(n))) · 

Thus, (5.11) becomes 

l((t)ll,i(n) < ~ /o' l<Plt'(fl) ds + C /o' l<Pli'(n) ds 

+Cl ( 1 + l'Vl:i2li'(n) + l<Pttlt1(n)) l(l1,2(n) ds · (5.12) 

Finally, we integrate (5.6) over (0, t) and add the result to (5.12) to obtain the estimate 

l<f>(t)i1,2(n) + l((t)li'(n) ~Cl (i + l'Vl:i2li'(n) + l<Pttlt1(n)) (l<Pli2(n) + 1(11,'(n)) ds. 

Since both IY'821£4(n) and l<Pitlh1(n) belong to L1(0, T), we can employ Gronwall's 
lemma to obtain the asserted result. D 
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