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Abstract

We consider the problem of recovering edges of an image from noisy tomographic
data. The original image is assumed to have a discontinuity jump (edge) along the
boundary of a compact convex set. The Radon transform of the image is observed with
noise, and the problem is to estimate the edge. We develop an estimation procedure
which is based on recovering support function of the edge. It is shown that the
proposed estimator is nearly optimal in order in a minimax sense. Numerical examples
illustrate reasonable practical behavior of the estimation procedure.

1 Introduction

In this paper we address the problem of recovering edges of an image from noisy to-
mographic data. The original image is modeled by function f defined on the unit disc
B2(o, 1) ⊂ R

2. Assume that f is smooth apart from a discontinuity jump along a smooth
curve. The problem of edge recovery from tomographic data is to estimate the discontinuity
curve from noisy measurements of line integrals of f .

The problem of edge detection arises in numerious imaging applications. For example,
images with discontinuitites along edges are ubiquitous in medical applications; here edges
bring important information about body regions with different levels of metabolic activity.
Thus edge recovery is an important step in processing tomographic images.

The problem of edge detection in tomographic images is extensively studied in the lit-
erature, both from the theoretical and applied perspective. Different techniques of edge
reconstruction based on local inversion formulas are proposed in Faridani et al. (1992),
Katsevich and Ramm (1995), Katsevich and Ramm (1996), and Faridani et al. (1997).
The main idea underlying these proposals is to recover a transformation of f which admits
local inversion and has the same set of singularities as f itself. This literature concentrates
on mathematical properties of the local inversion formulate but ignores the effect of the
measurement noise which may be significant in practice. We refer to Ramm and Katsevich
(1996) for comprehensive review of this line of research and further references. There is a
large amount of papers in the image processing literature where many practically useful
algorithms for estimating edges from tomographic data are proposed. A representative
publication from this area is, e.g., Srinivasa, Ramakrishnan and Rajgopal (1992). This lit-
erature, however, focuses exclusively on algorithmic and implementation aspects and lacks
theoretical justification.

Although various methods and proposals are widely used in practice, theoretical limitations
in the problem of edge detection from the Radon data are yet to be understood. What
is the best attainable accuracy in recovering edges from noisy observations of projections?
Which methods can achieve this optimal performance? The goal of the present paper is
to provide a theoretical perspective on these questions and to develop easily implemented
nearly–optimal algorithm for edge recovery in tomographic images.
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Recently Candés and Donoho (2002) considered the problem of recovering images with
edges from the Radon data contaminated by Gaussian white noise with zero mean and
variance σ2. It was shown there that if the image f is twice continuously differentiable
except for a discontinuity along a twice differentiable smooth curve, then the best achievable
rate of convergence in estimating f in L2–norm is O(σ2/5). A curvelets–based estimator
is developed in the cited paper, and it is shown to be nearly optimal in the sense of the
convergence rates. In this paper we consider the model of Candés and Donoho (2002), but
our focus is on direct recovery of the edge rather than on estimating the whole image. We
assume that the edge can be represented as the boundary of a convex set, and propose
a method for estimating support function of this set. Then the boundary is recovered as
the envelope of the estimated supporting lines. We analyze theoretical properties of the
proposed estimation scheme and show that it is nearly optimal in order in the sense of the
rates of convergence. We show that convex edge can be estimated with the pointwise risk
of the order O(σ4/5), and this rate cannot be essentially improved. It turns out that the
main factor determining the rate of convergence is the curvature of the edge curve, and not
its smoothness (provided that the edge curve is at least twice differentiable). Numerical
examples illustrate reasonable practical behavior of the proposed estimator.

The rest of the paper is organized as follows. In Section 2 we formulate the problem of edge
recovery from noisy tomographic data, introduce definitions and discuss some preliminary
results. Section 3 describes construction of our estimation procedure, while Section 4
deals with theoretical analysis of its properties. In Section 5 we present some numerical
examples; Section 6 contains concluding remarks. Proofs are given in Appendix.

2 Problem formulation and preliminaries

The observation model. Let f be a square–integrable function on the unit disc
B2(o, 1) ⊂ R

2. The Radon transform R : L2(B
2(o, 1)) → L2([0, 1]× [0, 2π)) of f is defined

by integration of f along the lines lsϕ parametrized by angle ϕ ∈ [0, 2π) and distance to
the origin s ∈ [0, 1]:

(Rf)(s, ϕ) =

∫

lsϕ

f(x, y) dt,

here dt is the Lebesgue measure on lsϕ. Consider the the following white noise model

Y (ds, dϕ) = (Rf)(s, ϕ)ds dϕ + σW (ds, dϕ), (1)

where W (s, ϕ) denotes the Wiener sheet, and σ is the noise level. The model (1) specifically
means that for any function v ∈ L2([0, 1] × [0, 2π]) the integral

∫∫

v(s, ϕ)(Rf)(s, ϕ)ds dϕ
can be observed with Gaussian error having zero mean and variance σ2

∫∫

v2(s, ϕ)ds dϕ.
Assume that f is smooth apart from a discontinuity jump along a smooth curve which is
the boundary ∂G of a convex set G ⊂ B2(o, 1); for simplicity, we suppose that o ∈ int(G).
The goal is to estimate the boundary of G.

Support function of convex sets. It is well known that there is a one-to-one corre-
spondence between convex sets and their support functions. Therefore our approach to
estimating the edge ∂G from observations (1) will be based on pointwise recovering the
support function of G. Below we collect some preliminary results and definitions that will
be repeatedly used in what follows. These results can be found, e.g., in Schneider (1993),
Gardner (1995), and Groemer (1996).

2



If G is a nonempty compact convex set in R
2, the support function gG of G is defined by

gG(u) = g(u) := max{xTu : x ∈ G} for u ∈ S1 := {(cosϕ, sinϕ) : ϕ ∈ [0, 2π)}. Every
compact convex set is uniquely determined by its support function:

G = {x ∈ R
2 : xTu ≤ g(u), u ∈ S1}.

If u ∈ S1 then Hu := {x : xTu = g(u)} is the supporting line to G with outward normal
u. Support function g(u) gives the signed distance from the origin o = (0, 0) to Hu. For
simplicity we assume that o ∈ G so that g(u) gives the actual distance from the origin o to
Hu. In the planar case it is natural to view the support function as function of ϕ ∈ [0, 2π)
and write g(ϕ) rather than g(u) or g(u(ϕ)). Basic properties of support functions are
summarized as follows.

(i) The support function g(ϕ) is 2π–periodic. If G ⊂ B2(o, 1) then

|g(ϕ1) − g(ϕ2)| ≤ |ϕ1 − ϕ2|.

Thus g is absolutely continuous and |g′(ϕ)| ≤ 1 almost everywhere on [0, 2π).

(ii) A twice differentiable 2π–periodic function g(ϕ) is the support function of some
convex domain if g(ϕ) + g′′(ϕ) > 0 for all ϕ ∈ [0, 2π).

(iii) The position vector q(ϕ) of the closed convex curve ∂G is given by

q(ϕ) = g′(ϕ)u′(ϕ) + g(ϕ)u(ϕ),

where as before u(ϕ) = (cosϕ, sinϕ). The radius of curvature ρ(ϕ) of ∂G at the
point q(ϕ) is given by ρ(ϕ) = g(ϕ) + g′′(ϕ) and the center of curvature e(ϕ) is

e(ϕ) = g′(ϕ)u′(ϕ) − g′′(ϕ)u(ϕ).

Properties of the Radon transform. It turns out that estimating support function
of the edge is rather natural when noisy Radon observations are available. According to
general results on singularities of the Radon transform of discontinuous functions [Quinto
(1993), Ramm and Zaslavsky (1993)], the Radon transform (Rf)(s, ϕ) is smooth at ev-
ery point (s, ϕ) if and only if the line lsϕ with coordinates (s, ϕ) is not tangent to the
discontinuity curve of f . If f is discontinuous along the boundary ∂G of a convex set
G with support function g then supporting lines have coordinates (g(ϕ), ϕ), and they are
tangent to the discontinuity curve of f . Therefore R(s, ϕ) has a singularity along the curve
{(s, ϕ) : s = g(ϕ), ϕ ∈ [0, 2π)}. The type of this singularity is essentially determined by
geometrical properties of the boundary ∂G. In particular, if ∂G has everywhere positive
curvature then the Radon transform Rf has the one–sided singularity cusp of the order
1/2 along the curve {(s, ϕ) : s = g(ϕ), ϕ ∈ [0, 2π)}, i.e. there exists L > 0 such that for
sufficiently small h > 0

|(Rf)(g(ϕ), ϕ) − (Rf)(g(ϕ) − h, ϕ)| ≥ Lh1/2, ∀ϕ. (2)

This can be explained using simple geometrical argument which is illustrated in Figure 1
for f = f̃1G, f̃ ≥ c > 0. In this case the Radon transform Rf is supported on the set
{(s, ϕ) : 0 ≤ s ≤ g(ϕ), ϕ ∈ [0, 2π)}, and (Rf)(g(ϕ) − h, ϕ) equals to the “weighted” length
of the chord AB. Since ∂G has non–zero curvature and f̃ ≥ c > 0, this “weighted” length
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Figure 1: An illustration of the Radon transform behavior near the edge for f(x) =
f̃(x)1G(x), f̃(x) ≥ c > 0.

is at least of the order O(h1/2) for sufficiently small h; hence (2) follows. The Radon
transform Rf is smooth apart from the set {(s, ϕ) : s = g(ϕ), ϕ ∈ [0, 2π)}; for general
results on local smoothness of Rf we refer to Quinto (1993). However, for our purposes it
will be sufficient to assume the Lipschitz condition for every ϕ ∈ [0, 2π):

|(Rf)(τ, ϕ) − (Rf)(t, ϕ)| ≤ LR|τ − t|, ∀τ < t s.t. g(ϕ) 6∈ [τ, t]. (3)

The above considerations show that the problem of recovering a convex edge from observa-
tions (1) can be viewed as the problem of estimating the cusp curve in the Radon domain.
This is similar to the boundary fragment model of Korostelev and Tsybakov (1993), see
also Härdle, Park and Tsybakov (1995) and Wang (1998). We note, however, that in our
setup g is the support function of a convex set; this fact leads to results which are not
directly comparable to those in the cited papers.

In the rest of the paper we assume that the underlying function f belongs to some functional
class of functions f with edges.

Functional class. We say that function f on B2(o, 1) belongs to the class F := F(r,R)
if it satisfies the following assumptions

(A) |f(x)| ≤M , ∀x ∈ B2(o, 1), and f is smooth apart from a discontinuity jump along a
curve which is the boundary of a convex set G ⊂ B2(o, 1), o ∈ int(G);

(B) the convex set G has smooth boundary with everywhere non-zero curvature and
support function g which is twice continuously differentiable and satisfies

0 < r ≤ g(ϕ) + g′′(ϕ) ≤ R <∞, ∀ϕ ∈ [0, 2π). (4)

The collection of convex sets satisfying (B) will be designated G := G(r,R).

Several remarks on the above definition are in order. First, (A) along with the assumption
of non–zero boundary curvature in (B) implies that the Radon transform Rf obeys (2)
and (3). For example, if f = f̃1G, f̃ ≥ c > 0 then (2) is valid with L = c

√
r. Inequality
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(4) states the lower and upper bounds on the radius of curvature ρ(ϕ) = g(ϕ) + g′′(ϕ) of
the boundary [see (iii)]. In what follows we always assume that R � r so that the class
F is rich enough. Note that when r = R the class F contains only discs of the radius r.
The lower bound in (4) implies that G is the r–convex set. We recall that a set G is called
r-convex if it can be written as G = G̃ + rB2(o, 1) for some convex set G̃ and r > 0. In
other words, a convex set G with support function g is r–convex if g(·) − r is the support
function of a convex set.

Properties of convex sets from the class G. First we investigate some properties of
sets G from the class G.

Lemma 1 Let G and K be convex sets from G(r,R) such that

gG(θ) − gK(θ) ≥ h, for some θ ∈ [0, 2π) and h > 0; (5)

here gA(·) stands for the support function of a convex set A. Then for sufficiently small h
and any δ ≤

√

2h/R

gG(ϕ) − gK(ϕ) ≥ rψ(ϕ), ϕ ∈ [θ − δ, θ + δ], (6)

where

ψ(ϕ) :=

{

1 − cos(ϕ− (θ − δ)), ϕ ∈ [θ − δ, θ],
1 − cos(ϕ− (θ + δ)), ϕ ∈ [θ, θ + δ].

(7)

We note that under the premise of the lemma rψ(ϕ) ≤ rψ(θ) = r(1 − cos δ) ≤ hr/R ≤ h.
The lemma essentially states that if the support functions of of two sets G and K from
G(r,R) are separated at least by h at a single point θ ∈ [0, 2π), then there exists a O(

√
h)–

vicinity of θ where the support functions are also “well–separated”; the separating function
ψθ is given by (7). As the proof shows, r–convexity of sets from G(r,R) is essential here;
if only convexity is assumed the vicinity size of the order O(

√
h) cannot be ensured.

The probe functional. Using the property established in Lemma 1 we introduce the
following definition. Assume that f ∈ F(r,R), let δ > 0 and Iδ := [θ − δ, θ + δ]. For
t ∈ (0, 1) we define the probe functional

`δ(t) :=

∫

Iδ

∫ t

t−rψ(ϕ)
(Rf)(τ, ϕ)dτdϕ −

∫

Iδ

∫ t+rψ(ϕ)

t
(Rf)(τ, ϕ)dτdϕ, (8)

where ψ(·) is given in (7). The functional `δ(t) will be used for detecting the location
of the cusp curve g at a single given point θ. The region of integration in (8) defines a
diamond–like template in the Radon domain whose profile is adjusted to the properties of
the sought cusp curve, see Lemma 1. The next statement shows that the absolute value
of `δ(t) is large when t = g(θ) and small when t is separated from g(θ); the localization
accuracy of `δ(t) is not less than Rδ2/2.

Lemma 2 Let G ∈ G(r,R), and δ be sufficiently small.

(i) Then
|`δ(g(θ))| ≥ C1Lr

3/2δ4 − C2LR r2δ5, (9)

where L and LR are given in (2) and (3), and C1, C2 are absolute constants.
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(ii) Let h = Rδ2/2 and |t− g(θ)| > h; then

|`δ(t)| ≤ C3LR r2δ5, (10)

where C3 is an absolute constant.

We note that other probe functionals can be used for the cusp curve detection. For example,
one can define `δ(t) equal to the second integral on the right hand side of (8). In this case
the same separation rates as in (9)–(10) are valid although the constants will depend on
the magnitude of f and not on L and LR. The important features of the probe functional
construction are profile and scaling of the vertical and horizontal size of the template. As
it will be shown, the template profile allows the “maximal smoothing” along the angles
while preserving “good” localization properties in the vertical direction.

3 Estimation procedure

Our approach to estimating the convex edge is based on pointwise recovery of its support
function. As mentioned in the previous section, the Radon transform Rf has a cusp-type
singularity along the curve given by the support function of the edge. The location of
this singularity can be described as the point of maximum of the probe functional `δ(t).
This leads to the following procedure. For fixed angle θ ∈ [0, 2π) we estimate the probe
functional `δ(t) for different values of t ∈ [h, 1−h], h = Rδ2/2, and define ĝ(θ) as the value
of t where the maximum of the estimated probe functional is achieved. More formally, we
denote

ˆ̀
δ(t) :=

∫

Iδ

∫ t

t−rψ(ϕ)
Y (dτ, dϕ) −

∫

Iδ

∫ t+rψ(ϕ)

t
Y (dτ, dϕ) , (11)

where the function ψ(ϕ) is defined in (7), and let

ĝ(θ) = t̂ = arg max
t∈[h,1−h]

|ˆ̀δ(t)|. (12)

The definition of ĝ(θ) depends on parameters δ, and r. With these parameters Lemma 2
states that for any G ∈ G(r,R) the localization accuracy of `δ is at least h = Rδ2/2. In
what follows δ will be chosen as a function of σ ensuring the optimal rate of convergence
of the mean squared error as σ → 0. As for the choice of r, we assume that F(r,R) is
given so that r is known. It can be shown that the choice of r does not affect the rates
of convergence in the following sense. If we set in the estimation procedure r = r0, then
the statement of Theorem 1 below remains true for any class F(r,R) with r ≥ r0. It is
important to realize however that the choice of these parameters is crucial for practical
implementation of the proposed estimation scheme. We discuss these issues in Section 6.

4 Theoretical properties

Bounds on the pointwise risk. The main results of this paper are given in the
following theorems.
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Theorem 1 Let ĝ(θ) be given by (11), (12), where

δ = C1

{

σ

√

ln
1

σ

}2/5
for some C1 > 0, (13)

and h = Rδ2/2. Then for sufficiently small σ

sup
f∈F(r,R)

E|ĝ(θ) − g(θ)|ν ≤ C2

{

σ4/5
(

ln
1

σ

)2/5
}ν

, ∀ν > 0,

where C2 depends on r, R, and ν.

Theorem 2 Let g̃(θ) be an arbitrary estimator of g(θ) based on observations (1). Then
for σ sufficiently small

sup
f∈F(r,R)

{

E|g̃(θ) − g(θ)|2
}1/2

≥ C
{

σ2
(

ln
1

σ

)−1}2/5
,

where C depends on r and R.

These results show that our estimator ĝ(θ) is nearly optimal in order within a logarithmic
in σ−1 factor. It is interesting to note that the rate of the order O(σ4/5) is determined by
the curvature properties of edge, and not by the smoothness of the edge curve (as long as
the corresponding support function is twice differentiable). In particular, the lower bound
shows that this rate cannot be essentially improved even if the the edge curve is infinitely
differentiable.

Global accuracy measures. Based on the pointwise estimates of the edge support
function we define the estimator of the set G as follows

Ĝ = {(x, y) ∈ B2(o, 1) : x cosϕ+ y sinϕ ≤ ĝ(ϕ), ∀ϕ ∈ [0, 2π)}, (14)

where ĝ(ϕ) is given by (11) and (12). The estimate of the boundary ∂G is given by (14)
with the inequality sign replaced by equality. Although construction of ĝ does not ensure
that ĝ is the support function of a convex set, Ĝ is always convex because it is defined
as the envelope of the estimated supporting lines. Therefore global accuracy of Ĝ may be
measured using metrics for classes of convex sets. In particular, global distances between
two convex sets G1 and G2 in R

2 with support functions g1 and g2 can be defined by

dp(G1, G2) :=
{ 1

2π

∫ 2π

0
|g1(ϕ) − g2(ϕ)|pdϕ

}1/p
, p ∈ [1,∞]

with d∞ being the well–known Hausdorff distance [see, e.g., Groemer (1996)].

The following statement is an immediate consequence of Theorem 1.

Theorem 3 Let Ĝ be given by (14); then under conditions of Theorem 1 for sufficiently
small σ

sup
f∈F(r,R)

{

E[dpp(Ĝ,G)]
}1/p

≤ C4σ
4/5

(

ln
1

σ

)2/5
, p ∈ [1,∞], (15)

where C4 is the constant depending on r, R and p. In the case p = ∞ the left hand side of
(15) is interpreted as supf∈F(r,R) Ed∞(Ĝ,G).
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Figure 2: (a) The original image; (b) the support function of the ellipse.

5 Numerical examples

We conducted a small numerical experiment in order to illustrate practical behavior of the
proposed estimation scheme. Although the theoretical properties have been investigated
for the idealized continuous white noise model, the estimator can be easily implemented
for more realistic discrete observations model.

The original image used in our experiments is displayed in Figure 2(a). It is given by the
function that equals 1 inside the ellipse G with center (−0.1, 0.1) and semi-axes a = 0.64
and b = 0.47, and 0.4 outside G. Thus f has a discontinuity jump of size 0.6 along
the boundary of the ellipse; support function of G is depicted in Figure 2(b). In our
experiments the Radon transform of the original image is observed with noise at the points
of the 200 × 200 regular grid on [0, 2π] × [0, 1]. We assume that the noise is zero mean
Gaussian and consider the low, medium and high noise level conditions when the noise
standard deviation σ equal to 0.05, 0.1 and 0.3 respectively. For instance, the Radon
transform observations with added Gaussian noise of standard deviation σ = 0.05 is shown
in Figure 3(a). As it was indicated in Section 2, the cusp curve visible in Figure 3(a)
corresponds to the support function of the ellipse in Figure 2.

The following version of the proposed estimator was implemented. Recall that the diamond–
like template in the construction of the probe functional (8) is defined via function ψ
[see (7)] and depends on the two design parameters, δ and r. Our numerical experience
indicates that a larger class of the probe functional templates allows to obtain better
practical results. In particular, the template used in simulations is obtained by the inter-
section of the rectangle having vertical and horizontal sizes 2h and 2δ respectively with
the diamond–like template of (8). The new template is different from that defined in (8)
only if h ≤ r(1 − cos δ). Thus three design parameters h, δ and r should be selected.
In the numerical examples below we always set r = 0.3 while the values of h and δ were
selected to achieve the best visual appearance of the estimated edge. Because the data
are available on the 200 × 200 regular grid, we specify the bandwidths h and δ in pixels,
i.e., for example, h = 5 means that h = 5/200 while δ = 5 means δ = 5(2π/200). We
would like to emphasize that our goal here is merely to demonstrate practical potential of
the proposed estimation scheme. The question of data–driven selection of parameters is
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Figure 3: Edge recovery for the low noise level (σ = 0.05): (a) The noisy observations in
the Radon domain. (b) The support function estimate. (c) The “true” edge (solid line)
along with the estimated supporting lines. (d) The extracted estimate of the edge.
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Figure 4: Edge recovery for the medium noise level (σ = 0.1): (a) The noisy observations
in the Radon domain. (b) The support function estimate. (c) The “true” edge (solid line)
along with the estimated supporting lines. (d) The extracted estimate of the edge.

crucial for applications. This subject however is beyond the scope of the present paper.

Figure 3 displays the results obtained for the case of low noise level conditions, σ = 0.05.
Here the values h = 4 and δ = 6 were selected. The panel (a) shows noisy observations
in the Radon domain; (b) presents the estimate of the support function along with the
“true” curve. The reconstructed set can be seen in Figure 3(c) as the inner envelope of the
estimated supporting lines; the original set is also presented (solid line). Finally, panel (d)
displays the extracted boundary. The similar graphs are presented in Figure 4 and 5 for
σ = 0.1 and σ = 0.15 respectively. We note only that in the case of the medium noise level
we selected h = 7 and δ = 9, while in the case of high noise level h = 12 and δ = 12.

The numerical results demonstrate reasonable practical behavior of the proposed estima-
tion scheme. By construction our support function estimator has a negative bias so that
the recovered set tends to be smaller than the original one. The numerical results also
clearly demonstrate that the estimation accuracy is better at the points of low curvature.
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Figure 5: Edge recovery for the high noise level (σ = 0.3): (a) The noisy observations in
the Radon domain. (b) The support function estimate. (c) The “true” edge (solid line)
along with the estimated supporting lines. (d) The extracted estimate of the edge.
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6 Concluding remarks

1. The theoretical results show that our estimator is nearly optimal in order within a
logarithmic in σ−1 factor. Numerical examples of Section 5 also indicate that the pro-
posed procedure may be rather useful in practical applications. We note however that the
implementation depends on design parameters that should be chosen in some way. Even
though this choice does not affect the asymptotic properties of the proposed procedure, it
has a crucial effect on the estimator performance for finite sample sizes. The question of
data–driven selection of parameters can be approached using recently developed adapta-
tion techniques. In particular, more practical edge recovery procedure can be based on the
fully adaptive AWS algorithm of Polzehl and Spokoiny (2000). It can be used for adaptive
estimation of the cusp curve in the Radon domain.

2. Our approach establishes an interesting connection between the problem of edge detec-
tion in tomography and the boundary fragment model of Korostelev and Tsybakov (1993).
Indeed, the problem of estimating the cusp curve in the Radon domain resembles to the
problem of estimating non–sharp boundaries as in Härdle, Park and Tsybakov (1995) and
Wang (1998). Still there is a fundamental difference. Because the cusp curve is the support
function of a convex set with smooth boundary, the main factor affecting the estimating
accuracy is the boundary curvature, and not the boundary smoothness. Our lower bound
shows that the rate O(σ4/5) cannot be essentially improved even for infinitely differentiable
boundaries. This is in the striking contrast with estimating non–sharp boundaries, where
the rates are essentially determined by the boundary smoothness [see Härdle, Park and
Tsybakov (1995)].

3. As it might be expected, the edge can be recovered more accurately than the whole
image f in L2. In particular, it follows from the results of Candés and Donoho (2002) that
the best rate of convergence for recovering an image which is twice differentiable apart
from a twice differentiable smooth curve in L2 is O(σ2/5), while the convex edge can be
estimated with the faster rate O(σ4/5).

4. Although we considered functions with a single edge along the boundary of a convex
set, our technique can be extended to more general images comprised of several convex
domains with different intensities. Such images are usually serve as phantoms in numerical
studies, see, e.g., Vardi, Shepp, and Kaufman (1985). In this case it is natural to consider
the Radon transform supported on [0, π) × [−1, 1]; then the support function of a convex
set is represented by two curves in the Radon domain. If convex sets of the image have
empty intersection these curves are well separated in the Radon domain. In addition, if the
boundaries have everywhere non–zero curvature then the problem is reduced to estimating
cusp curves of the order 1/2 in the Radon domain. This can be pursued by the method
developed in this paper.

5. The points of zero curvature on the boundary correspond to sharper cusps in the Radon
domain. We note however that one cannot improve accuracy of estimating the support
function in these particular directions because the set of points where the curvature vanishes
has zero Lebesgue measure. Thus our results are valid for the class of functions with edge
along a smooth convex closed curve which can have points of zero curvature.
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Figure 6: Illustration of the proof of Lemma 1.

Appendix

Proof of Lemma 1

First we establish the lemma for the case where G is a disc. Then we will show how this
result can be extended for general sets from the class G(r,R).

The proof is based on the following simple geometrical argument. Let G be the disc of
radius ρ ∈ [r,R] centered at the origin. Clearly in this case gG(ϕ) = ρ, ∀ϕ. Fix θ ∈ [0, 2π)
and for sufficiently small h let

G̃ := G\S, S := {(x, y) : g(θ) − h ≤ x cosϕ+ y sinϕ ≤ g(θ), ∀ϕ ∈ [0, 2π)} ,

see Figure 6. It is evident that for any convex set K ∈ G(r,R) satisfying (6),

gK(ϕ) ≤ gG̃(ϕ), ∀ϕ ∈ [θ − δ, θ + δ]

where δ := arccos(1−h/ρ) [see Figure 6]. It is easily verified that gG̃(ϕ) equals ρ cos(ϕ−(θ−
δ)) whenever ϕ ∈ [θ−δ, θ], and ρ cos(ϕ−(θ+δ)) whenever ϕ ∈ [θ, θ+δ]. Then (6) holds with
r replaced by ρ and δ = arccos(1−h/ρ). Because cos δ = 1−(δ2/2!)+(δ4/4!)−(δ6/6!)+· · · ,
(6) is also valid for every δ ≤

√

2h/ρ as claimed in the statement of the lemma. Thus (6)
holds when G is the disc of radius ρ centered in the origin.

For general sets G ∈ G(r,R) we use the same reasoning as before. For sufficiently small h
we replace the boundary of the set G in the vicinity of the support value in direction u(θ)
by the arc of the disc B centered at e(θ) = g(θ)u′(θ) − g′′(θ)u(θ) and having the radius
ρ(θ) = gG(θ) + g′′G(θ) [see (iii) of Section 2]. Then the support function of any convex
set K ∈ G(r,R) satisfying (6) must be less that the support function of B\S in a small
vicinity of the support value (for sufficiently small h). Hence the situation differs from
that discussed above only in that B is not centered at the origin. However, the difference
between support functions of two convex sets is preserved under translation of these sets.
Therefore (6) follows from the above considerations taking into account that r ≤ ρ(ϕ) ≤ R,
∀ϕ ∈ [0, 2π).
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Proof of Lemma 2

Proof (i). We have

`δ(g(θ)) =

∫

Iδ

{

∫ g(θ)

g(θ)−rψ(ϕ)
(Rf)(τ, ϕ)dτ −

∫ g(ϕ)+rψ(ϕ)

g(ϕ)
(Rf)(τ, ϕ)dτ

}

dϕ

=

∫

Iδ

∫ g(θ)

g(θ)−rψ(ϕ)
[(Rf)(τ, ϕ) − (Rf)(g(θ), ϕ)]dτdϕ

−
∫

Iδ

∫ g(θ)+rψ(ϕ)

g(θ)
[(Rf)(τ, ϕ) − (Rf)(g(θ), ϕ)]dτdϕ =: J1 − J2.

By (2),

|J1| ≥
∫

Iδ

∫ g(θ)

g(θ)−rψ(ϕ)
L|g(θ) − τ |1/2dτdϕ

=
2

3

∫

Iδ

L[rψ(ϕ)]3/2dϕ = C1Lr
3/2δ4 ,

where C1 is an absolute constant. Further, because (Rf) is smooth on the set {(s, ϕ) :
g(θ) ≤ s ≤ g(θ) + rψ(ϕ), ϕ ∈ Iδ}, (3) implies

|J2| ≤
∫

Iδ

∫ g(θ)+rψ(ϕ)

g(θ)
LR|τ − g(θ)|dτdϕ

=
r2

2
LR

∫

Iδ

ψ2(ϕ)dϕ = C2r
2LRδ

5,

where C2 is an absolute constant. Hence (9) follows.

(ii). Similarly to the above considerations,

`δ(t) =

∫

Iδ

∫ t

t−rψ(ϕ)
[(Rf)(τ, ϕ) − (Rf)(g(θ), ϕ)]dτdϕ

−
∫

Iδ

∫ t+rψ(ϕ)

t
[(Rf)(τ, ϕ) − (Rf)(g(θ), ϕ)]dτdϕ. (16)

Assume, e.g., that t > g(θ)+h. Then by Lemma 1, t−rψ(ϕ) ≥ g(ϕ), ∀ϕ ∈ Iδ, and therefore
the cusp curve {(s, ϕ) : s = g(ϕ), ϕ ∈ [0, 2π)} is separated from the set {(s, ϕ) : t−rψ(ϕ) <
s ≤ t+ rψ(ϕ), ϕ ∈ Iδ}. Thus the integrals in (16) are bounded similarly to J2 above. In
the case t < g(θ) − h separation of g(ϕ) from the set {(s, ϕ) : t ≤ s < t+ rψ(ϕ), ϕ ∈ Iδ}
is shown similarly.

Proof of Theorem 1

In the proof c1, c2, . . . denote constants that may depend on parameters r, R, L, LR and
ν only.

Because supp(f) ⊆ B2(o, 1), we can write for any ν > 0

E|ĝ(θ) − g(θ)|ν ≤ hν + E

[

|ĝ(θ) − g(θ)|ν1{|ĝ(θ) − g(θ)| > h}

≤ hν + P

{

|ĝ(θ) − g(θ)| > h
}

. (17)
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Our goal is to bound the probability on the RHS of (17).

We have for small enough σ

P{|ĝ(θ) − g(θ)| > h} ≤ P

{

max
t:|t−g(θ)|>h

|ˆ̀δ(t)| ≥ |ˆ̀δ(g(θ))|
}

≤ P

{

max
t∈[h,1−h]

|ˆ̀δ(t) − `δ(t)| + max
t:|t−g(θ)|>h

|`δ(t)| ≥ |ˆ̀δ(g(θ))|
}

(a)

≤ P

{

max
t∈[h,1−h]

|ˆ̀δ(t) − `δ(t)| + c1LR r
2δ5 ≥ |ˆ̀δ(g(θ))|

}

≤ P

{

2 max
t∈[h,1−h]

|ˆ̀δ(t) − `δ(t)| + c1LR r
2δ5 ≥ |`δ(g(θ))|

}

(b)

≤ P

{

max
t∈[h,1−h]

|ˆ̀δ(t) − `δ(t)| ≥ c2Lr
3/2δ4

}

, (18)

where (a) follows from Lemma 2 (ii), and (b) is a consequence of Lemma 2 (i) and the fact
that σ is small. Thus it remains to bound from above the probability P{maxt∈[h,1−h] |Xt| ≥
c2Lr

3/2δ4}, where

Xt := σ
{

∫

Iδ

∫ t

t−rψ(ϕ)
W (dτ, dϕ) −

∫

Iδ

∫ t+rψ(ϕ)

t
W (dτ, dϕ)

}

(19)

is the zero mean Gaussian process indexed by t ∈ [h, 1 − h]. For this purpose we apply
the exponential inequality of Talagrand (1994) for general Gaussian processes [see also
van der Vaart and Wellner (1996)]. First we note that

max
t∈[h,1−h]

E|Xt|2 ≤ c3rσ
2δ3.

Further, it is straightforward to see that E|Xt−Xs|2 ≤ c4σ
2δ|t−s|. Therefore one needs no

more than N(ε) = c5(σ
2δε−1)1/2 balls of the radius ε in the natural semimetric in order to

cover the index set [h, 1−h]. In addition, it follows from (13) that σδ3/2 = o(δ4) as σ → 0.
Therefore applying the exponential inequality of Proposition A.2.7 from van der Vaart and
Wellner (1996) [with V = 1/2, ε0 ∼ σδ3/2, K ∼ σ2δ and λ ∼ δ4] we obtain

P{ max
t∈[h,1−h]

|Xt| ≥ c2rδ
4} ≤ c6δ exp

{

− c5δ
8

σ2δ3

}

≤ c6δ exp{−c7h5/2σ−2} ≤ c8h
ν

where the last inequality follows by choice of C1 in (13).

Proof of Theorem 2

In the proof below c1, c2, . . . stand for absolute constants or constants depending on r and
R only. We assume that R � r so that class G(r,R) is sufficiently rich (e.g., r = R
implies that G(r,R) contains only discs of radius r = R). Without loss of generality we
assume θ = π/2, and let G0 be the disc B2(o, c1r) of radius c1r, c1 > 1 centered at the
origin o = (0, 0). The support function of G0 is gG0

(ϕ) = g0(ϕ) = c1r, ∀ϕ. For some
h > 0 define G̃1 = G0 ∩ B2(η,R), where B2(η,R) is the disc of radius R centered at
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η = (0,−R − h + c1r). By construction, gG̃1
(π/2) + h = gG0

(π/2); note however, that

G̃1 6∈ G(r,R), because ∂G̃1 is not differentiable at the points of intersection of ∂B2(η,R)
and ∂G0. We define G1 ∈ G(r,R) by replacing the boundary of G̃1 by circular arcs of
the radius r in vicinity of the singularity points; this is always possible if G(r,R) is rich
enough. For such a set G1 ⊂ G0 we have gG1

(π/2) = gG0
(π/2) − h.

Assume that f0(x) = 1G0
(x) so that it has a discontinuity jump along the boundary of

G0, and let f1(x) = 1G1
(x). Assume that we have observations (1). The Kullback–Leibler

distance between the probability measures P0 and P1 corresponding to the processes

Yi(dτ, dϕ) = (Rfi)(τ, ϕ)dτdϕ + σW (dτ, dϕ), i = 0, 1

is given by

KL(P0,P1) = E0 ln
dP1

dP0
(Y0)

=
1

2σ2

∫ 2π

0

∫ 1

0
|(R(f0 − f1))(τ, ϕ)|2dτdϕ . (20)

To bound KL(P0,P1) we use the idea similar to that in Candés and Donoho (2002); namely,
we bound the Radon transform of the set G0\G1 by the Radon transform of some ellipse.
Indeed, because G1 is convex, it necessarily belongs to the set G0\{(x, y) : c1r − h ≤ y ≤
c1r}. Therefore G0\G1 contains an ellipse with semi-axes of the size c2h and c3

√
h. On the

other hand, it is easily checked that G0\G1 is also contained in some ellipse with semi-axes
c4h and c5

√
h. Recall that the Radon transform of the ellipse E(a, b) with semi-axes a and

b is given by

(R1E(a,b))(τ, ϕ) =
ab

s

(

1 − τ2

s2

)1/2

+
, s2 := a2 cos2 ϕ+ b2 sin2 ϕ. (21)

Further, if Q is the orthogonal matrix representing the planar rotation by θ, e ∈ R
2, and

u(ϕ) = (cosϕ, sinϕ) then

{R1E(a,b)(Qx− e)}[τ, u(ϕ)] = {R1E(a,b)}[τ − eTQu(ϕ), Qu(ϕ)].

Using this property and (21) we bound the integral on the RHS of (20) as follows

‖R(f0 − f1)‖2
2 ≤ c6

∫ 2π

0

∫ 1

0

h3

s2

(

1 − τ2

s2

)

+
dτdϕ

= c7h
3

∫ 2π

0

dϕ
√

h2 cos2 ϕ+ h sin2 ϕ

≤ c8h
5/2 ln

1

h
.

Thus if we choose h = c9[σ
2(ln 1

σ )−1]2/5 the Kullback–Leibler distance will be of the order
of O(1); this implies the lower bound.

Proof of Theorem 3

First we note that

dp(Ĝ,G) ≤
{ 1

2π

∫ 2π

0
|ĝ(ϕ) − g(ϕ)|pdϕ

}1/p
.
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Therefore in the case of p ∈ [1,∞) the statement follows immediately from Theorem 1 by
integrating the risk upper bound over θ ∈ [0, 2π). We indicate only modifications in the
proof of Theorem 1 needed to obtain the announced upper bound when p = ∞. In this
case the argument similar to (18) leads to

P

{

max
θ∈[0,2π)

|ĝ(θ) − g(θ)| > h
}

≤ P

{

max
θ∈[0,2π)

max
t∈[h,1−h]

|Xt(θ)| ≥ cLr3/2δ4
}

,

where the Gaussian process {Xt(θ)} is again given by (19), but now its index set is (θ, t) ∈
[0, 2π)× [h, 1−h]. The general exponential inequality is applied to bound this probability.
The announced result follows by appropriate choice of the constant C1 in (13).
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