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Abstract

This paper offers a new procedure for estimation and forecasting of the volatility
of financial time series. The approach is based on the assumption of local homogene-
ity: for every time point there exists an interval of time homogeneity, in which the
volatility parameter can be well approximated by a constant. The procedure recov-
ers this interval from the data using the local change point analysis. Afterwards the
estimate of the volatility can be simply obtained by local averaging. We investigate
the performance of the procedure both from the theoretical point of view and through
Monte Carlo simulations. Then the new procedure is applied to some data sets and a
comparison with the LAVE procedure from Mercurio and Spokoiny (2004) and with
a standard GARCH model is also provided. Finally we discuss applications of the
new method to the Value-at-Risk problem. The numerical results demonstrate a very
reasonable performance of the new method.

1 Introduction

Since the seminal papers of Engle (1982) and Bollerslev (1986), modelling the dynamic
features of the variance of financial time series has become one of the most active fields
of research in econometrics. New models, different applications and extensions have been
proposed as it can be seen by consulting for example the monographs of Engle (1995) and
of Gouriéroux (1997). The main idea behind this strain of research is that the volatility
clustering effect that is displayed by stock or exchange rate returns can be modelled globally
by a stationary process. This approach is somehow restrictive and it does not fit some
characteristics of the data, in particular the fact that the volatility process appears to be
“almost integrated” as it can be seen by usual estimation results and by the very slow decay
of the autocorrelations of squared returns. Other global parametric approaches have been
proposed by Engle & Bollerslev (1986) and by Baillie, Bollerslev & Mikkelsen (1996) in
order to include these features in the model.

However, Mikosch & Starica (2000b) showed that long memory effects of financial time
series can be artificially generated by structural breaks in the parameters. This motivates
another modelling approach which borrows its philosophy mainly from the nonparametric
statistics. The main idea consists in describing the volatility clustering effect only by a
locally stationary process. Therefore, only the most recent data are considered the most
important for estimation and weighting schemes, which can be themselves either global or
local and data driven, are suggested in order to decrease the dependence of the estimate
on the older observations. Some examples of this approach can be found in Fan & Gu
(2003), in Dahlhaus & Rao (2003) and in Cheng, Fan & Spokoiny (2003). Furthermore,
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Mercurio & Spokoiny (2004) (referred to as MS2004 in what follows) proposes a new local
adaptive volatility estimation (LAVE) of the unknown volatility from the conditionally
heteroscedastic returns. The method is based on pointwise data-driven selection of the
interval of homogeneity for every time point. The numerical results demonstrate a reason-
able performance of the new method. In particular, it slightly outperforms the standard
GARCH(1,1) approach. Härdle, Herwartz & Spokoiny (2003) extend this method to esti-
mating the volatility matrix of the multiple returns and Mercurio & Torricelli (2001) apply
the same idea in the context of a regression problem.

The aim of the present paper is to develop another procedure which, however, applies
a similar idea of pointwise adaptive choice of the interval of homogeneity. The main
differences between the LAVE approach from MS2004 and the new procedure is in the way
of testing the homogeneity of the interval candidate and in the definition of the selected
interval. In this paper we systematically apply the approach based on the local change
point analysis. This means that every interval is tested on homogeneity against a change-
point alternative. If the hypothesis is not rejected, a larger interval-candidate is taken.
If the change point is detected, then the location of the change point is used for defining
the adaptive interval while MS2004 suggested to take the latest non-rejected interval. The
modified procedure allows to improve the sensitivity of the method to changes of volatility
by using the more powerful likelihood ratio test statistic with the careful choice of the
critical level. In addition, the use of the additional information about the location of the
change point which is delivered by the change point test, helps to reduce the estimation
bias. Finally, the interpretation of the procedure as a multiple test against a change point
alternative leads to a very natural method of tuning the parameters of the procedure.

The change point detection problem for financial time series was considered in Mikosch &
Starica (2000a) but they focused on asymptotical properties of the test if only one change
point is present. Kitagawa (1987) applied non-Gaussian random walk modeling with heavy
tails as the prior for the piecewise constant mean for one-step-ahead prediction of nonsta-
tionary time series. However, the mentioned modeling approaches require some essential
amount of prior information about the frequency of change-points and their size. The new
approach proposed in this article does not assume smooth or piecewise constant structure
of the underlying process and does not require any prior information. The procedure pro-
posed below in Section 3 focuses on adaptive choice of the interval of homogeneity that
allows to proceed in a unified way with smoothly varying coefficient models and change-
point models.

The reminder paper is organized as follows. The next section introduces the adaptive mod-
eling procedure, then some theoretical properties are discussed in the general situation and
for two particular cases: a change-point model with piecewise constant volatility and the
case of a volatility function smoothly varying in time. Section 5 illustrates the perfor-
mances of the new methodology by means of some simulated examples and applications
to real data sets. First we address the problem of selecting the smoothing parameters and
propose one solution which will systematically applied for all the examples. Section 5.2
presents some numerical results for a change-point model. In Section 5.3 we study fore-
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casting ability of the new method by mean of a comparative study with the GARCH(1,1)
method. Section 5.5 discusses applications of the new method to the Value at Risk problem.
Section 6 collects the proofs of the main results.

2 Volatility modeling

Let St be an observed asset process in discrete time, t = 1, 2, . . . and Rt are the correspond-
ing returns: Rt = log(St/St−1). We model this process via the conditional heteroscedastic-
ity assumption

Rt = σtξt , (2.1)

where ξt, t ≥ 1, is a sequence of independent standard Gaussian random variables and σt is
the volatility process which is in general a predictable random process, that is, σt ∼ Ft−1

with Ft−1 = σ(R1, . . . , Rt−1) (σ-field generated by the first t− 1 observations).

In this paper, similarly to MS2003 we focus on the problem of filtering the parameter
σt from the past observations R1, . . . , Rt−1. This problem naturally arises as an impor-
tant building block for many tasks of financial engineering like Value-at-Risk or Portfolio
Optimization.

2.1 Parametric modeling

A time-homogeneous (time-homoscedastic) model means that σt is a constant. The process
St is then a Geometric Brownian motion observed at discrete time moments. For the
homogeneous model Rt = σεt with t ∈ I, the parameter θ = σ2 can be estimated using
the maximum likelihood method:

θ̃I = argmax
θ≥0

LI(θ) = argmax
θ≥0

∑

t∈I

`(Rt, θ)

where `(y, θ) = −(1/2) log(2πθ)−y2/(2θ) is the log-density of the normal distribution with
the parameters (0, θ). A simple algebra yields

θ̃I = N−1
I

∑

t∈I

R2
t , and LI(θ̃I) = −NI

2
log(2πθ̃I)− NI

2
(2.2)

where NI denotes the number of time points in I.

The assumption of normality for the innovations εt is often criticized in the financial
literature. Our empirical examples in Section 5.3 below also indicate that the tails of
estimated innovations are heavier than the normality would imply. However, the estimate
θ̃I remains meaningful even for the non-normal innovations, it is just a quasi-likelihood
approach. One can show that this approach leads to the same asymptotic quality of
estimation if the distribution of the εt’s fulfills some exponential moment conditions.
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3 Adaptive choice of the interval of homogeneity

The assumption of time homogeneity is too restrictive in practical applications and it
does not allow to fit well real data. In this paper we consider an approach based on the
local time-homogeneity which means that for every time moment n there exists a historic
time interval [n −m,n[ in which the volatility process σt is nearly constant. Under such
a modeling, the main intention is both to describe the interval of homogeneity and to
estimate the corresponding value σn. Our approach is based on the adaptive choice of
the interval of homogeneity for the end point n. The procedure attempts to find this
interval from the data by successive testing the hypothesis of homogeneity. We start from
a small interval I = [n−m0, n[. Then we increase the interval I and test the hypothesis of
homogeneity within I against a change-point alternative. If the hypothesis is not rejected
then we take a larger interval and continue this way until we detect a change-point or the
largest possible interval II is reached. If a change-point is detected at a point ν then use
it as the left end-point of the selected interval , i.e. take the interval Î = [ν, n[, otherwise
take Î = II. Finally, estimate the volatility process from the observations Rt for t ∈ Î

assuming the homogeneous model within Î.

The procedure reads as follows.

Initialization Select the smallest interval in I.

Iteration Select the next interval I in I.

Testing homogeneity Test the hypothesis of homogeneity within I against a change-
point alternative.

Loop If a change point is detected at ν ∈ I, then set Î = [ν, n[. Otherwise, continue with
the iteration step by choosing a larger interval.

The main ingredient of this procedure is the way of testing the hypothesis of homogeneity.

3.1 Test of homogeneity against a change-point alternative

Let I be an interval-candidate. Here we describe a change-point test within I based on
the likelihood ratio test statistics.

The null hypothesis for I = [n−m,n[ means that the observations Rt for t ∈ I follow the
parametric model with the parameter θ. This hypothesis leads to the log-likelihood LI(θ).
We want to test this hypothesis against a change-point alternative that the parameter θ

spontaneously changes in some internal point τ of the interval I. Let T (I) be a family of
internal points within I. Every point τ ∈ T (I) splits the interval I onto two subintervals
J = [τ, n[ and Jc = I \ J = [n −m, τ [. The change point alternative means that θt = θ

for t ∈ J and θt = θ′ for t ∈ Jc for some θ 6= θ′. This corresponds to the log-likelihood
LJ(θ) + LJc(θ′). The likelihood ratio test statistic for the change-point alternative with
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the change point location at the point τ is of the form

TI,τ = max
θ,θ′

{
LJ(θ) + LJc(θ′)

}−max
θ

LI(θ)

= LJ(θ̃J) + LJc(θ̃Jc)− LI(θ̃I) = L̂J + L̂Jc − L̂I .

For the considered volatility model, this test statistic can be represented in the form

TI,τ = NJK(θ̃J , θ̃I) + NJcK(θ̃Jc , θ̃I)

where K(θ, θ′) = −0.5 (log(θ/θ′)− 1 + θ/θ′) is the Kullback-Leibler information for the
two normal distributions with variances θ and θ′. The change-point test for the interval I

is defined as the maximum of such defined test statistics over τ ∈ TI :

TI = max
τ∈TI

TI,τ .

The change-point test compares this statistic with the critical value λI which may depend
on the interval I and the nominal first kind error probability α. The hypothesis of homo-
geneity is rejected if TI ≥ λI . The way of choosing the critical value as well as the other
parameters of the procedure like the set of testing intervals TI is discussed in Section 3.2.

3.2 Parameters of the procedure

To start the procedure running, one has to specify some parameters. This includes the set
I of interval-candidates, and, for every I ∈ I, the set of internal points TI and the critical
value λI . First we briefly discuss how the sets I and TI can be selected. Then we focus on
the choice of the critical values λI .

It is useful to take the set I of interval-candidates in the form of an arithmetic or geometric
grid. In both cases one has to fix the starting interval length m0, that is, the first considered
interval is of the form [n − m0, n[. At every iteration this length is increased by adding
resp. by multiplying with some fixed step. In our theoretical study we assume the maximal
possible set of all intervals I with the length not less than m0. This is a special case of
an arithmetic grid with the step one. To reduce the computational burden, one can take
a larger step or even a geometric grid, that is, to define the length mk of the interval Ik as
mk = [mk−1c] for some c > 1.

For every interval I ∈ I, I = [n −m,n[, we define TI as the set of all internal points of
I separated away from the end-point. More precisely, for a fixed ρ ≤ 1/3, set TI = {t :
n −m + ρm ≤ t ≤ n − ρm}. A reasonable choice for ρ is ρ = 1/3. The idea behind this
choice is that the behavior of the log-likelihood test statistic TI,τ becomes quite irregular
when τ approaches the end-points of the interval I. Note also that for the points close to
n, the test on change point has been already made on the earlier steps of the algorithm
while for the points close to the left end point n − m, a test will be made at the next
iterations. Our simulations results indicate that the procedure is quite stable w.r.t. the
choice of the parameters like ρ and c.
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In the contrary, the choice of the critical values λI is rather important. Larger values
λI improve stability of the method under homogeneity but result in a low sensitivity to
parameter changes while too small critical values lead to a large “false alarm” probability.
The standard approach to choosing the critical values is to provide a prescribed first kind
error probability, that is, in the homogeneous case, the “false alarm” probability should not
exceed the given level α. Here we describe different possibilities for this choice.

We consider a homogeneous model Rt = σεt with the constant volatility θ = σ2 and
standard Gaussian innovations εt. It is worth noting that the particular value θ has no
influence on the behavior of the procedure (it is cancelled in the expression for the test
statistic TI) and therefore we can assume θ = 1. Thus, the probability model is completely
specified and its properties can be evaluated by the Monte Carlo simulation.

Define for every I a value βI in a way that
∑

I∈I βI = α. A reasonable proposal is

βI = αN−1
I

(∑

I′∈I
N−1

I′

)−1

We also denote αI =
∑

I′∈I(I) βI′ where I(I) = {I ′ : I ′ ∈ I, I ′ ⊆ I}. Note that if NI grows
exponentially with I with a factor c, then the proposed choice ensures that the ratio α/αI

remains bounded by a constant depending on c only.

Now we run the procedure for the time homogeneous data generating process. For every
realization the procedure stops if a change-point is detected, that is, the values TI are
computed only if the smaller intervals I ′ are not rejected. Otherwise we set TI = ∞. The
critical value λI for every interval I is defined as (1 − αI)-quantile of the such computed
test statistics TI . If the number of replications is sufficiently large, this method provides
the rejection probability about αI for every I. However, the method is computationally
intensive. Several proposals to simplify this choice are discussed below. One is based on
the result of Theorem 4.3 from Section 4 that suggests to apply a critical value λI that
grows linearly with log(NI), that is, λI = a+ b log(NI). The constants a and b might (and
should) depend on the choice of the set I and on the nominal error level α. They also
slightly depend on the choice of sets of tested intervals I and internal points T (I), of, more
specifically, on the parameters ρ and c. So, the following method can be recommended:
for fixed values λ, ρ, c, compute critical values λI for a few intervals I and adjust a
linear relationship λI = a + b log(NI). We continue this discussion in Section 5 where an
implementation of the procedure will be discussed in details.

4 Theoretic properties

This section discusses some useful theoretical properties of the adaptively selected interval
of homogeneity Î and then of the adaptive volatility estimate θ̂ that corresponds to the
selected interval Î, that is, θ̂ = θ̃

Î
.

We start by discussing the “false alarm” probability, that is, the probability that a good
interval in which the hypothesis of homogeneity is nearly fulfilled is rejected by the change
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point test. We show that if the critical values λI are properly selected the procedure
ensures a prescribed false alarm probability level. The standard way for proving such a
result is based on the asymptotic expansion of the log-likelihood process L(θ). Here we
briefly discuss this approach and then switch to the nonasymptotic one.

4.1 Asymptotic properties of the change-point test under the null

The LR test statistic TI introduced in the previous section has nice asymptotic properties.
In particular, it weakly converges under the null hypothesis to some nondegenerated dis-
tribution. Moreover, this distribution is parameter free. The idea behind the mentioned
asymptotic result is that the in the homogeneous situation the likelihood ratio process
can be approximated by some fixed transformation of the standard Wiener process. More
precisely, define for every 0 ≤ τ1 < τ2 ≤ 1 the interval J = [τ1n, τ2n]. Then the likelihood
ratio LJ(θ, θ0) based on the observations from this interval for θ = θ0(1 + un−1/2) can be
(strongly) approximated by the random variable (τ2−τ1)−1

{
u(Wτ2 −Wτ1)− u2/2

}
where

Wτ is a standard Wiener process. This yields the approximation of the distribution of the
statistic 2TI by the maximum of τ−1W 2

τ + (1− τ)−1(W1 −Wτ )2 −W 2
1 over τ ∈ [ρ, 1− ρ].

We do not discuss this result in more details because its applicability is restricted to the
case of a large interval I while the procedure starts with a small interval I0 even if the
sample size is large.

Therefore, we need a version of this result which applies to an arbitrary sample size. We
present such nonasymptotic results for two cases: one for pure homogeneous situation with
a constant volatility and another one for a nearly homogeneous case.

4.2 “False alarm” probability under the null

Suppose that an interval I = [n−m,n[ is fixed.

Theorem 4.1. Let I ∈ I and θt = θ0 for all t ∈ I. Then it holds for every z ≥ 0

P (TI ≥ 2z) ≤ 4NIe
−z.

In particular, for every β ∈ (0, 1), with z = log(4NI/β), it holds

P (TI ≥ 2 log(4NI/β)) ≤ β.

The next result describes the probability of rejecting a homogeneous interval by our pro-
cedure. This means that every of the test statistics TI′ for I ′ ∈ I(I) does not exceed the
corresponding critical value λI′ . This is a multiple testing problem requiring a correction
of the critical value for using the multiple test. In our theoretical study we apply the
Bonferonni method: for every interval I we assign a first kind error probability βI such
that the sum of the βI ’s does not exceed the prescribed value α. It is well known that
the Bonferonni method is a bit conservative. Therefore, the result we present give only an
upper bound for the ‘false alarm’ probability.
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In what follows we suppose that some values βI , I ∈ I, are fixed such that

αI :=
∑

I′∈I(I)

βI′ ≤ α.

The next result is a straightforward corollary of Theorem 4.1.

Theorem 4.2. If θt ≡ θ0 for all t ∈ I and if λI ≥ 2 log(4NI/βI) for all intervals I ∈ I,
then for every I ∈ I

P (I is rejected) ≤ αI .

Proof. It suffices to only mention that by Theorem 4.1

P (I is rejected) ≤
∑

I′∈I(I)

P (TI′ ≥ 2(1 + 2µ) log(8NI′/βI′)) .

4.3 “False alarm” probability in the nearly homogeneous case

Here we consider a more general situation when the volatility coefficient θt can be approx-
imated within I by a value θ0 which is measurable w.r.t. Fn−m−1. The violation from the
homogeneity within I can be naturally measured by the values ∆∗

I and ∆I defined by the
equations

∆∗
I = sup

t∈I
|θt/θ0 − 1| and ∆2

I = N−1
I

∑

t∈I

|θt/θ0 − 1|2. (4.1)

Note that in general ∆I and ∆∗
I are random variables. Near homogeneity within I means

that these values are small with a high probability. For every numbers µ ≥ 0 and z ≥ 0,
define the random event

AI(µ, z) = {NI∆2
I ≤ µ2z and ∆∗

I ≤ 0.8 min{µ, 1}}.

Theorem 4.3. It holds for each µ ≥ 0 and β ∈ (0, 1)

P (TI ≥ 2(1 + 2µ) log(8NI/β), A∗I(µ)) ≤ β.

As a consequence of this result, if the conditions ∆∗
I ≤ 0.8min{µ, 1}, NI∆2

I ≤ µ2z are
fulfilled with probability one, then

P (TI ≥ 2(1 + 2µ) log(8NI/β)) ≤ β.

An extension of Theorem 4.2 to the nearly homogeneous case is also straightforward. Let
a sequence {βI} satisfying

∑
I βI = α be fixed. For every I ∈ I define zI = log(8NI/βI)

and

A∗I(µ) = {∆∗
I′ ≤ 0.8 min{µ, 1}, NI′∆2

I′ ≤ µ2zI′ ∀I ′ ∈ I(I)} =
⋂

I′∈I(I)

AI(µ, zI′).
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Theorem 4.4. For any µ ≥ 0, if λI ≥ 2(1 + 2µ) log(8NI/βI) for all intervals I ∈ I, then
for every I ∈ I

P (I is rejected, A∗I(µ)) ≤ αI .

The result of Theorem 4.4 suggests the following definition of a “good” or “ideal” interval II.
We say that II is good if for some fixed µ ≥ 0 the event A∗II(µ) meets with a high probability.
It follows from Theorem 6.2 and Lemma 6.6 in the Appendix that the corresponding
“oracle” estimate θ̃II delivers with a high probability the quality of estimation of order
N
−1/2
II . The result in the next section claims the same rate of accuracy for the adaptive

estimate θ̂.

4.4 Quality of the adaptive volatility estimate

Recall that the adaptive volatility estimate θ̂ at the time point n is defined as θ̃
Î
where

Î is the selected interval of homogeneity with the right end-point n. Here we show that
the quality of the adaptive estimate is essentially the same (in order) as the quality of
the “ideal” estimate corresponding to an “ideal” choice of the interval Î. Let an interval
II = [n −m∗, n[∈ I be fixed such that the event A∗II(µ) meets with a high probability. It
is straightforward to see that the corresponding estimate θ̃II delivers the accuracy of order
N
−1/2
II . We now aim to show that the adaptive estimate θ̂ provides at least the same (in

order) accuracy of estimation. In the next result we assume for the ease of exposition that
the procedure is run with the maximal set I of all possible intervals I of length NI ≥ m0.

Theorem 4.5. Let II be a “good” interval, that is, for some fixed µ, the event A∗II(µ) meets
with a positive probability. If λI ≥ 2(1 + 2µ) log(8NI/βI) for all intervals I ∈ I, then the
adaptive estimate θ̂ fulfills

P
(∣∣log(θ̂/θ0)

∣∣ ≥ C
√

λII/NII , A∗II(µ)
)
≤ αII

where the constant C depends on the parameter ρ of the procedure only.

4.5 Accuracy of estimation when θt is smooth

Suppose that the volatility function θt smoothly varies with t. Then the result of Theo-
rem 4.5 can be used to state the usual nonparametric rate of estimation of the function
θ. Since the volatility model R = θ1/2ε has irregularity at θ = 0, it is more convenient
to work with the log-transform of θ. We suppose that log θt is Lipschitz at n with the
constant L, that is,

|log θn − log θt| ≤ L |(n− t)/n| . (4.2)

This condition implies for every interval I = [n−m,n[ that

∆∗
I ≤ max

t∈I
|θn/θn−m − 1| ≤ 2Lm/n

9



for m ≤ n/2, that is, the conditions entering in the definition of the event A∗I(µ) are
satisfied almost sure with µ2 = m(2Lm/n)2/ log(m/βI). Selecting m = (n/2L)2/3 provides
this condition with µ = 1. Due to Theorem 4.5, the adaptive estimate θ̂ ensures with a
high probability the quality of estimation

∣∣log(θ̂)− log(θ0)
∣∣ ≤ C

√
λI/m ≤ C

√
λI(2L/n)1/3

which yields the usual nonparametric rate of estimation for smoothness degree one. We
conclude with the following result:

Theorem 4.6. Let θt fulfill (4.2) with probability one. Let also λI ≥ 6 log(8NI/βI) for all
intervals I ∈ I. Define m = [(n/2L)2/3] and I = [n−m, n[. Then it holds for the adaptive
estimate θ̂

P
(∣∣log(θ̂)− log(θ0)

∣∣ ≥ C
√

λI(2L/n)1/3
)
≤ αI

where the constant C depends on the parameter ρ of the procedure only.

4.6 Change-point model

A change-point model is described by a sequence ν1 < ν2 < . . . of Markov moments with
respect to the filtration Ft and by values σ(1), σ(2), . . . where each σ(k) is Fνk

-measurable.
By definition σt = σ(k) for νk ≤ t < νk+1 and σt is constant for t < ν1. This is an important
special case of the model (2.1). It is worth mentioning that any volatility process σt can
be approximated by such a change-point model. For this special case, the above procedure
has a very natural interpretation: when estimating at the point n we search for a largest
interval of the form [n−m,n[ does not containing a change-point. This is doing via testing
for a change-point within the interval-candidate I = [n−m,n[.

The construction of the procedure automatically provides the prescribed level of the first
kind error probability (probability of a “false alarm”). In this section we aim to show
that the procedure delivers a near optimal quality of change point detection. The quality
(sensitivity) of a change-point procedure is usually measured by the mean delay between
the occurrence of the change-points and its detection.

To study this property of the proposed method, we consider the case of estimation at
a point n immediately after a change-point ν. The ‘ideal’ choice II of the interval of
homogeneity is clearly II = [ν, n[. Theorem 4.5 claims that the quality of estimation of θn

by our adaptive procedure is essentially the same as if we knew the latest change-point ν

a priori. In this section we present a more detailed analysis of the change point model.
In particular, we show that the change point will be detected in an early stage of the
procedure provided that the magnitude of the change is sufficiently large.

Denote m∗ = |II|, that is, m∗ = n − ν. Let I be a larger interval containing the change-
point ν, that is, I = [ν−m,n[= [n−m∗−m,n[ for some m, so that |I| = m+m∗, and let θ

(resp. θ′) denote the value of parameter θt before (resp. after) change-point ν. To simplify
the exposition we suppose below that m = m∗. An extension to the case when m/m∗ is
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bounded away from zero and infinity is straightforward. We now aim to show that such an
interval I will be rejected with a high probability. It suffices to check that one particular
test corresponding to a testing interval J = II rejects the hypothesis, that is, TI,J ≥ λI

with a high probability. The construction of the test statistic TI,J and Lemma 6.4 from
the Appendix suggest the following measure of change from θ to θ′:

d2(θ, θ′) = K(θ, θI) + K(θ′, θI)

where θI = (θ + θ′)/2.

Theorem 4.7. Let θt = θ before the change-point at ν and θt = θ′ after it. Let I =
[τ −2m∗, n[ with m∗ = n− ν. There exists an absolute constant C1 such that the condition

d(θ, θ′) ≥ (1 + C1)
√

λI/m∗ (4.3)

implies

P (I is not rejected) ≤ βI .

The result of Theorem 4.7 delivers some additional information about the sensitivity of
the proposed procedure to change-points. One possible question is about the minimal
delay m∗ between the change-point ν and the first moment n when the procedure starts to
indicate this change-point by selecting an interval of type II = [ν, n[. Due to Theorem 4.7,
the change will be “detected” with a high probability if (4.3) meets. With fixed θ 6= θ′,
condition (4.3) is fulfilled if m∗ is larger than a prescribed constant, that is, we need only
a finite number of observations to detect a change-point. In general, m∗ should be of order
d−2(θ, θ′) ³ |θ − θ′|−2, if the size of the change becomes small.

Finally we discuss the quality of estimating the location of the change point by the pre-
sented procedure. Without loss of generality we can consider the change-point model with
only one change at a point ν and suppose that for the interval candidate I the point ν

belongs to the set of testing points T (I). We know from the previous result that if the size
of the change is sufficiently large, then the procedure detects (with a high probability) a
change point in the sense that the test statistic TI,τ with τ = ν fulfills P (TI,τ ≥ λI) ≈ 1.
Now we are interested to evaluate how precise our procedure estimates the location of the
change point. Recall that the estimated location ν̂ is the point of maximum of TI,τ over
all τ ∈ T (I). Here we want to show that estimated location of the change point differs
from the true location ν in typical situation at most by a finite number m.

Theorem 4.8. Let θt = θ before the change-point at ν and θt = θ′ after it. Let I be such
that ν ∈ T (I). There exists an absolute constant C2 such that if

K(θ, (θ + θ′)/2) ≥ C2λI/m and K(θ′, (θ + θ′)/2) ≥ C2λI/m

then

P (|ν̂ − ν| > m) ≤ αI .
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It is worth mentioning that the conditions K(θ, (θ + θ′)/2) ≥ C2λI/m and K(θ′, (θ +
θ′)/2) ≥ C2λI/m are asymmetric w.r.t. θ, θ′. Namely, if θ > θ′ then K(θ, (θ + θ′)/2) <

K(θ′, (θ+θ′)/2). This implies that the change from low to high volatility is easier to detect
than the change for high to low volatility. All these issues are in agreement with the theory
of change-point detection, see, e.g. Pollak (1985) and Brodskij & Darkhovskij (1993), and
with our numerical results from Section 5.

5 Simulated results and applications

This section illustrates the performance of the proposed procedure by means of some simu-
lated data sets and applications to real data. We aim to show that the theoretical properties
of the method claimed in the previous section are nicely confirmed by the numerical results.
We especially focus on the two main features of the method: stability under homogeneity
and sensitivity to changes of volatility. We also discuss in more details the problem of
parameter tuning for our procedure.

5.1 Parameter tuning

Here we specify the procedure which is applied both for simulated study and for applica-
tions The family of tested intervals Ik on which the procedure is performed is defined in
the following way: Ik = [n−mk , n[ where mk = [m0c

k] for k = 0, 1, 2, . . .. Here [x] means
the integer part of x. The value m0 characterizes the length of the smallest tested interval
and together with the choice of ρ it determines the length of the smallest interval which
can be accepted. Note that for a fixed m0 and ρ the procedure involves the estimation of
the volatility from an interval J of length m0ρ. Therefore, this value should not be too
small. We apply m0 = 15 and ρ = 1/3 for our simulated examples, leading to m0ρ = 5.
The choice of a larger m0 slightly decreases the sensitivity of the procedure to changes of
volatility but it improves the stability and robustness of the estimator. For real (financial)
data the choice m0 = 30 or even m0 = 60 can be recommended.

The parameter c controls the rate of grow of tested intervals Ik. The largest admissible
value is c = 2, that is, every interval Ik is two times larger than Ik−1. Selecting a large c

reduces the multiple testing effect for intervals Ik and the required correction of the critical
values λI for multiple testing is not so strong, see Section 3.2. This leads to more sensitive
change-point analysis for every particular interval Ik. The problem with such a rapid
choice of the intervals Ik is that at some iteration an interval Ik with more that one change
point can be considered, and our change point analysis may break down. Selecting c is
close to one we reduce the probability of such event but the payment for multiple testing
in the critical values λI becomes larger that results in less sensitive procedure. However,
as our simulation results and applications to real data show, the overall dependence of the
estimation results on the parameter c is rather minor.

Finally we discuss the choice of the critical values λI . We follow the suggestion of the
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Figure 1: Critical values computed by simulation for different values of c and α.

previous section. First we define the values βIk
as

βIk
= αm−1

k

( ∞∑

`=1

m−1
`

)−1

≈ α(1− c−1)
ck

,

and the corresponding value αIk
is therefore αIk

≈ α(1 − c−(k+1)). Then we select the
critical values λ∗Ik

that provide the prescribed type-1-error at the level αIk
for the fixed

values of c and α. The results are summarized in Figure 1 where λ∗I are plotted against the
logarithm of the interval length log(NI). It is worth mentioning that the computed values
λ∗I nicely follow the linear relationship λ∗I = a + b log(NIk

). Moreover, the slope coefficient
b is almost identical for all cases, and only the intercept slightly depend on c and α.

The results of the approximated linear regressions are shown in Table 1. The slopes of
all the regression lines are about 0.35 and only the intercepts varies across c’s and α’s.
Therefore, to ease the implementation of the procedure we suggest to define the critical
values in the following form:

λIk
(c, α) = λ0(c, α) + 0.35 log(NIk

), (5.1)

where λ0(c, α) corresponds to the intercept reported in Table 1.

5.2 Some simulated examples

In our simulated examples we selected c = 1.5 and α = 0.05 and the critical values given
by equation (5.1). An extensive study which is not reported here showed that values of
c ∈ [1.1, 2] do not essentially affect the results of estimation neither on simulated, nor on
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Table 1: Intercept and slope for the linear regression of the log interval length on the critical
values shown in Figure 1. For c = 1.25 we omit the first observation in the regression.

α = 0.05 α = 0.10

c = 2.00 3.04 0.34 2.34 0.34

c = 1.50 3.34 0.35 2.58 0.35

c = 1.25 3.61 0.35 2.93 0.32

real data, while different values of α lead to the usual trade off between type-1-error and
type-2-error.

Three different jump processes are simulated, whose relative jump magnitude is 3.00, 2.00
and 1.75 respectively. Each of these processes is simulated and estimated one thousand
times and the median and the quartiles of the estimates are plotted in Figure 2. We show
the results for the final estimate θ̂ and for the length of the selected interval Î. One can
see that if the size of the change is large enough, the procedure performs as if the location
of the change were known. As one can expect, the sensitivity of the change point detection
decreases when the magnitude of the jump becomes smaller. However, the accuracy of
estimate of the volatility remains rather good even for small jumps that nicely corresponds
to our theoretical results.
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Figure 2: Pointwise median (solid line) and quartiles (dashed lines) for the estimates θ̂t (top
row) and the length of the selected interval Ît for three jump processes with jumps of different
magnitudes. The results are obtained with parameters c = 1.5 and α = 0.05.
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The algorithm proposed in this paper is compared with the one suggested in MS2004, with
the optimized tuning parameters γ = 0.5, M = 40, λ = 2.40. Figure 3 shows the quartiles
of estimation for the two approaches for the model with the relative jump magnitude equals
3. One can see that the new procedure outperforms the older one both with respect to the
variance and to the bias of the estimator, especially for the points immediately after the
changes.
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2.5

3

3.5

Figure 3: Comparison of the proposed estimator with the one from MS2004 for change-point
model with θ/θ′ = 3. Quartiles of θ̂ for the new method (solid lines) and for the MS2003 (dotted
lines).

Our simulation study has been done for the conditional normal model (2.1). We mentioned
in Section 2.1 that this assumption is questionable as far as the real financial data is
considered. To gain an impression about the robustness of the method against violation
from normality we redone the simulations once again using the i.i.d. innovations from the
t-distribution with five degree of freedoms. The results are shown in Figure 4. As one can
expect the results are slightly worse than in the case of normal innovations, however the
procedure continues to work in a quite reasonable way. The sensitivity of the procedure
remains as good as for the normal innovations but a probability to reject a homogeneous
interval became larger. This results in a higher variability of the estimated volatility.

5.3 Volatility estimation for some exchange rate data sets

The volatility estimation is performed on set of nine exchange rates, which are available
from the web page of the US Federal Reserve. The data sets represent daily exchange
rates of the US Dollar (USD) against the following currencies: Australian Dollar (AUD),
British Pound (BPD) Canadian Dollar (CAD), Danish Krone (DKR), Japanese Yen (JPY),
Norwegian Krone (NKR), New Zeeland Dollar (NZD), Swiss Franc (SFR) and Swedish
Krone (SKR). The period under consideration goes from January the 1st 1990 to April
the 7th 2000. For each time series we have 2583 observations. All the selected time series
display excess kurtosis and volatility clustering.

Figure 5 and Figure 6 show the BPD/USD and JPY/USD exchange rate returns together
with the volatility estimated with the parameters: α = 0.95, c = 1.5 and m0 = 60. The
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Figure 4: Estimation results with respect to jump processes with jumps of different magnitudes.
The results are obtained with tuning parameters c = 1.5 and α = 0.05. The conditional distribution
is scaled student t5 with 5 degrees of freedom.

choice of m0 (which exceeds one used in the simulation) is made to improve the stability
of the procedure against large shocks in the real data. The results of the estimation are
in accordance with the data and the procedure seems to recognize quickly changes in the
underlying volatility process.

The assumption of local homogeneity leads to the constant forecast σ̂2
t of the volatility σt+h

for a small or moderate time horizon h. This results in the following forecast of conditional
variance of the aggregated returns R2

t+1 + . . . + Rt+h:

V LCPD
t,h := hσ̂2

t .

Here h is the forecast horizon.

In order to assess the performance of the proposed algorithm we compare its forecasting
ability with the one of the GARCH(1,1) model, which represents one of the most popular
parametrization of the volatility process of financial time series. The GARCH(1,1) model
is described by the following equations:

Rt = σtξt, σ2
t = ω + αR2

t−1 + βσ2
t−1,

α > 0, β > 0, α + β < 1, ξt ∼ N(0, 1) ∀t.
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Figure 5: Returns and estimated volatility for the BPD/USD exchange rate.
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Figure 6: Returns and estimated volatility for the JPY/USD exchange rate.

The h-step ahead variance forecast of the GARCH(1,1) is given by:

σ2,GARCH
t+h|t := EtR

2
t+h = σ2 + (α + β)h(σ2

t − σ),

where σ represents the unconditional volatility and Etξ means E(ξ|Ft), see Mikosch &
Starica (2000a). Since the returns are conditionally uncorrelated, the conditional variance
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of the aggregated returns is given by the sum of the conditional variances:

V GARCH
t,h := Et[(Rt+1 + . . . + Rt+h)2] =

h∑

k=1

EtR
2
t+k =

h∑

k=1

σ2,GARCH
t+h|t .

Since the assumption of constant parameter for a GARCH(1,1) model over a time interval
of the considered length of about 2500 time points can be too restrictive, we considered
a scrolling estimate, that is, for every date, the preceding 1000 observations are used for
estimation of the GARCH parameters and then the estimated parameters are used to
forecast the variance at different horizons. This method is nonadaptive in the choice of
observation window but it takes advantage of a more flexible GARCH-modeling. The
local change-point detection (LCPD) algorithm suggested in this paper applies a very
simple local constant modeling but benefits from a data-driven choice of the interval of
homogeneity.

The quality of forecasting is measured by comparing the forecasts V LCPD
t,h resp. V GARCH

t,h with
the realized volatility

V t,h := R2
t+1 + . . . + R2

t+h.

We apply the following mean square root error criterion (MSqE) for a time interval I:

MSqEI =
∑

t∈I

|V LCPD
t,h − V t,h|1/2

/∑

t∈I

|V GARCH
t,h − V t,h|1/2.

The MSqE is considered instead of the more common MSE for robustness reasons, in this
way outliers are prevented from having a strong influence on the results. The MSqE is
computed for the six nonoverlapping intervals of 250 observations and the results are shown
in Table 2. One can observe that both methods are comparable and the relative perfor-
mance depends on the particular situation at hand. For the periods of stable volatility,
the LCPD forecast is clearly better but for the periods with high volatility variation, the
GARCH-method is slightly preferable.

5.4 Analysis of the standardized returns

Our model (2.1) assumes the standard normal innovations εt. Many empirical researches
argued that this assumption is too strong and often violated, see e.g. McNeil & Frey (2000).
Here we briefly discuss this issue by looking at the standardized returns ε̂t = Rt/σ̂t. The
first observation is that even after standardization by the estimated variance, the density of
standardized returns ε̂t still displays tails which are fatter than the normal. We illustrate
this effect in Figure 7 where the kernel estimate of the density of the standardized returns
Rt/σ̂t is plotted against the normal density and the scaled student t5 density with 5 degrees
of freedom. One can observe that the t-distribution delivers much better approximation
to the empirical density of returns.

The volatility clustering effect, though, disappears after standardization and autocorrela-
tions of squared returns are not significant any more, see Figure 8 the case of BPD/USD
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Table 2: Relative forecasting performance MSqE on six consecutive time periods of 250
observations each.

h = 1 0.9616 0.9734 0.8756 1.0978 1.1531 1.0203
AUD h = 5 0.9834 1.0795 0.8346 1.1055 1.0956 0.9968

h = 10 1.0095 1.0964 0.8586 1.1611 1.0958 0.9824
h = 1 1.1397 1.0894 0.7473 1.0332 1.1142 1.1177

CAD h = 5 1.137 1.1169 0.6268 1.0405 1.0822 1.1535
h = 10 1.1552 1.1212 0.5316 1.0218 1.0651 1.1669
h = 1 0.7394 0.8475 0.6479 1.0641 0.9831 1.0223

BPD h = 5 0.6666 0.8585 0.6006 1.11 1.0033 1.0104
h = 10 0.6123 0.8441 0.5542 1.125 1.0185 1.0379
h = 1 0.8756 0.9980 0.7686 1.022 1.0231 1.0273

DKR h = 5 0.8695 1.0358 0.6374 1.0469 1.0456 1.0195
h = 10 0.9001 1.0102 0.5933 1.0557 0.9994 1.0358
h = 1 1.1092 1.1611 0.9721 1.1673 1.1583 1.0327

JPY h = 5 1.0628 1.1241 0.8539 1.1042 1.168 1.0608
h = 10 1.0877 1.044 0.8016 1.1873 1.1691 1.0607
h = 1 0.8776 1.0048 0.8810 1.1078 1.2186 0.9419

NKR h = 5 0.8677 1.017 0.8511 1.1061 1.2956 0.9354
h = 10 0.9028 1.0138 0.7903 1.1404 1.3232 0.9571
h = 1 0.9341 0.9932 0.9249 1.1106 1.2433 1.1385

NZD h = 5 0.9264 1.0052 0.8824 1.1463 1.1587 1.1939
h = 10 0.8208 1.0432 0.8854 1.179 1.165 1.2139
h = 1 0.9329 1.0504 0.8419 0.9564 0.9897 1.0328

SFR h = 5 0.9605 1.0874 0.8275 0.9464 0.9721 1.1187
h = 10 0.9220 1.0316 0.7543 0.9641 0.9435 1.1938
h = 1 0.9434 0.8526 0.7953 1.0213 1.1042 0.9481

SKR h = 5 0.9438 0.8576 0.69 1.0189 1.1097 0.9487
h = 10 0.9532 0.8999 0.6219 1.0704 1.1836 0.9307
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Figure 7: Kernel density estimate of exchange rate returns (solid line), normal density (x-line)
and scaled student t5 density with 5 degrees of freedom (dotted line) with fitted parameters for
two exchange rate datasets.

returns. The other exchange rate examples deliver similar results. A short conclusion
of this empirical study is that the standardized returns can be treated as i.i.d random
variables with a distribution whose tails are fatter than normal.
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Figure 8: ACF of the absolute BPD/USD returns (upper plot) and of the standardized absolute
BPD/USD returns (lower plot). Dotted straight line - the 95% significant level.

5.5 Application to Value-at-Risk

The Value-at-Risk (VaR) measures the extreme loss of a portfolio over a predetermined
holding period with a prescribed confidence level 1 − α. This problem can be naturally
reduced to computing the quantiles of the distribution of the aggregated returns, see e.g.
Fan & Gu (2003) for a nice recent overview of this topic.

Our modeling approach can be easily adapted to the VaR problem. Namely, in order to
evaluate the quality of VaR estimation, for each day t, we forecast the 1% and 5% quantile
of the next return Rt+1 and of the aggregated returns Rt+1 + . . .+Rt+h = log(St+h/St) for
the next five and 10 days assuming model (2.1) with the volatility parameter σ̂t estimated
from the historical data Rs for s ≤ t and using one of three different distributions for the
innovations ξt+h, h = 1, 2, . . . , 10: gaussian, scaled student t5-distribution with 5 degrees
of freedom and the empirical distribution F̂t of the past empirical innovations ε̂s for s ≤ t:

Rt+h = σ̂tξt+h with ξt+h ∼ N (0, 1), or
√

5/3ξt+h ∼ t5, or ξt+h ∼ F̂t .

the constant volatility estimated from the historical data. Similar approaches have been
applied in McNeil & Frey (2000) with the use of the GARCH(1,1) model for estimating
the volatility and the extreme value theory for evaluating the distribution of the returns,
while Eberlein & Prause (2002) assume the Generalized Hyperbolic Distribution for the
innovations.

In order to better interpret the results, we notice that the scaled t5 distribution has higher
5%-quantile than the ones of the gaussian at any of the considered horizons and lower
1%-quantiles. So, it is natural to expect that the gaussian distribution of innovations is
slightly preferable for 5%-quantiles while t5 does better for 1%-quantiles.

We apply the procedure to a set of nine exchange rates, which are available from the web
page of the US Federal Reserve. The data sets represents daily exchange rates of the US
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Dollar (USD) against the following currencies: Australian Dollar (AUD), British Pound
(BPD), Canadian Dollar (CAD), Danish Krone (DKR), Japanese Yen (JPY), Norwegian
Krone (NKR), New Zeeland Dollar (NZD), Swiss Franc (SFR) and Swedish Krone (SKR).
The period under consideration goes from January the 1st 1990 to April the 7th 2000. The
results for eight exchange rate data sets, with about 2500 observations in each one. The
results (frequency of overshooting the predicted quantile for the given realizations of the
returns) are given in Table 3. The first 500 observations in every time series are taken
as presample for estimating the parameters. Notice that for the five and ten day horizon
overlapping intervals of data are used as in Fan & Gu (2003).

We conclude that the use of the t5 distribution for the innovations does not significantly
improve the results and the VaR quality is not very good, while the application of the
empirical distribution of the residuals leads to almost perfect fit of the prescribed quantiles
for all considered time horizons.

Table 3: Percentage of overshooting the prescribed VaR level for nine series of exchange
rate. The results are given for different nominal quantile levels, different distributions of
the innovations and different values of the time horizon h.

1% quantile 5% quantile
gaussian student t5 e.d.f. gaussian student t5 e.d.f.

h 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
AUD 2.3 2.7 2.2 1.9 2.4 2.1 0.7 0.2 0.7 5.5 5.9 6.3 6.3 6.0 6.4 3.9 3.1 2.8
CAD 1.7 1.6 0.9 1.0 1.2 0.8 1.5 1.7 1.9 4.7 5.3 4.5 5.2 5.6 4.7 5.6 7.2 6.6
BPD 2.4 2.5 2.4 1.6 2.3 2.1 1.0 0.9 0.9 5.3 7.1 6.5 6.0 7.4 6.7 4.2 4.2 3.2
DKR 2.4 2.2 1.9 1.7 1.6 1.6 0.9 1.5 1.6 5.8 6.5 6.5 6.5 6.5 6.6 4.7 5.3 5.7
JPY 2.7 3.3 3.5 1.9 3.1 3.2 1.0 1.4 1.3 5.5 7.5 8.5 6.0 7.7 8.5 4.4 4.9 4.8
NKR 2.0 1.9 1.4 1.3 1.5 1.2 0.8 1.4 1.3 5.5 5.7 6.0 6.3 6.0 6.1 4.8 4.4 5.0
NZD 2.8 2.7 3.1 2.1 2.5 2.7 0.7 0.7 1.0 5.1 6.1 6.7 5.5 6.2 6.9 4.0 4.7 4.1
SFR 1.8 2.0 2.5 1.2 1.4 2.3 1.0 1.3 1.6 5.8 6.0 6.0 6.4 6.0 6.1 4.5 5.0 5.8
SKR 1.7 1.3 1.0 1.2 1.1 0.8 0.7 1.2 1.4 6.2 5.7 4.9 6.7 6.2 5.1 4.3 4.4 4.8

6 Appendix

In this section we state some results about the properties of the log-likelihood in the time-
inhomogeneous volatility model and present the proofs of the results stated in previous
sections.

6.1 Some properties of the log-likelihood in the homogeneous case

Let I = [n − m,n[ be an interval from I. Here we present some useful results about
the properties of the log-likelihood LI(θ) and the fitted log-likelihood L̂I = maxθ LI(θ) =
LI(θ̃I).

First we consider the homoscedastic situation when the volatility parameter is indeed
constant within I. Denote LI(θ, θ′) = LI(θ)− L(θ′) for any θ, θ′.
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Theorem 6.1. Let θt = θ0 for all t ∈ I where θ0 is a constant or a random variable
measurable w.r.t. Fn−m−1. Then it holds for any θ and any λ ≥ 0

P (LI(θ, θ0) ≥ λ) ≤ e−λ

and

P
(
LI(θ̃I , θ0) ≥ λ

)
≤ 2e−λ.

This result will be proved as a part of a more general result which applies if the volatility
process is nearly homogeneous within I.

6.2 Properties of the log-likelihood in the nearly homogeneous case

Suppose that there exists a value θ0 measurable w.r.t. Fn−m−1 such that the values ∆∗
I and

∆I defined by the equations (4.1) are small with a high probability. Recall the notation
AI(µ, z) = {NI∆2

I ≤ µ2z, ∆∗
I ≤ 0.8 min{µ, 1}}.

Theorem 6.2. Let µ ≥ 0. Then it holds for any θ and any z ≥ 0

P (LI(θ, θ0) ≥ z + 2zµ, AI(µ, z)) ≤ 2NIe
−z

and

P
(
LI(θ̃I , θ0) ≥ z + 2zµ, AI(µ, z)

)
≤ 4NIe

−z.

Proof. Using standard technique one can easily reduce the results of the theorem to the
case when the event A(µ, z) meets almost sure, so everywhere in the proof we assume that
∆∗

I ≤ 0.8min{µ, 1} and NI∆2
I ≤ µ2z with probability one.

The log-likelihood ratio can be represented as

LI(θ, θ0) = LI(θ)− LI(θ0) =
(

1
2θ0

− 1
2θ

)
SI − NI

2
log(θ/θ0).

with SI =
∑

t∈I R2
t .

Lemma 6.3. For given z, there exist two values θ∗ > θ0 and θ∗ < θ0 depending on z, θ0,
NI only such that

{LI(θ̃I , θ0) ≥ z} ⊆ {LI(θ∗, θ0) ≥ z} ∪ {LI(θ∗, θ0) ≥ z}.

Proof. It holds

{LI(θ̃I , θ0) ≥ z} =
{

sup
θ

[SI(1/θ0 − 1/θ)−NI log(θ/θ0)] ≥ 2z

}

⊆
{

SI ≥ inf
θ>θ0

2z + NI log(θ/θ0)
1/θ0 − 1/θ

}
∪

{
−SI ≥ inf

θ<θ0

2z + NI log(θ/θ0)
θ−1 − θ−1

0

}
.
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It is straightforward to see that the function f(u) = (2z + NI log(θ/θ0))
/ (

θ−1
0 − θ−1

)

attains its minimum at some point θ∗ > θ0. Therefore
{

S ≥ inf
θ>θ0

2z + NI log(θ/θ0)
1/θ0 − 1/θ

}
=

{
S ≥ 2z + NI log(θ∗/θ0)

1/θ0 − 1/θ∗

}
⊆ {LI(θ∗, θ0) ≥ z}.

Similarly {
−S ≥ inf

θ<θ0

2z + NI log(θ/θ0)
1/θ − 1/θ0

}
⊆ {LI(θ∗, θ0) ≥ z}

for some θ∗ < θ0.

Lemma 6.4. For any z ≥ 0

P
(
L̆I(θ) ≥ z

)
≤ e−z.

where L̆I(θ) = log dP θ/dP =
∑

t∈I

(
`(Rt, θ)−`(Rt, θt)

)
. Moreover, assuming the condition

∆∗
I ≤ 0.8min{µ, 1} and NI∆2

I ≤ µ2z, it holds

P
(
−L̆I(θ) ≥ 2µz

)
≤ e−z

and

P
(
±

[
L̆I(θ) +KI(θ)

]
≥ 2µz

)
≤ e−z

where KI(θ) =
∑

t∈I K(θt, θ).

Proof. Since L̆I(θ) is the log-likelihood, it obviously holds

P
(
L̆I(θ) ≥ z

)
≤ e−zE exp L̆I(θ) = e−z

and the first assertion follows. Next,

log P
(
−L̆I(θ) ≥ 2µz

)
≤ −2z + log E exp

{
−µ−1L̆I(θ)

}
.

Since Rt is progressively measurable and θt is predictable w.r.t. Ft, it holds by Lemma 6.5
below

E exp
(
−µ−1L̆I(θ)

)
= E

∏

t∈I

E exp
(
µ−1

(
`(Rt, θt)− `(Rt, θ)

)|Ft−1

)

≤ E
∏

t∈I

exp
(|θt/θ0 − 1|2 /µ2

) ≤ E exp
(
NI∆2

I/µ2
) ≤ ez

and the second assertion follows. Similarly

log P
(
L̆I(θ) +KI(θ) ≥ 2µz

)
≤ −2z + log E exp

(
µ−1

{
L̆I(θ) +KI(θ)

})

and

Ee(L̆I(θ)+KI(θ))/µ = E
∏

t∈I

E exp
[
µ−1

{
`(Rt, θ)− `(Rt, θt) + K(θt, θ)

}|Ft−1

]

≤ E
∏

t∈I

exp
(|θt/θ0 − 1|2 /µ2

) ≤ E exp
(
NI∆2

I/µ2
) ≤ ez.

A bound for −L̆I(θ)−KI(θ) can be proved similarly.
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Now we are prepared to complete the proof of the theorem. Indeed, LI(θ, θ0) = L̆I(θ) −
L̆I(θ0) and Lemma 6.4 implies

P (LI(θ, θ0) ≥ λ + 2µλ) ≤ P
(
L̆I(θ) ≥ λ

)
+ P

(
−L̆I(θ0) ≥ 2µλ

)
≤ 2e−λ

and the result of the theorem follows by Lemma 6.3.

6.3 Proof of Theorem 4.3

Similarly to the proof of Theorem 6.2 we reduce the general situation to the case when
the conditions NI∆2

I ≤ µ2 log(NI/β) and ∆∗
I ≤ 0.8µ are fulfilled almost surely. This

automatically yields NI′∆2
I′ ≤ µ2 log(NI/β) and ∆∗

I′ ≤ 0.8µ for all the subintervals J of I.

Let some point τ ∈ TI be fixed with the corresponding subintervals J and Jc. Then

TI,J = LJ(θ̃J , θ0) + LJc(θ̃Jc , θ0)− LI(θ̃I , θ0) ≤ LJ(θ̃J , θ0) + LJc(θ̃Jc , θ0).

Here LJ(θ, θ0) means LJ(θ)− LJ(θ0). We also used that LI(θ̃I , θ0) ≥ LI(θ0, θ0) = 0.

Now, it holds by Theorem 6.2 that

P
(
LJ(θ̃J , θ0) ≥ (1 + 2µ) log(8NI/β)

)
≤ 4 exp

(− log(8NI/β)
) ≤ β/(2NI).

Similarly one can bound LJc(θ̃Jc , θ0), so that

P (TI,J ≥ 2(1 + 2µ) log(8NI/β)) ≤ β/NI .

This implies the result of the theorem because the number of testing intervals J does not
exceed NI .

6.4 Proof of Theorem 4.5

The next statement is the key step of the proof. Let an interval I = [n−m,n[ be accepted
by the procedure. We aim to show that there exists τ ∈ TI such that the adaptive estimate
θ̂ fulfills with J = [n− τ, n[

∣∣∣log(θ̂/θ̃J)
∣∣∣ ≤ C0

√
λI/NI (6.1)

for some constant C0 depending on the parameter ρ of the procedure. Indeed, the definition
of the procedure implies for every accepted interval I and every point τ ∈ [n−m+mρ, n−
mρ] that

TI,τ = NJK(θ̃J , θ̃I) + NJcK(θ̃Jc , θ̃I) ≤ λI .

Since the Kullback-Leibler information K is nonnegative, this also implies K(θ̃J , θ̃I) ≤
λI/NJ . Let now Î be the selected interval of the form [n − m̂, n[. Define n0 = m̂,
nj = [nj−1/2], j = 1, 2, . . .. Because ρ ≤ 1/3, there is some j∗ ≥ 0 such that nj∗ ∈
[mρ, m(1 − ρ)]. Now consider the sequence of intervals Uj = [n − nj , n[ for j = 0, . . . , j∗.
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Since, for every j ≥ 1, the interval Uj−1 is accepted and Uj is one of its testing intervals,
it holds K(θ̃Uj , θ̃Uj−1) ≤ λUj−1/NUj ≤ 2λUj−1/NUj−1 and, by Lemma 6.6 below, it holds∣∣∣log(θ̃Uj/θ̃Uj−1)

∣∣∣ ≤
√

12λUj−1/NUj−1 . This yields for θ̂ = θ̃U0

∣∣∣log(θ̂/θ̃I(j∗))
∣∣∣ ≤

j∗∑

j=1

√
12λUj−1/NUj−1 ≤ 8

√
λUj∗/NUj∗ .

Here we have used that NUj−1 ≥ 2NUj for all j ≤ j∗ and that λI grows at most logarith-
mically with NI . It remains to note that NUj∗ ≥ ρNI and (6.1) follows.

By Theorem 4.4 the interval II will be accepted with a high probability. Moreover, in the
proof of Theorem 4.4 we showed that for all testing intervals J holds with a high probability
LJ(θ̃J , θ0) = NJK(θ̃J , θ0) ≤ λII/2, which implies by Lemma 6.6 that

∣∣log(θ̃J/θ0)
∣∣ ≤

√
3(1 + 2µ)λII/NJ ≤

√
3(1 + 2µ)λII/(ρNII).

If the interval II is accepted, then there is a subinterval J of II such that (6.1) holds, and
the assertion follows from the trivial inequality

∣∣∣log(θ̂/θ0)
∣∣∣ ≤

∣∣∣log(θ̂/θ̃J)
∣∣∣ +

∣∣∣log(θ̃J/θ0)
∣∣∣ .

6.5 Proof of Theorem 4.7

In the homogeneous situation (θt = θ), our choice of the critical values λI ensures that
with the probability al least 1 − βI it holds LJ(θ̃J , θ) = NJK(θ̃J , θ) ≤ λI/2 for every
interval J ∈ J (I), see the proof of Theorem 4.3. In the case of the change point model we
get the same bound for all intervals of homogeneity J ∈ J (I) that does contain a change
point. Below in the proof we now consider the situation with NJK(θ̃J , θ) ≤ λI/2 for all
such intervals.

Let now II = [ν, n[ and J = I\II, so that θt = θ for t ∈ J and θt = θ′ for t ∈ II. We
therefore assume that K(θ̃J , θ) ≤ λI/(2m∗) and K(θ̃II , θ

′) ≤ λI/(2m∗).

Denote θI = (θ + θ′)/2. Since NJ = NII = m∗ and NI = 2m∗, it also holds that

θ̃I = (θ̃II + θ̃J)/2.

The test statistic TI,II can be represented as

TI,II = NJK(θ̃J , θ̃I) + NIIK(θ̃II , θ̃I) = m∗d2(θ̃J , θ̃II).

Lemma 6.7 from below and the theorem condition imply that

d(θ̃J , θ̃II) ≥ d(θ, θ′)− C1

√
λI/m∗ ≥

√
λI/m∗

and hence TI,II ≥ λI . This completes the proof of the theorem.
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6.6 Proof of Theorem 4.8

Let u = θ/θ′ and let τ ∈ T (I), τ < ν. Denote m = ν − τ , D = [τ, ν[ and J = [τ, n[,
J∗ = [ν, n[, A = I\J and A∗ = I\J∗. We aim to bound the probability of the event
TI,ν < TI,τ . More precisely, we intend to show that if m is sufficiently large then this
probability is negligible. This particularly implies that the error of estimating the location
of change point is bounded with a high probability.

Similarly to the proof of Theorem 4.7 we assume that LJ(θ̃J , θ) = NJK(θ̃J , θ) ≤ λI′/2 for
every I ′ ∈ I(I) and every J ∈ J (I ′) that does contain a change point. The probability of
this event is not less than 1− αI . Obviously

TI,ν − TI,τ = L̂A∗ + L̂J∗ −
(
L̂A + L̂J

)

= L̂J∗ + L̂D − L̂J + L̂A∗ − L̂A − L̂D .

Since θt is constant for t ∈ J∗, it holds

L̂J∗ + L̂D − L̂J ≤ λI .

Next we show that L̂J∗ + L̂D − L̂J > λI . This would imply that TI,τ < TI,cp and hence
|ν̂ − ν| > m is impossible. Denote γ = m/(m + N∗) where N∗ = NJ∗ = n − ν. Without
loss of generality we assume that γ ≤ 1/2. Define d2

γ(θ, θ′) = γK(θ, θγ) + (1− γ)K(θ′, θγ)
with θγ = γθ+(1−γ)θ′. Similarly to Lemma 6.7, it holds L̂J∗ + L̂D− L̂J = NJd2

γ(θ̃J∗ , θ̃D)
and

dγ(θ̃J∗ , θ̃D) ≥ dγ(θJ∗ , θD)− C
√

λI/m ≥ K1/2(θ, (θ + θ′)/2)− C
√

λI/m

for some fixed C. Now the assertion easily follows from the conditions of the theorem.

6.7 Some lemmas

In this section we collect some technical facts about the properties of the normal family
with varying variance.

Lemma 6.5. Let R be normal with parameters (0, θ) for some θ > 0. Then for any θ′

such that |θ/θ′ − 1| ≤ 0.8min{µ, 1} it holds

log E expµ−1
{
`(R, θ)− `(R, θ′)

} ≤ µ−2(θ/θ′ − 1)2

and

log E expµ−1
{
`(R, θ)− `(R, θ′)−K(θ, θ′)

} ≤ µ−2(θ/θ′ − 1)2

log E expµ−1
{
`(R, θ′)− `(R, θ) + K(θ, θ′)

} ≤ µ−2(θ/θ′ − 1)2

where K(θ, θ′) = −0.5 {log(θ/θ′)− 1 + θ/θ′}.
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Proof. Denote δ = θ/θ′ − 1. Since ξ = θ−1/2R is standard normal, it holds

log E expµ−1
{
`(R, θ)− `(R, θ′)

}
=

1
2µ

log(θ′/θ) + log E exp
{
R2(1/θ′ − 1/θ)/(2µ)

}

= − 1
2µ

log(θ/θ′) + log E exp
{
ξ2δ/(2µ)

}

= − 1
2µ

log(1 + δ)− 1
2

log(1− δ/µ).

Since
∣∣log(1− u) + µ−1 log(1 + µu)

∣∣ ≤ 2u2 for |u| ≤ 0.8 and |µu| ≤ 0.8, the first assertion
of the lemma follows.

Similarly

log E expµ−1
{
`(R, θ)− `(R, θ′)−K(θ, θ′)

}
= − δ

2µ
− 1

2
log(1− δ/µ) ≤ δ2/µ2

log E expµ−1
{
`(R, θ′)− `(R, θ) + K(θ, θ′)

}
=

δ

2µ
− 1

2
log(1 + δ/µ) ≤ δ2/µ2.

Lemma 6.6. The inequality u− log(1 + u) ≤ 2δ2 for some δ ≥ 0 implies for all u ≥ −1/2
that | log(1 + u)| ≤ √

6δ.

Proof. Denote x = log(1 + u). Then, for u ≥ 0, it holds u− log(1 + u)− 1/2 log2(1 + u) =
ex − 1 − x − x2/2 ≥ 0, that is, log2(1 + u) ≤ 2u − 2 log(1 + u) ≤ 4δ2. For u ∈ [−1/2, 0],
one similarly gets u− log(1 + u)− (1/3) log2(1 + u) = ex − 1− x− x2/3 ≥ 0.

The next result concerns the distance d(u, v) introduced in Section 4.6: d2(u, v) = K(u,w)+
K(v, w) for w = (u + v)/2.

Lemma 6.7. There exists a constant C1 such that for any positive numbers u, u0, v, v0,
and for any δ ∈ [0, 1], the conditions K(u, u0) ≤ δ2/2, K(v, v0) ≤ δ2/2 imply

d(u, v) ≥ d(u0, v0)− C1δ.

Proof. It sufficient to check that the functions d(u, v), K1/2(u, u0) and K1/2(v, v0) have
bounded partial derivatives w.r.t. the both variables u, v. We omit the details.
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