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Boundary Element Discretization of Poincaré-Steklov
Operators

Gunther Schmidt
Institut fir Angewandte Analysis und Stochastik Berlin

This paper is devoted to the construction of a discretization of Poincaré-Steklov (PS) ope-
rators for elliptic boundary value problems with the boundary element method (BEM). PS
operators are natural mathematical tools for the investigation of boundary value problems
and their numerical solution with domain decomposition (DD) methods based on the finite
element (FE) solution of the subproblems (cf. [1], [9]). We will show that the discretiza-
tions of PS operators with a direct Galerkin BEM possess the same properties as the FE
discretizations if the boundary elements satisfy some natural conditions. Hence the given
construction provides a base for the analysis of different DD methods using the BE solution
of subproblems, of the coupling of FE and BE methods and related problems.

1. Introduction

As model problem we consider the mixed boundary value problem for the Laplacian. Let
Q c R? (d = 2,3) be a bounded domain with piecewise smooth boundary 9% such that
angles at corners and edges do not degenerate. The boundary Of} is partitioned into 3
nonintersecting domains 0Q = I'p UT'y UT' and suppose that Ip £ ¢, TNTy = 4. Let
@ € H™'/2(T') be given and consider the problem:

Find v € H'(Q) such that

—Au =0, in,

'll,lp =0,

@I D_O (1.1)
on'tVN T

Ou

—p = 1.2
a IF ( )

Here g—: denotes the derivative with respect to the outer normal.
The PS operator T is defined as the mapping

T:¢— Yu:=u|p, : ' (1.3)



where v is the solution of (1.1-2). It is well known (cf. [7], [1]) that the linear operator
T:H YD) - Hll ? (T') is bounded and invertible, symmetric with respect to the duality
between H~/(T') and H'* ('), induced by the scalar product of L*(T')

(To,) = (¢, T%) = [ To(e)b(a)dl,

and positive definite

(To,9) 2 C”(P”%I—l/?(l")‘

Here H® denotes the usual Sobolev spaces:

H(Q) = {ua:u € H(RY},s € R,

{ulaﬂ ‘u € H3+1/2(Rd)} , >0,

H*(8Q) = { L*(69) , =0,
(H~(59)) s <0.
For IV C 092
H(I") = {ulr: u € H(0Q)} 820,
H ()= (H(I)Y ,5<0,
H ()= {ue H(I")ue H(3Q)} , s>0,
H(I)= (H~ (I) ,s<0,

where % denotes the extension of u by zero to Q. We note that 7! = S, where

~ira ou, .
S:xen” (I‘)—wylu::a—:']p | (1.4)

and u solves the problem (1.1) together with the Dirichlet boundary condition on I’
Yo = A ' (15)

The FE discretization of the PS operator T' and its inverse S follows immediately from the
variational formulation of (1.1). Let us suppose that we are given a space Vi, C H'(2) of
finite element functions on 2 vanishing on I'p

Ve = {’Uh:’vhlr‘D =0}, dimVy < .
Denote by

l;h={'UhGVhI’Yo’Uh=0}, ,
Xn = {Youn : vr € Wi} cH"” (r).



For given A, € )} r we determine up € V3 such that

YoUh = A

and

a,(uh,vh /Vuthhdw =0, Yo EVh . (1.6)

Then a(un,vn), vh € Vh, deﬁnes a linear functional of y,vp E_X A bounded in the H o (I)-

norm. Let Py H'" (") —>Xh be a bounded projection onto Xh, by P; we denote its
L?(T")-adjoint projection and Y}, := im P, C H-*/%*(T") can be identified with the dual space

of X1. Hence we can set

a(ur,vn) = (Xh, YoUh), Xn € Ya, |IXnllg-12(ry < c.

It can be easily seen (cf. [1]) that the mapping

Sh i Xn— Yi, ShAn = Xn

is linear and invertible,

[1SaMallz-1r2ry < ellAal gora gy o VAR €Xn s (1.7)

(r)’
symmetric

(Sh)"n )\;1) = ()‘fn ShA;n) = a(uhau;;))
where uj, solves (1.6) with youj, = A}, and positive definite

(Sadns An) = alun, un) 2 erfunllzia) 2 cllAnll g gy -

Moreover
11(S = S)Anllz-1r2ry < N(PLS — Su)Anllzr-r2(ry + [1(I = Pr)SAllz-1r2(ry
((S Sh)Ah)'YO'Uh) .
<cfsu + inf U — Y
= (5 Provnllgorm gy wnéts [ = all-rmy | (18)

<e (it b= wnllmco) + it [y = onll- )

where u is the exact solution of (1.1) with 4,u = A\s. We note that the constants (1.7) and
(1.8) depend on the norm of P,. Thus, if HP"”EJ 2y | is uniformly bounded with respect to

h, then estimates (1.7) and (1.8) hold with constants lndependent of A and h.
Now it is clear how to define the FE discretization of T'. Choose Y}, and xu € Y, find up € Vi
such that :

a(un, vr) = (Xh, YoVh), Yvn € Vi,
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and define Thxn := Youn. Since Ty = S5, this operator has analogous properties as Sj and
T, moreover

(T = Th)xallgun gy < e it 1l = vnllan ey,

T~
where u solves (1.1) and y1u = xa.

The mentioned mapping properties of PS opera’cors and their FE discretizations were essenti-
ally used (sometimes unknowingly) for the formulation and analysis of various DD methods,
which are in fact equivalent to the iterative solution of operator equations with PS operators
of different subdomains. In the following we will prove that a direct Galerkin BE solution of
problem (1.1) (considered in Section 2) yields discretizations S, and T} of the operators S
and T with the same mapping properties mentioned above (proved in Section 3). Therefore
convergence results for many DD methods remain valid if the FE solution of subproblems is
replaced by their BE solution whenever it is possible.

Acknowledgment . Thanks are due to Dr. H. Strese whose numerical ezperiments with a
number of DD algorithms based on the BEM showed that naive BE discretizations of PS ope-
rators lead to nonstable iterative procedures and so stimulated the theoretical investigations.
The author thanks also Prof. W.L. Wendland and Dr. B.N. Khoromskij for stimulating
discussions and remarks. This work has been partially supported by the German Research
Foundation under Grant Ko 1082/2-1.

2. A Direct Galerkin BEM

In this section we discuss some results concerning a boundary integral method for solving
mixed boundary value problems for the Laplacian.
Let u € H(Q2), @ C R?, be a solution of

—Au=0 inQ. (2.1)
Then we have the representation
u(z) = = / 6o, 1) 2 ¥ar, - / Gl 2 €0, (22)
with the fundamental solution
[ slnlz —y|, d=2
G
(w7 y) { o yl 1 d 3

Let us define the boundary integral operators for z € 9Q

V(z) —fG(w y)e(y)dly, Ko(z) —/ (z,y)p(y)dl

K'o(z) : (9 /G z,y)e(y)dly, Do(z) = /E—G(%y)‘f’(y)



The following properties are well known (cf. [2]):

Vi H(0Q) — HY(8Q), D : HY*(8Q) — H-Y*(5Q),
K : HY*(8Q) — H'**°(8Q), K': H'/**7(8Q) —» H/***(6Q)

are continuous for |o| < 1/2. The operator K’ is the adjoint of K with respect to the duality
between H'/?(8Q2) and H~'/?(89) induced by the scalar product (-, -)r2(aa). Moreover,

(D’U,'U)Lz(ag) > ¢ Ilel/z(aQ) , ¢>0,
for allv € H/%(89), |- |1/2(q) denotes the seminorm,
(Vi,¥)r2eay = ¢ [[$llg-1200), ¢>0, (2.3)
for allyp € H-Y/?(0Q) ifd =3
and for all ¢ € H~'/%(89Q) with (1, 1)2en) =0 ifd = 2.

To ensure the solvability of boundary integral equations we need that the operator V is
invertible. Therefore if d = 2 then we assume in the following that cap (0f2) # 1, i.e.
) C R? has the property V

(P) If € H~'/2(8Q) solves V4 = 0 then 3 = 0.

Note that for any @ C R? the domains mQ = {mz : z € Q}, m > 0, satisfy (P) with the
exception of one value me (cf. [6]). ‘

Now the representation (2.2) and the jump relations for single and double layer potentials
lead to the equalities on 99

1 Ou Ou 1 » Ou
= - — — — == — . 2.4
u 2((] K)“+Van>’an 2(Du+(I+K)0n> (2.4)
Hence, if we consider the mixed boundary value problem for (2.1)
‘ U|I‘1 - gl ) :
a_ul B (2.5)
on r, = 92,

where g; € HY/?(Ty), go € H™Y/%(T,), T; UT,; = 89, T; # ¢, and take the limits of u(z) for

z € 'y and of the normal derivative gf‘; for z € I'y, then we get the equation

(ZEO-(B B e
—Kiz Vi) \@ I+Ky —Vi2)\g2)’

where the subscripts in Djg, etc., mean integration over I'y and evaluation on I';. Here
v 1= ulr,, ¥ := 2|r, denote the unknown boundary values of the solution u of (2.1), (2.5).

If we substitute in (2.6) v = v*+ gy, 3 = 9* + lg, with arbitrary extensions lg; € H?(6Q),
lgo € H™'/2(0Q) then we obtain a system of boundary integral equations

'i)* = Do Kél vt _ _DP2 I- Kf‘z lg1 . fa
A(¢*) '—_ (—Km Vu) <¢*> - (I—I— Kr, — ', ) (lgz) —" (fl) : (2.7)



Here Dr, for example denotes integration over Q and evaluation on T'y. If g, € H *(T),
g2 € H*"'(I';) then f, € H*Y(T), f1 € H*(T:) for s € (0,1). Moreover, the operator

CH (Ty) H*'(Ty)
A: X — X

~8—1

H () H*(T1)

is continuous and satisfies a Garding inequality in F'/? (T2)x H g ('),
for U = (w, o) eH" (T2)x " (T';) we have
(AU,U) = (Daaw + K310, w)12(ry) + (— K12w + V1190, 0) 121,
= (Da2w, w)r2(r,) + (Vi10, @) L2(ry)
= (D w,w)r2(e0y + (V ‘;7‘?’)L2(an) ,

where @,‘; denote the extension by zero to 0. Relations (2.3) imply the existence of a
compact operator C such that

2 2
(A+0)0,0) 2 ¢ (Ilwllbun g + el ) (28)

Since for d = 3 we can set in (2.8) C = 0 and for d = 2 because of property (P) the system
(2.7) has no eigensolutions we obtain

Theorem 2.1. [{], [8]. Let g» € HY*(T), go € H Y*(T;) with arbitary exztensions lg; €

~1/2
HY*(09Q), lg, € HY?(0Q). Then there ezists ezactly one solution (v*,4*) €H  (T'2)
x H (T1) of (2.7) and v := v* + lgi|r, € HY*(T3), ¥ := ¥* + lga|r, € H Y*(T) solve
(2.6).

Corollary 2.1. Let ¢; ey (T1), 92 eH™" (T'2). Then (2.6) is uniquely solvable and
51 (”g'l”;ll/?(']_-\l) + ”92”;’{-1/2 (Fz)) < H’UHFII/Z(Fz) + |I¢”;I—1/2(1-\1) <

<& (1l ) + sl s r,y)
where ¢y, ¢, do not depend on g; and g,.

The Garding inequality (2.8) yields the convergence of Galerkin methods for the approximate
solution of system (2.7). We choose on I'; and I'; finite dimensional sets of a.pproxima.ting

functions My C HY2(T';); Ny CH™™* (I'1) with lim dim M, = lim dim Ny, =

Furthermore we suppose that g; can be extended by some lg1|r, E M A and g2 can be extended
by some lgs|r, € N which implies that g, ceg™” (T';). We denote Mi= Min H (T2)
and consider the Galerkin method: Find (v, ;) € M XNy, such that

(L) (rmmetorn o

Under the assumption that %IJ A}h and L’{Nh are dense in "2 (T'y) and g (Ty), resp., by

standard methods the following results can be obtained.
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Theorem 2.2. [4]. For any g € HYX(Ty), go €A™ (I‘g.) and all (suﬁicently small if
d =2) h the Galerkin equations (2.9) are uniquely solvable and

103l g2 oy + Rl o112 g,y < € (1 llznragony + gl lrr-2r2omy) -

Moreover, the functions vy := vy, + lg1|r, and ¥ := ¥}, + lga|r, approzimate the unknown
boundary values quasioptimally '

|lv = vallgrraqr,) + (19 - ¢h||1;.-1/z(m <

§C< inf '|¢_‘ph|lﬁ-1/2(r1)+ inf~ [[v ~wh||§1/2(1,2))

YrENp whE€Mn
where the constant ¢ does not depend on h.
Using the regularity of the solution (v*,1*) for the case d = 2 (cf. [3]), the structure of
the mapping A and the Aubin-Nitsche Lemma one can estimate the convergence of the
approximate solutions in Sobolev norms of lower order.
Theorem 2.3. Letd =2. Then there ezist § > 1/4 and ¢ > 0 such that
H’U - vhl|H1/2—6(p2) + Hl,b - ¢h||;‘1—1/2—5(m) S

< ces(h) <|Iv = Wnllm iy + 1Y = Yall -1 (m)) ’

where

/248 M
weEH Iy) WnEMp
(T2) N,

es(h) = sup inf (

|lw — wh”guz(m |l — Wh”g,—l/z (1‘1))

Hw“ff/z”(r‘z) Il(p”ﬁ“l/“‘(r‘l)
peH 1?7+ (1))

From the density of %‘J ]17[;1 and thNh we have g5(h) — 0 as A — 0. Note that § depends on

the inner angles at the corners of 92 and at the points where boundary conditions change
(13]): )

We remark that under the condition g, € F~'/* (T';) one can choose lgs|r, = 0, but for some
considerations in Section 3 it is useful to admit lg,|r, # 0.

In the following we will use an equivalent formulation of the Galerkin method (2.9): Find
vp € M}y, and ¥y, € Np such that

Vpi= (91> € HY2(89), 1= (¢h> e H?(6Q) (2.10)
Vh g2
and the boundary values of the function
1 ~ 1 0 ~
un(a) := 5@4 C(=,y) ¥n (v)dTy, 534 5 C@¥) n ()40, 2 €2, (211)



satisfy the equations
/(uh — g1)prdl’ —l—/ (— - gz> wpdl' =0, Y(wh, @r) GMh XN} . (2.12)

Note that up solves (2.1), on 02 we have

up = %((1 — K) T, +V ), %‘;"- = %(D (1 + K') ) (2.13)

and Theorem 2.2 yields the estimate

0

h u
|[un — u||H1/2(an) + == on “H ~1/2(00) S

(2.14)

SC( 1nf [|v* — wg||~ 1/2(F)+ 1nf ”'l)b — @nl|~ _1/2(1"1)) .
whth

For the definition of the BE discretizations of PS operators in Section 3 we need a symmetric

bilinear form. Let us suppose that uy, uy, have the form (2.11) with densities (Vg, ;) and

('T)';, 1/1h), resp, and are solutions of equations (2.12) for corresponding boundary data

91, 91 cq" * (T), g2, gh cg™” (T';). Then we may choose lgi|r, = lgi|r, = 0, whereas
lg2|r, € Na, lgs|r, € Ny are arbitrary. We consider

/gl hdI‘ + /gzuhdI‘ / auhdI‘+
+/ 91 (

_ o AV
_84 —uh)(an —gah) dl’ +F/ (gz - Bn) (up — wp)dl

for all (wn, ¢n) €M XNy in view of (2.12). If we choose wy = vj, n = ¥y, (cf. (2.10)) as
solutions of the corresponding equations (2.9) then

~T a
/ PR un ok / (B —un) (m “") dr =
-3 ((D Uh7;h)L2(39) +(V ¢h,¢h)m(an)) = (2.15)

= ‘/g1 auhdI‘ -I—/gzuhdI‘

here we used (2.13) and the symmetry of D and V. We remark that

) updll =

Vp —Up = 5
. P (2.16)
%bh——(?;—g( D v, +(I - K)?/fh))



are the boundary values on 02 of the function
a L 1 ~ 1 (9 ~ AR
(e)i= =5 [ ) B 0+ [ 5o Glars) T ATy, 5 € RAT.

Now we use Theorem 2.2, Corollary 2.1 and (2.3) to estimate for the solution up of (2.11-
2.12)

(D Oh, V)r2o0) < || Vn |[3r2(aq) < c2 (Hvill%uz(m 191l (n)) =
< ¢ (llgilBsu g, + igallg-sron)
(V ¢h;¢h)L2(60) < all ¥ ||12q—1/2(an) <c (Hgl”i}l/z ) + ngz”iz—l/z(an)) )

(D h, V)r200) > 1l Va [31/2000) > € (l”iﬁp/Z(pz) + |‘91|§{U2(1"1)) > clorlznr,)

and if d = 3
(V ¥n,¥n)r200) 2 cill ¥ |[5-112(a0) 2 cllgallz-1r2(ry -

If d = 2 then we represent '(th: ), + we, where Ve =1 and w = (;Zh, 1)z2(00)/(e, 1)12(an)-
Then (¢h) 1)L2(80) =0 and

(V ¥n, ¥n)r2(en) = (V¢h, 'Qbh) reay T w® - (e,1)12(50 -

w? can be estimated using Theorem 2.3, since

[nari=1 ] (a5 arl = PESLE
< b~ Bllgancs - [ 0 < cealh) (lonlzurs g, + gellz-nony) -
I'1

Hence, if d = 2 then

V nsB)zncom 2 ¢ (lgal sy = £600) (llosl g, + Mgl s ) ) -

Theorem 2.4. Let up, u}, be the BE solutions of (2.1), (2.4) for the boundary data
91,91 eH" (T'1) and g2, 95 S (T';), resp., obtained via (2.11-2.12) Then

ou}
bloun, up) 1= / PR

" is a symmetric bilinear form. Moreover, for any extension lgs of g2 with lga|r, € Ni

bun, un) < cx (11921 g, + 1102l o)

(T1)
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and
hyUh) Z C2{ \191|g1/2(p, 92llg-1/2(ry)) —
b(un, un) > c2{ (|91/72 120, + 192l =22,
= e30) (lgal s g + 1921 Basomy) )

with constants independent of g1, g and h. The second term of the right hand side in the
last inequality appears only if d = 2.

3. BE Discretization of PS Operators

Now we are in the position to construct discretizations of the operators S and T using
the Galerkin BEM. According to the definition of this method we are given spaces of trial
functions M, C HY?(Ty) and Ny cg™" (Tp), A}hz MiN q'"? (T'x). Furthermore, on
I' we have finite dimensional spaces XnCH" (T") to approximate the boundary values y,u

and Y, C I'} iz (T") for the approximation of the normal derivatives y;u. In order to obtain

mappings between the BE approximations of 7,4 and y;u providing the same properties as
the FE discretizations of S and T' we need the following relations between the spaces of trial
functions:

1. For any h there exists a bounded projection P, :j"j[l/2 () _’)}h onto )}h, such that the
L?(T")-adjoint projection P} maps onto Y, im Pj, = Y3, and

| Prfllg-1r2ry < el fllg-1r2ry, VS € HVA(T). (3.1)

~L
Hence X, NY, = ¢.

2. Since T NTx = ¢ it is natural to introduce Zy := {(n : Chlrp, € Ni, Gilr € Ya}. We
require that Y, C Zj possesses an extension property:

EEh € L(Y;,, Zh) : Eh(ph'p = ©h and
1Bnionllg-u op,y S ellnllc-srcey (32)

Note that in general we do not assume that the constants in (3.1) and (3.2) are independent
of h. But it will be clear that for some estimates concerning the BE discretizations Sy and
Ty as h — 0 we need the uniform boundedness of ”PthIl 2y and || Ex|| HA2(0) o M2 (rurp)”

Due to the boundary conditions u|r, = 0, 2%|r, = 0 of (1.1) the BE solutions us are of the
form (2.11) with densities

vn€ HY2(89) such that o4 |r, = 0, Oh oy €M, 94 Ir €Xh,

~ ~ ~ . ~ (3'3)
Y€ H?(0Q) such that ¥y |rp € Na, ¥y [ry =0, ¥y Ir € Ya.

10



Because o_f TNTy = ¢ the conditions vy Ity EAth, vh I e)N(h are natural. Hence the
solutions uy of (1.1) with the direct Galerkin BEM belong to the linear space

Vi = { up, of the form (2.11), the densities %h,’zh satisfy (3.3)
‘ Buh ~
a.nd/uhgohdf‘ + / B wrdl =0, Y(wh, pr) EMpr XNy } .
T'p Tn

BE solutions of (1.1) with Dirichlet data A, G)}h we denote by Rp pAn, with Neumann data
Xn € Yo by Ry nXh, 1.€.

Aw EXn — Rprin € Vi With/('Yo(RD,h)\h) —M)pn =0, Yo, € Yy,
P

N (3.4)
Xh € Yo = Rypxn € Vi With/(’h(RN,hXh) —xn)wp =0, Yw, €Xp .
r

From Theorem 2.2 we deduce that for all (sufficiently small if d = 2) A the functions Rp an
and Ry nXn are uniquely determined.

Now we construct the BE discretization of the operator S. Let Ay € )Z' h, then due to Theorem
2.4 '

~ ORpprA
3 D,hAR

b(Rpadn, Ropdn) = / AR g
T'ul'p
with
N _ Ah.(w)7 T € P)
Ah (w)_ {0, T EI‘D,
and

b(Bpsn, B pdn) < cill A [ (fur)’

b(RD,h)‘hy RD,h/\h) > cy (l AR lzﬁl/z (TUT'p) - €§(h)|[ Ah ||%1/2(FUFD)) )

where in the last inequality the second term of the right hand side appears only for d = 2.
But .

” Ah ”ﬁllz(FUFD) S C3HAh”§-1/2(1—|)

and |/\hlf}1/2 > C4HAh”§l/2

(Tulp) — ()

with constants independent of Ax and h. Hence for all (sufficiently small if d = 2) » we have

clH)‘hHi}'x/z < b(RD,h)\h,RD,hAh) < c2||/\;,||.2£;[1/2

o < (3.5)

(T)

11



Using (3.1) we define

Sh/\h = P,Il’yl(RD,h)\h) (3.6)

such that

b(Rp A, Roadh) = / AnShoRdl = (An, Swn), M, n €Xn . (3.7)
T

Theorem 3.1. For all b (< h, if d = 2) the BE discretization S, (3.6) of the operator S
has the following properties:

(i) S 355};"" Y, is bounded,

Sadl-12my < elMallza s YA €Xa - (3.8)
ey H

(r)’

If the projections Py are uniformly bounded then the constant c in (8.8) is independent
of h.

(11) C]-”Ah”j'}l/Z(F) < (SrAn, An) < c2||/\h]|i}1/2( c1, ¢z do not depend on A G)N(’h and h.

r)’
(i53) (Shdn, #n) = (An, Shén), VA, b €Xa.

. : i Ou _ ||
() |(Sn=S)Anllzr-2r2(ry < C(w:g}h Hu—wh||§1/2 (FN)+C'{I€1§h II5m C"”g"”’(rur,;))’ where

u solves (1.1) with the Dirichlet condition y,u = A on I'. If the projections Py, are
uniformly bounded, then c is independent of h.

Proof.
(i) From (3.1) and Theorem 2.3 we have
[[Shdnllz-1r2(r) = (| Pam(Roadu)l [ -1r2(r) <
< allm(Boadn)lla-rrm) < cllAullzie g -
(ii) and (iii) follow immediately from (3.5), (3.7) and Theorem 2.4.
(iv) [I(Sh = S)Anllg-1r2y < II(Sh — PaS)Anllg-1r(ry + (I — Pr)SAnl|g-1r2(ry
< ¢ (I (R = w)lls-sssgry + inf. [ = lls-ssacy

The application of Theorem 2.2 and the estimate

. . Ou
o (e = nllaney < o 150 = llg-s oy

yield the assertion. m

12



Next we define the BE discretization of T'. Let xp € Yi, RnnXxn € Vi exists for all (sufficiently
small if d = 2) h and we set

Thxn := PoRNRXA - (3.9)
such that from Theorem 2.4 and (3.1)

(Thxn, ¢n) = B(RNnnXn, RN pdr) s Xn, $n € Vi (3.10)

But in general T}, # S; ', as can be seen from the following.

Let Ap E)}h. If we denote the densities defining RppAp via (2.11) by Vp, ¥, and the
~1

corresponding densities of Ry x(ShAn) by 17;” ), then

ORN h(ShA
b(RpaAn, RN a(ShAR)) = /RD'hAh__{V,_g(T_LL_QdP_
’ 80
— / ('Uh —RD,hAh) < h __W) dF —
an

/‘ ~ BRN,h(Sh/\h)
= ’Uh —_—
on

~1 VN ~1
SoEE2dr + [y Rppdndl — / Dapy dT =

an an

- / Mm2 (R a(Sadn))dT + / Sidnvo(Rp ahn)dl — / AnSpAndD =
T r r

= (ShAh, An) = b(RpaAn, RppAR)

Hence

b((RphAn — RNa(ShAn), RopAn — RN a(ShAn)) =
= (Sh)\h, )\h) — 2(Sh)\h; )\h) + (ThSh/\h, Sh)\h)

and

1 ~I ~I

(TsSh = 1wy Siw) = 5 ((DGh = 53, s = Fanamy + (Vi = i), — o)
> ¢ (15 = B Bsiomy + 11 9 — B [r-srony) - (3.11)
But using the extension property (3.2) we can prove that T} is spectrally equivalent to Sj .
Theorem 3.2. Suppose that estimates (8.1) and (3.2) are satisfied uniformly with respect

to h. Then for any h(< h, if d = 2) the BE discretization Ty, (8.9) of the PS operator T has
the following properties:

(i) Tn:Ys —+)}h 1s bounded,

UThxall = o < ellxalla-12@y, Yxn € Ya-
H'"(T)
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(1) cﬂlx;,”f,{_l,z(r) < (Thxn, xn) < c2||x;,]|§[_1,2(r), the constants do not depend on xp € Y3
and h. '

(443) (ThX, #n) = (Xn, Thor), Xn, ¥ € Y.

() ((TwSn — I)An, Spdn) > 0, Vs €X.

() (T = Thxall g g < ( inf [l = wl 351,
. WHLEX R

whEMp
where u solves (1.1) with the Neumann condition y1u = Xh.

. a_u,_ ~ 1 _ ~
+¢ifellf\,h||an ‘Ph”H-l/z(r‘D)_}_ inf lu whHH“z(PN))'

Proof.
(i)
T
— sup 1 Taxm @) _
() 4 ||<PHH—1/2(1“)
_ I(ThXh, P;i‘P)| ||PI’1(PHH—1/2(I‘)

= sup
¥ ”Pf'JP”H—tlz(r) H<PHH—1/2(F)

“ThXhl Iﬁl/z

Using (3.2), Theorem 2.4 and (3.10) we obtain
[(Thxn, Prp)| = |6(Ruvpxh, Rvp(Pre)| <
S cl|lEhXhl|E»—1/2(I\UI'\D)IIEh(P’:.(p)”I;-—l/Z (FUFD) S
< ¢|Ixallz-1r2y | Prpl ler-1r2(ry -
From (3.1) we get the assertion.

(ii) Theorem 2.4 and (3.2) imply

(Thxn xn) = b(Rynxh Ry pxn) < 61||EhXhH§;_1/z - el Ixallz-1r2ry -

(fur

If d =2 then

(ThXh’X) 2 (”Xh”f?‘l/z([‘) - Eg(h)”Ehth%—l/z (FUI‘D))
> ci(1 - e5(h))lIxallzr-1raqry -
Note that the boundedness of P, is not used.

(iii) and (iv) follow from Theorem 2.4, (3.10) and (3.11).
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(T — Tl o

o S T = BTl g gy + 1T = Pu) Tl o

[((Th = PuT)xn, 9))

T

+c 1nf Hwh_TXh”~1/2

v !l zr-1r2(ry wnEXn ()
We have
[((Th = PoT)xn, )| . 1((To = T)xn, Prop)|
lellg-rey = I1Prella-rr
and

((Tw = TYxn Pip) = [ (Bavwxn — u)Bu(Pyp)dl
T'ul'p

since f Rnnxn - ondl' = 0, Vo, € Np, and u denotes the solution of (1.1) with

MU = Xh
Therefore, using (3.2)
| S (Rnnxn—u)- En(Pyp)dl|
T'ul'p
HEh(P}i(P)HFI—I/Z (T'ur'p)

(Th — T)Xh”gl/z

S e

< c||Rwnxn — ullgri2(rury)

and Theorem 2.2 yields the assertion. m

4. Remarks

In these concluding remarks we give an example of BE functions satisfying (3.1) and (3.2)
and we consider the BE discretization of PS operators in the case I' = 9.
Let d = 2 and suppose that y,u and y;u shall be approximated by linear boundary elements.
The natural choice of X}, is the set of continuous piecewise linear functions subordinate to a
mesh A = {z;}7_, on T' and vanishing at the endpoints z, and z, of I', Xs= S1(A). There
are many different possibilities to choose a projection P, onto X bounded in H He (T") and
so to determine Y3 = im PJ. For example, denote by wg, k = 1,--- ,n —1, the hat functions,
ie. wg € S1(A), wi(z;) = 8kj, k5 =1,--- ,n — 1, and let wo(z) =1 — X1 wi(z), z € T.
- Then Si(A) = span (wg,k = 0,---n — 1) is the set of periodic linear splines, by Pa we
denote the orthoprojection Pp : L*(T') — S1(A) and by {px}izs C Si(A) the biorthogonal
~1/2
base of {wy}rZs. We introduce Pau := Ypo; (u, Ok )Wk, clearly Pp is bounded in = (T'),
im Py = §1(A) and im P) = span (px,k=1,---,n—1) C S1(A).
The projections ‘P are uniformly bounded in H (T") for any sequence of quasiuniform
meshes, i.e.

A= e, loemoal <c gin fon = onil

15



for any mesh A = {zx}32, with a constant ¢ independent of A.
Indeed, for quasiuniform meshes we have

|0l z2(ry - |[wol|L2(ry < €

and
[Pavllz(ry < [[Paullze(ry + (%, @o)wolla(ry < cllullza(ry -
Moreover, let u € 7" (I‘A), then for the interpolating spline @ au = Y721 u(zs)wy we have
Ilu — Qavllzary < eAlfull -
Then

(i) = It = Qate 0o} < Bl 3, - ollaacey
and the uniform boundedness of P, and the inverse property of splines yield
||PAU| Iﬁl ) S H-FA’U’I II?II (r) + ”(u7 (JDO)wOI IHI(F)

S- ”uHI}’- (F) + CZ”wOHHl(P) : HUH;'{I (F) : ”‘100”112(1-‘,)

< cllullz gy -
Hence by interpolation ”PA.UHI}”” o) < c||u||§1,, o’ Yu eH'? (). ;
Furthermore,the extension property (3.2) holds for a wide class of piecewise polynomial
functions, as shown in [10] for the case of Sobolev spaces H™(T'), m nonnegative integer,
and mentioned in [5] for arbitrary H*(T"). Especially, (3.2) holds for the piecewise linear
~ functions in H~Y/3(T). ~
Now we apply the results of Sections 2 and 3 in order to construct S and T if I' = 090.
Since the Neumann problem is not uniquely solvable some modifications are necessary. It
can be easily seen that the mentioned properties of the PS operators remain valid if T
and S are considered as mappings acting between the factor space H'/?(0Q)/R(0Q) and
H;Y2(8Q) = {4 € H?(6Q): (4,1) = 0}, R(0Q) denotes the set of constant functions on
0Q. Moreover T'= D}(I — K') : H;*/%(8Q) — H'?(89)/R(8Q) is bounded and invertible
with 77! = § = V-Y(I + K). Remark that the two spaces are in duality with respect to the
L?(8%)-scalar product, (H;/2(89)) = HY*(0Q)/R(09), and that the FE discretizations of
T and S also are isomorphisms between the factor space of traces of finite elements X,/ R(0€)
and its dual. We show that the BE discretizations S, and T, constructed analogously to
Section 3 preserve this property.
First we have to choose spaces of trial functions X, ¢ HY/ 2(9Q) for the approximation
of ulaq and Yy C H~/%(8Q) for the approximation of g—::lan- We assume that dim X, =
dim Yy, R(0Q) C Xi and X;f N Y, = ¢. Then there exists a bounded projection onto Xj,
P, : HY2(8Q) — X4, such that im P} = Y}, i.e. Y4 can be identified with the dual of Xj.

For given A, € X}, the density 1, of (2.11) is determined from
(V bpon) = (L + K)An,08), Yipn € Ya,
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or, equivalently, from the projection equation

PV = Pu(I+ K)An. (4.1)

Since R(0Q) = ker (I + K) C X} it is clear that ker Pi(I + K')|y, = {en} # ¢ and the

solution 1y, of (4.1) belongs to {xn € Yi : (xn, Ven) = 0}. Therefore it suffices to restrict
~ . ~ ~

to An €EXn:= Xin/R(0Q). But in general P,Ve, ¢ R(0N) such that ¢, ¢X,= {xn € Vi :

(Xh’ ].) = 0} =2Yh.
Defining as in Section 3

Spdn = PL(DAn + (I + K') ) =
= (PiD + B(I + K')Fy(PV B) 7 Pa(1 + K))An

we see that
~ ~ ~ 1
Sk Xn=Yr=X, .

Applying the ideas of the proof of Theorem 3.1 we conclude that for Sy : X h——)fh the asser-
tions of this theorem are valid. ‘

For xn €Y1 the construction analogous to Section 3 leads to
Tuxn = (PaV + Pa(I — K)Pu(PLDPy) ' Po(I — K'))xa

which can be considered as mapping from 17';, to X n and the assertions of Theorem 3.2
remain true.

Finally we mention the matrix representation for S, and Th. Let {wi}ils C Xa,
{@r}?Z5 C Ya be biorthogonal bases, (wk, @;) = 8;, then

Sh=Dn+ I+ K,V (I + Ky),

Th=Va+ (I — Kn)D; (I - K3),

where

(Va)ik = (Veps, o)
(Dr)je = (Dwj, wk)
(Kn)jk = (Kwj, o) = (Kp)k,j -
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