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Abstract

The dynamic behavior of a free gas–liquid phase boundary is often influenced by
evaporation or condensation to an extend that may not be neglected. In this paper,
we derive a general model for the dynamics of a two phase flow with evaporation,
starting from the balance of mass, energy, and momentum. The model takes into
account that the gas phase might consist of a mixture of vapor and inert gas. It is
based on the incompressible Navier–Stokes equations in the bulk of the liquid and
the gas phase, convection–diffusion equations for heat and vapor, and appropriate
conditions for the transfer of mass, momentum, and energy through the phase
boundary.

As a simplification, the flow field in the liquid and gaseous phase can be decou-
pled, if the stress from the gas phase on the free surface is neglected. The special
case of a gas phase containing only pure vapor is considered, which allows one to
neglect the gas phase completely, leading to a single phase flow problem with a
free boundary.

1 Introduction

Mass transport by evaporation or condensation through the phase boundary of a gas–
liquid system is of importance in many applications. Let us just mention the case of
evaporation in falling films, see [1, 5, 8, 9] or the evaporation of cryogenic propellants,
see [6].

To fix the setting, denote by Ω ⊂ Rd, d ∈ {2, 3} the volume occupied by the fluids.
We assume the system to consist of two distinguished phases, a liquid and a gaseous
phase, denoted by Ωl and Ωg, respectively. The two phases are assumed to be separated
by a sharp, smooth interface ΓS. Note that a priori Ωl and Ωg (or equivalently ΓS) are
unknown and part of the problem, thus giving rise to a free boundary problem.

The goal of this article is to derive a mathematical model describing such a system.
The model takes into account that the gas phase might consist of a mixture of vapor
and inert gas. It is based on the incompressible Navier–Stokes equations in the bulk
of the liquid and the gas phase, convection–diffusion equations for heat and vapor, and
appropriate conditions for the transfer of mass, momentum, and energy through the
phase boundary. Note that hereafter, we use the term evaporation also for the case of
condensation, since the latter one may be considered as an evaporation with negative
mass flux.

The rest of this paper is organized as follows. In Section 2 we briefly recall the
derivation of balance equations for mass, momentum, and energy including balance laws
at the phase boundary. The analysis uses a standard continuum approach.
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In Section 3 we deal with a continuum model to describe evaporation. As a special
case, the flow field in the liquid and gaseous phase respectively can be decoupled, if the
stress from the gas phase acting on the free surface is neglected. The same approach
have also been used by Burelbach et al. in [2]. This case is treated in Section 3.2. Further
simplifications are made in Section 3.3, where the case of a gas phase containing only
pure vapor is considered. This allows one to neglect the vapor phase completely, leading
to a single phase flow problem with a free boundary.

2 Balance equations

In this section we briefly recall the derivation of balance equations for mass, momentum,
and energy. Since the mathematics behind these balance equations is basicly the same
for any quantity, we start by considering balance equations for an arbitrary generic
quantity in Sections 2.1, 2.2 and consider the special cases for mass, momentum, energy
in Sections 2.3 – 2.5. For a similar approach see e.g. [3, 7].

As the derivations below do not depend on the specific structure of the fluid, we
assume the system to consist of two different general phases, say phase A and phase B,
separated by a sharp, smooth boundary ΓS that might move with time. Later we will
specify these phases to be the liquid and gaseous part of the fluid, respectively.

To simplify notation, hereafter vector– as well as tensor-valued quantities will be
denoted by bold characters, whereas plain characters indicate scalars.

2.1 Generic balance in a control volume

It is very common to consider balance equations either in Eulerian or in Lagrangian
coordinates, see e.g. [7]. We apply a slightly generalized approach by considering balance
equations in an arbitrarily moving control volume V (t): consider some initial test volume
V0 ⊂ Rd and a coordinate function ξ(x, t) ⊂ Rd describing the motion of the control
volume, i.e. V (t) = ξ(V0, t). We assume ξ to be sufficiently smooth in time and for every
time instant t, the mapping ξ(·, 0) → ξ(·, t) to be a homeomorphism. Let w denote the
velocity of the motion of the control volume that is w = ∂tξ. Let S(t) denote the surface
of V (t) and nS the outward pointing normal vector at any point of S(t).

Now consider the balance of some generic quantity b in V (t):

d

dt

∫
V (t)

b dV =

∫
S(t)

−Φ·nS dS +

∫
V (t)

Ψ dV. (2.1)

Here, Φ denotes the flux density of b relative to w. Thus −Φ·nS is the net inflow rate
of b into V (t) at any point of its surface S(t). Ψ denotes the net production rate of b in
the control volume.

Let us denote by u the flow field in the fluid, i.e. the averaged velocity of all fluid
particles in every point. With this notation, we may split Φ = bu − bw + f into its
contributions given by the advection of b by the flow field, by the motion of the control
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Figure 1: Control volume at the phase boundary.

volume, and by diffusive fluxes f , respectively. This gives

d

dt

∫
V (t)

b dV =

∫
S(t)

−(b (u−w) + f) · nS dS +

∫
V (t)

Ψ dV. (2.2)

Note that from (2.2) we may recover the Eulerian approach, e.g. the motion of mass
in a fixed coordinate system, by setting w = 0, as well as the Lagrangian approach, e.g.
a coordinate system that follows the motion of the mass particles, by setting w = u.

If V (t) lies entirely in one of the two phases, we may assume sufficient spatial smooth-
ness so that we can apply the divergence theorem to get

d

dt

∫
V (t)

b dV =

∫
V (t)

−∇· (b (u−w))−∇· f + Ψ dV. (2.3)

To derive a partial differential equation, we set w = 0, interchange differentiation and
integration for the time derivative and observe that the above identity holds for arbitrary
(smooth) test volumes to arrive at the pointwise identity

∂tb+∇· (bu + f) = ∂tb+ u·∇b+ b∇·u +∇· f = Ψ. (2.4)

Note that (2.4) does not hold across phase boundaries in general but only in the bulk,
since the above derivation relies on the smoothness of the quantities involved.

2.2 Generic balance at a phase boundary

In order to establish the balance equations at the phase boundary, we consider a par-
ticular control volume that follows the motion of the boundary as depicted for the two
dimensional case in Figure 1: for some segment SI(t) ⊂ ΓS(t) of the phase boundary the
control volume V (t) is a layer of thickness l at both sides of SI(t). We denote by SA(t)
and SB(t) the parts of the control volume’s surface parallel to SI(t) that lie in phase A
and in phase B, respectively, and we denote by SE(t) the parts of the control volume’s
surface normal to the phase boundary.
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Using this notation, (2.2) yields

d

dt

∫
V (t)

b dV =−
∫

SA(t)

(b (u−w) + f)·nSA
dS

−
∫

SB(t)

(b (u−w) + f)·nSB
dS

−
∫

SE(t)

(b (u−w) + f)·nSE
dS

+

∫
V (t)

Ψ dV.

(2.5)

Letting l tend to zero, the control volume’s surface parts SA(t) and SB(t) tend to
SI(t) from either sides. The left hand side of (2.5) and the integral over SE(t) vanish in
the limit. The integral of the production rate Ψ also vanishes unless there is production
on the surface.

We introduce subscripts .A and .B to denote the values on the phase boundary from
phase A and B, respectively. Moreover, let us denote by n the normal vector on the
phase boundary pointing in the direction of, say, phase A and by uΓ the normal velocity
of the phase boundary in direction of n. With this notation we get

0 =

∫
SI(t)

(
Ψ− (bA (uA ·n− uΓ))− fA ·n

+ (bB (uB ·n− uΓ)) + fB ·n
)
dS.

(2.6)

Since this identity holds for any segment SI(t) of the phase boundary, the integrand
must vanish pointwise. If we denote by [·] = .B − .A the jump of a quantity across the
phase boundary, we finally deduce

[b (u·n− uΓ) + f ·n] = −Ψ. (2.7)

Remark 1

i) The above derivation implicitly used the fact that there exists a well defined velocity
w describing the motion of the control volume V (t) independently of l → 0. This
assumption is always true for sufficiently small l, as long as the phase boundary
does not self-intersect nor that there are topological changes. In particular we
exclude the formation of gas bubbles and liquid droplets from our model.

ii) The choice of the direction of the normal n, pointing in the direction of phase A, is
somewhat arbitrary. However, by the definition of the jump operator [·], equation
(2.7) is in fact independent of this choice.
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2.3 Conservation of mass

Here, we apply (2.4) to the conservation of mass, in other word be take b := ρ. Since
by definition of the flow field u there is no diffusive flux for the density, we have f = 0.
Furthermore, we assume that there are no sources or sinks for the density, which is
equivalent to Ψ = 0. Thus (2.4) yields

∂tρ+ u·∇ρ+ ρ∇·u = 0. (2.8)

We furthermore assume all fluids to be incompressible:

Assumption 1 (Incompressibility) The mass density is assumed to be piecewise con-
stant in time and space for each of the phases (except for the case treated in Assumption
3).

Using this assumption, the mass balance simplifies to

∇·u = 0 (2.9)

in the bulk of the fluid phases.
On the phase boundary (2.7) now reads

[ρ (u·n− uΓ)] = 0. (2.10)

2.4 Conservation of momentum

The vector of momentum is given by ρu. Thus the equations from Sections 2.1 and 2.2
have to be understood component wise for this vector valued quantity. Terms like bu
and f as in (2.4) now become tensors.

The momentum forces acting on the surface S of some volume in the fluid are com-
monly called stresses. By virtue of Cauchy’s Theorem, see [4, chap. V], stresses can be
represented by a stress tensor T: if nS is the outer normal vector to S, then the stress
acting on this surface is given by TnS. Thus in the balance of momentum −T is what
we denoted by f in the generic case in Sections 2.1 and 2.2.

The stress tensor may be decomposed into two parts

T = −pI + τ (2.11)

with the isotropic part of T given by the scalar pressure p and the viscous stress τ . We
make the usual convention that a positive pressure describes inward directed forces.

In the present article we are only interested in incompressible Newtonian fluids, which
are by definition given by:

Assumption 2 (Newtonian) The viscous stress is assumed to be proportional to the
rate of strain tensor:

τ = µ(∇u + (∇u)t), (2.12)

where µ denotes the dynamic viscosity, which is assumed to be a scalar valued quantity,
piecewise constant with respect to the phases.

5



Note that using (2.9), we get

−∇·T = −∇· (µ(∇u + (∇u)t)) +∇p
= −µ(∇·∇u +∇∇·u) +∇p
= −µ∆u +∇p.

(2.13)

Regarding the external body forces Ψ in the momentum balance, we restrict ourselves
to an acceleration force g acting uniformly in space (e.g. gravitation) for convenience.
However, we still allow this force to vary with time. As acceleration acts on the mass,
the momentum exerted by acceleration is

Ψ = ρg. (2.14)

In Section 2.3 we assumed ρ to be constant (Assumption 1). This is somewhat too
simple here, as this would exclude buoyancy, which is the momentum given by the
variation of ρ in (2.14) due to differences in temperature. In order to also incorporate
this effect but still keep the assumption of incompressibility in the conservation of mass,
we use the Boussinesq approximation to model buoyancy:

Assumption 3 (Boussinesq) The variation in density may be neglected except for the
external forces in the balance of momentum, where it is assumed to be a linear function
of temperature:

ρ = ρ0 − ρ0βT (ϑ− ϑ0), (2.15)

where ϑ denotes the temperature, ϑ0 some reference temperature, ρ0 the reference density
of the material at ϑ0, and βT the thermal expansion coefficient of the material. We set
ρ = ρ0 everywhere else.

In view of the above considerations and Assumption 1 through Assumption 3 equation
(2.4) yields the momentum equation of the Navier-Stokes equations:

ρ0 (∂tu + u·∇u)− µ∆u +∇p = ρ0 g − ρ0 βT (ϑ− ϑ0)g (2.16)

in the bulk of either phase.
On the phase boundary, we have to take into account surface tension. Surface tension

exerts a stress in normal direction to the phase boundary proportional to its mean
curvature. The mean curvature is given by the (surface) divergence of the normal vector
∇S ·n (up to a factor of 1/d). In tangential direction we have a force proportional to
the (surface) gradient of the surface tension on the boundary, which is called Marangoni
stress. We restrict ourselves to variations of surface tension due to temperature and
assume this dependency to be linear. That is, we assume

∇S σ = −σT∇S ϑ, (2.17)

where σ denotes the surface tension and σT = −∂σ
∂ϑ

.
Inserting (2.17) into (2.7) gives

[ρ0u (u·n− uΓ)−Tn] = −(σ(∇S ·n)n− σT∇S ϑ). (2.18)
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2.5 Conservation of energy

The energy density in the system is given by the sum of the internal energy density
ρEU and the kinetic energy density ρu·u

2
. The rate of work acting on the surface of

some control volume by its surroundings is Tu. Thus, −Tu is the diffusive flux of
kinetic energy in terms of the generic case in Sections 2.1 and 2.2. We denote by q the
diffusive flux of internal energy. Following the considerations from Section 2.4, we have
an external source of kinetic energy, given by ρu·g. We assume to have no sources or
sinks of internal energy. Inserting this in (2.4) and using (2.9) yields

∂t

(
ρEU + ρ

u·u
2

)
+ u·∇

(
ρEU + ρ

u·u
2

)
+∇· (−Tu + q) = ρu·g.

(2.19)

Following Assumption 3, we replace ρ by ρ0 on the left hand side and arrange the
equation a little bit differently to get

ρ0(∂tEU + u·∇EU) +∇·q−T : (∇u)

+u·(ρ0(∂tu + u·∇u)−∇·T− ρg︸ ︷︷ ︸
= 0

) = 0, (2.20)

where for matrices A, B the inner product A : B is defined by A : B =
∑

i,j AijBij.
The last term on the left hand side of (2.20) vanishes according to the conservation of
momentum in (2.16). Using (2.11) and (2.9) we have

T : (∇u) = −p∇·u + τ : (∇u) = τ : (∇u). (2.21)

The internal energy density can be decomposed as EU = cpϑ+EP with cp the specific
heat capacity and EP the potential energy related to the aggregate state. Assuming
Fourier’s law for the flux q we get q = −λ∇ϑ in each phase, where λ denotes the heat
conductivity. We assume cp, λ and EP to be constant in each phase. With this setting
we get

ρ0cp(∂tϑ+ u·∇ϑ)− λ∆ϑ = τ : (∇u) (2.22)

in the bulk of each phase.
Equation (2.22) describes the balance of internal energy. The diffusive flux is given

by −λ∇ϑ and the production in the volume is given by τ : (∇u), which describes the
transformation of kinetic energy into heat by friction.

Applying (2.7) to the balance of internal energy, we get

[ρ0(cpϑ+ EP )(u·n− uΓ)− λ∂nϑ] = 0 (2.23)

at the phase boundary. Let us denote j = ρ0(u·n − uΓ). From (2.10) we have [j] = 0.
This allows us to write (2.23) as

[ρ0cpϑ(u·n− uΓ)− λ∂nϑ] = −j[EP ]. (2.24)

Since hereafter we are only using ρ0 and there is no danger of confusion, we replace
ρ0 by ρ for the ease of presentation.
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3 Model of evaporation

In this section we derive a mathematical model of evaporation. We consider two different
situations: first, in Section 3.1 we treat a general, non-homogeneous case, where the
gaseous phase consists of the mixture of vapor and some inert gas. This model will then
be simplified in Section 3.2, allowing for the decoupling of the computation of the flows
in both phases. Finally, in Section 3.3, we consider a special case, where the gaseous
phase consists of pure vapor only.

Throughout this section we use subscripts .l and .g to denote liquid and the gaseous
phase, respectively. Let j denote the rate of evaporation, e.g. the mass flux through
the phase boundary, at each point of the free surface. From the conservation of mass in
(2.10) we have

j = ρl(ul ·n− uΓ), (3.1a)

j = ρg(ug ·n− uΓ). (3.1b)

We assume a no slip condition for the velocity on the phase boundary in tangential
direction:

Assumption 4 (No slip) The tangential component of the velocity is continuous on
the phase boundary:

[u] = ul − ug = (ul ·n− ug ·n)n on ΓS. (3.2)

The combination of (3.1) and (3.2) yields a jump condition for the velocity as a
function of the mass flux:

[u] = −ρl − ρg

ρlρg

jn. (3.3)

Now we can write (2.18) a little bit nicer:

σ(∇S ·n)n− σT∇S ϑ = [Tn− ρu (u·n− uΓ)]

= [Tn]− j[u]

= [Tn] +
ρl − ρg

ρlρg

j2n.

(3.4)

To proceed we need a further assumption.

Assumption 5 (Continuity of temperature) We assume the temperature to be con-
tinuous on the phase boundary:

[ϑ] = 0. (3.5)

We denote by Λ = −[EP ] the latent heat of vaporization. Using (3.5) and the mass
balance in (3.1), we can simplify the balance of internal energy on the phase boundary
in (2.24) to read as

[−λ∂nϑ] = (Λ− [cp]ϑ)j. (3.6)
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The rate of evaporation j is determined by the temperature and the partial pressure
of vapor in the gas. The latter can be computed in the simplest case by using the ideal
gas law:

ψ =
ρv

m
kBϑ (3.7)

with ρv the mass density of vapor, m the mass of a vapor particle, and kB = 1.381 · 10−23

J K−1 the Boltzmann constant.

Assumption 6 (Saturation temperature) The temperature on the free surface is
given by the saturation temperature (which in turn depends on the partial pressure of
vapor and material properties):

ϑ = ϑeq(ψ(ρv, ϑ)) on ΓS. (3.8)

Note that since the saturation temperature depends on the partial pressure, which in
turn depends on the temperature, the temperature on the phase boundary is implicitly
determined by the algebraic fixed point equation (3.8).

Assumption 6 provides a Dirichlet boundary condition that allows one to solve the
heat transport problem in both phases. The heat flow equation (3.6) may then be used
to determine the mass flux. This approach to model evaporation have also been used in
[6].

Remark 2

i) The pressure p obtained from equations (2.16), (2.9) cannot be used to compute the
partial pressure of vapor, because Assumption 1 on the incompressibility of the fluid
introduces an error, causing p to be inconsistent in a thermodynamic meaning.

ii) In a precise physical sense Assumption 6 is contradictory to a non-vanishing evapo-
ration rate, since it is the statement of equilibrium. However, the difference ϑ−ϑeq

is negligible in many practical cases.

3.1 The non-homogeneous case

In the non-homogeneous case, we assume the gaseous phase to be a mixture of inert gas
and vapor. In order to determine the mass density and thus the partial pressure of vapor
on the phase boundary, we have to consider vapor transport in the gas. We model this
by an advection-diffusion equation for ρv:

∂tρv + u·∇ρv − ς∆ρv = 0 (3.9)

in Ωg, with some diffusion coefficient ς.
In addition to the mass balance (3.1), we can express the mass flow of vapor through

the phase boundary also in terms of the vapor transport given by (3.9):

j = −ς∇ρv ·n + ρv(ug ·n− uΓ). (3.10)
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The combination of (3.1b) and (3.10) yields a Robin-type boundary condition for the
vapor transport on ΓS:

ς∂−nρv =
(
1− ρv

ρg

)
j. (3.11)

Now, we are in a state to formulate the fully coupled model.

In the bulk of both phases Ωl ∪ Ωg the following equations hold:

ρ(∂tu + u·∇u)− µ∆u +∇p = ρg − ρβT (ϑ− ϑ0)g, (3.12a)

∇·u = 0, (3.12b)

ρcp(∂tϑ+ u·∇ϑ)− λ∆ϑ = τ : (∇u). (3.12c)

In Ωg the vapor density ρv fulfills

∂tρv + u·∇ρv − ς∆ρv = 0. (3.12d)

The boundary conditions on ΓS are

ρl − ρg

ρlρg

j2n + [Tn] = σ(∇S ·n)n− σT∇Sϑ, (3.12e)

[u] = −ρl − ρg

ρlρg

jn, (3.12f)

ul ·n−
1

ρl

j = uΓ, (3.12g)

ϑ = ϑeq(ψ(ρv, ϑ)), (3.12h)

ς∂−nρv =
(
1− ρv

ρg

)
j, (3.12i)

j =
[−λ∂nϑ]

Λ− [cp]ϑ
. (3.12j)

Remark 3

i) Note that n is the normal on the phase boundary pointing from the liquid to the
gaseous phase. Thus, −n is the outer normal to the gaseous phase and ∂−nρv the
usual (outer) normal derivative of ρv.

ii) The equation for uΓ yields a kinematic condition for the phase boundary ΓS = ΓS(t)
and thus in turn for the a priori unknown phases Ωg, Ωl.

iii) The pressure p appears in this model only as a gradient ∇p and in the jump term
[Tn]. It is therefore only determined up to an additive constant.
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The model needs to be closed by appropriate conditions on the outer boundary of Ω
and by initial conditions. This of course strongly depends on the settings of the actual
experiment or simulation and will not be discussed here.

However, let us just remark that the total volumes of the fluids grow with evaporation
at a rate of

∫
ΓS

ρl−ρg

ρlρg
j dS. Therefore one cannot use only no slip (e.g. homogeneous

Dirichlet) condition for the flow, but one has to compensate for the growing volume by
allowing some outflow condition at some part of the boundary of Ω.

3.2 The decoupled model

Typically, viscosities in gas are much smaller than those in liquids. Therefore we may
neglect shear stresses in gas in comparison to liquid. Assume that Tgn � Tln (see [2]):

Assumption 7
[Tn] = Tln on ΓS. (3.13)

Using this assumption, the flow in the gaseous phase does not have any direct influence
on the shape of the free surface. The flow in both phases is only weekly coupled by the
temperature and the mass flux.

The decoupled model in the liquid phase reads:

In the bulk Ωl the equations

ρ(∂tu + u·∇u)− µ∆u +∇p = ρg − ρβT (ϑ− ϑ0)g, (3.14a)

∇·u = 0, (3.14b)

ρcp(∂tϑ+ u·∇ϑ)− λ∆ϑ = τ : (∇u). (3.14c)

are fulfilled. The boundary conditions on ΓS are

ρl − ρg

ρlρg

j2n + Tn = σ(∇S ·n)n− σT∇Sϑ, (3.14d)

u·n− 1

ρ
j = uΓ, (3.14e)

ϑ = ϑeq(ψ(ρv, ϑ)). (3.14f)

As the free surface ΓS is determined by the flow in the liquid phase only, we get a
flow problem in a predetermined, moving domain for the gaseous phase, with Dirichlet
condition for the flow on the phase boundary:

In the bulk Ωg we have

ρ(∂tu + u·∇u)− µ∆u +∇p = ρg − ρβT (ϑ− ϑ0)g, (3.15a)

∇·u = 0, (3.15b)

ρcp(∂tϑ+ u·∇ϑ)− λ∆ϑ = τ : (∇u), (3.15c)

∂tρv + u·∇ρv − ς∆ρv = 0. (3.15d)
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The boundary conditions on ΓS are

u = ul +
ρl − ρg

ρlρg

jn, (3.15e)

ϑ = ϑeq(ψ(ρv, ϑ)), (3.15f)

ς∂−nρv =
(
1− ρv

ρg

)
j. (3.15g)

The equation for the mass flux remains the same as in the fully coupled model:

j =
[−λ∂nϑ]

Λ− [cp]ϑ
on ΓS. (3.16)

It might be sensible to neglect the quadratic order terms j2 and τ : (∇u) also. But
this would not affect the structure of the model, so this decision need not to be taken
here.

3.3 The homogeneous case

In the homogeneous case, we assume the gaseous phase to consist of pure vapor. That
is, here we assume

ρv = ρg. (3.17)

As a consequence, since ρg was assumed to be constant, we get from (3.8) a constant
saturation temperature all over the phase boundary. The Marangoni term −σT∇Sϑ
in (3.4) also vanishes, as the temperature (surface) gradient is zero. We furthermore
assume the temperature also to be constant in the bulk of the gaseous phase:

Assumption 8 The temperature in the gaseous phase is assumed to be constant, given
by the solution of the fix point problem

ϑ = ϑeq(ψ(ρv, ϑ)). (3.18)

If we apply these assumptions to the decoupled non-homogeneous model from Section
3.2, the gaseous phase does not have any influence on the liquid phase at all. We end
up with the following one-phase flow problem in the liquid phase:

In the bulk Ωl we have

ρ(∂tu + u·∇u)− µ∆u +∇p = ρg − ρβT (ϑ− ϑ0)g, (3.19a)

∇·u = 0, (3.19b)

ρcp(∂tϑ+ u·∇ϑ)− λ∆ϑ = τ : (∇u). (3.19c)
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The boundary conditions on ΓS are

ρl − ρg

ρlρg

j2n + Tn = σ(∇S ·n)n, (3.19d)

u·n− 1

ρ
j = uΓ, (3.19e)

ϑ = ϑeq(ψ(ρv, ϑ)), (3.19f)

j =
−λ∂nϑ

Λ− [cp]ϑ
. (3.19g)

A Nomenclature

A.1 Latin characters

b concentration of some quantity ‘.’ per unit volume [./m3]
cp specific heat capacity [J/(kg K)]
EP potential energy of aggregate state [J/kg]
EU internal energy [J/kg]
f diffusive flux vector of some quantity ‘.’ [./(m2 s)]
g acceleration / gravity vector [m/s2]
I identity tensor [1]
j mass flux through the phase boundary [kg/(m2 s)]
kB Boltzmann constant [J/K]
l thickness of a layer [m]
m mass [kg]
n normal vector [1]
p pressure [N/m2]
q diffusive heat flux vector [W/m2]
R real numbers
S surface [m2]
t time [s]
T stress tensor [N/m2]
u velocity vector [m/s]
uΓ normal velocity at the interface [m/s]
V volume [m3]
w velocity of the motion of the control volume [m/s]
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A.2 Greek characters

βT thermal expansion coefficient [1/K]
ΓS free surface
ϑ temperature [K]
λ heat conductivity [W/(K m)]
Λ latent heat of evaporation [J/kg]
µ dynamic viscosity [kg/(m s)]
ξ coordinate function
ρ density [kg/m3]
σ surface tension [N/m]
σT temperature dependence of the surface tension [N/(K m)]
ς diffusion coefficient [m2/s]
τ viscous stress vector [N/m2]
Φ flux of some quantity ‘.’ [./(m2 s)]
ψ partial pressure of the gas [Pa]
Ψ production rate of some quantity ‘.’ [./m3]
Ω domain occupied by the fluid
Ωl liquid part of Ω
Ωg gaseous part of Ω

A.3 Differential operators

∂t time derivative [1/s]
∂n normal derivative [1/m]
∇ gradient [1/m]
∆ laplace operator [1/m2]
∇S tangential gradient on ΓS [1/m]
∇· divergence operator [1/m]
∇S· tang. divergence operator on ΓS [1/m]

A.4 Subscripts

0 reference state
A phase A
B phase B
eq equilibrium
g gas
I interface
l liquid
T dependence of the temperature
v vapor
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