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STATIONARY ENERGY MODELS WITH MULTIPLE SPECIES 1

Abstract. We investigate stationary energy models in heterostructures consisting of con-
tinuity equations for all involved species, of a Poisson equation for the electrostatic potential
and of an energy balance equation. The resulting strongly coupled system of elliptic differential
equations has to be supplemented by mixed boundary conditions.

If the boundary data are compatible with thermodynamic equilibrium then there exists
a unique steady state. We prove that in a suitable neighbourhood of such a thermodynamic
equilibrium there exists an unique steady state, too. Our proof is based on the Implicit Function
Theorem and on regularity results for systems of strongly coupled elliptic differential equations
with mixed boundary conditions and non-smooth data.

1. Introduction.

1.1. Stationary energy model for semiconductor devices. The charge transport in semi-
conductor devices is described by the van Roosbroeck equations (see [16]) consisting of
two continuity equations for the electron and hole densities n and p, respectively, and a
Poisson equation for the electrostatic potential ¢. Physical parameters occurring in these
equations depend on the lattice temperature T' which often can be treated as a given
constant parameter. This assumption is no more valid in power devices, for example.
Then also the energy transport must be modelled by adding a further balance equation,
and a so called energy model arises. In this paper we consider only the stationary case.

We introduce the electrochemical potential ¢,, of the electrons and ¢, of the holes
which are implicitly defined by the state equations
(1) n:NF(ian”p_E”),p:PF(icp_WrEp)

T T
where N, P > 0 and E,, E, are reference densities and reference energies, respectively.
These quantities depend on x and T'. The function F results from a distribution function
depending on the chosen statistics. Especially we have

eY in the case of Boltzmann statistics,

F(y) = d
) Fiy2(y / \/_ : in the case of Fermi—Dirac statistics.
\/_ 1+exp(z —y)

The electrostatic potential fulfils the Poisson equation
(2) -V - (eVp)=f—n+p.

Here € > 0 is the dielectric permittivity depending on z, and f is a given doping profile.

The remaining equations of the stationary energy model can be written in various
form. We start with the following system of differential equations consisting of two con-
tinuity equations for the electrons and holes and a conservation law for the total energy,

(3) v'jnziRa v'jpziR’

(4) v'jezo
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where R denotes the net recombination rate of the electron—hole generation—recombina-
tion reaction e + h = 0, and j,, j, are the particle flux densities of electrons and holes,
je is the flux density of the total energy. Here we have to specify the underlying kinetic
relations. Firstly, we assume that the net recombination rate R is given by

R—r <e<<n+<p>/T _ 1)

with some coefficient » > 0. Secondly, we suppose that the flux densities j,, jp, jo have
the form (see [1, 12])

Jn = —(on+0np) (VG + P VT) — 0y (VG + P,VT),
(5) Jp = —Onp (VCn + P VT) — (Up + Unp) (VCp + PPVT)7
jo = —kVT+ Y (G+PT)ji
1=n,p

with conductivities oy,, 05, > 0, 0y, > 0, K > 0, and P,, P, are the so called transported
entropies (see [11, p. 329], they are related to the thermoelectric powers of the electrons
and holes, respectively). Terms containing o, account for some electron-hole scattering
model (see [14]). All kinetic coefficients r, o, 0p, Onp, K, Pp, P, depend on x and n, p, T.
It is important to note that the strong inequalities » > 0, oy, 0, > 0, K > 0 are valid
only for non-degenerated states 0 < n, p, T' < +0o0.

The equations (2) — (4) must be supplemented by boundary conditions. The determi-
nation of these conditions is a rather complicated matter. We consider here the following
version. Let I" be the boundary of the domain ) which is occupied by the semiconductor
device, v the outer unit normal, and let I'p and I'y be disjoint, relatively open parts of
I’ with mes(T"\ (I'p UT'x)) = 0. We require that

=G G=¢ T=T" ¢=¢" onlp,

n D

7V'jn:gla 7V'jp:g2a 7]/'.]'6:937 V'(ev@):g4 on 11N

(6)

I'p

Figure 1: Example for a heterostructure 2 consisting of different materials (highlighted
by the gray shading), and the Dirichlet and Neumann parts I'p and I';y of the boundary
which are in contact. The set I'p N T n consists of four points.
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Now let us discuss some other formulations of the equations (3) — (4). Sometimes the
conservation relation (4) is replaced by the heat flow equation (see also [18])

(7) -V (kVT)=H
where the right hand side
H=-%,,V ((G+PT)j)
=0, |V + P.VT? + 0, |V, + P,VT)?
+ onp V(G + &) + (P + B) V)2
— T (VP -jn+ VP -jp) + (Cn+ G+ (P + P) T) R

contains a lot of quadratic gradient terms.

(8)

For our purpose the following reformulation is more convenient. We introduce the
entropy flux density

) 1. : . K . .
(9) Js = T (]e — CnJn _Cp]p) = _T VT+Pn]n+Pp]p-
For isothermal states, VI' = 0, the relation j; = P,,j,, + P,j, follows which explains the
meaning of P,, P, as transported entropies. With (5) and (9) we obtain

Jn On+0np Onp T1 VCn

(10) jp = — Onp Op + Onp T2 VCP
K

Js Ty T2 T + T3 vT

where

T on+ 0 o P
1 = " np P " ,’7’3:7'1Pn+’7'2pp-
To Onp Op+ Onp P,

The matrix in (10) is symmetric and positive definite for non-degenerated states. Thus,
Onsager’s relations are fulfilled if we choose the fluxes (j,,jp,js) and the generalized
forces (V(y, V(,, VT). With (9), (3), (4) the entropy balance equation

results where d is the entropy production rate,
Td= *jn 'VCn *jp 'vCp *js : VT+R(Cn+Cp)-

Obviously d > 0 holds, and for non-degenerated states we find that d = 0 if and only
it V¢, = V¢, = VT =0, ¢, + (, = 0. These conditions characterize a thermodynamic
equilibrium. If a thermodynamic equilibrium satisfies the boundary conditions (6), then
the data in (6) necessarily fulfill the conditions

Cf = const, Cé) = —Cfl), TP =const >0, g1 =go=g3=0.

Later on we will see, that these conditions are also sufficient for the existence of a unique
thermodynamic equilibrium. Corresponding equilibrium densities n, p are obtained from
the state equations (1) where the electrostatic potential ¢ has to satisfy the nonlinear
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Poisson equation

G+ — En(-TP) Cz?—pr(-,TD)) s

—v-(aw)+N(-,TD)F( — )—p(-,TD)F( -
with mixed boundary conditions
o=p” onTp, v-(eVy)=gs onTy.

In (5) we used the fluxes (jn, jp, je) and the generalized forces (V(,, V(,, VT'). Then
the Onsager relations are not valid, but they can be achieved by choosing other generalized
forces, namely (V[(,/T],VI[(,/T],V[—=1/T]). Then

Jn (on + 0np)T onpT T V(¢ /T
(12) Jp =—| opT (op +0np)T T2 V(¢ /T
Je 1 To KT? + T3 V[-1/T]

holds where
T on +on,)T opT + P, T o -
~1 _ ( n np) np Cn n Ty = Tl(Cn+PnT)+TQ(CP+PpT)'
T2 Onp T’ (op +0onp)T G+ 5T

The matrix in (12) is symmetric and positive definite for non-degenerated states. The
entropy production rate can be rewritten in the form

d=—jn -V /T] = jp - VIG/T] = je - V[=1/T] + R((n + ) /T
Based on the foregoing discussion we introduce new variables z = (21, 29,23,24) =

(Cn/T, ¢ /T, —1/T, ). The state equations (1) and the net recombination rate R have to
be expressed in terms of these variables,

n(z) = N(z,T) F(C" e TE”(“’U’ T)) — Hy(z,2),
p(e) = P(a.7) F (22T BETY g,

R=r(z,n,p,T) (enT%)/T 1) = 7z, 2) (e2+*2 — 1) = R(x, 2).

Now the stationary energy model consisting of the equations (3), (4), (2) and comple-
mented by the flux relations (12) can be written in the more compact form

ai1 a2z aiz 0 Vz —-R
a a a 0 Vz —R
(13) V. 21 Q22 Q23 2 _
az1r azx azz 0 Vzs 0
0 0 0 € Vzy f—H,+ H,
where the coefficients a;x, i,k = 1,...,3, have to be considered as functions of z and z

just like the quantities R, H,, and H, while € and f depend only on z. Since we assumed
that the Dirichlet parts and the Neumann parts of the boundary coincide for all equations,
we can write the boundary conditions (6) also in terms of z and Vz,

zi:ziD, 1=1,...,4, onI'p,
(14) v Z aix(,2)Vzp=¢g;, i=1,...,3, v-(eVz4) =g4 onTy.
k=1,2,3
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1.2. Stationary energy model with multiple species. Next, we consider a more gen-
eral stationary energy model with multiple species which applies to problems in elec-
trochemistry. But in some applications (e.g. in semiconductor technology modelling) the
stationary case for its own is of less interest. Nevertheless the study of the stationary
model becomes important if one is interested in the long-time behaviour of solutions of
the corresponding instationary model.

We are looking at a finite number of different species X;, i = 1,...,n (e.g. electrons,
holes, dopants, interstitials, vacancies, dopant-defect pairs, clusters, etc. in semiconduc-
tor technology modelling). Let again ¢ and T be the electrostatic potential and the
temperature, respectively. We denote by u;, (;, ¢; the particle density of the species X,
its electrochemical potential and its charge number. We use the state equations (based
on the Boltzmann statistics, for example)

(15) wi(x) = w(x, T) Gt B@D)/T y — 1 n,

where uw; > 0, E; are suitable chosen reference quantities. The electrostatic potential
fulfils the Poisson equation

(16) V- (V) =+ g
=1

Next, we consider a finite number of reversible reactions of the form
a1X1+"'+aan:ﬂlX1+"'+ﬂan> (Oé,ﬂ)GR

where «;, 8; € Z, are the stoichiometric coefficients, and R denotes the set of pairs
(a, ) = ((a1,...yan),(B1,...,0n)) belonging to all reactions. According to the mass
action law the reaction rates R,g are given by

(17) Rag = 1o (€25 0 6/T — o2 BG/T) - (a,0) € R

where 7,3 > 0 depends on x, on u = (u1,...,u,), T, and on ¢, maybe. We assume that
each reaction preserves the charge, in other words that Z?(ai — i) ¢; = 0 holds for all
(a, B) € R. For the particle flux densities j; and the total energy flux density j. we make
an ansatz similar to (5),

n
ji==Y_oulr,u,T) (Vi + Pilz,u,T)VT), i=1,...,n,
(18) ! "
Je = —k(x,u, T)VT + Z(C@ + Pi(z,u, T)T) ji
i=1
with conductivities o;i, « fulfilling the relations

n

(19) o =0k, > ow(w,u,T) &bk > 00(w,T) > & VEER™, ki(z,u,T) > ro(u, T)

ik=1 i=1

where o¢(u,T), ko(u,T) > 0 for all non-degenerated states 0 < w;, T < oo. For the
transported entropies P; we need no sign conditions.
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Generalizing (3), (4) we have to pose n continuity equations for all considered species
and the conservation law for the total energy,

VJ,ZRI, ’L'Zl,‘..,n,
V- je=0

(20)

where the right hand sides of the continuity equations are given by
Ri: Z (ﬂi—ai)Raﬁ, ’L'Zl,‘..,n.
(e, B)ER

The corresponding generalization of the boundary conditions (6) is obvious.

The further discussion follows the ideas in Subsection 1.1. We introduce the variables
z= (21, 2nt+2) = (/T,...,(/T,—1/T, ). The state equations (15) and the reaction
rates (17) are written in the form

ui:Hi(x’Z)’ t1=1,...,n, Raﬁ :'Faﬁ(xaz) (ezyzlaizz' 762?:151'21')’ (aaﬂ) €R,

and the differential equations (20), (16) together with the flux relations (18) lead to

a1 - Qi1 O Vz Ry
0 : :
(21) -V ap,1 - apnt1 O Vz, = R,
On+1,1 *°° Opilntl 0 Viznt1 0
0 0 0 € Viznio f—ho

where hy is defined by ho(z,2) = — >, ¢iH;(z, z) and the coefficients a;;, are functions
of x and z. Finally, the boundary conditions are obtained as
z=2Pi=1,...,n+2, onlp,

n+1
(22) .
v- E aix(2)Vzp =g, i=1,....,n+1, v-(eVzpi2) = gnta on .
k=1

The matrix a;; is symmetric and from (19) it follows that for each compact subset
K C R"™ x (—00,0) x R there exists a constant ax > 0 such that

n+1 n+1
(23) > an(w,2) G Za Y &, 3€Q, zeK, {eR™
i,k=1 i=1

Moreover, reasonable assumptions on the reference quantities in (15) ensure that for each
compact subset K C R™ X (—00,0) x R there exists a constant hx > 0 such that

(ho(z,2) — ho(2,2))(Znt2 — Zny2) = hic |2ng2 — Zntal?,

(24) . .
reQ, zzeKwithz;=%;fori=1,...,n+1.
Let us add some comments on thermodynamic equilibria. The entropy flux density
Js=— Z?:Jrll z; j; fulfils equation (11) where the production rate d is given now by
n+1

d = Z ik VZZ . VZk + Z 7704,6’ (eZ?:l QiZi ezzlzl ﬁiZi) zn:(az _ ﬁz) 2.

i,k=1 (,B)ER i=1



STATIONARY ENERGY MODELS WITH MULTIPLE SPECIES 7

For non-degenerated states we find, that d = 0 if and only if the equilibrium conditions

Vz;=0,i=1,...,n+1,and Y ; (o — 8i) z = 0 for all (o, 3) € R are fulfilled. The

necessary conditions on the data in the boundary conditions (22) are

(25) 2P =const, g; =0,i=1,...,n+1, ZT?H <0, Z(ai—ﬁi) 2P =0V(a,B) € R.
i=1

The corresponding electrostatic potential fulfils the nonlinear Poisson equation

—V - (eVzny2) + ho(20 ..o 2001, 2ng2) = f
with mixed boundary conditions

Znto = zﬂrz onT'p, v-(eVzui2) =gnyia only.
More precisely, the equilibria considered here are restricted equilibria (or Boltzmann
equilibria) in an exterior field generated by the source terms f, 22 "2y Gnt2-

REMARK 1. The model considered in Subsection 1.1 fits into the form (21), (22)
also in the Fermi-Dirac case if our later assumptions on the function hg are formulated
generally enough.

REMARK 2. The resulting problem is a boundary value problem which has non-
smooth data in the following sense. Firstly, it is defined on a domain €2 which in general
is non-smooth, but only Lipschitz. Secondly, we have to deal with mixed boundary con-
ditions where I'p N T # 0. Thirdly, we want to consider also heterostructures and then
the coefficients are discontinuous with respect to the space variable. Other difficulties
arise from the following facts. The coefficients depend on the state variables. The sys-
tem is strongly coupled and the ellipticity condition (23) is not fulfilled uniformly on
2 x R™ x (—00,0] x R. Finally, one has to take into account the constraint z,4+1 < 0.

1.3. Aim of the paper. The aim of the paper is to prove a local existence and uniqueness
result near a thermodynamic equilibrium. For this purpose first we will ensure that for
boundary data 2, g;, i = 1,...,n+2, which are compatible with thermodynamic equilib-
rium (see (25)) there exists a unique solution of (21), (22). Then we use the Implicit Func-
tion Theorem to prove the existence of a unique solution of (21), (22) in a neighbourhood
of this thermodynamic equilibrium. We can guarantee that 7' > 0, u; > 0,¢=1,...,n,
for these solutions. The main problems consists in finding a weak formulation of the
stationary energy model in suitable function spaces such that the requirements of the
Implicit Function Theorem can be verified. To obtain the necessary properties of differ-
entiability we use properties of superposition operators established in [15]. Additionally,
we take advantage of regularity results in [10] valid for strongly coupled elliptic systems
with mixed boundary conditions and non-smooth data. Let us mention that the technique
used here does not work in space dimensions greater then two.
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2. Assumptions. Now we summarize all assumptions which we need in this paper.
They are motivated by the examples considered in Section 1. We make use of

DEFINITION 1. Let V' = R" X (—00,0) x R. We say that a function b: Q@ x V — R is
of the class (D) iff it fulfils the following properties:
z +— b(x, z) is continuously differentiable for almost all x € Q |
x +— b(x,z) and x — 0,b(x, z) are measurable for all z € V,

for every compact subset K C V there exists an M > 0 such that
|b(z, 2)| < M and ||0,b(z, 2)|| < M for all z € K and almost all x € €,

for every compact subset K C V and € > 0 there exists a 6 > 0 such that
|b(x,z) — b(x,Z)| < € and |0,b(z, z) — 0,b(x,Z)| < €
for all z, Z € K with |z —Z| < § and for almost all z € Q.

Our assumptions are the following ones:

(A1) Qs a bounded Lipschitzian domain in R? T' = 99,
I'p, I'y are disjoint open subsets of I', ' = T'p UTx, mesT'p > 0,
T'p NTy consists of finitely many points (see also Figure 1).

(A2) The functions a;: © x V — R are of the class (D), i,k =1,...,n+ 1.

For every compact subset K C V there exists an ax > 0 such that
n+1

Z ain(x, 2)&& > ag||€||? for all z € K, all £ € R**! and f.a.a. z € Q.
i k=1
(A3) e€ L>®(Q),0< e <e(x) <e’ < oo almost everywhere in ).

(A4) The function hg: Q@ x V' — R is of the class (D),

ho(x,z1,...,2n+1,) is monotonic increasing
for all (z1,...,2n41) € R” X (—00,0) and almost all = € 2,
there are constants cg, ¢ > 0 such that |ho(x, 21, . . ., Znyo)| < cpeclzn+2l

for all z € [—k,k]"™ x [-k,—1/k] x R and almost all x € Q.

(A5) R cCZ} xZY, for (a,B) = ((ay,...,« ),(ﬁl,...,ﬁn)) € R we define
Rop: QxV — R by Rog(z, 2) = Tap(w, z)( = @i% e Xin ﬁizi)
where 7o5: Q x V' — Ry is of the class (D).

The data z”, g; and f in (21), (22) Will be assumed to have at least the following
propertles There exists a p > 2 such that zP prescribed on I'p is the trace of a function

Pewhr(Q),i=1,...,n+2, with 2P, <0onQ, g, € L*(Ty),i=1,...,n+2, and
f € L>(Q).

3. Weak formulation of problem (21), (22). We define the vectors

ZD:(ZIDV"727?+2)7 g:(gla---vgn+2)a w:(ZD7gvf)'

We are looking for solutions of (21), (22) in the form
z2=2Z+zP
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where 2 fulfils the Dirichlet boundary conditions of (22) and Z represents the homoge-
neous part of the solution. We use the following function spaces
= (Wy*(QUT )",
X7 = (W3 (QUTN))™ ) = (W (QUTy)" 2,
= (Wh ()2, sel,00).

DEFINITION 2. For exponents g € (2,p] and parameters 7 > 1 we define the subsets
M, . C X, xY, as follows,

M, = {(Zz YE Xy xYy: |Zi+ 2P| <7 i=1,... ,n,n+2,

(26) ,

—T<Zn+1+sz)+1<—— onQ}.
T

Because of the continuous embedding WP, Wh4 — C(Q) the set M, , is open in
Xy xY,. Obviously, if g2 > ¢; then My, ; C Mg, -, and if 7y < 75 then M, ., C M, .,.
We define the operator F »: My, x L=(T )" x L>() — X, by

n+1

<Fq,T(Zaw)7w>Xq/ :/Q{ Z azk( )vzk V’L/JZ—FEVZnJrQ V¢n+2}
i,k

" /Q { Z Rap(::2) Z( o; — Bi)i + hO(',Z)¢n+2}dx

(aB)ER i=1
n+2
- [ fonsado= [ Y g, vex,
I'n =1

Here ¢’ = q/(¢ — 1) denotes the dual exponent of ¢g. The operator Fy ; is defined on an
open subset of X, x Y}, x L>(I'y)"*2 x L>°(£). Using this notation a weak formulation
of the system (21), (22) is

Problem (P):
Find (¢, 7, Z,w) such that g € (2,p], 7 > 1, (Z,w) € X, x Y, x L=(I'y)"2 x L™ (),

F,.(Z,w) =0, (Z,2°)¢e M,,.

If (¢,7,Z,w) is a solution of (P) then (¢,7, Z,w) with ¢ € (2,¢] and 7 > 7 is a solution
of (P), too.

4. Results.

LeEMMA 1 (Differentiability). We assume (Al) — (A5). The operator Fy,: My X
L=®(D )" x L®(Q) — X is continuously differentiable for all exponents q € (2,p] and
all parameters ™ > 1.
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Proof. Let ¢ € (2,p] and 7 > 1 be arbitrarily fixed. We split up the operator F, ; in the
form F, , = A° + A' — B where A%, A': M, , — Xy, B: L®(T )2 x L®(Q) — Xy

n+1
(4%(2,27),9)x, = /Q {3 anl2)V2 - Vi + eV 24 - Vo fda
i k=1
+/ { Z Ra,g(-,z)Z(a,; — Bi)i + ho(',2)¢n+2}d$
Q" (a,8)er i—1
n+1
<A1(Za ZD)a ¢ / Z azk: )vzk Vi, + 5V2n+2 V¢n+2}
i,k=1
n+2
<B(gaf)7¢>Xq/ :Lf¢n+2d$+LN;glwldr, ¢€qu.

For the proof for the part A°: M, . — X we refer to [15, p. 1465, Lemma 2.2]. Again
using [15, Lemma 2.2] we find that A': M, . — X, is continuously differentiable, and the
continuous embedding WP(Q) — W9(Q) gives the result for A': M, . — X7 . Note
that our assumptions guarantee the validity of (H2.1), (H2.2), (H2.3) in [15]. Assertlons
concerning the operator B are trivial. Especially we have

<(3qu7 (Z w Z w / Z azk VZk + 0, azk( )szk) -V, dx
i,k=1
(27) + [ {ev7n+2-vwn+2+azho<-,z>-7wn+g}dx
Q
/ > 0.Rap(-, Z — By da
(,B)ER

for all Z € Xgandyp € Xy m
For p > 2 fixed we define the set of data which are compatible with thermodynamic
equilibria (see (25))

Q:{w:(zD,g,f) €Y, x L®(TN)""? x L>®(Q): 2P =const, g; =0,i=1,...,n+1,

n

Z(ai —Bi)zP =0 Y(a,B)eR, 22, < O}.

i=1

THEOREM 1 (Existence and uniqueness of thermodynamic equilibria). We make the
assumptions (A1) — (A5). Let w* = (2P*,g*, f*) € Q be given.
i) Then there exist a qo € (2,p|, a constant T > 1 and a function Z  , € Wy (QUTy)
such that (Z*,2P*) = ((0,...,0,Z},,),2P*) € My, » and Fy, -(Z*,w*) = 0. In other
words, (qo, T, Z*,w*) is a solution of (P).
ii) 2* = Z* + 2P* is a thermodynamic equilibrium of (21), (22).
iii) If (q,7, Z,w*) is a solution of (P), then Z=27"in X5 with ¢ = min{qo, g} holds.
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Proof. 1. For the given w* = (2P*, g*, *) we define the function h;: 2 x R — R by
hi(z,¢) = ho(z,(0,...,0,¢) + 2*)
and consider the operator £: H}(QUTy) — H}(QUTy),

(E(6), B crorm) = /Q eV (6 + 2P%,) - Véda - / g p@dl

I'n
+/(h1(-,¢) _fdde Vg e HIQUTY).
Q
For ¢, ¢2 € HY(QUT y) we have
(E(P1) — E(¢2), 1 — P2) 1 (ury)

:/ (19061 = 62) 2 + (h1(-01) — P(-62)) (61 — 62) Ja.
Q

and the properties (A1), (A3), (A4) of I'p, € and hg supply the strong monotonicity of the
operator £. Next we prove the hemicontinuity of £. We have to show that the mapping
t— (E(p+ ta),@Hé(QupN) for fixed ¢, ¢, & € H}(QUTy) is continuous on [0, 1]. Let
to € [0,1], t,, — to, tn, € [0,1]. Then

o~

(E(@+ tnd) — E(¢ +100), &) 13 (aur )
< = tll@ls [+ | [ a0 4,) = b0+ t0) | 3.

~ ~

According to (A4) we have hy(x,d + t,¢) — hi(z, ¢ + to¢) and

(28)

\hy (2, ¢ + tnd)| < Fec (21+12) for almost all o € Q.

Now we use the embedding result of Trudinger [17] for two dimensional Lipschitzian
domains which tells us that

el < d([[v] ) Vo e HY(Q)
where d: Ry — Ry is a continuous, monotonic increasing function, lim, ., d(y) = oo.
Since ¢ € L?*(Q) we get an integrable upper bound for the integrand in the last term
in (28) and Lebesgue’s Dominated Convergence Theorem leads to the hemicontinuity
of £. Since & is strongly monotone and hemicontinuous there exists a unique solution
¢ € HY(QUTy) of £(¢) =0, and ||¢|| g1 < € holds where ¢ depends only on the data w*.
2. Next we prove that this solution possesses more regularity. We define

(€0(0). P nygoors) = | {£V6- Vo + 03 }do

(T Dugiaurny = [ { =920 Vo4 (1" = hn(.6) + 0)3 ) do

+/ Ghioddl Vo € Hy(QUTy).
I'n

Since 22F, € WHP(Q) is a fixed element there is a ¢ > 0 such that |z27,| < ¢ From the
properties (A4) of hg we obtain |hy(z,¢)| < c(2P*) eclziatol < c(2P*)ec®?l for almost
all z € Q. And therefore the embedding result of Trudinger mentioned in the first step
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of this proof yields

1ha(d)llee < e(=") d(llgllzn) <.
Furthermore, using that 227, € W'P(Q), (g%, f*) € L>®(Tn)" "2 x L>(Q) are fixed it
results that 7 € W=1P(QUT y). Thus taking benefit from Grogers regularity result [10]
applied to the equation & (¢) = 7 we find a g € (2,p] such that ¢ € W9 (QUT y) and
|Allw.a0 < cgo |7 ||w—1.p(ury)- Note that our assumptions (A1) concerning the domain
) and its boundary ensure, that 2 U 'y is regular in the sense of Groger.

3. The continuous embedding W1 (Q) <« (C(Q) ensures that ||¢+z£j2\| c@ <
c(qo,w*). Setting Z; = 0,7 = 1,...,n+1, Z} , = ¢ and using that w* € @ we find
a constant 7 > 1 such that (Z*,z *) € My, - and F, i, ~(Z*,w*) = 0. In other words,
(qo, 7, Z*,w*) is a solution of Problem (P). Moreover, z* = Z* + zP* is a thermodynamic
equilibrium of (21), (22).

4. Let (¢, 7, Z,w*) be a solution of Problem (P) and set ¥ = Z + 2P*. Then we have
Z*,2P%) € My, -, (Z,2°%) € Mz and Fy, (Z*,w*) = F3:(Z,w*) = 0. We define
¢ = min{qo, ¢}, 7 = max{r,7} and find that (Z*, zP*), (Z, 2P*y e Mgz, Faz(2%w*) =
F@;(Zw*) = 0 and F@;(Zw*) — F;7(Z*,w*) = 0. We test the last equation with
(Zl,...,ZnH,O). Since w*, w* 4+ (Z*,0,0) € Q we obtain

0= (Fs2(Z,w") — Fa2(Z*,w"),(Z1,. .., Zny1,0))

—~

wh' (Qury)
n+1

/ > a2V 2 - VZ;da
i,k=1
n ~
/ Z 7“04,6’ A/)e i= 10¢Z ( Zz 1041 i eZz 1ﬁz l)Z(az_ﬁz)szx
(,B)ER i=1
Exploiting assumption (A5) for 7,3 and the fact that (e* —e¥)(z —y) > 0 we find
n+1
/ > ai(.2)VZ - VZ;dz < 0.
i,k=1

Since according to (A2) the matrix (a;x(x,2))i k=1, n+1 is strongly elliptic we obtain
VZ = 0 and I'p # () supplies that Z =0,7=1,...,n+1. Finally, the test of the equation
Faﬁ(Z,w ) — Fy#(Z*,w*) =0 with (0,...,0, Zn+2 Z} . 5) leads to Tpio = 77 1o since
£ is strongly monotone. In summary we obtain Z = Z* which gives assertion iii). m

LEMMA 2. (Fredholm property of the linearization). We assume (Al) — (A5). Let
w* = (2P* g%, f*) € Q be given. Let (qo, T, Z*,w*) be the equilibrium solution of Prob-
lem (P) and 2* = Z* + 2P*. Then there exists a q1 € (2,q0] such that the operator
0z Fy, +(Z*,w*) is a Fredholm operator of index zero.

Proof. Let q € (2,qp]. The linearization is given in (27) and has to be evaluated now
in the point (Z*,w*). Since V2 =0,i=1,...,n+1, > o a;zf => | BizF and

azRozﬁ('7Z*) : 7 = azFaﬁ('a Z*) ' 7 (eZ?:l izl eZ?:l ﬁlz;)

3

+7ap( %) (akeELl xix ﬂkem:lﬁﬂ;)zc
k=1
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we obtain according to (27) that
(02Fy (2%, w") Z, ) x,

(29)

+/ 6zh0(',2*) : 7¢n+2 dzx, 7 € Xq, P e Xq/.
Q

Now we follow ideas in the proof of [15, Theorem 4.1]. We write 0z F, -(Z*,w*) in the
form 0z F, -(Z*,w*) = Ly + K, where the operators Ly, K,: X, — X7, are defined by

n+1 n+2

(Ly Z, ) x / Z i (2" )2k - Vb + eVZnya Vg + > Z; wz} dz,
=1
(KqZ,9)x,, Z/ Z Fap (-, 2%) e izt @7 Z(Oék — Bk) Zx Z(ai — Bi)Yidz
2 (@8 er k=1 i—1

n+2

+/ {6zh0(-,z*) TPt — Y Zs zpi} dz, ZeX, ¢eX?.
Q i=1

The operator K, is compact because of the compact embedding W4(Q) — L>(Q).
The operator L, is injective. The regularity result of Groger [10, Theorem 1, Remark 14]
guarantees that there exists a ¢1 € (2, go] such that L, is surjective. Then by Banach’s
Open Mapping Theorem and Nikolsky’s criterion for Fredholm operators the assertion
follows. =

LEMMA 3 (Injectivity of the linearization). We assume (Al) — (A5). Let w* =
(2P*, g%, f*) € Q be given. Let (qo, T, Z*,w*) be the equilibrium solution of Problem (P)
and z* = Z*+2P*. Then the linearization Oz Fy, -(Z*,w*): Xq — X*, is injective where
q1 s chosen as in Lemma 2.

Proof. 1t is sufficient to prove the injectivity of the operator on Xs. The deriva-
tive 0z F,, -(Z*,w*) has the form (29). Let 0z F,, .(Z*,w*)Z = 0, Z € X,. We test
this equation with ¢ = (Z1,...,Z,41,0) and take into account the strong elliptic-
ity condition for (a;x(z,2*)); k=1,....n+1, the fact that I'p # 0 and the property that
?aﬁ(.7z*)e22210w£ > 0 for all (o, ) € R and find that Z; = 0,3 =1,...,n + 1. Next
we use the test function ¢ = (0,...,0,Z,.2) and get

/ {6‘V7n+2‘2 t3 0 ho(+,2%) n+2}dx =0.

Q Zn+2

Since hyg is continuously differentiable and monotonic increasing in the argument z,.2
(see (A4)) we have az = ho(x,2%) > 0 a.e. on  which together with € > ¢ a.e. on Q
leads to Z,, .2 = 0. Thus also the injectivity of 0z F,, (Z*,w*): X4 — Xu follows. m
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Now we are able to formulate and prove the main result of the paper.

THEOREM 2 (Local existence and uniqueness of steady states). We assume (Al)
~ (A5). Let w* = (2P* g%, f*) € Q be given, and let (qo,T, Z*,w*) be the equilibrium
solution of Problem (P), z* = Z* 4+ zP* = (0,...,0, 2% ,) + 2P* (see Theorem 1).

Then there exists a q1 € (2,qo] such that the following assertion holds: There exist
neighbourhoods U C X,, of Z* and W C Y, x L>®(' )" 2 x L>=(Q) of w* = (2P*, g%, f*)
and a Ct-map ®: W — U such that Z = ®(w) iff

FCHJ’(Z?U}):O? (ZazD)qul,Ta ZEUv U):(ZD,g,f)GW

Proof. According to Lemma 2 and Lemma 3 there is a ¢; such that the operator
0z Fy, +(Z%,w*): Xq — X3, is an injective Fredholm operator of index zero. Therefore
the assertion of the theorem is a consequence of the Implicit Function Theorem. m

Finally, let us draw two conclusions from Theorem 2. Firstly, we define the set

Ql:{w:(zD,g,f)EYpXLOO(FN)"+2me(Q):giZO,izl,...,nJrl,

/ S - B) A =0 V(B eR. =Py <0}
I'p j=1

Obviously @ C @1 holds, but @1 contains also elements which are not compatible with
thermodynamic equilibria.

COROLLARY 1. We assume (A1) — (A5). Let w = (2,9, f) € Q1 be given. Then
there are constants q € (2,p], 7 > 1, € > 0 such that the following assertions hold: If

(30) ||VZZL)||LP(Q) <€, izla"'7n+1a

then there exists a Z € X, such that (¢, 7, Z,w) is a solution of (P). This solution lies in
a neighbourhood of an equilibrium solution (q,7,Z*,w*) of (P), and in this neighbourhood
there are no solutions (q,7, Z,w) with Z # Z.

Proof. Let w = (27,9, f) € Q1 be given. We define
e — Al i=1,...,n+1, 25 =200, w' =(""gFf)
I'pl Jrp
and find that w* € Q. Let (go, 7, Z*,w*) be the equilibrium solution of (P). Because of

Theorem 2 there exist constants ¢ € (2, qo], € > 0 such that the equation F, ;(Z,w) =0
has a locally unique solution Z € X if

n+1
(31) lw— W*||Yp><L°°(FN)”+2><L°°(Q) = Z HZ,D — Z,L'D*HWLP(Q) < €.
i=1
Since for i = 1,...,n + 1 the mean values of z” — 2P* on TI'p vanish we can apply the
Friedrich inequality to obtain
127 — 2P* lwiwq) < cllVZP o), i=1,...,n+1,

and choosing ¢ in (30) sufficiently small the inequality (31) can be fulfilled. =

REMARK 3. Let us consider the model of Subsection 1.1. In addition to (6) we assume
that ¢P —|—Czl,) =0onTp, g1 = g2 =93 =0on I'y. The we can apply Corollary 1 and find
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that the stationary energy model (2) — (6) has a locally unique solution, if the gradients
of (P and TP are small enough. Let us note that (2 is related to the applied voltage.

Secondly, we define the set
Q. = {w = (22,9, f) €Y, x L=(Ty)" "2 x L¥(Q): 22, < 0}.

Obviously @1 C Q- holds. The following considerations need some deeper insight into the
structure of the underlying reaction system. We introduce the stoichiometric subspace

S:span{a—ﬁz (a,ﬁ)eR} CR"

and its orthogonal complement S+, R” = S@S*. The corresponding projection operators
are denoted by IIs: R” — S and IIg. : R — S*. We show that there is a constant ¢ > 0
such that

(32) IA =g Alzr = [[TsAllge <c > [(a=B)- A YA€R™
(a,8)ER

It suffices to prove this inequality for A € S, || A||grn = 1. If (32) is not fulfilled, then there
exists a sequence A, with ||\, ||gn =1, A, € S and |(a — 3) - A\y| — 0 for all (o, B) € R.
We may assume that ), — Ag. Then [|Ag|lg= = 1 and Ay € SN S+ = {0} follows what
gives the contradiction.

COROLLARY 2. We assume (A1) — (A5). Let w = (2P, g, f) € Q2 be given. Then
there are constants q € (2,p], 7 > 1, € > 0 such that the following assertions hold: If

V2P|l v <€ i=1,....,n+1,
(33) 1325 (@i = B)zP ) <€ V(e B) €R,

lgilleryy <€ i=1,...,n+1,

then there exists a Z € X, such that (¢, 7, Z,w) is a solution of (P). This solution lies in
a neighbourhood of an equilibrium solution (q, 7, Z*,w*) of (P), and in this neighbourhood
there are no solutions (q,7, Z,w) with Z # Z.

Proof. Let w = (27, g, f) € Q2 be given. We define

1
7P = — Lari=1,...,.n+1, A= (zP,...,Z2),
T'pl Jr,

Dx Dxy\ __ Dx __ =D Dx _ _D
(Zl P 7Zn ) - HSi)V Zn+1 - Zn+17 Zn+2 - Zn+27

w = (ZD*a (O’ . . 707gn+2)7f)

and find again that w* € Q. Let (qo, 7, Z*, w*) be the equilibrium solution of (P). Because
of Theorem 2 there are constants q € (2, gol, € > 0 such that the equation Fy, -(Z,w) =0
has a locally unique solution Z € X if

n+1
D

(34)  flw = w*[ly, xpooryytoxre(@) = {||Zi — 27 lwre) + ||9¢||L°°(FN)} <€
=1
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From the Friedrich inequality and the inequality (32) it follows that

||w - w*HprLoo(rJ\,)H2 x L>°(Q)

n+1 n
<c (Y {1Vl +lgilliean }+ 3 || D (0i = 8) 2P ).
=1 (w,B)ER  i=1 L)

and € in (33) can be chosen such that (34) is fulfilled. =

REMARK 4. The assertions of Corollary 2 can be interpreted as follows. Let the
source terms for the Poisson equation (i.e. f, 22, 5, gnt2) be given. Then the stationary
energy model has a solution, if the driving forces for the fluxes induced by the boundary
data (i.e. the gradients Vz{,...,VzP, ), the driving forces for all reactions evaluated
on the boundary (i.e. the affinities > | (a; — 8;)2” on I'p) and the prescribed fluxes on
the boundary (i.e. g1,...,gn+1 on I'y) are small enough. This solution is locally unique.
One could expect that uniqueness should be valid globally in this case. But such a result
cannot be obtained by the Implicit Function Theorem.

REMARK 5. Theorem 2 gives a local existence and uniqueness result for the stationary
energy model (21), (22) in two space dimensions. Note that our equations involve cross
terms with respect to all species and the temperature. Griepentrog [9] considered the
special model of Subsection 1.1 for three-dimensional domains, too. He assumed that in
(10) there are no cross terms, i.e. o, = P, = P, = 0, and he replaced the conservation
law for the total energy (4) by the heat flow equation (7) which reads now as

V- (BVT) = 0 [VGal? + 0 [VG[2 + (G + G) R

Using the Implicit Function Theorem in a scale of Sobolev-Campanato spaces he obtained
a local existence and uniqueness result also in this case.

REMARK 6. There are other kinds of energy models where the temperature does
not mean the lattice temperature, but the carrier temperature. Such a model is studied
in [2], for example. The model equations have the form (21), (22) with an additional
source term in the (n + 1)-th equation which relaxes the carrier temperature to the given
constant lattice temperature. For d-dimensional domains, d > 1, a global existence result
was derived, but under restrictive assumptions which are not fulfilled for our models.
For example, the matrix a;, was supposed to be uniformly positive definite on Q x R"+2
in contrast to our assumption (23). For two-dimensional domains a uniqueness result
was obtained, if the boundary data are near a thermodynamic equilibrium, but here all
reactions were omitted.

REMARK 7. In [1, 18] models are derived where both the lattice and the carrier
temperatures are considered as state variables. The methods of the present paper can be
used to study such more general problems, too.

REMARK 8. If in the energy model (16), (20) the temperature is considered as a
constant positive parameter and the (n + 1)-th equation is omitted, then the remaining
equations form an electro-reaction-diffusion system. We studied such problems and cor-
responding instationary problems in [3, 4, 5, 6]. There the boundary conditions for the
continuity equations differ from those used in the present paper. But they guarantee that
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a stationary solution of the electro-reaction-diffusion system is a thermodynamic equi-

librium, too. Especially, results concerning the long-time behaviour of solutions of the

instationary problem were obtained. In semiconductor technology modelling so called

pair diffusion models play an important role. These models are electro-reaction-diffusion

systems with a nonlinear Poisson equation (since the charge numbers ¢; now depend on

the potential ¢) which we investigated in [7, 8, 13].

1]

2]

[10]

[11]

[12]

References

G. Albinus, H. Gajewski, and R. Hiinlich, Thermodynamic design of energy models
of semiconductor devices, Nonlinearity 15 (2002), 367-383.

P. Degond, S. Génieys, and A. Jingel, A steady-state system in nonequilibrium
thermodynamics including thermal and electrical effects, Math. Meth. Appl. Sci. 21
(1998), 1399-1413.

A. Glitzky, FElektro-Reaktions-Diffusionssysteme mit nichiglatten Daten, Habilita-
tionsschrift, Humboldt-Universitat zu Berlin, 2001, Logos-Verlag, Berlin, 2002.

A. Glitzky, K. Groger, and R. Hiinlich, Free energy and dissipation rate for reaction
diffusion processes of electrically charged species, Applicable Analysis 60 (1996), 201—
217.

A. Glitzky and R. Hiinlich, Energy estimates and asymptotics for electro—reaction—
diffusion systems, Z. Angew. Math. Mech. 77 (1997), 823-832.

A. Glitzky and R. Hiinlich, Global estimates and asymptotics for electro—reaction—
diffusion systems in heterostructures, Applicable Analysis 66 (1997), 205-226.

A. Glitzky and R. Hinlich, Global properties of pair diffusion models, Adv. Math.
Sci. Appl. 11 (2001), 293-321.

A. Glitzky and R. Hiinlich, Global existence result for pair diffusion models, Preprint
784, Weierstrafl-Institut fiir Angewandte Analysis und Stochastik, Berlin, 2002, sub-
mitted to SIAM Journal on Mathematical Analysis.

J. A. Griepentrog, An application of the implicit function theorem to an energy model
of the semiconductor theory, Z. Angew. Math. Mech. 79 (1999), 43-51.

K. Groger, A WP —estimate for solutions to mized boundary value problems for
second order elliptic differential equations, Math. Ann. 283 (1989), 679-687.

R. Haase, Thermodynamics of irreversible processes, Dover, New York, 1990.

R. Hinlich, G. Albinus, H. Gajewski, A. Glitzky, W. Ropke, and J. Knopke, Mod-
elling and simulation of power devices for high-voltage integrated circuits, in: Mathe-
matics — Key Technology for the Future, W. Jéger and H.—J. Krebs (eds.), Springer,
Berlin, 2003, pp. 401-412.



18

[13]

[16]

[17]

[18]

A. GLITZKY AND R. HUNLICH

R. Hiinlich and A. Glitzky, On energy estimates for electro—diffusion equations aris-
ing in semiconductor technology, in: Partial differential equations. Theory and nu-
merical solution, W. Jéger, J. Necas, O. John, K. Najzar, and J. Stara (eds.), Chap-
man & Hall/CRC Research Notes in Mathematics, vol. 406, Boca Raton, 2000,
pp. 158-174.

D. E. Kane and R. M. Swanson, Modeling of electron-hole scattering in semiconduc-
tor devices, IEEE Trans. ED 34 (1993), 120-140.

L. Recke, Applications of the Implicit Function Theorem to quasi-linear elliptic
boundary value problems with non-smooth data, Comm. Partial Differential Equa-
tions 20 (1995), 1457-1479.

W. V. van Roosbroeck, Theory of flow of electrons and holes in germanium and
other semiconductors, Bell Syst. Techn. J. 29 (1950), 560-607.

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. of Math-
ematics and Mechanics 17 (1967), 473-483.

G. Wachutka, Rigorous thermodynamic treatment of heat generation and conduction
in semiconductor device modelling, IEEE Trans. CAD 9 (1990), 1141-1149.



