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We review our recent results on the low temperature behavior of Kac models. We

discuss translation-invariant models and the Kac version of the random �eld model.
For the latter we outline, how various coarse-graining techniques can be used to
prove ferromagnetic ordering in dimensions d � 3, small randomness, and low tem-
peratures, uniformly in the range of the interaction.

1 Introduction

Mean �eld theory is one of the standard tools of statistical mechanics to get a fast

�rst insight into the behaviour of a complex interacting system. The most prominent
example in this context is of course the famous van der Waals theory for the liquid
vapour transition. However, mean �eld models have some undesirable \non-physical"
properties, in particular they give rise to non-convex thermodynamic potentials, and
as a consequence non-monotonous relations between intensive variables and their

conjugate �elds. These pathologies can be ad-hoc cured by the Maxwell construction,
which simply consists in replacing the non-convex potentials by their convex hulls. To
make sense of this procedure as an asymptotic theory for realistic physical models,
Kac et al. [17] proposed a model with long, but �nite, range interactions (of the

form J(r) � dJ(r), with J a function with bounded support or rapid decay),
known as the Kac model. Taking the in�nite volume limit for such a model �rst,
and then considering the limit as the range of interactions tends to in�nity while
appropriately rescaling the interaction strength, one then recovers mean �eld theory.

The most precise and complete form of this asymptotic relation was later proven by
Lebowitz and Penrose [23]. They showed that the rate function for the total mean
magnetization in the Kac model converges, in the limit of in�nite interaction range,
to the convex hull of the corresponding rate function in the Curie-Weiss model.
Such results were later recovered for more complicated mean �eld models, such as

the Curie-Weiss-Potts model (see e.g. [16] for a survey).

While these results show that mean �eld theory can provide reasonable free energies,
the issue remains whether �ner result, and in particular the phase structure of

the model on the level of the Gibbs measures is properly represented. Obviously
this cannot in general be true, since mean �eld theory does not see the inuence
of dimensionality. How is this reected in the properties of the Gibbs measures
of the corresponding Kac models? If we take, for instance the Kac version of the

ferromagnetic Ising model, it is clear that for any value of the parameter , if d = 1,
there exists a unique Gibbs state, while the mean �eld model has two extremal
Gibbs states if the inverse temperature, �, is smaller than the critical values 1. The
question to what extend a re�ned analysis of the Gibbs measures of the Kac models
allows one to see some trace of the mean �eld phase transition was addressed in

a seminal paper by Cassandro, Orlandi, and Presutti [13]. They showed that on
suitably chosen mesoscopic scales the local mean magnetization under the Gibbs
measure of the Kac-Ising model is concentrated sharply near the values of the two
mean �eld magnetisations �m�(�) (if  is small). Moreover, typical magnetization

pro�les are constant near one of the two values over lengths of the order of exp(�1�).

In higher dimension, one would expect that the convergence of the Gibbs measures to
the mean-�eld limit is even more straightforward since now more than two extremal

states can exist already for �nite . A natural conjecture would be that the critical
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temperature �
c
() in all such models should converge to that of the mean �eld model,

as  # 0. Such a result was proven in the case of the Ising model in d � 2 only rather

recently in Cassandro, Marra, and Presutti [9] and Bovier and Zahradn��k [10]. Both

proofs rely very heavily on the spin ip symmetry of the model, and therefore do

not generalize easily to a wider class of systems.

Studying Kac versions of models with more complex interactions is actually very

attractive since one can hope to take advantage of the fact that the model is \close"

to a mean �eld model in some sense. This may allow, for instance, to estimate the

local entropy of con�gurations close to candidate ground states. This has lead us

to be interested in Kac versions of certain types of disordered spin systems whose

mean �eld versions can be rigorously analysed. A particularly attractive model in

this respect are the Hop�eld models. On the level of large deviation results �a la

Lebowitz-Penrose, this program has been carried out successfully in [2]. Pushing

the analysis towards the Gibbs measures, however, proved much harder. In d = 1 it

was shown in [3] that local pro�les again concentrate near the admissible mean �eld

values, and lower bounds on the typical length over which these remain constant

were given. Some �ner results were later proven in the simpler case of a random �eld

Kac-Ising model by Cassandro, Orlandi and Picco [12].

The analysis of higher dimensional disordered models has proven to be a major

challenge due to the surprising lack of adequate techniques. The development of

such tools has been a central theme of the research project that is being reported

here. Let us mention that parallel to our e�orts, the idea of taking advantage of Kac

interactions has been very successfully implemented in a di�erent context, namely

that of the liquid vapour transition in a particle system in continuous space. De�ning

a model with a rather particular form of a four body Kac-interaction, Lebowitz,

Maazel, and Presutti [22] have given the �rst proof of such a phase transition in a

single type particle system in continuous space.

The basic diÆculties encountered in the analysis of the Gibbs measures of Kac

models at low temperatures comes from the fact that the basic methods of low

temperature expansions are all devised for models with predominantly strong and

short range interaction. In such a situation it is possible to devise perturbative

expansions around a single \ground state con�guration". In Kac models, where the

interactions are very weak, but long range, such an expansion must invariably fail

(unless � = O(�d)). As all methods to analyse the phase structure of lattice models

rely on such expansion techniques, there one of the �rst tasks is the development of

suitable methods of low temperature expansion in such a situation. This was done

in [11] (and also in [22]).

In the present paper we review our results about the Gibbs measures of (mostly)

long-range models. The most diÆcult part of the analysis concerns the proof of the

existence of ferromagnetic order in the random �eld Kac model for a range of tem-

peratures that is uniform in the Kac parameter , for dimensions d � 3. We cannot

give full proofs here but we will explain the various coarse-graining procedures that

are involved. This is done in a sequence of steps. Our main philosophy is the reduc-

tion of the long-range random �eld model to an e�ective discrete short range contour

model on large enough scales. The latter can then be treated by the renormalization

group techniques of Bricmont and Kupiainen. This strategy was already successfully
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applied to prove ferromagnetic ordering in the continuous spin random �eld model

in [18].

To start, in Section 2 we describe how to de�ne contours in long-range models.

The contour de�nition we give is somewhat subtle [11],[15], but it is needed, even in

translation-invariantmodels, for a satisfactory understanding of the low-temperature

phases. These contours will be thick on the order of 1=. In Section 3 we review the

known results about short-range random �eld models. We �rst outline of the RG-

treatment of the short range random �eld Ising model in [8], see also [6]. Then we

sketch how the continuous spin random �eld model can be reduced to the discrete

case, as a �rst successful application of the reduction strategy.

In Section 4 we give our main result about the random �eld Kac Ising model and

provide some ideas about the key steps of the proof. The coarse-graining to the

nearest neighbor model builds on the contour techniques of section 2, but there

is some new diÆculty that necessitates the introduction of an additional coarse-

graining on an even larger scale than the range of the interaction.

2 Translation-invariant long-range models

An important technical tool for the analysis of the phase structure of spin systems

are reformulations in terms of contour models and convergent cluster expansions.

In the case of Kac models, there are some fundamentally new e�ects that required

a substantial reformulation of the classical theory. In [11] this was developed for a

rather broad class of predominantly \ferromagnetic" models with weak long range

interactions. The challenge here is to develop convergent expansions for a range of

temperatures that is independent of the range of the interactions, but depends only

on the \total strength" of the dominant part of the attractive interaction.

Speci�cally, we consider Hamiltonians of the form

H(�) =
X

fi;jg

�
i�j(�i; �j) +

X

i

U(�i) (1)

with �i taking values in a �nite set Q. The interaction kernel �
i�j is assumed to have

�nite range 1=, to be roughly constant on its range and to verify
P

k k�


kk1 = O(1).
We don't assume any symmetry under permutation of the spin-values.

In this context [11] developed a contour representation for the partition function that

allows to compute relevant physical quantities in terms of convergent expansions for

a range of temperatures that is uniform in  as  tends to 0. As expanded on in

[24], this allows to extend the full power of the Pirogov-Sinai theory to such model,

and in particular to give a rigorous analysis of the phase diagram in this range of

temperatures.

In the remainder of this section we will explain the main ideas in a simpli�ed context

that will be relevant for the application in the random �eld Kac model.
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2.1 1=-contour model representation

The main step of the proof is a reformulation of the long-range model in terms of a

suitable contour model. We call it 1=-contour model because the resulting contours
will be thick on the scale of the range of the interaction. Remember that our main
emphasis lies on the fact that we are able to treat models without permutation
symmetry under the spins. However, for the sake of a transparent explanation of the
basic features that are due to the long-range nature, let restrict ourselves just to the

simplest non-trivial long-range model, i.e. let us specialize to the Ising model with
spin-ip symmetric translation-invariant interaction. We remark that the formulae
to be discussed here have immediate random generalizations to the random �eld
Kac model, to be discussed in Section 4.

So, let us look at the Hamiltonian

H(�) = �

X

fi;jg
i6=j

J(i� j)�i�j (2)

The spin variables � = (�i)i2Zd take values in f�1; 1gZ
d

. We take the simplest
possible choice for the couplings being the indicator function of a cube of sidelength
R = �1 2 N and the energy-di�erence due to the pair interaction of ipping one

spin in a sea of plusses is exactly equal to one, that is

J(i) =
1U�

R
(i)

jU�

R
j

where U�

R
= fj 6= 0; jjj � Rg (3)

The main observation is that, in contrast to a short range model, it is impossible to
expand the model around the perfect plus- resp. minus-groundstates. Applying the
standard PS-theory for short-range models would only yield ferromagnetic ordering
for temperatures that decrease with the range of the interaction tending to in�nity.
This problem is cured (very roughly) in the following way: 1) Replace the perfect

in�nite volume plus- or minus-groundstate by sets of perturbed plus- or minus-
like con�gurations ("ensembles") that are characterized by a low density of wrong
signs. These ensembles can be treated by high-temperature expansions. 2) De�ne the
contours as the complement of those regions, that is those regions of space where the

spins are not plus- resp. minus-like. Show that these contours obey Peierls estimates
and their ensembles can be treated by methods known from short-range Pirogov-
Sinai theory. While this is the correct main idea, a contour de�nition in terms of
just one density constraint following the above procedure literally is a little too

simplistic, and needs some modi�cation.

Contours of a con�guration and Peierls bounds

We would like to include a correct de�nition of a contours and low-density ensembles
for the Ising model, although it seems technically slightly involved at �rst sight.

The version of the contour de�nition coincides essentially with the one given in [11];
however we present the version given in [15] that is also used in [7].

Fix a density threshold Æ > 0 and a sign s = �1. We call i a (Æ; s)-correct point of a
con�guration � if
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#fj : j � i 2 U�

R; �j 6= sg �
Æ

2
jU�

Rj (4)

Note that this de�nition makes no reference of the sign at the site i itself; it is only
a property of the con�guration around it. So, let us de�ne the cleaned con�guration

�� = ��(�) corresponding to � by setting

��i(�) =

�
s if i is (Æ; s)� correct for �
�i else,

(5)

We denote by IÆ(�) the set of Æ-incorrect point of the con�guration �. This set would
be a natural �rst guess for the support of the contours to be de�ned. This is clear
because deviation from almost homogeneous spin-con�gurations should come at a
high energetic price. However, in order to arrive at a successful decomposition of
the partition function into low-density ensembles and contours a little more care is
needed.

First of all, as usual in short-range PS-theory, a contour � = (� ; �� ) is by de�nition
a pair given by a connected subset ��Zd, called the support, and a spin con�guration
�� on this subset. Here we will de�ne supports of contours that are thick of the order
of the range of the interaction. To be explicit, partition Zd into disjoint cubes of side
length l > 2R whose centers lie of the sites of a square sub-lattice of Zd, and assume
that l = �R, � > 2. Denote the set of all subsets of Zd that can be written as unions
of such cubes (with �xed sublattice!) by C(l). Denote by [A]R = fj; jj�ij � R; i 2 Ag
the R-neighborhood of a set A.

Now, take a second density threshold value ~Æ < Æ.

De�nition 2.1 Let � be a spin-con�guration. We call the connected components of

I�(�) :=
\

M2C(l);M�[IÆ(�)]R
M�[I~Æ

(�M ��Mc )]R

M

(6)

the support of the contours of the con�guration �. A system of contours � =
f�1; : : : ; �ng is admissible if there is a spin-con�guration � such that � is the asso-

ciated system of contours.

Denote by �s(�) the set of (Æ; s)-correct points. Then one has that d(�+(�); ��
(�)) >

l and Zd = I�(�)[�+(�)[�
�
(�). It is not too diÆcult to see that the intersection

is over non-empty sets M and I�(�) is in fact the smallest set M having the three
properties appearing in the last intersection. This is done explicitly in [15] Lemma
2.2. �.

If we want to control the �nite volume Gibbs measures with plus boundary conditions
we have to look at the partition function in �nite volume � with plus boundary
conditions. In the following the summation over all spin-con�gurations will be split
in the following way. 1) Sum over all possible sets I�(�), and the possible spin
con�gurations on those sets. 2) Conditional on those sets and spin-con�gurations
sum over all spin-con�gurations that are compatible with them.

This procedure gives the following decomposition into a sum over compatible con-
tours and partition functions of restricted low-density ensembles.
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X

��

e
��H

+

�
(��) =
X

�

�Y
�

�(� )
�
Z

+;r

�+
(+�c; �

�
)Z

�;r

��
(�

�
)

(7)

For the partition functions of the restricted ensembles one has the explicit formula

Z
s;r

�
(��c) =

X
��

 Y
i2[�]R

1i is (Æ;s) correct for �

!

� exp

 
2�

X
fi;jg\� 6=;

i6=j

J(i� j)1�i 6=s1�j 6=s � �

X
i2�

1�i 6=s

!
(8)

They depend on boundary conditions imposed by the spin-con�gurations �
�
on the

contours (and the plus boundary condition outside of �). The contour activities

�(� ) simply collect the terms of the interactions that are only between sites located

on the support of the contour. (Here the interaction between contour-sites and the

cleaned con�guration put on the sites outside of the contour is included, too.)

A main virtue of the contour-de�nition is that the following Peierls estimate holds.

Lemma 1. There is a dimension-dependent constant c = c(~Æ) such that

�(� ) � e
�c(~Æ)�j� j (9)

Note the important fact that the volume j� j is always a multiple of ld and so we have

a rather strong suppression. How can we understand that this volume-suppression

is always on the scale of the range of the interaction? It is because once there are

incorrect points for some density, there are even ConstRd of them, for a slightly

lowered density, and each of these contributes an amount of energy that is bounded

below by a positive constant. We don't give a full proof here.

Cluster Expansion of restricted "low density" ensembles

The next important step of the preparation of the model is the following: The

restricted partition function (8) can be written as a polymer partition function

Z
s;r

�
(��c) =

X
(P1;:::;Pn)cp

nY
i=1

~wPi (10)

with polymers Pi that interact only via volume constraints. The logic to achieve

this is as follows: Expand the interaction term between any pair of sites i; j in (8)

�rst. We note that each site with the wrong sign �s is energetically suppressed,

due to the second term in the second exponential in (2.9). So, there is suÆcient

energetic suppression of a con�guration as soon as there are not too many of such

spins cooperating, so that the pair-inteaction term is not too big. This is shown using

the indicator functions in the �rst brackets. Next, the indicator functions describing
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the density-constraint are expanded. This is needed in order to produce a gas of

non-interacting polymers. Their activities are then shown to obey nice estimates

and allow for a cluster expansion.

Because of their geometry these polymers were given the name galaxies in [11]. To be

a little more precise, the polymers are of the form P = (t1; : : : ; tl; N1; : : : ; Nk) where

ti are trees connecting the sets Ni. The trees ti arise from the high-temperature

expansion in the restricted ensembles. The sets Ni are connected components of the

form [jBR(j). They arise from the expansion of the non-local density constraints.

One has for the polymer activities ~wP of galaxies P the estimates

X

P :V (P )3i

j ~wP je
const �jV (P )j � "

(11)

where V (P ) =
S

t V (t) [
S

iNi.

From (11) follows that one may now perform a cluster expansion of (10) and ex-

ponentiate the restricted partition function. We stress again at this point that the

same constructions work for non-symmetric models with �nite state space.

The resulting representation is then the starting point for the further treatment of

such model by short-range Pirogov-Sinai type techniques. This is explained in [24].

3 Random short range models and Coarse-grainings

To achieve our �nal goal and treat the Kac random �eld Ising model we will �nd

an e�ective short-range model that describes the long range model on a suÆciently

large scale. For this short-range model ferromagnetic order is well-established [8]

and can be carried over to the original model. This philosophy of "reduction to

an e�ective short-range Ising type model" was already devised in [18] to treat the

nearest continuous spin model. This will be shortly discussed in Subsection 3.2.

However, at �rst we must turn to a review of the short-range model itself.

3.1 The random �eld Ising model

So, let us consider the random �eld Ising model (with symmetric non-degenerate

distribution) and nearest neighbor interaction whose Hamiltonian is given by

H[�](�) = �
X

hi;ji

�i�j �
X

i

�i�i (12)

Here the (�i)i2Zd, are i.i.d. symmetrically distributed random variables that satisfy

the probabilistic bound

P [�i � t] � e
� t

2

2�2 (13)

where the �2 � 0 governing the smallness of the random variables has to be suÆ-

ciently small.

We are then interested in the random Gibbs measures
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�[�](d�) _ e
��H[�](�)

d� (14)

where d� is the symmetric product measure on the spin con�gurations �. (Of course,
this is to be understood as a solution to the DLR-equations written down for �xed
random �eld con�guration �.)

For this model it was proved in [1] that there is unicity of the Gibbs measure in
2-dimensions, at any �xed temperature, for P-a.e. �. This is in contrast to the case
of the model without disorder, which shows that the introduction of arbitrarily weak
random perturbations can destroy a phase transition. It shows that randomness can
potentially alter the behavior of the system in a fundamental way, and cannot always
be treated as a small perturbation. We remark that their (martingale-)method was
later applied by [5] to show the non-localization of interfaces in random environ-
ments in the framework of certain models for interfaces without overhangs in space
dimensions less than 3 = 2 + 1.

In the three or more dimensional random �eld Ising model, for small disorder, and
small temperature, however, disorder does not destroy the ferromagnetic ordering.
Here, Bricmont and Kupiainen showed in their famous paper [8] that there exist
Gibbs measures �+[�] (and �

�[�]), which, for typical magnetic �eld con�guration �,
describe small perturbations around a plus-like (respectively a minus-like) in�nite-
volume ground state. A plus-like ground state looks like a sea of pluses with rare
islands of minuses in those regions of space where the realizations of the magnetic
�elds happen to be mostly oriented to favor the minus spins. We remark that the
result of [8] was a nice example where a question that was truly under debate among
theoretical physicists could be settled by mathematicians.

Contour model representation of short-range random �eld model - renormalization

group

The method they used to control the Gibbs measures, the so-called `renormalization
group', is a multiscale method that consists in a successive application of a certain
coarse-graining/rescaling procedure. This is necessary because there is no simple
Peierls-condition for this model (say around the all-plus state.) The individual steps
are controlled by expansion methods and probabilistic estimates of the undesirable
event that regions of exceptionally large magnetic �elds occur. This has to be done
for all hierarchies occurring. This method is conceptually beautiful but technically
hard to implement. It was later also applied by [6] to show the stability of certain
interface models in dimensions d+ 1 � 4.

What is the Bricmont-Kupiainen renormalization group in a little more detail? First
of all, one has to �nd a representation of the model as a short-range contour model.
Here a contour is again a pair � = (� ; �� ) of a support and a spin-con�guration on
the support. Then the RG-transformation of the model is carried out in the contour
representation in �nite but arbitrarily large volume, for every �xed realization of the
disorder �. This RG-transformation roughly consists of two steps: Fix an integer L
describing the blocklength. First step: Integration of small contours with diameter
smaller than L=4. The resulting expression for the partition function contains only a
sum over the remaining large contours with new interaction produced by the small-
contour sum. Second step: Do a coarse-graining of the remaining large contours.
This eliminates the "wiggles" of the remaining large contours so that the resulting
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model can then be rescaled. The result is a model that lives again on a lattice with

the original lattice spacing.

It is the virtue of Bricmont and Kupiainen to have found a representation of the

model that is stable under this transformation for all hierarchies, along with a suit-

able type of bounds. Running the RG an iterative proof shows that a) temperature

e�ectively becomes smaller and b) that randomness becomes smaller and thus more

irrelevant on large hierarchies. This translates into the fact that the formation of

large contours is very unlikely. This proves ferromagnetic ordering. The same basic

structure underlies the work on the stability of SOS-interfaces by the authors.

Now, let us provide some more details about the representation of the contour model

that is "BK-renormalizable", that is invariant under the renormalization procedure

sketched above. These details will be needed to understand some key features of the

proof for the Kac random �eld model sketched in Section 4. For a spin con�guration

and a collection of contours � we denote by �i(� ) the spin con�guration that equals

�i on � and equals s for i 2 �s. Denote by Z�[�] the partition function of the model

after an arbitrary number of steps of the renormalization group transformation.

Then, for each realization of �, and after each �nite number of steps one always has

the representation

Z�[�] =
X

�

�Y
�

�[�](� )
�

� exp
�X
i2�

Si(�)�i[� ] +
X

C2�+(� )

S+
C (�) +

X

C2�
�

(� )

S�C (�) +
X
C

W �
C (�)

�
(15)

Here Si(�) is a local random �eld at the site i, which depends on the original random

�eld � only in a stricly local way. It obeys a bound of the type (13) with a new

"renormalized (upper bound on the) variance" �2. The quantity �2 depends on the

hierarchy and decreases with application of the RG. S�C (�) are nonlocal random

�elds, depending on connected sets C on the lattice of at least 2 points. They are

exponentially suppressed in the volume,

jS�C (�)j � e�const ~�jCj

(16)

with some hierarchy-dependent constant ~� and keep the symmetry of the model,

S+
C (�) = �S�C (��). When we will try to apply the renormalization group strategy

to the long range model this geometric structure of the C 's being connected sets

will become important and cause some additional complexities.

The �[�](� ) are contour activities, depending on the realization of the random �elds.

Essentially they obey deterministic Peierls bounds 0 � �[�](� ) � e�const �j� j, � being

a "renormalized inverse temperature". However the Peierls bound just stated holds

only for contours in regions of space where the underlying randomness was not "too

big". A failure of the simple Peierls bound may happen in the so called large �eld

region. Without being explicit about this let us mention that it is one important

part of the proof to show that this large �eld region is very exceptional and becomes

less and less important under RG. Finally, W �
C [�] are nonlocal interactions between

the contours; they are nonzero only for connected sets C that intersect the support
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of the contours and obey deterministic upper bounds of the same type as the non-

local random �elds. They are just correction terms whose creation under RG can't

be avoided.

The hard technical work of the RG-analysis then consists in showing that this form is

invariant, with � " 1, ~� " 1, �2 # 0 and the bad region dying out under successive

application of the RG.

3.2 The continuous spin random �eld model

In the context of disordered systems the continuous spin version corresponding to

the random �eld model is an important model to study. In the physics literature

is no less popular than the Ising model itself, so it is interesting to see whether

ferromagnetic ordering can be proved for this model, too. Now the spin variables mi

take values in R and the formal Hamiltonian for a spin-con�guration m 2 R
Z
d

in

the in�nite volume is given by

H[�] (m) =
q

2

X

hi;ji

(mi �mj)
2
+
X

i

V (mi)�
X

i

�imi (17)

where the �rst summation extends over all pairs of nearest neighbors hi; ji. The �nite
volume Gibbs measures are then obviously given by taking the exponential of the

negative �nite volume restriction of (17) as the non-normalized Lebesgue-density.

The potential V has a symmetric double-well structure. We will stick to the most

popular choice which is a polynomial of fourth order. Let us choose a scaling where

the potential has unity curvature in the minima �m� that is

V (mi) =
(m2

i � (m�)2)
2

8m�2
(18)

and investigate the Gibbs measures for q � 0 suÆciently small and q (m�)
2
suf-

�ciently large. The latter quantity gives the order of magnitude of the minimal

energetic contribution to the Hamiltonian (17) caused by neighboring spins in dif-

ferent wells. Thus it corresponds to a Peierls constant. Moreover we impose a �xed

uniform bound on j�ij, independent of �
2. This is for technical reasons.

Since we are dealing with continuous degrees of freedom a contour de�nition and

a direct application of the renormalization group in the framework of Bricmont

and Kupiainen is not immediate, and if possible would entail a huge amount of

technical work. Moreover one might be afraid that the additional continuous degrees

of freedom could lead to a possible loss of order.

In this context we show that there is in fact a `ferromagnetic' phase transition, in

dimensions d � 3, for suÆciently small �2 (meaning small disorder), suÆciently large

q(m�)2, and not too big q(m�)
2

3 (controlling the `anharmonicity' of the minima, as it

can be seen from the proof). We prove the following: The [random] Gibbs-probability

(w.r.t. to the �nite volume-measure with plus-boundary conditions) of �nding the

spin left to the positive potential well is very small, uniformly in the volume, on a

set of realizations of � of a size [w.r.t P] of at least 1�e
� const

�2 . The precise statement

is found in Theorem 1 p.1272 of [18]. For more information and explanation we refer

to the introduction of [18]. Let us however mention the following: The particular
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form of the potential as a fourth order polynomial is of no importance, as well as
the requirement of uniform boundedness on the random �elds and the restriction to
nearest neighbor couplings in the Hamiltonian (instead of �nite-range interactions)
could be given up.

Reduction to short-range contour model - Coarse-graining in spin-space

The novelty of the proof is the use of a stochastic mapping of the continuous spins to
their sign-�eld (independently over the sites). We choose it such that the probability
that a continuous spin mx is mapped to its sign is given by 1

2
(1 + tanh(am�jmij)).

(Here a is a parameter close to one that needs to be tuned in a useful way.) The image
measure of a particular sign-con�guration then gives the approximate weights of
�nding continuous spins in the neighborhood of the potential wells indexed by these
signs. Using a suitable combination between high temperature and low temperature
expansions it is shown that the resulting model has the form of an Ising model with
exponentially decaying interactions. (These expansions are related to those used
by [Za00] in the translation-invariant context where however, due to the lack of
positivity, no probabilistic interpretation can be given.) This can be seen as a `single-
site-coarse-graining'-method. Next, having constructed the Ising-system, it can be
cast into a contour model representation for which the renormalization group of
[BrKu88] can be used. We remark that a lot of technical work is needed to implement
this idea of the reduction to a discrete model. Still, while doing so, there is still a
great deal of work saved which was already done on the level of the discrete RG.

For the readers interested in the theory of generalized Gibbs measures we also remark
that this mapping is really compatible with the in�nite volume limit in the sense
that the in�nite system under consideration is mapped to a proper in�nite volume
Gibbs measure of an Ising model (see Theorem 2 of [18], p.1273). So, this stochastic
map also provides an interesting example of a `coarse-graining without pathologies'.
This means that the coarse-graining produces no `arti�cial' non-local dependencies
in the conditional expectations of the resulting measure.

Let us just mention at this place that, in contrast to that, disordered systems fre-
quently provide a source of various non-Gibbsian measures when we look at them
jointly on the product space of disorder variables and spin variables. This is known
as the so-called Morita-approach in theoretical physics. For more rigorous research
on this we refer to [19, 20, 21] and the references therein.

4 The random �eld Kac Ising model

Let us �nally turn to the discussion of our main result. Consider the model with
Hamiltonian

H[�](�) = �
X

fi;jg
i6=j

J(i� j)�i�j �
X

i

�i�i

Then we prove the following.
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Theorem 4.1 Assume that d � 3. Assume that �i are symmetrically distributed

i.i.d. and j�ij � ÆRF. Then there is 0 > 0 and �0 <1, such that for all  � 0 and

� � �0 we have

E

�
�+
�;[�](�i = 1)

�
>

1

2
:

We will sketch two steps of the proof. In the �rst step, described in 4.1 we will

obtain a contour-representation that is quite analogous to the one described for the

translation-invariant Kac-model in Subsection 2.1. Unfortunately the result is not

yet good enough to yield a formulation of the model allows for the RG-treatment.

We will then briey indicated what is the problem and the cure in Subsection 4.1.

4.1 1=-contour model representation

Let us do the decomposition into contours and low-density ensembles without any

reference to the con�guration of the the random �eld �.

The �rst main point is the following decomposition that generalizes (1) to the ran-

dom situation

ZKac
;� [�] �

X
��

e��H
+

�
[�](��)

=
X
�

�Y
�

�(� )
�
exp

 
�
X
i2�

�i�i[� ]

!
Z

+;r

�+
[��+](+�c; �� ) Z

�;r

�
�

[��
�

](�� )
(19)

Here the contour-activities are identical to those in the non-random case described

in (8) but the restricted partition functions acquire the modi�ed form

Z
s;r

� [��](��c) =
X
��

 Y
i2[�]R

1i is (Æ;s) correct for �

!

� exp

 
2�

X
fi;jg\� 6=;

i6=j

J(i� j)1�i 6=s1�j 6=s � �
X
i2�

(1 + 2s�i)1�i 6=s

!
(20)

They can be written as partition functions for a polymer gas in the very same way as

for the translation-invariant model. Of course, now the polymer activities will depend

on the random �elds. Under the condition of uniform boundedness of the random

�elds with ÆRF suÆciently small there is however still suÆcient suppression of the

polymer-activities. Performing the cluster expansion for these partition functions we

obtain the representation

ZKac
;� [�] =

X
�

�Y
�

�(� )
�

� exp

 
�
X
i2�

�i�i[� ] +
X
C

V (C)��+(� )

w+
C
(�) +

X
C

V (C)��
�
(� )

w�

C
(�) +

X
Cicp�

w�
C
(�)

!
(21)
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The symbols C denote clusters of the type of polymers de�ned below (10), and V (C)
is just the union of the volumes V (P ) over the polymers P the cluster is made of.
From a uniform version of (11) than follows that the corresponding �elds obey the
uniform exponential estimate

X

C:V (C)3i

sup
�

jw
+;�;�

C
(�)jeconst �V (C) � Const (22)

At �rst glance this looks close to the form (15) that is invariant under the Bricmont-
Kupiainen renormalization group, but it is not! This is due to the fact that the clus-
ters C are made of polymers whose geometric structure is quite di�erent from the con-

nected sets occurring for the short-range random �eld model. We will see that prob-
lems are occurring if we perform one additional RG-step of the Bricmont-Kupiainen
renormalization. The problems are due to the fact that in the RG-invariant formu-
lation of the model connected sets appear as indices of the non-local contributions
of the �eld while we are dealing here with possibly spread out geometric objects.

Remember that the clusters are made of polymers which contain trees arising from
the expansion of the long-range interactions. The simplest and "most spread-out"
polymer occurring is just a string composed of bonds whose length are of the order
of the range of the interaction R. The most straightforward idea to create corre-

sponding connected sets would therefor be to perform one additional blocking-step
with blocks of side-length of the order R. However, as we will see below this won't
provide us with the desired bounds that allow for further application of the RG for
a range of inverse temperatures � that is uniform in the range of interaction. To

explain the problem and its cure a little more in detail let us be more general and
see what happens under a blocking with block-length LR, L being a constant to be
determined.

4.2 LR-blocking

Let us denote by x a block on the RL-lattice and put for the local part of the e�ective
random �eld associated to this block the trial de�nition

Sx(�) :=
X

i2x

��i +
X

C:V (C)�x or

d(C)<LR=4

w+

C
(�)� w�

C
(�)

2n(C)
(23)

where n(C) is the number of blocks on the RL-lattice that are intersected by the

volume of the cluster V (C). This is a straightforward and natural construction in
the RG-treatment.

The remaining sums over clusters of galaxies have to be blocked by infection. They

give rise to a non-local small �eld term SK that is indexed by connected subsets K
of adjacent blocks on the RL-lattice.

S�K(�) :=
X

C:C7!K and

d(C)�(RL)=4

w�
C
(�)

(24)

where we sum over those clusters C for which K is the minimal set of adjacent

RL-blocks that contains their volume V (C).
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The local term poses no diÆculties, it is the non-local problem that is diÆcult.

Indeed, to treat the �rst, we note that the variation of the function Sx(�) w.r.t.
change of a single random �eld is at most �ÆRF + e�const �. Since Sx(�) depends only
on �i in a set of sites that is of the order (RL)d one gets by a well-known martingale
estimate the desired Gaussian upper bound of the form (13)

P

h
Sx � t

i
� e

�const
t2

(�ÆRF+e�const �)2(RL)d (25)

for all t � 0.

Let us now try to get an exponential bound of the type (16) for the non-local part

(24), where jCj has to be replaced by the rescaled volume, which is just the number
of blocks n = jKj=(RL)d. The best we can do is to estimate

jS�
K
j �

X
i2K

X
C:V (C)3i and C7!K

and d(C)�(RL)=4

jw�
C
(�)j � n(RL)de�const �Ln

(26)

Here the factor L in the exponential stems from the fact that the "worst" clusters
that are contributing to the sum have a minimal volume of the order L. This is
already seen by looking at polymers made of trees with bonds with width of the
order R. The prefactor n(RL)d counts the number of "anchoring points" i of such
clusters. This bound is not unnatural because the cluster-sum corresponds to a sort
of free energy which should be of the order of the volume, measured on the original
scale. This shows that this bound can not easily be improved. Now, the problem is
that the prefactor causes this bound to be non-uniform in R.

However, for any �xed L, the exponential dominates the prefactor as soon as we
demand that � � Const logR. In fact, in this range of temperatures the full prepa-
ration of the model to accommodate for the short-range RG is easy and we get

ferromagnetic ordering without too much diÆculty.

However, the reason why we made L explicit in the above formulas is that we want
to make it R-dependent according to L(R) = Const logR.

Then, for � � �0 suÆciently large, where �0 is uniform in R, we get the desired
estimate

jS�
K
j � e�const �L(R)n

(27)

The present argument only gives an outline why we are forced to deal with an
additional length-scale. It remains to show that a model (15) with desired bounds
can be rigorously derived, incorporating the inuence of contours whose diameter is

smaller than RL=4. There is a fair amount of technical work involved. The details
and additional arguments can be found in [7].
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