Weierstraf3-Institut
fiir Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 — 8633

A new model for passive mode-locking in a

semiconductor laser

Andrei Vladimirov !, Dmitry Turaev 2, Gregory Kozyreff 3,

submitted: 25th November 2003

1 2

Weierstrass Institute Ben Gurion University

for Applied Analysis P.O.B. 653

and Stochastics, 84105 Beer-Sheva
Mohrenstrasse 39 Israel

D - 10117 Berlin E-Mail: turaev@cs.bgu.ac.il
Germany

E-Mail: vladimir@wias-berlin.de

3 OCIAM
Mathematical Institute
24-29 St.Giles’
Oxford OX1 3LB
United Kingdom
E-Mail: kozyreff@math.ox.ac.uk

No. 893
Berlin 2003

Wl 11Als

2000 Mathematics Subject Classification. 78A60,34C23.

Key words and phrases. semiconductor laser, mode-locking, delay differential equations, bifur-
cations.

1999 Physics and Astronomy Classification Scheme. 42.60.Fc,42.55.Px,42.60.Mi,42.65.P¢,42.60.Gd.



Edited by

Weierstraf-Institut fiir Angewandte Analysis und Stochastik (WIAS)
Mohrenstrafie 39

10117 Berlin

Germany
Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de

World Wide Web:  http://www.wias-berlin.de/



Abstract

We propose a new model for passive mode-locking that is a set of ordi-
nary delay differential equations. We assume the ring cavity geometry and a
Lorentzian spectral filtering of the pulses, but do not use small gain and loss
and weak saturation approximations. By means of a continuation method
we study mode-locking solutions and their stability. We found that stable
mode-locking can exist even when the non-lasing state between pulses be-
comes unstable.

The passive mode-locking (ML) of lasers is a very effective technique to generate
high quality short pulses with high repetition rates. Monolithic semiconductor lasers
(SCL), passively or hybrid mode-locked, are ideal for applications in high speed
telecommunications on account of their compactness, low cost, and reliability [1].
Large semiconductor material gain coefficients, short recovery times and small size
of the device allow to achieve high repetition rates. The basic mechanism for passive
ML is well understood since the analysis by New [2], who showed that the differential
saturation of the gain and losses in the laser cavity opens a short temporal window
of net gain for pulses. A wide range of experimental, numerical, and analytical
methods exist to characterize ML (for an overview, see Haus[3] and Avrutin et al.[4]).
While numerical integrations of travelling wave field equations coupled to material
equations (distributed models) faithfully reproduce experimental observations, they
offer little insight on the underlying dynamics. This is why analytical approaches
based on lumped element models, mainly those introduced by New [2] and Haus
[5, 6, 7, 8, 9] for slow and fast saturable absorbers, are still widely used. Inevitably,
though, these approaches require certain approximations that in many cases are
hardly satisfied in experiment. New, for instance, assumed small gain and loss per
cavity round trip and ignored spectral filtering. Haus did take spectral filtering
into consideration under the parabolic approximation and showed that even for an
infinite bandwidth ML stability boundaries are different from that obtained by New
[5]. In order to get analytical expression for ML pulse shape further approximations
had to be made on the way, such as the assumption that the intra-cavity media are
only slightly saturated. Yet, this leads to an agreement between analytical results
and experimental data on the dye laser [8]. This success has prompted many studies
of variations of Haus’ model [4].

In this paper, we propose and discuss a new model for passive ML that is a set of
ordinary delay differential equations (DDE). In doing so, we avoid the approxima-
tions of small gain and loss per cavity round trip and weak saturation; these do not
hold well in SCL devices. On the other hand, as in most lumped element models,



we neglect the spatial effects inherent to a linear cavity, such as spatial hole burn-
ing and self-interference of the pulse near the mirrors. This amounts to consider a
unidirectional lasing ring cavity. Absorbing, amplifying, and spectral filtering seg-
ments are placed in succession in the cavity. Using the lumped-element approach
[4] the following equations governing the evolution of the field amplitude a (¢) at the
entrance of the absorber section, the gain g (¢), and the saturable losses q (¢), can
be derived [10]:

a(t+T) = [ L 9) e 0 S0 () o, (1)
g(t) = Jy — 79 (t) — e @ (e — 1) a (1), (2)
q(t)=Jy— () —s(1—e ) la(). (3)

Here «,, 7., and J, (r = g,q) are respectively the linewidth enhancement (self-
phase modulation) factors, carrier density relaxation rates, and pump parameters
for the gain and loss sections of the cavity. The cavity and semiconductor material
dispersive effects are taken into account by the linear impulse response function
f(t); /& < 1 is the linear attenuation factor per pass and T is the cold cavity
round-trip time. In (2) and (3), |a (¢)|* is taken to be the pulse power divided by
the saturation energy E, of the amplification section, while s = E,/E, is the ratio
of saturation energies of the gain and loss sections.

Typical monolithic devices comprise Bragg reflectors, whose frequency bandwidth
is much narrower than that of the material gain. Hence, the spectral filtering of the
cavity is mainly determined by the mirrors. We shall assume it to be Lorentzian, i.e.
f (t) = ye . This is valid close enough to the main peak of the spectral reflectance
and if the Bragg response is reactive only [11]. Equation (1) can then be replaced
by the delay differential equation:

vy ra(t) +al(t) = \/Eek;ag-"(t*T)f —a(t-T), (t—T). (4)
Indeed, the general solution of (4) is given by a (t) = a (0) e ™'+ 7 7~ *)rhs (§ — T) d#,
where rhs (t — T') is the right hand side of (4), and it coincides with (1) provided
that a (0) = [°__erhs( — T)df. Strictly speaking, Eq. (4) is equivalent to Eq.
(1) only under this specific initial condition. However, since in the long time limit,
the effect of initial condition on the solution decays exponentially in time, its precise
form can be safely ignored.

Equations (2), (3), and (4) constitute the new model of this Letter. New’s results
2] can be obtained by setting v 'a (¢) = 0 in the left hand side of (4) and expanding
exponentials in (4), (2), and (3) up to the first order terms in g and g, while Haus’
master equation can be recovered in the limit v7' — oo by applying the same
expansion together with the weak saturation approximation [10].

One advantage of this new formulation of the ML problem is that it allows us to
make use of techniques that have been developed for DDE systems. From now on,
for simplicity, we restrict our numerical analysis to the case when «,, = 0 in (4).
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The constant intensity (cw) solution of (4), (2), and (3) exists above the linear
threshold, J,/v, > (J,/7, — In k). Its bifurcation diagram is shown in Fig. 1 in the
(J,,J,)-plane for the parameter values given in the figure caption. The curves H,
indicate Andronov-Hopf bifurcation to time-periodic intensity with period close to
T/n. Thus, the curve H; corresponds to the fundamental ML regime with pulse
repetition frequency close to ; = 2« /T, while the curves H, with n = 2,34
signal the onset of multiple pulse ML regimes with the repetition frequencies close
to n2;. On the other hand, Hg is an Andronov-Hopf bifurcation with a frequency
approximately eight times smaller than €;. This bifurcation is responsible for the
Q-switching instability.

Jo/Yq

Figure 1: Andronov-Hopf bifurcations of the cw solution of Egs. (2), (3), and (4). The

parameters are: T = 25 ps, v~ !

k = 0.5.

:0.4ps,ag,q:0,s:5,'yg’1:1ns,7q’1:10ps,and

Similarly to the Andronov-Hopf bifurcation curves the branches of periodic solutions
and their stability have been calculated numerically using DDE-BIFTOOL [12]. The
result is shown in Fig. 2 for J, = 27,. One can see from the figure that the branch
P, corresponding to the fundamental ML regime has two stability ranges. The first
of them is very narrow and located near the left Andronov-Hopf bifurcation point
at small values of J, where the amplitude of P; is small. The second stability range
is limited by two bifurcation points. The left one is a secondary Andronov-Hopf
bifurcation point labeled QP. This bifurcation produces a solution with quasiperi-



odic laser intensity that corresponds to a ML regime modulated by the Q-switching
frequency. With the decrease of the pump parameter J, below the QP point, the
modulation depth grows. The right bifurcation point, labeled SN, is a saddle-node
bifurcation whereby two periodic intensity solutions, one stable and another unsta-
ble, merge and disappear. The solutions corresponding to multiple pulse ML are
labeled P, and Ps in Fig. 2. These solutions undergo bifurcations similar to those
of the fundamental branch P;. From Fig. 2 one can notice that bistability exists
between different mode-locking regimes for some ranges of parameters.
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Figure 2: Branches of ML solutions bifurcating from the Andronov-Hopf bifurcation
curves shown in Fig. 1. Solid (dotted) line indicate stable (unstable) solutions. The
branch of constant intensity solutions is labeled cw. J; = 2v,. Other parameters are the
same as in Fig 1.

Fig. 3 illustrates stable time traces of the pulse intensity and the net gain per
cavity round trip G = g — q + In k for three different values of J, on the P;branch.
Surprisingly, New’s stability criterion is only satisfied in Fig. 4b. This criterion
stipulates that G < 0 between pulses when |a|?> is small in order to prevent the
growth of fluctuations on the wings of the pulses [2]. In other words, the zero
intensity background has to be “stable” between pulses. However, Figs. 3a and 3c
clearly contradict this point.

As it is seen from Fig. 3c, where the net gain window is opened well before the
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Figure 3: Time dependencies of the amplitude (solid line) of a fundamental ML pulse and
the net gain parameter (dotted line). (a) Jg/v4 = 0.4, (b) Jg/v4 = 0.8, (c) Jg/vq = 1.32.
The parameters are the same as in Fig 2.

arrival of a pulse in the course of the carrier density recovery process, ML solution
can exhibit a behavior similar to that of the Q-switched laser with a saturable
absorber [13]. This is a manifestation of delayed stability loss, a phenomenon that
is typical of singularly perturbed dynamical systems. In dynamical terms, the phase
space trajectory corresponding to a Q-switching regime spends most of the time
between the pulses near the so-called slow manifold a = 0, passing from its stable
part, G < 0, to the unstable one, G > 0. A pulse only starts to develop when
the cumulative gain [;> G (6) df becomes positive, where (¢,t,) is the time interval
spent near the slow manifold. This implies that G (t2) > 0, i.e. similarly to the ML
pulse shown in Fig. 3c, the Q-switching pulse has “unstable” background at the
leading edge.

More generally, stable ML pulses with “unstable” background can exist due to the
difference between the pulse group velocity v, and the group velocity v, of small
perturbations. Consider a ML regime with the period 7, = T + 07, with 67 < T'.
The group velocity of the pulse is then v, = vT/T, ~ v (1 —0T/T), where v is
the group velocity in the cold cavity. For small perturbations, we note that for v7T'
large enough, a (t) + va (t) ~ va(t +~ ') in the left hand side of (4). Equating this
approximately to ya (t — T'), we obtain a period T' + !, which yields a velocity
vy = v [1 — (fyT)fl]. ML pulses with “unstable” leading edge shown in Fig. 3c
are stable because they move faster than the perturbation (see Fig. 4). Similarly,
the pulses with an “unstable” background on the trailing edge can be stable if they
move slower than the perturbation, as for the parameter values of Fig. 3a. The
latter situation was already noted by Paschotta and Keller[14].

To conclude, we have derived a DDE model for passive ML. Its extension to active
or hybrid ML and inclusion of additional microscopic effects, e.g. carrier heating,
is straightforward. This model is easy to simulate and analyze. It describes the
appearance of ML pulses with “unstable” background, that are missing in the clas-
sical ML theories developed by New and Haus. Unlike the symmetric sech-pulses
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Figure 4: Group velocities of ML pulses divided by the cold cavity group velocity v. Dot-
ted horizontal line represents the group velocity of small perturbations vy. The parameters
are the same as in Fig 2.

of the Haus theory, the pulses with “unstable” background are asymmetric and can
exist in the case of high cavity losses [10], ks < 1, i.e. in a situation typical of
semiconductor lasers .
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