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Matthias Birkner!

20th November 2003

Abstract

We give a sufficient criterion for the weak disorder regime of directed
polymers in random environment, which extends a well-known second moment
criterion. We use a stochastic representation of the size-biased law of the
partition function.
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We consider the so-called directed polymer in random environment, being defined as
follows: Let p(x,y) = p(y — x), x,y € Z be a shift-invariant, irreducible transition
kernel, (S, )nen, the corresponding random walk. Let £(z,n),z € Z% n € N be i.i.d.
random variables satisfying

Elexp(B&(x,n))] < oo for all f € R, (1)

we denote their cumulant generating function by

A(B) := log Elexp(5¢(x, n))]. (2)

We think of the graph of S,, as the (directed) polymer, which is influenced by the
random environment generated by the {(z,n) through a reweighting of paths with

eni=en(&8) = exp (0 BE(S;.5) = A(9)))
that is, we are interested in the random probability measures on path space given
by
1
pn(ds) = ——Elen1(S € ds) [€(-, )],
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where the normalising constant (or partition function) is given by

Zo=Eleald) = Y [T plsiresexp (30 Ao k) = X@)).

81,ev0y8n EZA

Note that (Z,) is a martingale, and hence converges almost surely. This model has
been studied by many authors, see e.g. [2] and the references given there. It is known
that the behaviour of i, as n — oo depends on whether lim,, Z,, > 0 or lim,, Z,, = 0.
One speaks of weak disorder in the first, and of strong disorder in the second case.
Our aim here is to give a condition for the weak disorder regime.

Let (S,) and (S!,) be two independent p-random walks starting from Sy = S} = 0,
and let V := 3> 1(S, = S)) be the number of times the two paths meet. Define

o, ==sup {a > 1:E[a"|S] < oo almost surely}. (3)

Proposition 1 If A\(26) — 2A(0) < log av, then
lim, .00 Zn > 0 almost surely,

that is, the directed polymer is in the weak disorder regime.

Note that Proposition 1 implicitly requires that the difference random walk S — S’ be
transient, for otherwise we would have log .. = 0, but we also have A\(23)—2A(5) > 0
by convexity. For symmetric simple random walk in dimension d = 1,2 we have
Zn, — 0 almost surely for any 5 # 0, see [2], Thm. 2.3 (b).

Observe that

1

a. > ay:=sup{a>1:Ela"] < oo} = 1 — P (S, # S, for n > 1)

An easy calculation shows that (Z,) is an L?*-bounded martingale iff A\(23) —2A(8) <
log aa, cf. e.g. [2], equation (1.8) and the paragraph below it on p. 707 and the
references given there (note that for symmetric simple random walk, P o) (S, #
S! forn > 1) =Py(S, #0forn > 1) =: q).

If S — S’ is transient and p satisfies

sup Pn(@) < 00 (4)

na Dy Pn(Y)Pn (=)
then we have

o= 1+ (S e (= ) > e (5)

where p,(x) := Py(S,, = z) is the n-step transition probability of a p-random walk,
and H(p,) = — >, pn(z)log(p,(x)) is its entropy, see [1], Thm. 5. Note that (4) is
automatically satisfied if a local central limit theorem holds for p, in particular, it
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holds for symmetric simple random walk. Thus, Proposition 1 is an extension of the
second moment condition (1.8) in [2].

Let Z, have the size-biased law of Z,, i.c.

A

E[f(Zn)] = E[Znf(Z0)]

for any bounded, measurable f. The proof of Proposition 1 hinges on the represen-
tation of the sie-biased law given in the following lemma.

Lemma 1 Let (S},) be a p-random walk starting from Sy = 0, let §(x, n) be as above,
and let E(x,n), v € Z¢, n=1,2,... be an i.i.d. sequence with a tilted law given by

E[f(£)] = e M Elexp(8) f(€)]  for any bounded f : Ry — R.

Let

Za =B [ exp (32 (105 = SES 1) + 108 # 8))e(81.9) = M)

5,60, €]

Then Zn and Zn have the same distribution.

Proof. Note that Z, is a function of S/, ¢ and f , namely

Zn = Z Hp Sj— 173]

exp (z (Ls; = $))&(s5,3) + (s # S))&(s5.3) = MB)).

J=1

We have by definition for a bounded f:R; — R
Elf(Z.)] = ElZ.f(Zy)]
= e Y Hp 851, 5/)E | exp (S, B(sk, k) f(Z0)|

= R exp(Ch, BE(S) k) *
P TT P10 xp(7 560 1) = A(9))

.....
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Proof of Proposition 1. As P(Z, > 0) € {0,1} by Kolmogorov’s 0 — 1 law (see
e.g. (1.7) in [2]), the proposition will be proved if we can show that under the
given condition, the sequence Z,,, n € N is uniformly integrable. This, in turn, is
equivalent to tightness of the sequence Zn, see e.g. Lemma 9 in [1]. We see from
Lemma 1 that this is equivalent to whether the family £(Z,), n € N, is tight. Let
us denote by a := Eexp(ﬂé — A(B)) = exp(A(206) — 2A\(B)), then

E[Z,|S] = E [a#{lgign:sizsg}‘sl} 7

hence o < «, implies supn~E[Zn|S’] < oo almost surely, which in particular shows
that the family of laws £(Z,,) is tight. O

Remark. Note that we obtain a sufficient condition for weak disorder by averaging
out &(+,-) and 5(, -} in the construction of Z, given in Lemma 1. In order to obtain a
sharp criterion one would have to analyse the distribution of Z, itself. Unfortunately,
this seems a rather hard problem.
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