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A condition for weak disorder for
directed polymers in random environment

Matthias Birkner1
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Abstract

We give a sufficient criterion for the weak disorder regime of directed

polymers in random environment, which extends a well-known second moment

criterion. We use a stochastic representation of the size-biased law of the

partition function.
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We consider the so-called directed polymer in random environment, being defined as
follows: Let p(x, y) = p(y − x), x, y ∈ Z

d be a shift-invariant, irreducible transition
kernel, (Sn)n∈N0

the corresponding random walk. Let ξ(x, n), x ∈ Z
d, n ∈ N be i.i.d.

random variables satisfying

E[exp(βξ(x, n))] < ∞ for all β ∈ R, (1)

we denote their cumulant generating function by

λ(β) := log E[exp(βξ(x, n))]. (2)

We think of the graph of Sn as the (directed) polymer, which is influenced by the
random environment generated by the ξ(x, n) through a reweighting of paths with

en := en(ξ, S) := exp
(

∑n

j=1
βξ(Sj, j) − λ(β)

)

,

that is, we are interested in the random probability measures on path space given
by

µn(ds) =
1

Zn

E[en1(S ∈ ds) | ξ(·, ·)],
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where the normalising constant (or partition function) is given by

Zn = E[en|ξ] =
∑

s1,...,sn∈Zd

∏n

j=1
p(sj−1, sj) exp

(

∑n

k=1
βξ(sk, k) − λ(β)

)

.

Note that (Zn) is a martingale, and hence converges almost surely. This model has
been studied by many authors, see e.g. [2] and the references given there. It is known
that the behaviour of µn as n → ∞ depends on whether limn Zn > 0 or limn Zn = 0.
One speaks of weak disorder in the first, and of strong disorder in the second case.
Our aim here is to give a condition for the weak disorder regime.

Let (Sn) and (S ′
n) be two independent p-random walks starting from S0 = S ′

0 = 0,
and let V :=

∑∞
n=1 1(Sn = S ′

n) be the number of times the two paths meet. Define

α∗ := sup {α ≥ 1 : E[αV |S ′] < ∞ almost surely}. (3)

Proposition 1 If λ(2β) − 2λ(β) < log α∗, then

limn→∞ Zn > 0 almost surely,

that is, the directed polymer is in the weak disorder regime.

Note that Proposition 1 implicitly requires that the difference random walk S−S ′ be
transient, for otherwise we would have log α∗ = 0, but we also have λ(2β)−2λ(β) ≥ 0
by convexity. For symmetric simple random walk in dimension d = 1, 2 we have
Zn → 0 almost surely for any β 6= 0, see [2], Thm. 2.3 (b).

Observe that

α∗ ≥ α2 := sup {α ≥ 1 : E[αV ] < ∞} =
1

1 − P(0,0)(Sn 6= S ′
n for n ≥ 1)

.

An easy calculation shows that (Zn) is an L2-bounded martingale iff λ(2β)−2λ(β) <

log α2, cf. e.g. [2], equation (1.8) and the paragraph below it on p. 707 and the
references given there (note that for symmetric simple random walk, P(0,0)(Sn 6=
S ′

n for n ≥ 1) = P0(Sn 6= 0 for n ≥ 1) =: q).

If S − S ′ is transient and p satisfies

sup
n,x

pn(x)
∑

y pn(y)pn(−y)
< ∞ (4)

then we have

α∗ = 1 +
( ∞

∑

n=1

exp ( − H(pn))
)−1

> α2, (5)

where pn(x) := P0(Sn = x) is the n-step transition probability of a p-random walk,
and H(pn) = −

∑

x pn(x) log(pn(x)) is its entropy, see [1], Thm. 5. Note that (4) is
automatically satisfied if a local central limit theorem holds for p, in particular, it
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holds for symmetric simple random walk. Thus, Proposition 1 is an extension of the
second moment condition (1.8) in [2].

Let Ẑn have the size-biased law of Zn, i.e.

E[f(Ẑn)] = E[Znf(Zn)]

for any bounded, measurable f . The proof of Proposition 1 hinges on the represen-
tation of the sie-biased law given in the following lemma.

Lemma 1 Let (S ′
n) be a p-random walk starting from S ′

0 = 0, let ξ(x, n) be as above,

and let ξ̂(x, n), x ∈ Z
d, n = 1, 2, . . . be an i.i.d. sequence with a tilted law given by

E[f(ξ̂)] = e−λ(β)
E[exp(βξ)f(ξ)] for any bounded f : R+ → R.

Let

Z̃n := E

[

exp
( n

∑

j=1

(1(Sj = S ′
j)ξ̂(Sj, j) + 1(Sj 6= S ′

j)ξ(Sj , j) − λ(β))
)
∣

∣

∣
S ′, ξ(·, ·), ξ̂·

]

.

Then Ẑn and Z̃n have the same distribution.

Proof. Note that Z̃n is a function of S ′, ξ and ξ̂, namely

Z̃n =
∑

s1,...,sn∈Zd

n
∏

j=1

p(sj−1, sj) ×

exp
( n

∑

j=1

(1(sj = S ′
j)ξ̂(sj , j) + 1(sj 6= S ′

j)ξ(sj, j) − λ(β))
)

.

We have by definition for a bounded f : R+ → R

E[f(Ẑn)] = E[Znf(Zn)]

= e−nλ(β)
∑

s1,...,sn∈Zd

n
∏

j=1

p(sj−1, sj)E
[

exp (
∑n

k=1 βξ(sk, k)) f(Zn)
]

= e−nλ(β)
E

[

exp(
∑n

k=1 βξ(S ′
k, k)) ×

f
(

∑

y1,...,yn

∏n

1 p(yj−1, yj) exp(
∑n

1 βξ(yi, i)− λ(β)))
)]

= E

[

e−nλ(β)
E

[

...
∣

∣

∣
S ′

]]

= E

[

f
(

∑

y1,...,yn

∏n

1 p(yj−1, yj) ×

exp
(

∑n

1β(1{yi=S′

i
}ξ̂(yi, i) + 1{yi 6=S′

i
}ξ(yi, i))− λ(β)

))

]

= E[f(Z̃n)]. 2
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Proof of Proposition 1. As P(Z∞ > 0) ∈ {0, 1} by Kolmogorov’s 0 − 1 law (see
e.g. (1.7) in [2]), the proposition will be proved if we can show that under the
given condition, the sequence Zn, n ∈ N is uniformly integrable. This, in turn, is
equivalent to tightness of the sequence Ẑn, see e.g. Lemma 9 in [1]. We see from
Lemma 1 that this is equivalent to whether the family L(Z̃n), n ∈ N, is tight. Let
us denote by α := E exp(βξ̂ − λ(β)) = exp(λ(2β) − 2λ(β)), then

E[Z̃n|S
′] = E

[

α#{1≤i≤n:Si=S′

i
}
∣

∣

∣
S ′

]

,

hence α < α∗ implies supn E[Z̃n|S
′] < ∞ almost surely, which in particular shows

that the family of laws L(Z̃n) is tight. 2
Remark. Note that we obtain a sufficient condition for weak disorder by averaging
out ξ(·, ·) and ξ̃(·, ·) in the construction of Z̃n given in Lemma 1. In order to obtain a
sharp criterion one would have to analyse the distribution of Z̃n itself. Unfortunately,
this seems a rather hard problem.
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