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Abstract

We consider the inverse problem of recovering a 2D periodic structure

from scattered waves measured above and below the structure. We discuss

convergence and implementation of an optimization method for solving the

inverse TE transmission problem, following an approach �rst developed by

Kirsch and Kress for acoustic obstacle scattering. The convergence analysis

includes the case of Lipschitz grating pro�les and relies on variational methods

and solvability properties of periodic boundary integral equations. Numerical

results for exact and noisy data demonstrate the practicability of the inversion

algorithm.

1 Introduction

The reconstruction of the shape of periodic structures from measurements of scat-

tered electromagnetic waves is a problem of great practical importance for instance

in modern di�ractive optics [2], [21]. Direct scattering problems for di�raction grat-

ings and corresponding optimal design problems were extensively studied using vari-

ational methods or integral equation methods by several authors; see, e.g., [3], [6],

[9], [11], [20].

We assume the grating to be periodic in one direction and constant in the other,

and consider the TE mode of polarization for the di�raction by a periodic inter-

face between two materials. This corresponds to a two{dimensional quasi{periodic

transmission problem for the Helmholtz equation. In Section 2 we will give the

variational formulation of the direct transmission problem and recall an existence

and uniqueness result.

The goal of this paper is the investigation of an optimization method applied to

the inverse transmission problem of reconstructing the periodic interface. Here the

grating is illuminated by an incident monochromatic plane wave, and data of the

scattered �eld are taken on two lines lying above and below the grating pro�le,

respectively. The eÆcient numerical solution of inverse problems of this type is

challenging due to the fact that they are both nonlinear and severely ill{posed. We

refer to [7] for an overview on inverse scattering problems in general (nonperiodic)

structures.

For the reconstruction of perfectly re
ecting periodic interfaces leading to the inverse

Dirichlet problem, several inversion algorithms based on analytic continuation [15],

iterative regularization [14], linear sampling [1], and the Kirsch{Kress optimization

method [5], [4] became recently available. The latter approach was originally devel-

oped for acoustic obstacle scattering [17], [7], [23] and avoids the solution of direct
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di�raction problems. Its implementation for the inverse periodic Dirichlet prob-

lem turned out to be rather easy, and a mathematical foundation in the practically

important case of nonsmooth grating pro�les could be given [13].

In Sections 3{5 we introduce and analyze the pro�le reconstruction method for our

inverse transmission problem. As in [13], [5], this method splits the inverse problem

into a linear ill{posed part to reconstruct the scattered �eld and a nonlinear well{

posed part to �nd the pro�le curve. The minimization of the Tikhonov functional

for the linear problem and the defect minimization of the transmission conditions

are then combined into one cost functional. Much e�ort will be spent on proving

a convergence result in the general case of Lipschitz grating pro�les, extending the

variational approach of [13] for the perfectly re
ecting case. However, in the trans-

mission case, it is harder to establish convergence of the cost functional; see Section

4 for a crucial density result which is based on (nontrivial) continuity and solvability

properties of layer potentials on periodic Lipschitz graphs.

The implementation of the reconstruction algorithm as a two{step method will be

discussed in Section 6. Similar to [4], two unknown density functions are �rst com-

puted from near{�eld data measured above and below the grating structure, which

allows us to represent the scattered and transmitted �elds as single layer potentials.

Then these density functions are used as inputs to a nonlinear least squares problem,

which determines the unknown pro�le as a curve where the associated transmission

conditions are ful�lled. After discretization, the least squares problem is solved iter-

atively by the Gauss{Newton method. Finally, numerical results for smooth grating

pro�les with exact and noisy data are reported.

An alternative reconstruction method based on �nite element and optimization tech-

niques for the inverse periodic transmission problem is presented in [10].

2 Direct di�raction problem

Let the pro�le of the di�raction grating be given by the curve

� = �f := f(x1; x2) 2 R
2 : x2 = f(x1)g

with f 2 C0;1
per, i.e., f is a periodic Lipschitz function of period 2�. Assume that the

regions above and below �f

G
� := fx 2 R

2 : x2 ? f(x1) ; x1 2 Rg

are �lled with materials whose indices of refraction (or wave numbers) k� satisfy

k
�
> 0 ; Re k� > 0 ; Im k

� � 0 : (2.1)

Suppose further that a plane wave given by

v
in(x) := exp(i�x1 � i�x2)

is incident on � from the top, where � = k
+ sin �, � = k

+ cos �, and � 2 (��=2; �=2)
is the incident angle. Then the di�racted �eld v

sc in the TE (transverse electric)
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mode satis�es the Helmholtz equations

�vsc + (k�)2vsc = 0 in G
�
; (2.2)

together with the transmission conditions

[v]� = [@�v]� = 0 (2.3)

for the total �eld v given by

v = v
sc + v

in in G
+
; v = v

sc in G
�
:

Here � denotes the unit normal to � pointing from G
+ to G�, and [v]� stands for

the jump across �:

[v]�(x) = r
�
v(x)� r

+
v(x) := lim

h!+0
fv(x+ h�(x))� v(x� h�(x))g ; x 2 � : (2.4)

Moreover, v is assumed to be �-quasiperiodic

v(x1 + 2�; x2) = exp(2i��)v(x1; x2) ; (2.5)

and we require that v satis�es radiation conditions as x2 ! �1, i.e., the scattered

�eld can be expanded as in�nite sums of plane waves

v
sc(x) =

X
n2Z

A
�
n expfi(n + �)x1 � i�

�
n x2g ;

x2 > max(f) resp. x2 < min(f) ;

(2.6)

with the Rayleigh coeÆcients A�n 2 C . Here ��n = �n(�; k
�) is de�ned by

�n(�; k) := (k2 � (n + �)2)1=2 ; 0 � arg �n(�; k) < � : (2.7)

Since ��n are real for at most �nitely many indices, we observe that only a �nite

number of plane waves in the sums (2.6) propagate into the far �eld, with the

remaining evanescent waves decaying exponentially as x2 ! �1.

The transmission problem (2.2), (2.3), (2.5), (2.6) admits a variational formulation

in a bounded periodic cell in R2 , enforcing the transmission and radiation conditions

(cf. [3], [9], [11]). Introduce arti�cial boundaries

�� := f(x1; b
�) : 0 � x1 � 2�g ; b+ > max(f) ; b� < min(f) ;

and the bounded domain


 := (0; 2�)� (b�; b+) :

The function u := exp(�i�x1)v, which is 2�-periodic in x1, satis�es the Helmholtz

equation

(�� + k
2)u = 0 in 
 ; with k = k

� in 
� := 
 \G� ; (2.8)
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where we use the notation

r� := r+ i(�; 0) ; �� := r� � r� = �+ 2i�@1 � �
2
;

and the corresponding transmission conditions [u]� = [@�u]� = 0 are included. The

radiation conditions (2.6) are equivalent to the nonlocal boundary conditions

@�uj�+ + T
+
u = �2i� exp(�i�b+) =: g+ ; @�uj�� + T

�
u = 0 ; (2.9)

where T� is the periodic pseudodi�erential operator (of order 1)

T
�
u = T (�; k�)u := �

X
n2Z

i�n(�; k
�)û�n exp(inx1) (2.10)

and û�n are the Fourier coeÆcients of u(x1; b
�). The operator T� is bounded from

H
s
per(�

�) intoHs�1
per (�

�) for any s 2 R, whereHs
per stands for the 2�-periodic Sobolev

space of order s. For s � 0 let Hs
per(
) denote the Sobolev space of functions on 


which are 2�-periodic in x1.

Integrating by parts then leads to the variational formulation of the direct di�raction

problem (2.8), (2.9): Determine u 2 H1
per(
) such that

B(u; ') :=

Z



(r�u � r�'� k
2
u') +

Z
�+
(T+

u)'+

Z
��
(T�u)'

=

Z
�+
g
+
' ; 8' 2 H1

per(
) :

(2.11)

Since the operators T� : H
1=2
per (��) ! H

�1=2
per (��) are continuous, the sesquilinear

form B generates a continuous linear operator B acting from H
1
per(
) into its dual

H
1
per(
)

0, with respect to the pairing (u; ')!
R


u', via

(Bu; ') = B(u; ') ; u; ' 2 H1
per(
) : (2.12)

We recall the following existence and uniqueness result, which is a special case of [3,

Thm.3.5].

Theorem 2.1 If the grating pro�le � is given by a periodic Lipschitz graph and the

refractive index k satis�es (2.1), then the operator B de�ned by (2.12) is invert-

ible from H
1
per(
) onto H1

per(
)
0. In particular, the variational problem (2.11) or,

equivalently, problem (2.8), (2.9) has a unique solution u 2 H1
per(
).

To prove this result, one �rst veri�es that the form B de�ned in (2.11) is strongly

elliptic over H1
per(
); see also [11]. Thus B de�ned in (2.12) is a Fredholm operator

of index 0 from H
1
per(
) into its dual. For Im k

�
> 0, the uniqueness follows using

a simple integration by parts. In the case k� > 0, the uniqueness is obtained by

applying a periodic version of the Rellich identity and the fact that the x2 component

of the normal � does not change sign on �. For the periodic Dirichlet problem, we

refer to [13]. The proof for the TE transmission problem is simpler, since its solution

always belongs to H2
per(
) by the elliptic regularity of the operator �� + k

2.
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3 Inverse problem and reconstruction method

Our goal in this paper is to study the inverse problem or the pro�le reconstruction

problem.

(IP): Given the solution u to (2.8), (2.9), determine the pro�le function f from the

traces of the scattered �eld

ub := (u+b ; u
�
b ) ; u

�
b := u

scj�� =
X
n2Z

A
�
n exp(inx1 � i�

�
n b
�) (3.1)

on the horizontal lines x2 = b
�, where usc := exp(�i�x1)v

sc.

Thus all Rayleigh coeÆcients A�n are assumed to be known, and (IP) also involves

near �eld measurements since the evanescent waves cannot be measured far away

from the grating pro�le. Since (IP) is nonlinear and severely ill-posed, it is quite

natural to apply regularization and optimization techniques.

Suppose that we have the a priori information about our reconstruction problem

that the unknown pro�le �f lies between the horizontal lines

��1 = f(x1; a
�) : 0 � x1 � 2�g ; b� < a

�
< a

+
< b

+
:

For simplicity, we further exclude resonances by assuming

�
�
n 6= 0 for all n 2 Z (3.2)

in the sequel. Then the free space 2�-periodic Green function of the operator �� +

(k�)2 takes the form (cf. [20], [6])

G�(x; y) =
i

4�

X
n2Z

1

��n

expfin(x1 � y1) + i�
�
n jx2 � y2jg ; x 6= y ; (3.3)

with �
�
n = �n(�; k

�). We try to represent the scattered �eld u
sc above ��1 resp.

below �+
1 as single layer potentials

u
sc(x) = S

�
'
�(x) :=

Z 2�

0

G�(x1; x2; t; a
�)'�(t)dt

=
i

2

X
n2Z

c
�
n

��n

exp(inx1 + i�
�
n jx2 � a

�j) ;

for x2 > a
� resp. x2 < a

+
;

(3.4)

with unknown density functions

'
�(t) =

X
n2Z

c
�
n exp(int) 2 X := L

2(0; 2�) :

Introduce the linear operators S�b : X ! X by

S
�
b  (t) := S

�
 (t; b�) ; t 2 (0; 2�) : (3.5)
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Note that S�b '
� approximates the output of the scattered �eld on ��, whereas

S
�
'
� Æ f(t) := S

�
'
�(t; f(t)) ; t 2 (0; 2�) ;

represent approximations of usc on the pro�le �f . In the following we identify the

space L2(�f) with X via

ku Æ fkX =

�Z 2�

0

ju(t; f(t))j2dt

�1=2

; u 2 L2(�f) ;

which is a uniformly equivalent norm when f varies in an admissible set of pro�le

functions. Since the operators S�b : X ! X are compact with exponentially de-

creasing singular values, the determination of the density ' = ('+
; '

�) from the

�rst kind equation

Sb' := (S+
b '

+
; S

�
b '

�) = (u+b ; u
�
b ) =: ub

is a severely ill-posed problem. We may solve its Tikhonov regularized version


'+ S
�
bSb' = S

�
bub (3.6)

with regularization parameter 
 > 0. Given the solution of (3.6) and the corre-

sponding approximation of the scattered �eld, we can then seek the pro�le �f of

the grating by minimizing the defect

kuin + S
+
'
+ � S

�
'
�kL2(�f ) + k@�(u

in + S
+
'
+ � S

�
'
�)kL2(�f ) ; f 2 M (3.7)

of the transmission conditions over a classM of admissible pro�les. In the following

we choose M to be a subset of C0;1
per such that

a
�
< min(f) ; max(f) < a

+
; kfkC0;1

per
� c (3.8)

for all f 2 M and some c > 0. Note that M is then compact with respect to the

convergence fn ! f given by

max jf � fnj ! 0 as n!1 ; and sup
n2N

kfnkC0;1
per

<1 : (3.9)

For the reformulation of the inverse transmission problem (IP) as an optimization

problem, we now combine the minimization of the Tikhonov functional for (3.6) and

the defect minimization (3.8) into the following cost functional:

F ('; f ; 
) :=kSb'� ubk
2
X�X + 
k'k2X�X + %1k(u

in + S
+
'
+ � S

�
'
�) Æ fk2X

+ %2k@�(u
in + S

+
'
+ � S

�
'
�) Æ fk2X :

(3.10)

Here, 
 > 0 is again the regularization parameter, and %1; %2 > 0 are coupling

parameters which have to be chosen appropriately for the numerical implementation.

For theoretical purposes, we may assume %1 = %2 = 1 in the sequel.

Our reconstruction method, which was �rst introduced by Kirsch and Kress [17],

[7] in the case of acoustic scattering by sound-soft obstacles, consists in solving
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the following optimization problem. We also refer to Zinn [23] who studied the

transmission boundary conditions for obstacles with C2 boundaries.

(OP): Find ' 2 X �X and f 2 M such that

F ('; f ; 
) = m(
) := inffF ( ; g; 
) :  2 X �X ; g 2 Mg :

The existence of a minimizer is guaranteed by the following theorem.

Theorem 3.1 For each 
 > 0, the problem (OP) has a solution.

Here we need not assume that ub is an exact output of the scattered �eld. The proof

is analogous to that of [13, Thm.4.2] in the case of the inverse periodic Dirichlet

problem and will be omitted. The following convergence result extends [13, Thm.4.3]

to the inverse transmission problem.

Theorem 3.2 Let ub be the exact pattern of the scattered �eld usc on the horizontal

lines x2 = b
� corresponding to some pro�le function f 2 M. Then we have:

(i) lim
!0m(
) = 0, i.e., convergence of the cost functional.

(ii) Let (
n) be a null sequence and let ('n; fn) be a corresponding sequence of solu-

tions to (OP) with regularization parameter 
n. Then there exists a convergent

subsequence of (fn) in the sense of (3.9), and every limit point f � of (fn) rep-

resents a pro�le function such that the total �eld u satis�es [u]�� = [@�u]�� = 0

on �� = �f�.

The proof of Theorem 3.2 will be given in Section 5.

Remark 3.1 If we have the a priori information that our inverse problem (IP) has

at most one solution, then from Theorem 3.2 (ii) we obtain convergence of the total

sequence (fn) to f . Presently the uniqueness for (IP) is only known if Im k
�
> 0 (see

[10]); uniqueness results with a single wave number for the inverse periodic Dirichlet

problem can be found in [12].

For k� > 0 we can try to achieve uniqueness and more accurate reconstructions by

replacing the cost functional (3.10) by a sum corresponding to several incident waves

with di�erent wavelengths and/or incident angles, and the preceding theorems carry

over to this case.

Remark 3.2 If condition (3.2) is violated, i.e. Rayleigh frequencies do occur, we

may replace the approximations (3.4) of the scattered �eld through a single layer

potential by

S
�
'
�(x) =

X
n2Z

c
�
n exp(inx1 + i�

�
n jx2 � a

�j) :

Then the above results remain valid; compare [13] for the inverse Dirichlet problem.
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4 A density result and solvability of periodic

boundary integral equations

To prove Theorem 3.2, we need the following crucial density result which justi�es

the ansatz (3.4) and the choice of the cost functional (3.10). Its proof is based

on continuity and solvability properties of boundary integral operators on periodic

Lipschitz graphs.

Theorem 4.1 Let f 2 M. For all " > 0 and (�;  ) 2 L
2(�) �L2(�), � = �f ,

there exist '� 2 L2(0; 2�) such that

kS+
'
+ � S

�
'
� � �kL2(�) + k@�(S

+
'
+ � S

�
'
�)�  kL2(�) < " :

Proof. Introduce the sets

W := f(wj�; @�wj�) : w 2 Wg ; W := span fe+n ; e
�
n : n 2 Zg ;

where e�n (x) := exp(inx1� i�
�
n x2). It is suÆcient to show (cf. (3.4)) that the setW

is dense in L2(�)�L2(�). Then it remains to verify that the orthogonality relationsZ
�

(�w +  @�w)ds = 0 8w 2 W ; with �;  2 L2(�) ; (4.1)

imply � =  = 0. Let H� be the free space 2�-periodic Green function of the

operator ��� + (k�)2, i.e., we replace ��n = �n(�; k
�) in (3.3) by �n(��; k

�) =

��n(�; k
�) (cf. (2.7)). For �;  2 L

2(�) the corresponding single and double layer

potentials on � are de�ned by

V
�
�(x) :=

Z
�

H�(x; y)�(y)ds(y) ; K�
 (x) :=

Z
�

@�(y)H
�(x; y) (y)ds(y) ;

x 2 
n� ;

(4.2)

and for � 2 [�1=2; 1=2] the operators

V
� : H�1=2+�

per (�)! H
1+�
per (
) ; K

� : H1=2+�
per (�)! H

1+�
per (


+ [ 
�) (4.3)

are continuous. Recall from (2.8) that � divides the rectangle 
 into the upper

domain 
+ and the lower domain 
�. Moreover, the following jump relations hold:

[V ��]� = 0 ; [@�V
�
�]� = �� ; � 2 L2(�) ; (4.4)

[K�
 ]� =  ; [@�K

�
 ]� = 0 ;  2 H1

per(�) : (4.5)

While the continuity properties (4.3) for � 2 (�1=2; 1=2) and the relations (4.4),

(4.5) follow by adapting Costabel's elementary approach [8] to the periodic Helmholtz

equation, the endpoint results for � = �1=2 rely on Calderon's Theorem on the L2

continuity of the Cauchy integral on Lipschitz curves. We refer to [22], [16] in the

case of the Laplace operator and to [18] for the Helmholtz operator on Lipschitz

domains.
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To prove that (4.1) implies � =  = 0, we introduce the functions

U
�(x) := �V ��(x) +K

�
 (x) ; x 2 
n� ;

U(x) := U
�(x) ; x 2 
� :

(4.6)

From the orthogonality relations (4.1) and the form of the Green function H+ (cf.

(3.3) with �
+
n = ��n(�; k

+)), we obtain that U+(x) = 0 if x2 < min(f), hence

U
+(x) = 0, x 2 
�, by analytic continuation. Analogously, from (4.1) we have

U
�(x) = 0, x 2 
+.

Furthermore, from (4.3), (4.6) and the relation U
+ = 0 in 
�, and recalling the

de�nition of the restriction operators r� in (2.4), we observe that  2 L2(�) satis�es

the boundary integral equation

r
�
K

+
 = r

�
V

+
� 2 H1

per(�) (4.7)

on �. As a consequence of Theorem 4.2 below, we then obtain  2 H1
per(�), which

implies

U j
� = U
� 2 H1

per(

�) (4.8)

using (4.3) again. Moreover, from U
� = 0 in 
� and the jump relations (4.4), (4.5),

we have

[U ]� = r
�
U
� � r

+
U

+ = r
�(K�

 � V
�
�)� r

+(K+
 � V

+
�)

= [K�
 ]� � [V ��]� � [K+

 ]� + [V +
�]� =  �  = 0 ;

[@�U ]� = r
�
@�(K

�
 � V

�
�)� r

+
@�(K

+
 � V

�
�)

= [@�K
�
 ]� � [@�V

�
�]� � [@�K

+
 ]� + [@�V

+
�]� = �� � = 0 :

Together with (4.8), this implies that U 2 H1
per(
) satis�es the homogeneous version

of problem (2.8), (2.9) (i.e., g+ = 0), giving U = 0 in 
 by Theorem 2.1 and then

� =  = 0 by applying the jump relations (4.4), (4.5) again. �

To prove the above (nontrivial) regularity result for equation (4.7), we now study the

mapping properties of boundary integral operators on the Lipschitz graph � = �f .

Setting V = V
+, K = K

+ in the sequel, we introduce the direct values on � of

these layer potentials:

V (x) :=

Z
�

H+(x; y) (y)ds(y) ;

K (x) := p:v:

Z
�

@�(y)H
+(x; y) (y)ds(y) ; x 2 � :

The dual operator of K with respect to the pairing ( ; �)!
R
�
 �ds is given by

K� (x) = p:v:

Z
�

@�(x)G
+(x; y) (y)ds(y) ; x 2 � ;

9



where G+ is the (periodic) Green function of ��+(k+)2; recall that H+ corresponds

to ��� + (k+)2. Then we have the continuity of the operators

V : H�1=2+�
per (�)! H

1=2+�
per (�) ; K : H1=2+�

per (�)! H
1=2+�
per (�) ;

K� : H�1=2+�
per (�)! H

�1=2+�
per (�) ; � 2 [�1=2; 1=2] ;

(4.9)

and the jump relations

r
�
K =

�
�
1

2
+K

�
 ; r

�
V  =

�
�
1

2
+K�

�
 ;  2 L2(�) ; (4.10)

we again refer to [22], [16], [18] for the case of (nonperiodic) Dirichlet and Helmholtz

operators. The periodic case can then be treated using the fact that

H+(x; y)�
1

2�
log

1

jx� yj
; for jx1 � y1j < � ;

is a C1 function; see [20], [6].

We now establish a result on the invertibility and the Fredholm property of the

above boundary integral operators.

Theorem 4.2 Let � = �f be given by a periodic Lipschitz graph. Then, for each

k
+
> 0 and � = k

+ sin �, we have:

(i) V is an invertible operator from L
2(�) onto H1

per(�);

(ii) �1
2
I +K are Fredholm operators with index zero on L2(�) and H1

per(�).

Assertion (ii) immediately gives the regularity property needed in the proof of The-

orem 4.1: Note that (4.7) takes the form�
1

2
+K

�
 = g ; g 2 H1

per(�) ;  2 L
2(�) ;

and since 1
2
I + K is Fredholm with the same index on both L2(�) and H1

per(�), we

obtain  2 H1
per(�).

To prove Theorem 4.2, one can proceed as in [16, Chap.2.2] where the Laplace

equation in unbounded domains given by Lipschitz graphs was treated. Since the

spectral theory in the periodic case is somewhat di�erent from that for the Helmholtz

operator in a bounded domain and its exterior (cf. [18]), we prefer to give an outline

of the proof.

Proof of Theorem 4.2. (i) Let  2 L
2(�) and consider the function u = V  2

H
1
per(
). Then u

� = uj
� is a radiating solution of the Helmholtz equation ���u+

(k+)2u = 0 in 
�. Applying (the periodic version of) the Rellich identity givesZ
�

�
@2u

�
@�;�u

� + @1u
�
@�;�u+ �2(k

+)juj2
�
ds = 0 ; (4.11)
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with the weighted normal and tangential derivatives

@�;� = �1@1;� + �2@2 ; @�;� = ��2@1;� + �1@2 ; @1;� := @1 + i� ;

see [3], [13]. Note that r+u+ = r
�
u
� = uj�. Since ��2 is bounded from below by a

positive constant, from (4.11) we easily obtain the inequalities

k@�ukL2(�) � c
�
k@�u

�kL2(�) + kukL2(�)
�
;

k@�u
�kL2(�) � ck@�ukL2(�) ; u = V  ;  2 L2(�) ;

(4.12)

with c > 0 depending only on the Lipschitz constant of �. For a Lipschitz graph,

(4.11) and (4.12) can be justi�ed by approximating � with the graphs of smooth

functions and then passing to the limit; see [22], [13] for details.

(4.12) and the jump relations (4.10) imply the estimate

kV kH1
per(�)

� kr�@�V  kL2(�) � ckr�@�V  kL2(�)

= c






�
�
1

2
+K�

�
 






L2(�)

;

which gives

kV kH1
per(�)

� ck kL2(�) 8 2 L2(�) :

Thus the operator V : L2(�) ! H
1
per(�) is one-to-one with closed image. To �nish

the proof of (i), we now exploit the following homotopy argument. For 0 � t � 1,

consider the Lipschitz graph corresponding to tf and the corresponding operator Vt.
Then V0 corresponds to the operator on the x1 axis, which is clearly invertible (cf.

formula (3.4) with a� = 0), and Vt is one-to-one with closed image and continuous

in norm as a function of t. Consequently, the stability of the index implies that

V = V1 is invertible.

(ii) From (4.12) and the jump relations (4.10), we also obtain




�
�
1

2
+K�

�
 






L2(�)

� c

 




�
�
1

2
+K�

�
 






L2(�)

+ kV kL2(�)

!
;

where c only depends on the Lipschitz constant of �. Therefore we have the estimates




�
�
1

2
+K�

�
 






L2(�)

+ kV kL2(�) � c k kL2(�) ;

where the operator V is compact on L2(�). Hence �1
2
I + K� is a semi-Fredholm

operator with �nite dimensional null space on L2(�). Applying the above homotopy

argument to the corresponding operators Vt, K
�
t , 0 � t � 1, and noticing that

K�0 = 0, we observe that �1
2
I +K� is Fredholm with index zero on L2(�), and so is

�1
2
I +K by duality. Finally, using the identity

V

�
1

2
I +K�

�
 =

�
1

2
I + K

�
V ;  2 L2(�)

which follows from Green's formula, and the invertiblity of V, we see that �1
2
I +K

is also Fredholm with index zero on H1
per(�). This completes the proof of (ii). �
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Remark 4.1 It can be proved similarly to [18, Sec.8] that �1
2
I + K is invertible

on L2(�) and H1
per(�) if and only if the homogeneous periodic Neumann problem

for �� + (k+)2 in 
� has only the trivial solution. Note that the periodic Dirichlet

problem is always uniquely solvable if � is given by a Lipschitz graph [13].

5 Proof of Theorem 3.2

With Theorem 4.1 at hand, the convergence proof for our reconstruction method

uses similar ideas as in the case of the inverse Dirichlet problem [13], but is simpler

due to the H2 regularity of solutions to the direct problem.

Let � = �f , f 2 M, M being an admissible set of Lipschitz pro�le functions, and

consider the transmission problem

(�� + k
2)w = 0 in 
+ [ 
� ; [w]� = g ; [@�;�w]� = h ;

@�wj�+ + T (�; k+)w = 0 ; @�wj�� + T (�; k�)w = 0 ;
(5.1)

where k = k
� in 
�, @�;� = @� + i�, and the pseudodi�erential operators T (�; k�)

on the horizontal lines �� are de�ned in (2.10). The following lemma shows that

the traces on �� of a solution w to (5.1) depend continuously on the interface data

g, h, uniformly with respect to f 2 M.

Lemma 5.1 If w 2 H2
per(


+ [ 
�) satis�es the problem (5.1), then the estimates

kwkL2(��) � c1kwkL2(
) � c
�
kgkL2(�) + khkL2(�)

�
(5.2)

hold, where c and c1 do not depend on g, h and �f .

Proof. Consider the problem

(��� + k
2)z = �w in 
 ;

@�wj�+ + T (��; k+)w = 0 ; @�wj�� + T (��; k�)w = 0 ;
(5.3)

which has a unique solution z 2 H
2
per(
) by Theorem 2.1 and elliptic regularity.

From (5.1), (5.3) and Green's formula we haveZ



jwj2 =

Z



w(��� + k
2)z =

Z
�

([w@�;��z]� � [z@�;�w]�)

=

Z
�

([w]�@�;��z � z[@�;�w]�) =

Z
�

(g@�;��z � hz) ;

which implies the estimate

kwk2L2(
) � kgkL2(�)k@�;��zkL2(�) + khkL2(�)kzkL2(�) : (5.4)

Using the Rayleigh expansions of w in the rectangles (0; 2�) � (a+; b+), (0; 2�) �
(b�; a�) and our assumption (3.8) on �f , it is easy to verify the uniform bounds

kwkL2(��) � c1kwkL2(
) : (5.5)
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Then (5.2) follows from (5.4) and (5.5), provided the uniform estimate

k@�zkL2(�) + kzkL2(�) � ckwkL2(
) (5.6)

holds. To prove (5.6), we make use of the inequality

kzkH1
per(
)

� ckwkL2(
) ; (5.7)

where z is the solution of (5.3) and c is independent of w and the pro�le function

f . This estimate follows from the fact that the operators

Bf : H
1
per(
)! H

1
per(
)

0
; f 2 M ; (5.8)

which correspond to (2.11), (2.12) and the interface �f , are uniformly stable, i.e.,

B�1f is bounded in norm independent of f . The uniform stability follows from

Theorem 2.1 (applied to (5.3)), and the compactness of the admissible set M and

the continuity in norm of Bf with respect to the convergence of pro�le functions

introduced in (3.9); see also [10, Thm.2.2] where a more general perturbation result

was established.

Now, by invoking elliptic regularity, from (5.7) we obtain the uniform estimate

kzkH2
per(
)

� c
�
k(��� + k

2)zkL2(
) + kzkL2(
)
�

� c
�
kwkL2(
) + kzkL2(
)

�
� ckwkL2(
) :

To conclude the proof of (5.6), it remains to check that

kzkL2(�) + k@�zkL2(�) � ckzkH2
per(
)

; � = �f ; f 2 M : (5.9)

As a consequence of Theorem 2.4.2 in [19] (or rather its proof) we have

kzkL2(�) � ckzkH1
per(
)

;

where c only depends on the Lipschitz constant of �, and applying the last estimate

also to rz �nally gives the desired inequality (5.9). �

Proof of Theorem 3.2: (i) By Theorem 4.1, given " > 0 there exist '� 2 X =

L
2(0; 2�) such that

k(uin + S
+
'
+ � S

�
'
�) Æ fkX + k@�(u

in + S
+
'
+ � S

�
'
�) Æ fkX < " : (5.10)

Let u denote the solution of the forward problem (2.8), (2.9). Then w de�ned by

w := u
in + S

+
'
+ � u in 
+

; w := S
�
'
� � u in 
�

satis�es the transmission problem (5.1) with

g := (S�'� � S
+
'
+ � u

in)j� ; h := @�;�(S
�
'
� � S

+
'
+ � u

in)j� :

Combining (5.2) and (5.10), we arrive at

kSb'� ukX�X � c
�
kS+

'
+ + u

in � ukL2(�+) + kS�'� � ukL2(��)
�

� c
�
kgkL2(�) + khkL2(�)

�
� c" ;

(5.11)

13



where c does not depend on ". Thus we have from (3.10), (5.10) and (5.11)

F ('; f ; 
) � c"
2 + 
k'k2X�X ! c"

2
; 
 ! 0 ;

which completes the proof of assertion (i).

(ii) Let ('n; fn) 2 X�X�M be a sequencee of solutions to (OP) with regularization

parameter 
n ! 0. Let f � 2 M be a limit point of (fn). Without loss of generality,

we can assume that fn ! f
� (n!1) in the sense of (3.9); note thatM is compact

with respect to this convergence.

Furthermore, let un; u
� 2 H

2
per(
) be the solutions of the forward problem (2.8),

(2.9) corresponding to the pro�le functions fn, f
�. Recall that ub = (u+b ; u

�
b ) is

the exact output of the scattered �eld u
sc corresponding to some pro�le function

f 2 M.

To prove Theorem 3.2 (ii), we show that

kun � u
in � u

+
b k

2
L2(�+) + kun � u

�
b k

2
L2(��) ! 0 ; n!1 : (5.12)

Since the convergence fn ! f and the uniform stability of the operators (5.8) imply

un ! u
� in H1

per(
), relation (5.12) then gives

(u� � u
in)j�� = u

+
b ; u

�j�� = u
�
b : (5.13)

Consequently, the total �eld u (which must coincide with u� in 
 because of (5.13))

satis�es the transmission conditions [u]�� = [@�u]�� = 0, where �� corresponds to

f
�. This completes the proof of assertion (ii).

It remains to verify (5.12). We note that 'n = ('+
n ; '

�
n ) 2 X �X satis�es

F ('n; fn; 
n) = m(
n)! 0 ; n!1 ; (5.14)

since fn is optimal for the parameter 
n. The left-hand side of (5.12) can obviously

be estimated by the sum

kS+
'
+
n � u

+
b k

2
L2(�+) + kS�'�n � u

�
b k

2
L2(��)

+ kS+
'
+
n + u

in � unk
2
L2(�+) + kS�'�n � unk

2
L2(��) :

(5.15)

We show that all terms in (5.15) can be uniformly bounded bym(
n), which together

with (5.14) then implies the desired relation (5.12). For the �rst two terms, this is

clear by the de�nition of the cost functional. To obtain this bound for the last two

terms in (5.15), we apply the second to last inequality of (5.11) where we replace

'
� by '�n and consider the corresponding interface data gn, hn on the pro�le �n

corresponding to fn. Note that the constant c in this inequality does not depend on

f 2 M. Therefore, the mentioned terms of (5.15) can be uniformly estimated by

kuin + S
+
'
+
n � S

�
'
�
n k

2
L2(�n)

+ k@�(u
in + S

+
'
+
n � S

�
'
�
n )k

2
L2(�n)

� cm(
n) :

This �nishes the proof of the theorem. �
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Remark 5.1 The above proof can be easily modi�ed to give the following result

on stability with respect to data errors for our reconstruction method. Assume

additionally in Theorem 3.2 that we only have a sequence of measured data u�b;n of

noise level Æn converging to zero, i.e.,

ku�b;n � u
�
b k

2
L2(��) � Æn ; with Æn ! 0 ; n!1 :

Replace ub in the cost functional (3.10) by ub;n = (u+b;n; u
�
b;n) and consider the cor-

responding optimization problem (OP) (for 
 = 
n). Then for each n there exists a

minimizer ('n; fn) of (OP), and Theorem 3.2 remains valid.

6 Implementation as a two{step method and

numerical results

Discretizing the optimization scheme (OP) based on the combined cost functional

(3.10), we arrive at a �nite dimensional nonlinear least squares problem which can

be solved using a Levenberg-Marquardt algorithm. We refer to [5] in the case of

the inverse Dirichlet problem. To reduce computational e�orts, we here propose a

two{step procedure as in [4].

Step 1. Let ub = (u+b ; u
�
b ) be the scattered �eld measured on the horizontal lines

x2 = b
�. Usually ub is not given exactly, but perturbed by measurement errors. Let

X again denote the Hilbert space L2(0; 2�) with scalar product h�; �i, norm k � k and
the orthonormal system vn(t) = exp(int); n 2 Z. We �rst solve the minimization

problems

kS�b '
� � u

�
b k

2 + 
k'�k2 ! inf
'�2X

(6.1)

with regularization parameter 
 > 0, which correspond to the Tikhonov regular-

ization (3.6) for determining the density functions '�. Since the singular value

decomposition of the �rst kind integral operators S�b de�ned in (3.5) is known ex-

plicitly, the solutions '�
 can be represented as (cf. [4])

'
�

 =

X
n2Z

a
�
n;
hu

�
b ; vnivn ; (6.2)

where

a
�
n;
 =

8>>><
>>>:

�i(��n )
�1 exp(�i��n (b

� � a
�))

(��n )
�2 + 


if n 2 U�

j��n j
�1 exp(�j��n j(b

� � a
�))

j��n j
�2 exp(�2j��n j(b

� � a�)) + 

if n 2 ZnU� :

Here the �nite index sets U� := fn 2 Z : jn + �j < k
�g correspond to the propa-

gating modes of the scattered �eld as x2 ! �1. One may expect fast convergence

of these series so that only some �nite section, say jnj � N; will be necessary in

the implementation. In our numerical examples N will be always chosen such that

U� � fn 2 Z : jnj � Ng:
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Step 2. Having computed the solutions '�
 2 X of (6.1) and the corresponding

approximations (3.4) of the scattered �eld, we can then seek the pro�le function f

of the grating by solving the minimization problem

F := k(uin + S
+
'
+

 � S

�
'
�

 ) Æ fk

2 + k@�(u
in + S

+
'
+

 � S

�
'
�

 ) Æ fk

2 ! inf
f2M

(6.3)

over a class of admissible pro�les. Let us suppose that f depends smoothly on

�nitely many real parameters p� ; � = 1; :::;M , and that after discretization the

functional in (6.3) can be represented as

F =
X

1�j�K

r
2
j ;

where the real functions rj depend smoothly on p1; : : : ; pM : From (6.3) we then

obtain the �nite dimensional least squares problemX
1�j�K

r
2
j ! inf

p2RM
(6.4)

which can be solved iteratively by a Gauss{Newton method. Note that the Jacobi

matrix J = (@rj=@p�) can be easily computed for several important classes of grating

pro�les; we refer to [4] for the perfectly re
ecting case.

We do not have a convergence result for the two{step procedure. However the result-

ing algorithm is faster and gives results similar to those of the combined algorithm,

even more accurate ones as our experience with the inverse Dirichlet problem shows

[4].

In the following we restrict ourselves to Fourier gratings as one type of admissible

sets of pro�le functions f . Let f be given as

f(t) = c0 + 2
X

1���m

(c� cos(�t) + d� sin(�t)) ;

where the number M = 2m+ 1 of real parameters characterizing f is considered to

be �xed. Let � be a natural number and

sj =
2�

�
(j � 1); j = 1; :::; � ;

an equidistant partition of [0; 2�]: Then, using the trapezoidal rule to discretize the

functional F in (6.3), we obtain a �nite dimensional least squares problem (6.4)

with K = 2�.

Now we present some numerical examples using our method with exact and noisy

data. The measured scattered �eld on the horizontal lines x2 = b
� is given at �nite

sets of equidistant points and is then perturbed by random errors:

u
�
b (sj; b

�) + Æ!
�
j ; j!�j j

2 � 1 : (6.5)

Here Æ is the noise level, and fsjg is the equidistant partition of [0; 2�] introduced

above. The values u�b (sj; b
�) were simulated using a �nite element based direct
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solver, which is part of the program package DIPOG developed at the Weierstrass

Institute (cf. www.wias-berlin.de/software). The Fourier coeÆcients of u�b occurring

in the �rst step of the algorithm (see (6.2)) are then also approximated using the

trapezoidal rule:

hu�b ; vni �
1

�

�X
j=1

(u�b (sj; b
�) + Æ!

�
j ) vn(sj) :

We performed numerical experiments for the following two pro�le functions, chosen

as in the examples discussed in [4] and [14] :

f0(t) = 2 + �(cos(t) + cos(2t) + cos(3t)) ; (6.6)

f1(t) = 0:2esin(3t) + 0:3esin(4t) : (6.7)

In the case (6.6), the parameter � can be considered as a measure of the pro�le

steepness. As was found in [5], the reconstruction becomes worse when the steepness

of the pro�le increases. In [5] we obtained satisfactory results for � � 0:05�. In [4]

our improved algorithm allowed treating the case � � 0:1�: Here we considered the

case � = 0:1�; using unperturbed data taken at b+ = 3:577; b� = 0:952 for a single

incoming wave with incident angle � = 0. The indices of refraction were chosen as

k
+ = 2:27; k� = 4:45. We used the regularization parameter 
 = 10�10 and updated

7 parameters in each of 400 Gauss{Newton iterations with step length 0.01. The

results, which were stable with respect to large perturbations of the initial guess,

are given in Table 1.

c0 c1 c2 c3 d1 d2 d3

target 2.00 .157 .157 .157 0 0 0

initial 1.80 .3 -.1 .0 .1 -.1 .1

initial 1.80 0 0 0 0 0 0

calcul 2.03 .162 .159 .098 .000 .000 .000

Table 1: Case (6.6) for � = 0:1�

Instead of the pro�le function (6.7), we used its truncated Fourier series

f1(t) = hf1; v0i+ 2
X
1���8

�
Re fhf1; v�ig cos(�t) + Im fhf1; v�ig sin(�t)

�
;

which can be approximated by

0:633 + 2
�
� 0:02715 cos(6t)� 0:0407 cos(8t) + 0:11303 sin(3t) + 0:1695 sin(4t)

�
:

We considered the indices of refraction k
+ = 4:54; k� = 9:09 and took a single

incoming wave with � = 0. Then the index sets of the propagating modes are given

by

U+ = fn 2 Z : jnj � 4g ; U� = fn 2 Z : jnj � 9g :
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The measurements were taken at x2 = b
� = �3:

In the �rst step of the algorithm, we computed the density functions (6.2) by spectral

cut{o� withN = 9, where the propagating modes were used for the data on x2 = �3,
while 10 additional modes only appearing in the near �eld were taken into account

for the data on x2 = 3. The regularization parameter 
 = 10�7 was chosen to

determine the density function corresponding to the re
ected modes. Our numerical

results presented in Table 2 turned out to be extremely robust with respect to the

perturbed data (6.5). A reason for this might be that the measurements, taken far

enough from the pro�le, could be considered as far �eld data for which an additional

regularization is not necessary.

In the case of the perfectly re
ecting pro�le (6.7) (see [4]), the computations were

performed assuming a priori that all coeÆcients not appearing in the (unknown)

target vanish, so that only 5 parameters had to be updated in the iterations. In the

transmission case considered here, satisfactory results could be achieved by updating

all 17 parameters. To reach stationarity, 800 iterations for � = :01 were enough,

taking four or �ve seconds altogether on a workstation. The results proved to

be stable with respect to rather large variations of the used initial guess. So, for

obtaining the same results for the target pro�le, the parameters c0, c1 of the starting

pro�le could be varied between 0.5 and 1.0, and between 0.2 and -0.05, respectively.

Some of our computational results are additionally depicted in Figures 1 and 2.

target initial 800it 50it 100it

c0 .633 .6 .679 .637 .653

c1 .000 .0 .025 .008 .011

c2 .000 .0 .017 -.002 -.000

c3 .000 .0 .002 .000 -.001

c4 .000 .0 .006 .000 -.003

c5 .000 .0 .006 .000 -.001

c6 -.027 .0 -.004 -.009 -.017

c7 .000 .0 .039 .008 .013

c8 -.040 .0 .024 .002 .003

d1 .000 .0 .004 -.003 -.000

d2 .000 .0 .005 -.001 .004

d3 .113 .0 .121 .050 .079

d4 .169 .0 .185 .081 .126

d5 .000 .0 -.005 .003 .001

d6 .000 .0 -.015 .001 -.002

d7 .000 .0 -.002 .001 -.001

d8 .000 .0 .000 .000 -.001

Table 2: Case (6.7)
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Figure 1: Case (6.7), 100 iterations
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Figure 2: Case (6.7), 800 iterations
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