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Abstract. Recent work on mutation-selection models has revealed that, under specific assumptions on the fitness func-
tion and the mutation rates, asymptotic estimates for the leading eigenvalue of the mutation-reproduction matrix may
be obtained through a low-dimensional variational principle in the Iisit> oo (whereN is the number of types).

In order to generalize these results, we consider here a large family of reve¥sibl&V matrices and identify condi-

tions under which the high-dimensional Rayleigh-Ritz variational problem may be reduced to a low-dimensional one
that yields the leading eigenvalue up to an error term of or@8F. For a large class of mutation-selection models, this
implies estimates for the mean fitness, as well as a concentration result for the ancestral distribution of types.

1. Introduction

Many systems of population biology, or reaction kinetics, may be cast into a form where individuals (or
particles) of different types reproduce and change type independently of each other in continuous time. If
the types come from a finite s8tand the population is so large that random fluctuations may be neglected,
one is led to a linear system of differential equations of the form

y=yH 1)

with initial conditiony(0). Here,y = (yi)ics € ]R‘;(‘) holds the abundance of the various typHs.=
(Hij)ijes is an|S| x |S| matrix, which represents a linear operator®i!. Important examples include
models of age-structured populations, which are often referred to as matrix population models, see Caswell’s
monograph [10]. The main application we have in mind here is in population genetics, where types are alle-
les, so that Equation (1) is a haploid mutation-reproduction model; but one may also think of a compartment
model, where types are locations of a certain chemical. In line with large parts of the population genetics,
and most of the stochastics, literature, we will use the conventiop tarow vector to whictH is applied
from the right, so thaH;; (z # j) is the coefficient for the change fronto ;.

We will assume throughout that the linear operdiogenerates a positive semigroypxp(tH) | t >
0}. SinceS is finite, this is equivalent téf;; > 0 for ¢ # j. The flow so generated Ieavﬁ/(‘) invariant.
We will further assume that is irreducible (i.e., ifG(H) is the directed graph with an edge frarto j if
i # j andH;; > 0, then there is a directed path from any vertex to any other vertex).

We will often use the decomposition

H=M+R 2)
into a Markov generata¥/ and a diagonal matrik. More precisely, we hav®l = (M ;;); jes With M;; :=
Hij for 4 75 i, My = — EjeS\{i} Mij (SO thatzjes Mij = 0), andR = dlag{Rz | 1 € S} with

R; := H;;—M,;. Clearly, the decompositionin (2) is unique, a¥ds irreducible iffH is, becaus& (M) =
G(H). M;; is the rate at which agtindividual produceg-offspring (j # ), andR ; is the net rate at which
individuals of typei reproduce themselves; this may also include death terms and thus be negative.

Solutions of (1) cannot vanish altogether (unlg&y = 0), since t(H) is finite, hencelet (exp(tH)) =
exp(ttr(H)) > 0 and kefexp(tH)) = {0}, forallt > 0. Therefore, we may also consider the corre-
sponding normalized equation for the proportipRs—= yi/(zjes y;), which is sometimes more relevant.
Clearly,

pi =Y piMji+ (Ri = > R;p;)p:. 3)
j€s jes

In the population genetics context, this is the mutation-selection equation for a haploid population, or a
diploid one without dominance; for a comprehensive review of this class of models, see [8]. It is well known,
and easy to verify, that the way back from (3) to (1) is achieved through ‘Thompson’s trick’ [36]:

v = p)exs (S8 [ piiriar).
jes 0

This substitution can thus be viewed as a global linearization transformation and explains why (3) is an ‘es-
sentially linear’ equation.
Clearly, the solution of (3) is obtained from that of (1) through normalization:
y(t)

() = y0) exp(tH), pl(0) = & T



Of course, proportions of types in a population that grows without restriction (which is biologically rea-
sonable only over short time scales) is not the only way in which (3) may arise. Actually, the same equation
for p results if (1) is replaced by

y=y(H —~(t),

wherey(t) is some scalar (possibly nonlinear) function which describes the elimination of individuals by
population regulation. This is obvious from the invariance of (3) uditlgr R; ++(¢) if performed simul-
taneously for ali. The functiony(t) may, for example, describe the flow out of a chemostat, or an additional
death term caused by crowding, which may depentltbnoughy, but acts on all types in the same way.

Eqg. (3) may be read in two ways (cf. [23]). If mutation and reproduction go on independently of each
other, the parallel (or decoupled) version is adequate. Here, &uedividual gives birth to offspring of its
own type at rateB;, dies at rateD;, and mutates tg at rateM;; (j # ¢). R; := B; — D; thenis the net
reproduction rate or Malthusian fithess [11, Ch. 5.3], and Eq. (3) is immediate. If, however, mutation is a side
effect of reproduction (through copying errors of the replication process, for example), the coupled version
[1,20] is more relevant. When d@rindividual reproduces (which it does, as before, at Etewhile it dies
at rateD;), the offspring is of typg with probability V;; (Zj Vij = 1). This leads to

D = (ijBjVji) — (Di + Z Rij)Pi , 4)
j€s jes

where, againR; = B; — D;. But if we setM;; := B;(V;; — ;;), we arrive again at Eq. (3). In both cases,
Zj R;p; is the mean fitness of the population. Obviously, a mixture of both the parallel and the coupled
mutation mechanisms can be tackled in the same way, but we omit further details.

The model (4) also arises in the infinite population limit of the well-known Moran model with selec-
tion and mutation, see [15, Ch. 3] or [12, p. 126]. This &achastic model where, in a population of
individuals, every individual of typéreproduces at ratB ;, and the offspring, which is of typgwith prob-
ability V;;, replaces a randomly chosen individual in the population (possibly its own parent). To describe
the entire population, IeZ;(¢) be the random variable that gives the numberioidividuals at time, and
Z(t) = (Zi(t)) s Hence, ifZ(t) = z, andj # k, we can have transitions fromo z + ¢ ; — ex, wheree;
denotes the unit vector corresponding t&uch a transition occurs at ra)e; B;V;;z;z, /m. Let us look at
the influence of increasing, whence we writeZ (™) (t) to indicate dependence on system sizewAss oo,
the sequence of random procesgé®) (t) /m converges almost surely, and uniformly for every finite inter-
val [0, ], to the solution of the differential equation (4) with; = 0, and initial conditionZ (™) (0) /m (resp.
its limit asm — oc), compare [14, Thm. 11.2.1].

The linear equation (1) has a more direct stochastic interpretation in terms of a continuous-time multitype
branching process. After an exponential waiting time with expectatjpan individual of type produces
a random offspring with a finite expectationf; children of typej (we will not specify the distribution
explicitly since we will not fully develop the stochastic picture here). The méfrixith H ;; = b;; /7; then
is the generator of the first-moment matrix. That i<7 if(¢) is again the (random) number of individuals of
typej at timet, andE? the associated expectation in a population started by a simgtévidual at time0,
then

EF(Z;(t)) = (exp(tH)),,. (5)

Further, with the identification;(t) = E(Zi(t)), Equation (1) then simply is the forward equation for the
expectations. (See [2] or [27] for the general context of multitype branching processes, and [21] for the ap-
plication to mutation-selection models.)

Important first questions concern the asymptotic properties of the systems discussed. A key to these prop-
erties is the leading eigenvaluk,,.x, of H (i.e., the real eigenvalue exceeding the real parts of all other
eigenvalues), for various reasons. If, on short time scales, unrestricted growth according to (1) is relevant,
then),.x is the asymptotic growth rate of the population. The stationary distribution of types in (3) is given
by the left eigenvector off corresponding to ... The knowledge oh ..., is a prerequisite for the cal-
culation of this eigenvector. In the population genetics context, the stationary state is often referred to as
mutation-selection balance, witty,,.x as the mean fitness. Finally, and perhaps most importantly, the de-
pendence oA ,.x On certain model parameters is of great interest. For example, a lot of research has been
directed towards the question of how the mean fitness changes when the mutation rate increases (i.e., when



M is varied by some nonnegative scalar factor), and interesting effects have been observed, for example
error thresholds (for reviews, see [8, Ch. Ill] and [13]).

In general, exact expressions for eigenvalues are hard to obf&jnsflarge but fixed. In recent work on
mutation-selection models, however, scalar or low-dimensional maximum principles for the leading eigen-
value have been identified for certain examples [21,17] in a suitable continuous liifijt 2&5cc. It is the
purpose of this paper to generalize these results to a large class of operators. We will do so under the general
assumption that the Markov generafdris reversible, which covers a large class of mutation models; in
particular, reversibility is a standard assumption in molecular population genetics, cf. [34] or [16, Ch. 13].

The paper is organized as follows. In Section 2, we will apply the Rayleigh-Ritz maximum principle
to our class of matrices. This leads to a high-dimensional problem, which is hard to solve in practice. An
example of how the problem may be reduced to a scalar one is given in Section 3. The main results are
given in Section 4. Here, we identify fairly general conditions under which the high-dimensional problem
may be reduced to a low-dimensional variational problem that yields the leading eigenvalue up to an error
term of orderl/N, in the limit N = |S| — oo. Sections 5 and 6 are devoted to the lumping procedure.
They show that a large class of models on a type spaaéses, in a natural way, from models defined on a
‘larger’ spaceS, by combining several types ii into a single one ir§. The general framework is set out
in Section 5, and in Section 6, we apply it to the important case whidsethe space of all sequences over
a given alphabet, and of fixed length. Section 7 makes the connection back to the maximum principle and
shows how the lumping procedure may lead to ‘effective’ model${da which our asymptotic results may
then be applied. The Hopfield fitness function, along with sequence space mutation, emerges as an example.

2. The general maximum principlefor reversible generators

Let us first fix our assumptions and notation. Since we assuhte be an irreducible Markov generator,
Perron-Frobenius theory, cf. [26, Appendix], tells us that it has a leading eigertvalbizh exceeds the
real parts of all other eigenvalues, and an associated strictly positive left eigenvdttoill be normalized
s.t.) . m = 1; then,r is the stationary distribution of the Markov semigroup generateifby

We will assume throughout thaf is reversible, i.e.,

7riMij :TI'J'M]" (6)

for all < andj, which also entailsr; H;; = 7; H;; sinceR is diagonal. Likewise, due to irreducibility, the
leading eigenvalue\ ., Of H is simple; we will meet the corresponding eigenvectors in due course.

Let us note in passing that, due to reversibility, the equilibrium distributioh)M is available explicitly.
To see this, letk:, k2, . . ., k| s|) be the vertices of a Hamiltonian path of leng#)— 1 in our graphG (M),
i.e., k; # k; fori # j; such a path exists due to irreducibility. Sgf, = 1 and, for2 < i < |S|,

7
Mki—lyki F3 M’“j—lvki
P = ki1 = H
Mkiyki—l

T, >0.

j=2 Mi; ;.
Then, as an immediate consequence of {6}~ fn/(Zjes ;) is the stationary probability distribution of
the Markov generatak/; in particular, the choice of the path is arbitrary, which reflects the path indepen-
dence of reversible Markov chains.
Fori # j, we now define
1

Fij = \/7TiMij\/—ﬂ__j = Fji, )
where the symmetry follows from the reversibility 81. Clearly, F;; > 0 andF;; = (Fiiji)1/2 =
(M;;M;;)'/?. As a consequence, the matrix

H:=ImT7?HI1/? 8)

with IT := diag{n; |+ € S} has off-diagonal entrie8;;, is symmetric and has the same spectrunifas
with correspondingly transformed eigenvectors. We now decompbsethe same way as we did witH
in (2), namely into a Markov generatét plus a diagonal matri¥. To this end, letF' = (F;;); jes With



F;; asin (7) fori # j, and complete this by;; := — Zjes\{i} F;;. With E; := R, + M;; — F;;, one now
hasH;; = F;; + E;6;; foralli,j € S, i.e.,

H=F+E )

with F' a Markov generator anfl = diag{ E; | i € S}.
This now allows us to formulate a suitable variant of the Rayleigh-Ritz (or Courant-Fisher) maximum
principle for the leading eigenvalue @&f, compare [32, Thm. 19.4]. Clearly,

Amax =  sup Z viHijv;

. 2__
Vi) ees V=1 i,jES

sup ( Z viFijv; + Z E'kv,%) , (20)

v:3es V=1 "4 jes kes

where we have used the decomposition (9) in the second step. Note that the supremum is, indeed, assumed,
since the space of probability measuressas compact. The maximizer, i.e., the normalized principal eigen-
vector of H, is unique and strictly positive (since the same holds for the corresponding eigenvekipr of
so that the above may also be read a¢.&wariant through the substitutian := v?.

Note that, since’ is a Markov generator, the quadratic fo@i,jes v; F;5v; is negative semidefinite
with maximum0, which is assumed for the stationary distributiodt(sinceF’ is symmetric and irreducible,
this is the equidistribution, and unique). We thus have a simple upper bouxg.gn

Amax < sup Y Euf = max By, (11)
viXlees %=1 kes €

while we can obtain a lower bound for any> 0 with Y, v? = 1 via

Z UiFijUj —I— Z Ek'l),% < >‘max . (12)
i,j€ES kesS

Even though each step of the above derivation is elementary, it is worthwhile to summarize the findings
as follows.

Proposition 1. Let S beafiniteset, andlet H bean |S|x|S|-matrix with decomposition H = M + R intoan
irreducible and reversible Markov generator M and a diagonal matrix R. If = isthe stationary distribution
of M, H can be symmetrized to H = IT'/?HIT~/? with IT = diag{r; | i € S}. The matrices H and H
are isospectral, and their leading eigenvalue A .« is given by the maximum principle (10). Furthermore,
simple upper and lower bounds for A . are provided by Egns. (11)and (12).

It is our aim to identify conditions under which the inequality (11) becomes an equality, at least asymptoti-
cally as|S| — oo.

As a first step, consider the maximizer of (10), i.e., the principal eigenvectfr H, normalized via
Scsw? = 1. SinceH is symmetric, we have H = Ayaxw and, simultaneousyifw? = Apaw?.
Hence,

2T =, I V?wT and h:= cpwll'/? (13)

are the principal right and left eigenvectorsif= II ~1/2H IT*/2. We will adjust the constants, andc,
S.t.Y . hi =Y, hiz; = 1, clearly, this implies:, - ¢;, = 1.

The vectorh gives the stationary distribution of types in Equation (3). Further, it is well-known that, for
irreducibleH andt — oo, the matrixexp (tH — Amax1) becomes a projector ontg with matrix elements
z;h; (compare [26, Appendix]). Therefore,

. exp (tH)).. o zih;
lim jes (0P Fyesihs % (14)
t—oo Zk,les hk(exp (tH))ke ZZES he
With (5) in mind, z; may therefore be understood as the asymptotic offspring expectation ofdinidual,

relative to the mean offspring expectation of an equilibrium populatioR. ¥ C1 for some constar®,
we havez; = 1, in line with the fact thaff — C1 is then a Markov generator.




¢ From (13) along with the normalization fandz, the relations
hi= =" and w?=hz (15)
> jes Ti%i
are obvious. In particular, with
a; = w? = hjz; >0, (16)

we obtain the correspondirg! -maximizer of (10).
To arrive at another interpretation @f consider the Markov generat@rwith elements

Qij = 27 (Hij — Amax0ij)2j - (17)

Itis easily confirmed thaf) is indeed a Markov generator (i.€),;; > 0 fori # j, and}_, Q;; = 0). Using
(15) and reversibility, one observes tigatmay also be rewritten as

Qij = h; (Hji — AmaxSij ) hj . (18)

In the form (18),Q is the generator of the backward process on the stationary distribution as described
in [25, Corollary 1] for general multitype branching processes, and used in [21] in the context of mutation-
selection models. Loosely speakirg describes the Markov chain which results from picking individuals
randomly from the stationary distributidrand following their lines of descent backward in time. Eq. (17) is
the corresponding forward version as used in [24] and [19]. Itis immediately verifie@ the principal left
eigenvector (i.e., stationary distributian)This is known as thancestral distribution of types; its properties
are analyzed in [19]. Let us summarize as follows.

Proposition 2. Let the assumptions be as in Proposition 1. Then, the principal eigenvector w of H gives
the principal left and right eigenvectors of H and their mutual relations through Egns. (13) and (15). The
L-maximizer a = (a;);es Of (10)admits the interpretation of an ancestral distribution as the stationary
state of the backward Markov generator @ of (17)and (18).

3. A scalar maximum principle: An example

The maximum principle (10) is not very useful in practicgdif is large but fixed, since maximization is then

over a large space. In [21], this high-dimensional maximization could be reduced to a scalar one for special
choices ofM and R. We will re-derive this result here in a simplified way, which will also lead the way
towards the more general methods and results we are aiming &.£ef0, 1, .. ., N } with the following
mutation scheme:

+
k

+ + +
O &= [ & 2  — - 1] & [
- - - -

Uy Uy Uk+1

Suppressing the (relevant!) dependencé\oim the notation, we then have

M1 =Uf, M;;1=U] (19)

2

fori € S, where we seU;; = U, = 0. This is a variant of the so-called single-step mutation model of

population genetics [8, Ch. 111.4]. It emerges if sequences of sites (nuceotide sites or loci) are considered, and

the ‘type’is identified with the number of sites at which the sequence differs from a given reference sequence

or wildtype; see [33] for a recent application. If fitness is a function of this number only, and if mutations

occurindependently of each other in continuous time, we are in the setting of the single-step mutation model.
Hence, for alk € S, we have

Fiiv1 = (M1 M1 )% = (UFUS)Y? = Frag (20)

with the obvious meaning far = 0 and: = N; also,F;; := 0 whenever eithei or j is not in S, or if
|i — 7| > 1. In order to evaluate the lower bound in (12), Mthe largel < L <« N, and/ € S. We will
use the simple test functian:= (vg, v1, ..., vn) defined through

_ o Jo, i (e+[-L,L])nS
PT1, e (04 [-L,L)NS



with [-L, L) := {-L,—L+1,...,L—1, L}, and the constant, chosen so tha}_, v; = 1. Thatis,v isa
normalized step function arouddwhich does not extend beyoficor N. If £ + [—L, L] C S, one always
hasc, = 1/(2L + 1); a short calculation shows that, in any case,

! gcegLa
2L+1 L+1

due toL < N. With v, = v?, the quadratic form in (10) and (12) reduces to

Z viFijv; = ¢4 Z Fij = —cy(Fp—pp—r-1 + Forpe4n+1)
i,jES i,j€l+[—L,L]

duetothe tridiagonal nature of the Markov generﬂto@ince% (Fo—po—rp-1+Fevpprr+1) Smax; F 41 =
max; jes Fij =: Fmax, ON€ has

2Fmax
1,j€ES

On the other hand, the second term in (10) resp. (12) (to be called the ‘diagonal part’ in what follows) be-
comes

S Bt = 3 (R - U —U7 + /Ui UG, + U7 UL ) (22)
ic€S i={—L

whereU= := 0 is implied whenevet ¢ S.
We now assume that

U =u*(z;) + O(1/N) and R; =r(z;) + O(1/N) (23)
with continuous functions ™, »~, andr on [0,1], and the new ‘type variable’; = i/N; itis further implied
that the constant in thé@(1/N) bound is uniform for all. (Eq. (23) differs from the scaling in [21] by a
global factor ofV, which means nothing but a change of the time scale.)

Defineg(z) := u™(z) + u=(z) — 2¢y/ut (z)u—(z), letz* be a position at which(z) — g(z) assumes
its supremum, and chooge= | Nz* |. With an appropriate scaling @ (such asl, ~ v/N, to be specific),
the right-hand side of (21) i©(1/v/N). In (22), the sum ha®(v/N) terms, which is balanced hy, =
O(1/+/N); together with (23), this turns the right-hand side of (22) ire*) — g(z*) + O(1/N). At the
same time, the upper bound in (11) also behaves k&) — g(z*) + O(1/N). Taking everything together,
we obtain the asymptotic maximum principle §r— oc:

Amax = sup (r(z) — g(z)) (24)
z€[0,1]

up toO(1/v/N).

Finally, recall from Section 2 that, for finit, the maximizer of (10) is unique and given by the ancestral
distributiona = (h;z;):cs. However, inthe limitagV — oo, uniqueness may be lost, which is also reflected
by the fact that the supremum in (24) may be assumed at more than one point. In these degenerate situations,
error thresholds may occur [21].

Remark 1. The maximum principle derived in [21] also holds for functienandu * with a finite number
of jumps. This can be dealt with in the current framework with slightly more effort, but we avoid this here
to keep the example as transparent as possible.

Remark 2. With a more careful choice for the scalinglbfone gets the quadratic form (defined by the matrix
F) down toO(1/N1~¢) for arbitrarye > 0, butO(1/N) is only obtained with the help of better (smooth)
test functions. This will now be done.



4. Asymptoticsfor theleading eigenvalue

The maximum principle allows for an asymptotic estimation of the leading eigenvalue when the Markov
generato#’ can be considered as ‘small’ in a suitable sense, in comparison to the derived effective ‘diagonal’
part. Before stating precise conditions and results, let us briefly discuss the heuristics behind this. Due to the
symmetry ofF’, we can rewrite Eq. (10) as

Amax =  sup ( - % Z Fij(v; —v;)® + Z Ekvi) . (25)

v s vi=1 i,j€S kes
Thus, it is obvious that thé'-term favours constant while the diagonalE-part favoursy that are con-
centrated on the pointswhereE is maximal. Clearly, the outcome of this competition depends on some
concentration and smoothness properties of the matrices involved.
For simplicity, let us now assume that our $etonsists of integers or, more generadlytuples of in-
tegers. SoS C 74, with |S| < oo. We will now look more closely into the situation wheig| ,* oo.
Consider a family of sets

S=S8(N), Scz¢ sothat |S|]~N? asN — oo, (26)

where we suppress once again the dependengeonfV. A reasonable setup is then obtaine(*ﬁf- ScD,

whereD is a compact domain iR?, % - S becomes dense iR for N — oo, and there exist function®

andfi, from CZ (D, R) with

5= 5(3) +o(3) @
and . .
Fi=(5) +0(5) (28)

wherek = j — 4, and the constant in th®(1/N) bound is uniform for ali and;. More generally, one can
replaceO(1/N) in (27) and (28) byO(1/n(N)) for some functiom(N) that grows withiV, if that better
suits the individual situation.

Our main result will be the following theorem. F8rC 7 <, we will use throughout the slightly abusive
notationS —j :={i —j |7 € S}.

Theorem 1. Assumethat E; and F;; areasin Egns. (27)and (28) . Assume further that the C (D, R) func-
tion E assumesits absolute maximumin int(D), and that f satisfies

i 2
— <
> fi(G) ek < © (29)
keS—i
for some constant C, uniformly for all : € S, and 1 < £,m < d. Then, thereexist constants0 < C', C" <
oo such that o ov
- =K < N+ =
E(l‘) N\)\maX\E(m)+N)
where z* is a point where E(z) assumes its maximum.

(30)

Remark 3. It will become clear when we proceed that the condition on the derivativBéxfand thef . (z)
may be relaxed,; it is indeed sufficient that these function§ péocally, in a neighbourhood of *.

Note that the upper bound is clear in view of Egns. (27) and (11) (recall that the quadratic form defined
by F' is negative semidefinite); it can be made sharper if the order of the approximation in (27) and (28) is
improved. It remains to prove the lower bound (which cannot be improved by sharpeniégitj%) in
(27) and (28)). We will do so by evaluating the quadratic form in (25) for a sequence of test functions of
Gaussian type centred arountl in the interior of D (and approaching a Dirac measure locategd*atvith
increasingV). Specifically, we will use throughout

vi 1= ce ®NI/N=="1"  \ith ¢ = ¢(N) st v? =1, (31)
icS
wherea > 0 is a positive real number independentf
We will first consider the diagonal part and show



Proposition 3. Let E; beasin (27)and z* beapoint in theinterior of D where E(z) assumesits maximum.
Let thev; beasin Eq. (31). Then,

1
02 = * _
ZElvl E(z )—I—(’)(N).
i€S
The upper bound in the proposition being immediate, we only need to prove the lower bound. We will
use the following fact.

Lemmal. Letg: R? —s Ry, be a non-negative, continuous, integrable function with g(z) < C/(1 +
|z])@* for all z, and (fixed) positive constants C and e. Then, for any z* € R?,

nli}n;o % Z g(% — nm*) = /Rdg(m) dz . (32)
i€Z4
Proof. Note first that the sum in (32) exists for arbitrary, but fixedue to the assumed decay condition for
g.Letbd, := X ‘,le (—1/2n,1/2n]. Then, one haR? = Uiezd(i/n + by,), and, for allz, there is a (unique)
elementy of Z<4/n with = € v + b,,; this will be calledy,,(z). We now define

gi(@):= sup g(2), g,(z):= g(2). (33)

inf
2€(yn (z)+bn) z2€(1n (2)+bn)

Since integration oveR? is invariant under a shift of argument, apgl are step functions, we have

/R"g;(m) 4= /Rdg;(m —na”)dz = % > g, (i/n —nz*)

i€Z4
1 . X 1 ] *
gﬁZg(z/n—nm)gﬁZg:(z/n—nm) (34
i€Z? YA

:/ gi(m—nm*)dm:/ gl (z)de.
R¢ Ré

Both g7 andg;; converge tqy pointwise (sincey is continuous). Furtheg ;= (z) are both bounded from
above due to the properties of the assumed majorizing function, and gpeg (z) dz and [, g;f (z) d=

both converge td, , g(z) dz asn — oo by the dominated convergence theorem. But then, the same must
be true of the sum in (34), which proves the assertion.

We will use the following immediate corollary.
Corollary 1. For any non-negative integer k£, and any o > 0

lim N(*=9/2 %"

N—o00
1€Ze

Proof. Use Lemma 1 witm = v/N andg(z) = |z|*e—l=l",

i

*
— -z
N

k . .
e—aN|i/N—z*|? :/ |$|ke_°‘w2 dz. (35)
Rd

The following is a simple consequence of the preceding corollary.
Lemma?2. Forany A C Z4, 6§ > 0andk € N,

NGz 3

1€A:
[i/N—z*|>6

i

N

*

ke—2aN|i/N*-'E*‘2 — (’)(eiaNé-z) . (36)

Proof. Just note that

Nz 3

k
672aN\i/N7z*\2

i

__m*

< e N8 pr(k—d)/2 Z kefaN|i/N7:z*|2 (37)

i€Zd

and apply Corollary 1 to the last expression to get the assertion.



This yields a variant of Corollary:

Corollary 2. Corollary 1 holdstruewith Z¢ replaced by S(N) of (26).

Proof. Sincez* € int(D), we may choose & > 0 so thatZz?\ S(N) C {i € Z%: |i/N — z*| > &}. Then,
the difference in the sum in (35) 8(e ~*N*%"), according to Lemma 2, witd = S(NN).

We are now ready to prove Proposition 3.
Proof. Since we may write

ko, 1 NGE=D2);/N — m*|ke—2aN|i/N—q:*|2
(N

i T Nk/2 a/2 “2aN[i/N—z*? J
NEZ T N2, o 2aN/N w ]

— -z

Lemma 2 and Corollary 2 entail that, fér> 0,

v = O(e N (38)

t€S(N):
|i/N—z*|>8

and .
v? = o(ﬁ) . (39)

1€S(N):
|[¢/N—a*|<§

So far, we have only used that is in int(D). Butz* is also a point wher& (z) assumes its maximum, and
E(z) is twice differentiable in a neighbourhoodof. Hence, there exist > 0 and0 < C < oo, such that
forall |z — z*| < 4, E(z) > E(z*) — C|z — z*|*. Therefore,

1 1 i
UZ-ZE'i:(’)— + E'—viz—l— E—v?
> (F)+r X Ekir £ #)

[i/N—z™|<8 |[¢/N—a*|>6
> E@z)(1+0 M) -c Y

|i/NiEfi\<6

+O(%) + inf (E(z)) Z v?

zeD

2

2
Y;

1
__m*

N

/N a5
= E(z*) + (’)(%),

where we have used (27) along with normalization in the first, (38) in the second, and (38) and (39) in the
last step. This proves the assertion of Proposition 3.

After dealing with the diagonal part, we are now ready to embark on the quadratic form.
Proposition 4. Let F;; beasin (28), and assume that f satisfies condition (29) of Theorem 1. Then,
1
Z viFijvj = O(N) .
%,jES

Proof. Evaluating the difference betwegN —z*|? = (i/N —z*,i/N —z*) and|j /N —z*|*> = (j /N —
z*,j/N — z*), we first note thalj /N — z*|?2 — |i/N — z*|> = ((i + j) /N — 2z*,(j —4)/N) (hereJ.,.)
denotes the scalar product). In viewwgf= ce~*N(/N=z"i/N=z") ‘and withj = i + k,

2i+k k
V; > Vipkp < n(i,k) ::< l]_\t —21‘*,N> >0
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(nOte thaﬁ](l, 0) = 0) USingFij = Fji (See (7))(’1)1 —'Uj)2 = (’Uj —’Ul')z, andFi7i+k = fk(Z/N)-l-O(l/N)
(see (28)), we can rewrite the quadratic form as

Z UiFij’l)j = —% Z Z Fi,iJrk(Ui - Ui+k)2

i,jES i€S keS—i

=— Z Z Fiivk(vi — vigs)”

i€S keS—i
n(i,k)>0

— ‘ 1 2
=-2 X (n(F)ro(g))m—vr.
i€S keS—i:
n(i,k)>0
We have thus achieved that the summation includes only terms wherfe; , , which entails that

e eNI/N=a" (1 _ gmaNn(ik)) ¢ cqNe @NIN=2"Fp(; k)

V; — Vi = C )

sincel — e~ < min(z,1) < z forz > 0 (of which we only use the latter inequality). Together with the
fact that the quadratic form is negative semidefinite, this gives

__Z Z Fzz+k _Uerk)

i€S keS—1

s 3 (n(h) ro(4)) s

i€S kES—i:

n(z,k)>0 .
> —azNzév? kezs:_(fk(%) +O(%))(n(i,k))2. (40)

In the last step, the constraint on the sum could be removed since we added to the sum nonnegative terms
only: fx(i/N) > 0 for k # 0, and (n(i, k:))2 > 0 with equality fork = 0.
We now note that (29) entails that, for< £, m < d,

> aly ek, > (3 ke, and 3 i )REEL/N (41)

keS—i

are all bounded from above by a positive const@rfthe latter case relies a8y N C D with compactD).
Writing

60 = (o =) )

= 3 bkl o) (=) 4 1) i+

£,m=1

allows us to bound the various parts of the sum in (40) as follows:

YR Y A(E) X k() ()

€S keS—i £,m=1

where we used the Cauchy-Schwarz inequality for

mz k(2 27) (i - 2) < 2R Y (2 a2)’

=1 m=1
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(41) in the first, and (38) and (39) in the last step.
Again, with (41), (38), and (39), we obtain

Y Y Y A(h) R ()

i€S Lm=1keS—1i

- & (N1/2) (43)

>~y Y Z

i€S =1

where we further used thi{j,?:1 li,/N —z;| < c|i/N —z*| for some positive constant Finally, (41) also

gives that
d . 2792
2 i\ kikm
S Y Y a(y) e
€S Lm=1keS—:
Combining (42), (43), and (44), we arrive at the assertion.

= o(%) (44)

Remark 4. Eqg. (44) is the reason that the lower bound in (30) cannot be improved by better approximations
in (27) and (28).

Remark 5. We have, so far, assumed thdtis in the interior ofD. If z* is on the boundary ab, a similar ap-
proach may be taken with a one-sided, exponentially decaying test function. The error in the approximation
will, however, be larger than in the case tackled here.

In both cases, much finer results can be obtained using more advanced methods of perturbation theory
[28], which, however, require much more work.

So far, we have used the Rayleigh-Ritz variational principle (10) to obtain results on the leading eigen-
value of H, but said nothing about the maximizer (note that this nesdoincide with the test function
v). Recall from Section 2 that, for finitd, the maximizer is unique and — in ifs' version — given by the
ancestral distribution = (h;z;);cs. Actually, from the bounds above, we can also concludedhsiton-
centrated in a neighbourhood of , where the size of the neighbourhood depends on the behavidur of
near its maximum. In the generic case of a quadratic maximausgoncentrated in a region with a width
of order1/v/N.

More precisely, we have:

Theorem 2. Let E; and F;; satisfy the hypotheses of Theorem 1. Assume that £ assumes its maximumat a
unique point z* € int(D), and that the Hessian of E at =* is positive definite. Then, for every 0 < 8 < 1,
thereisa p > 0, independent of V, so that, for N large enough:

Z aisﬁ:

1€S:

li/N—z"|>2+/p/BN
where a isthe ancestral distribution (of (16)and Prop. 2).

Proof. Recall first that thek?) maximizer of (10) is given bw = (/a;)cs (cf. (16)). Hence, by Theorem
1, the negative semidefinitenesskafand (27), we have
* C’ 2
E(l‘ ) — N < Amax = ,stiFijwj + Z:SElwl
€ '€ L (45)
ZE’LU maXE E(z )+O(N)

i€S

Now, conside®(z) in a neighbourhood af *. Since the Hessian at is positive definite, we havE(z) <
E(z*) — Clz — z*|? for someC > 0 in a neighbourhood af *. Fore small enough and(e) := /¢/C
therefore,

B@) < {E(z*» [ =] < 8(e)
S\ E(z*) —e, |z—z*| > 5(e).
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Together with (27) and (45), this implies

1 1
E@z)+0(=)=)Y Ew?<E(@z*)—¢ w? + O —
(1)-% <3 o)

1
Hence, for some positive constant0 < € 3-,.;/v—z«|>5(¢) w? < v/N. Choosings = /BN gives the
assertion.

Remark 6. For notational simplicity, we have assumed above Biat) assumes its (absolute) maximum at

a unigue point:*, which is the generic case. It is obvious from the proof, however, that an analogous result
holds if the maximum is assumed at a finite number of points (each with a positive definite Hessian). Then,
the ancestral distribution is concentrated on the union of the corresponding neighbourhoods of these points
(or a subset thereof), again with widths of ordgr/N.

Let us return to the case whellz) assumes its (absolute) maximum at a unique pofniVe have seen
that the ancestral distribution concentrates aratihtbr N — oc, in the sense that any given fixed fraction
£ (or even more) of the distribution’s mass is contained in a region whose width decreaseswiith Since
this is true for arbitran, it is clear that the ancestral distribution must approach a point measure located at
z*. As a consequence, theean ancestral type, Y, z;a;, converges ta*, which adds some interpretation
to the scalar maximum principle in Theorem 1; for further details, see [21].

5. Lumping

So far, we have not specified the type sp&cén the example of Section 3, the types were defined in terms
of some intermediate genetic level that could be derived from a more detailed picture. In this Section, we
will show that a large class of models on a type sp@an be derived, in a natural way, from models de-
fined on a ‘larger’ spac® (to be called genotype space) if the branching and mutation rates fulfill certain
symmetry or compatibility conditions. The idea rests on the common assumption that fithess depends on the
genotype through an intermediate level of ‘effective’ parameters (which may, for example, be ‘phenotypes’,
or ‘genetic values’ in quantitative genetics), and the mapping from the genotype to this intermediate level
is multiple-to-one. One will therefore try and combine several of the genotypes into a single one; if this is
also compatible with the mutation scheme, a reduction of the number of dimensions is possible. In the theory
of Markov chains, this approach is knownlasping [29, Ch. VI]. We will proceed in two steps: First, the
lumping procedure will be described in an abstract setting, with arbitrary genotype and type&paweds
S, respectively. In a second step, we will specialize to the concrete sequence (or multi-locus) picture.

For the first step, le® be a possibly large, but finite set. In analogy with (1), consider the dynamics

p=pM+R) (46)
onRI®!, with M a Markov generator an®@ = diag{R, | o € &}. Consider a mapping
p: 6 — S=im(p) (47)

so that& may be understood as the disjoint union of fibées:

6= Umes ®,,, with &,:={cc&|p(0)=m}=¢p"'(m).

We will now give conditions under which the dynamics (46) may be reduced to a dynamg:sidme fol-
lowing result is a variant of a theorem by Burke and Rosenbilatt [9], see also [29, Chapter VI].

Theorem 3. Let G and S befinite, let ¢ be the mapping of (47), and assume that there are matrices M =
(Mnm)nymes and R = diag{Ri | 1 € S} with

Re = R(P(g) forall o € &, (48)
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Y Mor=Myo)m foraloes, mes, (49)

TEPm

where M isthe Markov generator of Eq. (46). Then, M isa Markov generator on R!51. I p solves (46), then

=3 1o (50)

€D,

satisfies the differential equation (1), i.e., Ym = Y., Yn(Mpm + Rndnm). If M isreversible with respect
to7 = (s )res, M isreversible with respect to m = (7, ) mes, Wherem, = 37 4 7. If M + R has
principal left eigenvector h, then M + R has principal left eigenvector h With by = 3, e, ho-

Proof. The proof is a straightforward verification. Note first thidtis a Markov generator (oR!5'), be-

cause, forany € @,,,
Zan:ZZMUT:ZMUT:07
neS neSred, TES

since M is a Markov generator.
Starting now from (50) and (46), we find

Ym = Z po = Z ZPT(MTU +R.,-5T,,)

oEPm c€P, TES

=3 > pr(My(rym + Ro(r)S(r),m)
ncS 7€d,

nes

where we have used (48) and (49) in the second step, and (50) in the last, together with the fact that both
My (7y,m @NdR ()0, (r),m are constant on every fibi,, .

Finally, the assertions on stationary distributions and reversibility are direct verifications in the same
Sspirit.

6. From sequence space to type space

In this Section, we will be more explicit and start from sequence space. The natural scheme that will emerge
involves the grouping of sequence positions together with a ‘coarse-grained’ dependence on some ‘genetic
distance’. Many of the frequently-used models fall into this scheme. Related results appear in statistical
physics, cf. [7,6], from where we will borrow some techniques.

Let us begin with the general setup for a mutation-reproduction model on sequence space. We will as-
sume that the type of an individual is characterized by a (DNA, RNA) sequence which we take to be an
element of the spad® := XV with X = {1,...,q}; we writeo = (04, ...,0n). For generality, we leg
be an integek 2; if ¢ = 2, the alternative choic® = {—1, 1} is often more convenient. Consider now the
partition of the index sett = {1, ..., N} intod disjoint subsetst;, i.e.,

A= Ulgigd A;. (51)

LetP(X) = {(p1,---,14q) | e = 0,), pe = 1} denote the set of probability measuresXnSet, with
obvious meaning,

1 2 1 q
Pa () ::P(Z)m{o, ATl m,1}
and .
P(Al,...,Ad)(E) = ®/PA1(E) (52)
=1

Thatis, P4, ..., 1,)(%) is the set of product measures with values restricted to certain rationals induced by
the partition.
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Consider now the mapping (which will take the rolegfrom the previous Section)
m: 2N —Q%, o—m(o) (53)

with m(o) = (mf(o))iffi and

z = |A|Z Lo; = |A||{]|]€A170J_£}| (54)

So,m¢(o) is the fraction of the sites at positions.n which are in staté. Note that these quantities satisfy
Yi_imi(o) =1,ie., foreach, m;(o) := (m}(0),...,m¢(s)) defines a probability measure af with
m; € PAi (2)

Describing the system in terms of these lumped quantities will only lead to a simplification in connection
with a suitable symmetry. In our case, this is given by those permutations of the sites that are compatible with
the chosen partition.

Let I'y be the permutation group oh={1,..., N}, i.e.,

I'y:={y|v: A— Aisabijectior},
andl'y, .. ,) the subgroup compatible with the partition (51), i.e.,

F(Al,...,/ld) = {'Y € FA | ’Y(A ) Al: 1 d} FAI - X FAd -

We introduce the canonical action of the permutation groupy dhthrough the inverse permutation of sites,
e.,(yo); = 0,-1(;. We are now ready for

Theorem 4. Let ¥V = {1,...,¢}", and matricess M = (M; )y resv and R = diag{R, | o € NV}
be given, with M a Markov generator. Let p solve p = p(M + R). Further, et m beasin (53), and S =
m(ZN) c Q. Assume now that there exist a functiong : XN x IV — Ry, and matrices M =

(Mymn)m.nes and R = diag{R,, | n € S}, so that the following conditions are satisfied:

@) g(yr,yo) =g(r,0) forally € I'4,,. 44;
(b) My, = M, m(o),m(r)9(o,7) forallo,Te€ N,
(€) Re = Ry(y) foralloe XV,

Then, ym == ), s Po SOlVesthe differential equationy = y(M + R), where
Mnm - Mnm Z g\o, T
TEPm

independently of the choice of o € &,,. M isa Markov generator. If M is reversible with respect to # =
(7o )oes, then M is reversible with respect to 7 = (7)mes, Where o, = dequ Ty If M+ R has

principal left eigenvector i = (hs)scs, then M + R has stationary distribution o = (A )mes With
hm = Zo‘EfP h""

Proof. Fory € I'(4,,...,4,), We have
m(yo) =m(o) and y(ZN) =5V, (55)
where the first identity is obvious from (54). Equation (55) entails that
V(Prm) = P, (56)

i.e.,I'4,,...1,) acts transitively o,
In order to apply Theorem 1, we have to check assumption (49). Consider thedeforg M,, =

M (o),m ZTE% g(o, 7). For arbitraryy € I' 4, ,....4,), @ssumption (a) and Eq. (56) give

$(o) =Y glo,r) = > glyo,y7)

TED, TED
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= Z glyo, ') = Z g(yo, ') = p(yo).

7' €Y(Pm) T ED,

Due to the transitivity of (4, ... 4,) ON®,,, ¥ (o) is constant on the fibrek,, ). Assumption (49) is there-
fore valid, and an application of Theorem 1 then gives the desired result.

Examples of particular relevance emergg i al'y, ... 4,)-invariantdistance, such as the Hamming dis-

tance (i.e., the number of sites at which two sequences differ). A very simple case was implicitin our example
in Section 3, where the single-step mutation modefea {0, 1,. .., N} was interpreted in terms of a model
on{0,1}". Here, a site in state or 1 corresponds to a site whose state does or does not coincide with the
respective state of a reference sequence (sometimes called the ‘wildtype’). If the reproduction and mutation
rates only depend on the Hamming distance from the reference sequence, we are in a settirg Wwith

such a simple case, the reduced model is immediate. More elaborate examples will be discussed in the next
Section.

7. Applications and examples

In many examples of sequence space models, the lumping construction as described in the previous Sections
leads to an effective model to which the maximum principle of Section Section 4 may then be applied. In
particular, the following conditions are necessary for Theorem 1 to apply:

(C1) The partition{A;}4_, in (51) is relatively uniform, in the sense that there exist constarte < C < 1

such that 4 4
inf 124 < L}
S,y sy <¢
uniformly in N. (Alternatively, this may be replaced by the single, and slightly weaker, condition

liminf y o0 inf1<iga % > 0; note that) .|4;| = N by construction.) This condition ensures that

z = i/N will become a meaningful continuous type variable 8or— co.

For the following two conditions, a suitable enumeration of the elemenfsiefequired to ensure an ap-
propriate representation of the matridelsand R.

(C2) The functiory that occurs inthe sequence space mutation matrix and is required in the lumping procedure
(see Theorem 4) decreases sufficiently fast away from the diagonal. Note that under condition (C1), for
anyo, T we have that

dn(a,7) > 75 Im(o) — m(r)l
wheredy is the Hamming distance. Thusgihas compact support independeni\bfas in the example
in Section 3), or if it decays sufficiently fast (e.g., exponentially) with this entails the decay condition
on f in Theorem 1.

(C3) After lumping, the effective reproduction and mutation matriBesnd M must lend themselves to a
continuous approximation. That i&,,, = r(m/N) + O(1/N) andM,,,, = s(m/N,n/N) + O(1/N)
with functionsr ands that areC%(D, R), where the implied constant in ti(1/N) bound is uniform
for all m andn. This entails the approximation condition &randF in (27) and (28) that is also required
for Theorem 1.

Clearly, (C2) and (C3) stipulate that the enumeration of the types is adapted to the problem. Often the
right choice is intuitively clear, as in the examples in Section 3, and in [17]. But sometimes more thought is
required, as will be illustrated by means of a few examples and special cases below.

1. Some simplifications arise in the case: 2, where we now us&’ = {—1, 1} rather than{0, 1}. Here,
the constraint} + m? = 1 can be used to reduce the number of variables per subset to one. It is con-
venient to seb; = m} — m?2. Eq. (52) is then replaced by

d
2 2
P(Al,,Ad)(E):®{_17_1+ |A|771_ |A|71}7
i=1 * '

and we obtain the simple formula
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2. The caséd = 1 corresponds to so-called ‘mean field models’. They have been studied in the case where
g(o,7) = 0fordu(o,7) > 1, i.e., mutation is restricted to neighbours in sequence space (see [3,4,37,
5,21] forq = 2, and [22,17] forg = 4).

3. Aspecial type of models that falls into the above class is related to fithess landscapes based on Hopfield
Hamiltonians. These are special cases of spin-glass models [31] that were originally motivated by neu-
ral networks, then became prototype models for random interactions in statistical physics, and were later
also used as tunably rugged fithess landscapes in biology [30, 35]. We adopt from [6] the lumping proce-
dure for the case = 2 (the general setting > 2 can be found in [18]). We consider the sequence space
& = XN = {-1,1}". A Hopfield Hamiltonian is constructed by choosing at rand@hindependent

elementg?, ..., &M from XV, Given such a choice, one defines
1 M N M )
N8 =5 D0 D ol =N (wul0)’,
p=14,j=1 p=1
where
1 & 1
wy(0) = N ;Uiff = N(@f“)-
Itis convenient to associate with the collection of row vecgarthe M x N matrix¢ = (¢)1S4Sy. We
denote by¢* the rows and by; the columns of this matrix. A partition, . . ., A4 with d = 2M is now
obtained as follows. Lety, ..., eq (e, = (ef)'<+<M) denote an enumeration of &l -dimensional

column vectors with entries1. Then we set
Ag ::{iEA|£i:6k}.
This results in

d d

1 1

wy(o) = N Zellg Z 9% =N Z|Ak|e’l:bk(0)>
k=1 1€ AR k=1

and so

N d
Hn(o,€) = NZ Z er ey |45 44]bg ()b (o)
pu=1kL=1
is a function ofb; (o). Thus, if we consider reproduction and mutation rates of the form

MG’T = Oé(HN(O', 6)7 HN(Ta g)) g(O’, T) )
R, = /B(HN(U7 6)) )

with a nonnegative function and any real functio@, we may apply Theorem 4 to derive the effective
dynamics with lumping according to the valuesbgfc). In particular, the choicg(z) = z gives the
familiar Hopfield fitness landscape, am(lz) = 1 along withg(o, 7) = pfordg(o,7) = 1,9(0,7) =0
fordg(o,7) > 1, andg(o,0) = —2Np yields the well-known sequence space mutation model where
every site mutates independently and at the sameurédeay., [5]).

8. Concluding remarks

The motivation for this work came from continuous-time mutation-selection models, cf. (3) and (4). How-
ever, it should have become clear that our results are not tied to these specific models. They also hold for the
corresponding discrete-time dynamical systems, or if there is no underlying dynamics at all. Our main result
(Theorem 1) simply yields asymptotic estimates for the leading eigenvalues of large matrices that possess a
certain continuous approximation, and whose elements decay sufficiently fast away from the diagonal. These
properties are shared by many systems, in particular, by many spatially extended systems, where interactions
between distant components are weak.
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