
Weierstraß-Institut
fr Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 - 8633

An asymptotic maximum principle
for essentially linear evolution models

Ellen Baake1, Michael Baake1, Anton Bovier2, Markus Klein3

submitted: 14th November 2003

1 Institut für Mathematik 2 Weierstraß–Institut
und Informatik für Angewandte Anlaysis und Stochastik
Jahnstr. 15a Mohrenstr. 39
17487 Greifswald, Germany 10117 Berlin, Germany
ebaake@uni-greifswald.de bovier@wias-berlin.de
mbaake@uni-greifswald.de

and

3 Universität Potsdam Technische Universit¨at Berlin
Institut für Mathematik Institut f¨ur Mathematik
Postfach 60 15 53 Str. des 17. Juni 136
14415 Potsdam, Germany 10623 Berlin, Germany
mklein@math.uni-potsdam.de

Preprint No. 886

Berlin 2003

W e ie rstra ß -In stitu t fü r A n g e w a n d te A n a ly s is u n d S to ch a stik

2000 Mathematics Subject Classification.15A18, 95D15, 60J80.
Key words and phrases.asymptotics of leading eigenvalue, reversibility, mutation-selection models, ances-
tral distribution, lumping



Edited by
Weierstraß-Institut f¨ur Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
D – 10117 Berlin
Germany

Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



1

Abstract. Recent work on mutation-selection models has revealed that, under specific assumptions on the fitness func-
tion and the mutation rates, asymptotic estimates for the leading eigenvalue of the mutation-reproduction matrix may
be obtained through a low-dimensional variational principle in the limitN ! 1 (whereN is the number of types).
In order to generalize these results, we consider here a large family of reversibleN � N matrices and identify condi-
tions under which the high-dimensional Rayleigh-Ritz variational problem may be reduced to a low-dimensional one
that yields the leading eigenvalue up to an error term of order1=N . For a large class of mutation-selection models, this
implies estimates for the mean fitness, as well as a concentration result for the ancestral distribution of types.

1. Introduction

Many systems of population biology, or reaction kinetics, may be cast into a form where individuals (or
particles) of different types reproduce and change type independently of each other in continuous time. If
the types come from a finite setS and the population is so large that random fluctuations may be neglected,
one is led to a linear system of differential equations of the form

_y = yH (1)

with initial conditiony(0). Here,y = (yi)i2S 2 R
jSj

>0 holds the abundance of the various types.H =

(Hij)i;j2S is anjSj�jSj matrix, which represents a linear operator onR jSj . Important examples include
models of age-structured populations, which are often referred to as matrix population models, see Caswell’s
monograph [10]. The main application we have in mind here is in population genetics, where types are alle-
les, so that Equation (1) is a haploid mutation-reproduction model; but one may also think of a compartment
model, where types are locations of a certain chemical. In line with large parts of the population genetics,
and most of the stochastics, literature, we will use the convention thaty is a row vector to whichH is applied
from the right, so thatHij (i 6= j) is the coefficient for the change fromi to j.

We will assume throughout that the linear operatorH generates a positive semigroup,fexp(tH) j t >
0g. SinceS is finite, this is equivalent toHij > 0 for i 6= j. The flow so generated leavesRjSj>0 invariant.
We will further assume thatH is irreducible (i.e., ifG(H) is the directed graph with an edge fromi to j if
i 6= j andHij > 0, then there is a directed path from any vertex to any other vertex).

We will often use the decomposition
H =M +R (2)

into a Markov generatorM and a diagonal matrixR. More precisely, we haveM = (M ij)i;j2S withMij :=

Hij for i 6= j, Mii := �Pj2SnfigMij (so that
P

j2SMij = 0), andR = diagfRi j i 2 Sg with
Ri := Hii�Mii. Clearly, the decomposition in (2) is unique, andM is irreducible iffH is, becauseG(M) =

G(H).Mij is the rate at which ani-individual producesj-offspring (j 6= i), andR i is the net rate at which
individuals of typei reproduce themselves; this may also include death terms and thus be negative.

Solutions of (1) cannot vanish altogether (unlessy(0) = 0), since tr(H) is finite, hencedet
�
exp(tH)

�
=

exp(t tr(H)) > 0 and ker
�
exp(tH)

�
= f0g, for all t > 0. Therefore, we may also consider the corre-

sponding normalized equation for the proportionsp i := yi=(
P

j2S yj), which is sometimes more relevant.
Clearly,

_pi =
X
j2S

pjMji +
�
Ri �

X
j2S

Rjpj
�
pi : (3)

In the population genetics context, this is the mutation-selection equation for a haploid population, or a
diploid one without dominance; for a comprehensive review of this class of models, see [8]. It is well known,
and easy to verify, that the way back from (3) to (1) is achieved through ‘Thompson’s trick’ [36]:

y(t) := p(t) exp
�X
j2S

Rj

Z t

0

pj(�)d�
�
:

This substitution can thus be viewed as a global linearization transformation and explains why (3) is an ‘es-
sentially linear’ equation.

Clearly, the solution of (3) is obtained from that of (1) through normalization:

y(t) = y(0) exp(tH); p(t) =
y(t)P
i yi(t)

:
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Of course, proportions of types in a population that grows without restriction (which is biologically rea-
sonable only over short time scales) is not the only way in which (3) may arise. Actually, the same equation
for p results if (1) is replaced by

_y = y
�
H � 
(t)

�
;

where
(t) is some scalar (possibly nonlinear) function which describes the elimination of individuals by
population regulation. This is obvious from the invariance of (3) underR i ! Ri+
(t) if performed simul-
taneously for alli. The function
(t) may, for example, describe the flow out of a chemostat, or an additional
death term caused by crowding, which may depend ont throughy, but acts on all types in the same way.

Eq. (3) may be read in two ways (cf. [23]). If mutation and reproduction go on independently of each
other, the parallel (or decoupled) version is adequate. Here, everyi-individual gives birth to offspring of its
own type at rateBi, dies at rateDi, and mutates toj at rateMij (j 6= i). Ri := Bi � Di then is the net
reproduction rate or Malthusian fitness [11, Ch. 5.3], and Eq. (3) is immediate. If, however, mutation is a side
effect of reproduction (through copying errors of the replication process, for example), the coupled version
[1,20] is more relevant. When ani-individual reproduces (which it does, as before, at rateB i, while it dies
at rateDi), the offspring is of typej with probabilityV ij (

P
j Vij = 1). This leads to

_pi =
�X
j2S

pjBjVji

�
�
�
Di +

X
j2S

Rjpj

�
pi ; (4)

where, again,Ri = Bi �Di. But if we setMij := Bi(Vij � Æij), we arrive again at Eq. (3). In both cases,P
j Rjpj is the mean fitness of the population. Obviously, a mixture of both the parallel and the coupled

mutation mechanisms can be tackled in the same way, but we omit further details.
The model (4) also arises in the infinite population limit of the well-known Moran model with selec-

tion and mutation, see [15, Ch. 3] or [12, p. 126]. This is astochastic model where, in a population ofm
individuals, every individual of typei reproduces at rateB i, and the offspring, which is of typej with prob-
ability Vij , replaces a randomly chosen individual in the population (possibly its own parent). To describe
the entire population, letZi(t) be the random variable that gives the number ofi-individuals at timet, and
Z(t) =

�
Zi(t)

�
i2S

. Hence, ifZ(t) = z, andj 6= k, we can have transitions fromz to z+ e j � ek, whereej
denotes the unit vector corresponding toj. Such a transition occurs at rate

P
iBiVijzizk=m. Let us look at

the influence of increasingm, whence we writeZ (m)(t) to indicate dependence on system size. Asm!1,
the sequence of random processesZ (m)(t)=m converges almost surely, and uniformly for every finite inter-
val [0; t], to the solution of the differential equation (4) withD i � 0, and initial conditionZ (m)(0)=m (resp.
its limit asm!1), compare [14, Thm. 11.2.1].

The linear equation (1) has a more direct stochastic interpretation in terms of a continuous-timemultitype
branching process. After an exponential waiting time with expectation� i, an individual of typei produces
a random offspring with a finite expectation ofb ij children of typej (we will not specify the distribution
explicitly since we will not fully develop the stochastic picture here). The matrixH withH ij = bij=�i then
is the generator of the first-moment matrix. That is, ifZ j(t) is again the (random) number of individuals of
typej at timet, andE i the associated expectation in a population started by a singlei individual at time0,
then

E i (Zj(t)) =
�
exp(tH)

�
ij
: (5)

Further, with the identificationyi(t) = E
�
Zi(t)

�
, Equation (1) then simply is the forward equation for the

expectations. (See [2] or [27] for the general context of multitype branching processes, and [21] for the ap-
plication to mutation-selection models.)

Important first questions concern the asymptotic properties of the systems discussed. A key to these prop-
erties is the leading eigenvalue,�max, of H (i.e., the real eigenvalue exceeding the real parts of all other
eigenvalues), for various reasons. If, on short time scales, unrestricted growth according to (1) is relevant,
then�max is the asymptotic growth rate of the population. The stationary distribution of types in (3) is given
by the left eigenvector ofH corresponding to�max. The knowledge of�max is a prerequisite for the cal-
culation of this eigenvector. In the population genetics context, the stationary state is often referred to as
mutation-selection balance, with�max as the mean fitness. Finally, and perhaps most importantly, the de-
pendence of�max on certain model parameters is of great interest. For example, a lot of research has been
directed towards the question of how the mean fitness changes when the mutation rate increases (i.e., when
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M is varied by some nonnegative scalar factor), and interesting effects have been observed, for example
error thresholds (for reviews, see [8, Ch. III] and [13]).

In general, exact expressions for eigenvalues are hard to obtain ifjSj is large but fixed. In recent work on
mutation-selection models, however, scalar or low-dimensional maximum principles for the leading eigen-
value have been identified for certain examples [21,17] in a suitable continuous limit asjSj % 1. It is the
purpose of this paper to generalize these results to a large class of operators. We will do so under the general
assumption that the Markov generatorM is reversible, which covers a large class of mutation models; in
particular, reversibility is a standard assumption in molecular population genetics, cf. [34] or [16, Ch. 13].

The paper is organized as follows. In Section 2, we will apply the Rayleigh-Ritz maximum principle
to our class of matrices. This leads to a high-dimensional problem, which is hard to solve in practice. An
example of how the problem may be reduced to a scalar one is given in Section 3. The main results are
given in Section 4. Here, we identify fairly general conditions under which the high-dimensional problem
may be reduced to a low-dimensional variational problem that yields the leading eigenvalue up to an error
term of order1=N , in the limitN = jSj ! 1. Sections 5 and 6 are devoted to the lumping procedure.
They show that a large class of models on a type spaceS arises, in a natural way, from models defined on a
‘larger’ spaceS, by combining several types inS into a single one inS. The general framework is set out
in Section 5, and in Section 6, we apply it to the important case whereS is the space of all sequences over
a given alphabet, and of fixed length. Section 7 makes the connection back to the maximum principle and
shows how the lumping procedure may lead to ‘effective’ models (onS) to which our asymptotic results may
then be applied. The Hopfield fitness function, along with sequence space mutation, emerges as an example.

2. The general maximum principle for reversible generators

Let us first fix our assumptions and notation. Since we assumeM to be an irreducible Markov generator,
Perron-Frobenius theory, cf. [26, Appendix], tells us that it has a leading eigenvalue0 which exceeds the
real parts of all other eigenvalues, and an associated strictly positive left eigenvector�. It will be normalized
s.t.
P

i �i = 1; then,� is the stationary distribution of the Markov semigroup generated byM .
We will assume throughout thatM is reversible, i.e.,

�iMij = �jMji (6)

for all i andj, which also entails�iHij = �jHji sinceR is diagonal. Likewise, due to irreducibility, the
leading eigenvalue,�max, ofH is simple; we will meet the corresponding eigenvectors in due course.

Let us note in passing that, due to reversibility, the equilibrium distribution� ofM is available explicitly.
To see this, let(k1; k2; : : : ; kjSj) be the vertices of a Hamiltonian path of lengthjSj�1 in our graphG(M),
i.e.,ki 6= kj for i 6= j; such a path exists due to irreducibility. Set~�k1 = 1 and, for2 6 i 6 jSj,

~�ki =
Mki�1;ki

Mki;ki�1

~�ki�1 =

iY
j=2

Mkj�1;kj

Mkj ;kj�1

> 0 :

Then, as an immediate consequence of (6),� i = ~�i=(
P

j2S ~�j) is the stationary probability distribution of
the Markov generatorM ; in particular, the choice of the path is arbitrary, which reflects the path indepen-
dence of reversible Markov chains.

For i 6= j, we now define

Fij :=
p
�iMij

1
p
�j

= Fji ; (7)

where the symmetry follows from the reversibility ofM . Clearly,F ij > 0 andFij = (FijFji)
1=2 =

(MijMji)
1=2. As a consequence, the matrix

~H := �1=2H��1=2 (8)

with � := diagf�i j i 2 Sg has off-diagonal entriesFij , is symmetric and has the same spectrum asH ,
with correspondingly transformed eigenvectors. We now decompose~H in the same way as we did withH
in (2), namely into a Markov generatorF plus a diagonal matrixE. To this end, letF = (F ij)i;j2S with
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Fij as in (7) fori 6= j, and complete this byFii := �
P

j2Snfig Fij . WithEi := Ri +Mii � Fii, one now

has ~Hij = Fij +EiÆij for all i; j 2 S, i.e.,

~H = F +E (9)

with F a Markov generator andE = diagfE i j i 2 Sg.
This now allows us to formulate a suitable variant of the Rayleigh-Ritz (or Courant-Fisher) maximum

principle for the leading eigenvalue of~H , compare [32, Thm. 19.4]. Clearly,

�max = sup
v:
P

`2S
v2
`
=1

X
i;j2S

vi ~Hijvj

= sup
v:
P

`2S v
2
`
=1

� X
i;j2S

viFijvj +
X
k2S

Ekv
2
k

�
; (10)

where we have used the decomposition (9) in the second step. Note that the supremum is, indeed, assumed,
since the space of probability measures onS is compact. The maximizer, i.e., the normalized principal eigen-
vector of ~H, is unique and strictly positive (since the same holds for the corresponding eigenvector ofH),
so that the above may also be read as anL1 variant through the substitution�i := v2i .

Note that, sinceF is a Markov generator, the quadratic form
P

i;j2S viFijvj is negative semidefinite
with maximum0, which is assumed for the stationary distribution ofF (sinceF is symmetric and irreducible,
this is the equidistribution, and unique). We thus have a simple upper bound on�max:

�max 6 sup
v:
P

`2S v
2
`
=1

X
k2S

Ekv
2
k = max

k2S
Ek ; (11)

while we can obtain a lower bound for anyv > 0 with
P

i v
2
i = 1 viaX

i;j2S

viFijvj +
X
k2S

Ekv
2
k 6 �max : (12)

Even though each step of the above derivation is elementary, it is worthwhile to summarize the findings
as follows.

Proposition 1. Let S be a finite set, and letH be an jSj�jSj-matrix with decompositionH =M+R into an
irreducible and reversible Markov generatorM and a diagonal matrix R. If � is the stationary distribution
of M , H can be symmetrized to ~H = �1=2H��1=2 with � = diagf�i j i 2 Sg. The matrices H and ~H

are isospectral, and their leading eigenvalue �max is given by the maximum principle (10). Furthermore,
simple upper and lower bounds for �max are provided by Eqns. (11)and (12).

It is our aim to identify conditions under which the inequality (11) becomes an equality, at least asymptoti-
cally asjSj ! 1.

As a first step, consider the maximizer of (10), i.e., the principal eigenvectorw of ~H , normalized viaP
i2S w

2
i = 1. Since ~H is symmetric, we havew ~H = �maxw and, simultaneously,~HwT = �maxw

T .
Hence,

zT := cz�
�1=2wT and h := chw�

1=2 (13)

are the principal right and left eigenvectors ofH = � �1=2 ~H�1=2. We will adjust the constantsch andcz
s.t.
P

i hi =
P

i hizi = 1; clearly, this impliescz � ch = 1.
The vectorh gives the stationary distribution of types in Equation (3). Further, it is well-known that, for

irreducibleH andt!1, the matrixexp (tH � �max1) becomes a projector ontoh, with matrix elements
zihj (compare [26, Appendix]). Therefore,

lim
t!1

P
j2S

�
exp (tH)

�
ijP

k;`2S hk
�
exp (tH)

�
k`

=

P
j2S zihjP
`2S h`

= zi : (14)

With (5) in mind,zi may therefore be understood as the asymptotic offspring expectation of ani individual,
relative to the mean offspring expectation of an equilibrium population. IfR = C1 for some constantC,
we havezi � 1, in line with the fact thatH � C1 is then a Markov generator.
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¿From (13) along with the normalization ofh andz, the relations

hi =
�iziP
j2S �jzj

and w2
i = hizi (15)

are obvious. In particular, with
ai := w2

i = hizi > 0 ; (16)

we obtain the correspondingL1-maximizer of (10).
To arrive at another interpretation ofa, consider the Markov generatorQ with elements

Qij = z�1i (Hij � �maxÆij)zj : (17)

It is easily confirmed thatQ is indeed a Markov generator (i.e.,Q ij > 0 for i 6= j, and
P

j Qij = 0). Using
(15) and reversibility, one observes thatQ may also be rewritten as

Qij = h�1i (Hji � �maxÆij)hj : (18)

In the form (18),Q is the generator of the backward process on the stationary distribution as described
in [25, Corollary 1] for general multitype branching processes, and used in [21] in the context of mutation-
selection models. Loosely speaking,Q describes the Markov chain which results from picking individuals
randomly from the stationary distributionh and following their lines of descent backward in time. Eq. (17) is
the corresponding forward version as used in [24] and [19]. It is immediately verified thatQ has principal left
eigenvector (i.e., stationary distribution)a. This is known as theancestral distribution of types; its properties
are analyzed in [19]. Let us summarize as follows.

Proposition 2. Let the assumptions be as in Proposition 1. Then, the principal eigenvector w of ~H gives
the principal left and right eigenvectors of H and their mutual relations through Eqns. (13) and (15). The
L1-maximizer a = (ai)i2S of (10) admits the interpretation of an ancestral distribution as the stationary
state of the backward Markov generator Q of (17)and (18).

3. A scalar maximum principle: An example

The maximum principle (10) is not very useful in practice ifjSj is large but fixed, since maximization is then
over a large space. In [21], this high-dimensional maximization could be reduced to a scalar one for special
choices ofM andR. We will re-derive this result here in a simplified way, which will also lead the way
towards the more general methods and results we are aiming at. LetS = f0; 1; : : : ; Ng with the following
mutation scheme:

0
U
+
0��! ��
U
�

1

1
U
+
1��! ��
U
�

2

2 � � �
U
+

k���! ���
U
�

k+1

� � � N�1
U
+

N�1���! ���
U
�

N

N

Suppressing the (relevant!) dependence onN in the notation, we then have

Mi;i+1 = U+
i ; Mi;i�1 = U�

i (19)

for i 2 S, where we setU+
N = U�

0 = 0. This is a variant of the so-called single-step mutation model of
population genetics [8, Ch. III.4]. It emerges if sequences of sites (nuceotide sites or loci) are considered, and
the ‘type’ is identified with the number of sites at which the sequence differs from a given reference sequence
or wildtype; see [33] for a recent application. If fitness is a function of this number only, and if mutations
occur independently of each other in continuous time, we are in the setting of the single-step mutation model.

Hence, for alli 2 S, we have

Fi;i+1 = (Mi;i+1Mi+1;i)
1=2 = (U+

i U
�
i+1)

1=2 = Fi+1;i (20)

with the obvious meaning fori = 0 andi = N ; also,F ij := 0 whenever eitheri or j is not inS, or if
ji � jj > 1. In order to evaluate the lower bound in (12), letN be large,1 6 L � N , and` 2 S. We will
use the simple test function� := (�0; �1; : : : ; �N ) defined through

�i = c` �
(
0; i =2

�
`+ [�L;L]

�
\ S

1; i 2
�
`+ [�L;L]

�
\ S
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with [�L;L] := f�L;�L+1; : : : ; L� 1; Lg, and the constantc` chosen so that
P

i �i = 1. That is,� is a
normalized step function around`, which does not extend beyond0 orN . If `+ [�L;L] � S, one always
hasc` = 1=(2L+ 1); a short calculation shows that, in any case,

1

2L+ 1
6 c` 6

1

L+ 1
;

due toL� N . With �i = v2i , the quadratic form in (10) and (12) reduces to

X
i;j2S

viFijvj = c`

X
i;j2`+[�L;L]

Fij = �c`(F`�L;`�L�1 + F`+L;`+L+1) ;

due to the tridiagonalnature of the Markov generatorF . Since 1
2
(F`�L;`�L�1+F`+L;`+L+1) 6 maxi Fi;i+1 =

maxi;j2S Fij =: Fmax, one has ��� X
i;j2S

viFijvj
�� 6 2Fmax

L+ 1
: (21)

On the other hand, the second term in (10) resp. (12) (to be called the ‘diagonal part’ in what follows) be-
comes X

i2S

Eiv
2
i = c`

`+LX
i=`�L

�
Ri � U+

i � U�
i +

q
U+
i U

�
i+1 +

q
U�
i U

+
i�1

�
; (22)

whereU�
i := 0 is implied wheneveri =2 S.

We now assume that

U�
i = u�(xi) +O(1=N) and Ri = r(xi) +O(1=N) (23)

with continuous functionsu+,u�, andr on [0,1], and the new ‘type variable’x i = i=N ; it is further implied
that the constant in theO(1=N) bound is uniform for alli. (Eq. (23) differs from the scaling in [21] by a
global factor ofN , which means nothing but a change of the time scale.)

Defineg(x) := u+(x) + u�(x)� 2
p
u+(x)u�(x), letx� be a position at whichr(x)� g(x) assumes

its supremum, and choose` := bNx�c. With an appropriate scaling ofL (such asL �
p
N , to be specific),

the right-hand side of (21) isO(1=
p
N). In (22), the sum hasO(

p
N) terms, which is balanced byc` =

O(1=
p
N); together with (23), this turns the right-hand side of (22) intor(x �)� g(x�) +O(1=N). At the

same time, the upper bound in (11) also behaves liker(x �)�g(x�)+O(1=N). Taking everything together,
we obtain the asymptotic maximum principle forN !1:

�max = sup
x2[0;1]

�
r(x) � g(x)

�
(24)

up toO(1=
p
N).

Finally, recall from Section 2 that, for finiteN , the maximizer of (10) is unique and given by the ancestral
distributiona = (hizi)i2S . However, in the limit asN !1, uniqueness may be lost, which is also reflected
by the fact that the supremum in (24) may be assumed at more than one point. In these degenerate situations,
error thresholds may occur [21].

Remark 1. The maximum principle derived in [21] also holds for functionsr andu � with a finite number
of jumps. This can be dealt with in the current framework with slightly more effort, but we avoid this here
to keep the example as transparent as possible.

Remark 2. With a more careful choice for the scaling ofL, one gets the quadratic form (defined by the matrix
F ) down toO(1=N 1�") for arbitrary" > 0, butO(1=N) is only obtained with the help of better (smooth)
test functions. This will now be done.
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4. Asymptotics for the leading eigenvalue

The maximum principle allows for an asymptotic estimation of the leading eigenvalue when the Markov
generatorF can be considered as ‘small’ in a suitable sense, in comparison to the derived effective ‘diagonal’
part. Before stating precise conditions and results, let us briefly discuss the heuristics behind this. Due to the
symmetry ofF , we can rewrite Eq. (10) as

�max = sup
v:
P

`2S
v2
`
=1

�
� 1

2

X
i;j2S

Fij(vi � vj)2 +
X
k2S

Ekv
2
k

�
: (25)

Thus, it is obvious that theF -term favours constantv while the diagonalE-part favoursv that are con-
centrated on the pointsk whereEk is maximal. Clearly, the outcome of this competition depends on some
concentration and smoothness properties of the matrices involved.

For simplicity, let us now assume that our setS consists of integers or, more generally,d-tuples of in-
tegers. So,S � Zd, with jSj < 1. We will now look more closely into the situation wherejSj % 1.
Consider a family of sets

S = S(N); S � Zd; so that jSj � Nd asN !1; (26)

where we suppress once again the dependence ofS onN . A reasonable setup is then obtained if1
N
�S � D,

whereD is a compact domain inRd , 1
N
� S becomes dense inD for N ! 1, and there exist functionsE

andfk fromC2
b (D;R) with

Ei = E
� i
N

�
+O

� 1

N

�
(27)

and

Fij = fk

� i
N

�
+O

� 1

N

�
; (28)

wherek = j � i, and the constant in theO(1=N) bound is uniform for alli andj. More generally, one can
replaceO(1=N) in (27) and (28) byO(1=�(N)) for some function�(N) that grows withN , if that better
suits the individual situation.

Our main result will be the following theorem. ForS � Zd, we will use throughout the slightly abusive
notationS � j := fi� j j i 2 Sg.
Theorem 1. Assume thatEi and Fij are as in Eqns. (27)and (28) . Assume further that the C 2

b (D;R) func-
tion E assumes its absolute maximum in int(D), and that f satisfiesX

k2S�i

fk

� i
N

�
jk`jk2m 6 C (29)

for some constant C, uniformly for all i 2 S, and 1 6 `;m 6 d. Then, there exist constants 0 6 C 0; C 00 <

1 such that

E(x�)� C 0

N
6 �max 6 E(x�) +

C 00

N
; (30)

where x� is a point where E(x) assumes its maximum.

Remark 3. It will become clear when we proceed that the condition on the derivatives ofE(x) and thef k(x)
may be relaxed; it is indeed sufficient that these functions beC 2

b locally, in a neighbourhood ofx�.

Note that the upper bound is clear in view of Eqns. (27) and (11) (recall that the quadratic form defined
by F is negative semidefinite); it can be made sharper if the order of the approximation in (27) and (28) is
improved. It remains to prove the lower bound (which cannot be improved by sharpening theO(1=N) in
(27) and (28)). We will do so by evaluating the quadratic form in (25) for a sequence of test functions of
Gaussian type centred aroundx� in the interior ofD (and approaching a Dirac measure located atx � with
increasingN ). Specifically, we will use throughout

vi := ce��Nji=N�x
�

j
2

with c = c(N) s.t.
X
i2S

v2i = 1; (31)

where� > 0 is a positive real number independent ofN .
We will first consider the diagonal part and show
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Proposition 3. LetEi be as in (27)and x� be a point in the interior ofD whereE(x) assumes its maximum.
Let the vi be as in Eq. (31). Then, X

i2S

Eiv
2
i = E(x�) +O

� 1

N

�
:

The upper bound in the proposition being immediate, we only need to prove the lower bound. We will
use the following fact.

Lemma 1. Let g : Rd �! R>0 be a non-negative, continuous, integrable function with g(x) 6 C=(1 +

jxj)d+" for all x, and (fixed) positive constants C and ". Then, for any x � 2 Rd ,

lim
n!1

1

nd

X
i2Zd

g
� i
N
� nx�

�
=

Z
Rd

g(x) dx : (32)

Proof. Note first that the sum in (32) exists for arbitrary, but fixedn due to the assumed decay condition for

g. Let bn :=�
d

k=1(�1=2n; 1=2n]. Then, one hasRd = _S
i2Zd(i=n+ bn), and, for allx, there is a (unique)

element
 of Zd=n with x 2 
 + bn; this will be called
n(x). We now define

g+n (x) := sup
z2(
n(x)+bn)

g(z); g�n (x) := inf
z2(
n(x)+bn)

g(z) : (33)

Since integration overRd is invariant under a shift of argument, andg�n are step functions, we haveZ
Rd

g�n (x) dx =

Z
Rd

g�n (x� nx�) dx =
1

nd

X
i2Zd

g�n (i=n� nx�)

6
1

nd

X
i2Zd

g(i=n� nx�) 6 1

nd

X
i2Zd

g+n (i=n� nx�) (34)

=

Z
Rd

g+n (x� nx�) dx =

Z
Rd

g+n (x) dx :

Both g+n andg�n converge tog pointwise (sinceg is continuous). Further,g�n (x) are both bounded from
above due to the properties of the assumed majorizing function, and hence

R
Rd
g�n (x) dx and

R
Rd
g+n (x) dx

both converge to
R
Rd
g(x) dx asn ! 1 by the dominated convergence theorem. But then, the same must

be true of the sum in (34), which proves the assertion.

We will use the following immediate corollary.

Corollary 1. For any non-negative integer k, and any � > 0

lim
N!1

N (k�d)=2
X
i2Zd

��� i
N
� x�

���ke��N ji=N�x�j2 =

Z
Rd

jxjke��jxj2 dx : (35)

Proof. Use Lemma 1 withn =
p
N andg(x) = jxjke��jxj2 .

The following is a simple consequence of the preceding corollary.

Lemma 2. For any A � Zd, Æ > 0 and k 2 N,

N (k�d)=2
X
i2A:

ji=N�x�j>Æ

��� i
N
� x�

���ke�2�Nji=N�x�j2 = O
�
e��NÆ2

�
: (36)

Proof. Just note that

N (k�d)=2
X
i2A:

ji=N�x�j>Æ

��� i
N
� x�

���ke�2�N ji=N�x�j2

6 e��NÆ2N (k�d)=2
X
i2Zd

��� i
N
� x�

���ke��N ji=N�x�j2 (37)

and apply Corollary 1 to the last expression to get the assertion.
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This yields a variant of Corollary1:

Corollary 2. Corollary 1 holds true with Zd replaced by S(N) of (26).

Proof. Sincex� 2 int(D), we may choose aÆ > 0 so thatZd nS(N) � fi 2 Zd : ji=N � x�j > Æg. Then,
the difference in the sum in (35) isO(e��NÆ2), according to Lemma 2, withA = S(N).

We are now ready to prove Proposition 3.

Proof. Since we may write

��� i
N
� x�

���kv2i =
1

Nk=2

N (k�d)=2ji=N � x�jke�2�Nji=N�x�j2

Nd=2
P

j2S e
�2�Nji=N�x�j2

;

Lemma 2 and Corollary 2 entail that, fork > 0,

X
i2S(N):

ji=N�x�j>Æ

��� i
N
� x�

���kv2i = O(e��NÆ2) (38)

and X
i2S(N):

ji=N�x�j<Æ

��� i
N
� x�

���kv2i = O
� 1

Nk=2

�
: (39)

So far, we have only used thatx� is in int(D). Butx� is also a point whereE(x) assumes its maximum, and
E(x) is twice differentiable in a neighbourhood ofx�. Hence, there existÆ > 0 and0 6 C <1, such that
for all jx� x�j < Æ,E(x) > E(x�)� Cjx� x�j2. Therefore,

X
i2S

v2iEi = O
� 1

N

�
+

X
i2S:

ji=N�x�j<Æ

E
� i
N

�
v2i +

X
i2S:

ji=N�x�j>Æ

E
� i
N

�
v2i

> E(x�)
�
1 +O(e��NÆ2)

�
� C

X
i2S:

ji=N�x�j<Æ

��� i
N
� x�

���2v2i
+O

� 1

N

�
+ inf

x2D

�
E(x)

� X
i2S:

ji=N�x�j>Æ

v2i

= E(x�) +O
� 1

N

�
;

where we have used (27) along with normalization in the first, (38) in the second, and (38) and (39) in the
last step. This proves the assertion of Proposition 3.

After dealing with the diagonal part, we are now ready to embark on the quadratic form.

Proposition 4. Let Fij be as in (28), and assume that f satisfies condition (29)of Theorem 1. Then,

X
i;j2S

viFijvj = O
� 1

N

�
:

Proof. Evaluating the difference betweenji=N�x�j2 = hi=N�x�; i=N�x�i andjj=N�x�j2 = hj=N�
x�; j=N � x�i, we first note thatjj=N � x�j2 � ji=N � x�j2 = h(i+ j)=N � 2x�; (j � i)=Ni (here,h: ; :i
denotes the scalar product). In view ofv i = ce��Nhi=N�x

�;i=N�x�i, and withj = i+ k,

vi > vi+k () �(i; k) :=
D2i+ k

N
� 2x�;

k

N

E
> 0
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(note that�(i; 0) = 0). UsingFij = Fji (see (7)),(vi�vj)2 = (vj�vi)2, andFi;i+k = fk(i=N)+O(1=N)

(see (28)), we can rewrite the quadratic form as

X
i;j2S

viFijvj = �1

2

X
i2S

X
k2S�i

Fi;i+k(vi � vi+k)2

= �
X
i2S

X
k2S�i
�(i;k)>0

Fi;i+k(vi � vi+k)2

= �
X
i2S

X
k2S�i:
�(i;k)>0

�
fk

� i
N

�
+O

� 1

N

��
(vi � vi+k)2 :

We have thus achieved that the summation includes only terms wherev i > vi+k, which entails that

vi � vi+k = ce��Nji=N�x
�

j
2

(1� e��N�(i;k)) 6 c�Ne��Nji=N�x
�

j
2

�(i; k) ;

since1 � e�x 6 min(x; 1) 6 x for x > 0 (of which we only use the latter inequality). Together with the
fact that the quadratic form is negative semidefinite, this gives

0 > �1

2

X
i2S

X
k2S�i

Fi;i+k(vi � vi+k)2

> ��2N2
X
i2S

v2i

X
k2S�i:
�(i;k)>0

�
fk

� i
N

�
+O

� 1

N

���
�(i; k)

�2

> ��2N2
X
i2S

v2i

X
k2S�i

�
fk

� i
N

�
+O

� 1

N

���
�(i; k)

�2
: (40)

In the last step, the constraint on the sum could be removed since we added to the sum nonnegative terms
only: fk(i=N) > 0 for k 6= 0, and

�
�(i; k)

�2
> 0 with equality fork = 0.

We now note that (29) entails that, for1 6 `;m 6 d,

X
k2S�i

fk

� i
N

�
k`km;

X
k2S�i

fk

� i
N

�
k`k

2
m; and

X
k2S�i

fk

� i
N

�
k2`k

2
m=N (41)

are all bounded from above by a positive constantC (the latter case relies onS=N � D with compactD).
Writing

�
�(i; k)

�2
=
D
2
� i
N
� x�

�
+
k

N
;
k

N

E2

=
1

N2

dX
`;m=1

k`km

h
4
� i`
N
� x�`

�� im
N
� x�m

�
+ 4
� i`
N
� x�`

�km
N

+
kmk`
N2

i

allows us to bound the various parts of the sum in (40) as follows:

� 4
X
i2S

v2i

X
k2S�i

fk

� i
N

� dX
`;m=1

k`km

� i`
N
� x�`

�� im
N
� x�m

�

> �4Cd
dX

m=1

X
i2S

� im
N
� x�m

�2
v2i = O

� 1

N

�
; (42)

where we used the Cauchy-Schwarz inequality for

dX
`;m=1

k`km

� i`
N
� x�`

�� im
N
� x�m

�
6

dX
`=1

k2`

dX
m=1

� im
N
� x�m

�2
;



11

(41) in the first, and (38) and (39) in the last step.
Again, with (41), (38), and (39), we obtain

� 4
X
i2S

v2i

dX
`;m=1

X
k2S�i

fk

� i
N

�k`k2m
N

� i`
N
� x�`

�

> �4Cd
N

X
i2S

v2i

dX
l=1

��� i`
N
� x�`

��� = O� 1

N3=2

�
; (43)

where we further used that
Pd

`=1ji`=N �x�` j 6 cji=N �x�j for some positive constantc. Finally, (41) also
gives that X

i2S

v2i

dX
`;m=1

X
k2S�i

fk

� i
N

�k2`k2m
N2

= O
� 1

N

�
: (44)

Combining (42), (43), and (44), we arrive at the assertion.

Remark 4. Eq. (44) is the reason that the lower bound in (30) cannot be improved by better approximations
in (27) and (28).

Remark 5. We have, so far, assumed thatx� is in the interior ofD. If x� is on the boundary ofD, a similar ap-
proach may be taken with a one-sided, exponentially decaying test function. The error in the approximation
will, however, be larger than in the case tackled here.

In both cases, much finer results can be obtained using more advanced methods of perturbation theory
[28], which, however, require much more work.

So far, we have used the Rayleigh-Ritz variational principle (10) to obtain results on the leading eigen-
value ofH , but said nothing about the maximizer (note that this neednot coincide with the test function
v). Recall from Section 2 that, for finiteN , the maximizer is unique and – in itsL 1 version – given by the
ancestral distributiona = (hizi)i2S . Actually, from the bounds above, we can also conclude thata is con-
centrated in a neighbourhood ofx�, where the size of the neighbourhood depends on the behaviour ofE

near its maximum. In the generic case of a quadratic maximum,a is concentrated in a region with a width
of order1=

p
N .

More precisely, we have:

Theorem 2. Let Ei and Fij satisfy the hypotheses of Theorem 1. Assume that E assumes its maximum at a
unique point x� 2 int(D), and that the Hessian of E at x� is positive definite. Then, for every 0 < � 6 1,
there is a � > 0, independent of N , so that, for N large enough:X

i2S:

ji=N�x�j>
p
�=�N

ai 6 � ;

where a is the ancestral distribution (of (16)and Prop. 2).

Proof. Recall first that the (L2) maximizer of (10) is given byw = (
p
ai)i2S (cf. (16)). Hence, by Theorem

1, the negative semidefiniteness ofF , and (27), we have

E(x�)� C 0

N
6 �max =

X
i;j2S

wiFijwj +
X
i2S

Eiw
2
i

6
X
i2S

Eiw
2
i 6 max

i2S
Ei = E(x�) +O

� 1

N

�
:

(45)

Now, considerE(x) in a neighbourhood ofx�. Since the Hessian atx� is positive definite, we haveE(x) 6

E(x�) � Cjx � x�j2 for someC > 0 in a neighbourhood ofx�. For" small enough andÆ(") :=
p
"=C,

therefore,

E(x) 6

(
E(x�); jx� x�j < Æ(")

E(x�)� "; jx� x�j > Æ("):
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Together with (27) and (45), this implies

E(x�) +O
� 1

N

�
=
X
i2S

Eiw
2
i 6 E(x�)� "

X
i2S:

ji=N�x�j>Æ(")

w2
i +O

� 1

N

�

6 E(x�) +O
� 1

N

�
:

Hence, for some positive constant
, 0 6 "
P

i:ji=N�x�j>Æ(") w
2
i 6 
=N . Choosing" = 
=�N gives the

assertion.

Remark 6. For notational simplicity, we have assumed above thatE(x) assumes its (absolute) maximum at
a unique pointx�, which is the generic case. It is obvious from the proof, however, that an analogous result
holds if the maximum is assumed at a finite number of points (each with a positive definite Hessian). Then,
the ancestral distribution is concentrated on the union of the corresponding neighbourhoods of these points
(or a subset thereof), again with widths of order1=

p
N .

Let us return to the case whereE(x) assumes its (absolute) maximum at a unique pointx �. We have seen
that the ancestral distribution concentrates aroundx� forN !1, in the sense that any given fixed fraction
� (or even more) of the distribution’s mass is contained in a region whose width decreases with1=

p
N . Since

this is true for arbitrary�, it is clear that the ancestral distribution must approach a point measure located at
x�. As a consequence, themean ancestral type,

P
i xiai, converges tox�, which adds some interpretation

to the scalar maximum principle in Theorem 1; for further details, see [21].

5. Lumping

So far, we have not specified the type spaceS. In the example of Section 3, the types were defined in terms
of some intermediate genetic level that could be derived from a more detailed picture. In this Section, we
will show that a large class of models on a type spaceS can be derived, in a natural way, from models de-
fined on a ‘larger’ spaceS (to be called genotype space) if the branching and mutation rates fulfill certain
symmetry or compatibility conditions. The idea rests on the common assumption that fitness depends on the
genotype through an intermediate level of ‘effective’ parameters (which may, for example, be ‘phenotypes’,
or ‘genetic values’ in quantitative genetics), and the mapping from the genotype to this intermediate level
is multiple-to-one. One will therefore try and combine several of the genotypes into a single one; if this is
also compatible with the mutation scheme, a reduction of the number of dimensions is possible. In the theory
of Markov chains, this approach is known aslumping [29, Ch. VI]. We will proceed in two steps: First, the
lumping procedure will be described in an abstract setting, with arbitrary genotype and type spacesS and
S, respectively. In a second step, we will specialize to the concrete sequence (or multi-locus) picture.

For the first step, letS be a possibly large, but finite set. In analogy with (1), consider the dynamics

_� = �(M+R) (46)

onRjSj , withM a Markov generator andR = diagfR� j � 2 Sg. Consider a mapping

' : S �! S = im(') (47)

so thatS may be understood as the disjoint union of fibres�m:

S =
_[
m2S

�m ; with �m := f� 2 S j '(�) = mg = '�1(m) :

We will now give conditions under which the dynamics (46) may be reduced to a dynamics onS. The fol-
lowing result is a variant of a theorem by Burke and Rosenblatt [9], see also [29, Chapter VI].

Theorem 3. Let S and S be finite, let ' be the mapping of (47), and assume that there are matrices M =

(Mnm)n;m2S and R = diagfRi j i 2 Sg with

R� = R'(�) for all � 2 S; (48)
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X
�2�m

M�;� = M'(�);m for all � 2 S; m 2 S ; (49)

whereM is the Markov generator of Eq. (46). Then,M is a Markov generator onR jSj . If � solves (46), then

ym :=
X
�2�m

�� (50)

satisfies the differential equation (1), i.e., _ym =
P

n yn(Mnm + RnÆnm). IfM is reversible with respect
to ~� = (~��)�2S, M is reversible with respect to � = (�m)m2S , where �m =

P
�2�m

~�� . IfM +R has

principal left eigenvector ~h, then M +R has principal left eigenvector h with hm =
P

�2�m
~h�.

Proof. The proof is a straightforward verification. Note first thatM is a Markov generator (onR jSj ), be-
cause, for any� 2 �m, X

n2S

Mmn =
X
n2S

X
�2�n

M�� =
X
�2S

M�� = 0 ;

sinceM is a Markov generator.
Starting now from (50) and (46), we find

_ym =
X
�2�m

_�� =
X
�2�m

X
�2S

�� (M�� +R�Æ��)

=
X
n2S

X
�2�n

��
�
M'(�);m + R'(�)Æ'(�);m

�
=
X
n2S

yn(Mnm +RnÆnm) ;

where we have used (48) and (49) in the second step, and (50) in the last, together with the fact that both
M'(�);m andR'(�)Æ'(�);m are constant on every fibre�m.

Finally, the assertions on stationary distributions and reversibility are direct verifications in the same
spirit.

6. From sequence space to type space

In this Section, we will be more explicit and start from sequence space. The natural scheme that will emerge
involves the grouping of sequence positions together with a ‘coarse-grained’ dependence on some ‘genetic
distance’. Many of the frequently-used models fall into this scheme. Related results appear in statistical
physics, cf. [7,6], from where we will borrow some techniques.

Let us begin with the general setup for a mutation-reproduction model on sequence space. We will as-
sume that the type� of an individual is characterized by a (DNA, RNA) sequence which we take to be an
element of the spaceS := �N with � = f1; : : : ; qg; we write� = (�1; : : : ; �N ). For generality, we letq
be an integer> 2; if q = 2, the alternative choice� = f�1; 1g is often more convenient. Consider now the
partition of the index set� = f1; : : : ; Ng into d disjoint subsets�i, i.e.,

� =
_[
16i6d

�i: (51)

Let P(�) = f(�1; : : : ; �q) j �` > 0;
P

` �` = 1g denote the set of probability measures on�. Set, with
obvious meaning,

P�i(�) := P(�) \
n
0;

1

j�ij
;

2

j�ij
; : : : ; 1� 1

j�ij
; 1
oq

and

P(�1;:::;�d)(�) =

dO
i=1

P�i(�) : (52)

That is,P(�1;:::;�d)(�) is the set of product measures with values restricted to certain rationals induced by
the partition.
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Consider now the mapping (which will take the role of' from the previous Section)

m : �N �! Qdq ; � 7! m(�) (53)

with m(�) =
�
m
`
i(�)

�16`6q
16i6d

and

m
`
i(�) :=

1

j�ij
X
j2�i

Æ`;�j =
1

j�ij
��fj j j 2 �i; �j = `g

�� : (54)

So,m`i(�) is the fraction of the sites at positions in�i which are in statè. Note that these quantities satisfyPq
`=1m

`
i(�) = 1, i.e., for eachi,mi(�) :=

�
m
1
i (�); : : : ;m

q
i (�)

�
defines a probability measure on�, with

mi 2 P�i(�).
Describing the system in terms of these lumped quantities will only lead to a simplification in connection

with a suitable symmetry. In our case, this is given by those permutations of the sites that are compatible with
the chosen partition.

Let�� be the permutation group on� = f1; : : : ; Ng, i.e.,

�� := f
 j 
 : �! � is a bijectiong ;

and�(�1;:::;�d) the subgroup compatible with the partition (51), i.e.,

�(�1;:::;�d) =
�

 2 �� j 
(�i) = �i; 1 6 i 6 d

	
' ��1 � � � � � ��d :

We introduce the canonical action of the permutation group on� N through the inverse permutation of sites,
i.e.,(
�)i = �
�1(i). We are now ready for

Theorem 4. Let �N = f1; : : : ; qgN , and matricesM = (M�;� )�;�2�N and R = diagfR� j � 2 �Ng
be given, withM a Markov generator. Let � solve _� = �(M +R). Further, let m be as in (53), and S =

m(�N ) � Qdq . Assume now that there exist a function g : �N � �N �! R>0 , and matrices M̂ =

(M̂mn)m;n2S and R = diagfRn j n 2 Sg, so that the following conditions are satisfied:

(a) g(
�; 
�) = g(�; �) for all 
 2 �(�1;:::;�d) ;
(b) M�� = M̂m(�);m(�)g(�; �) for all �; � 2 �N ;

(c) R� = Rm(�) for all � 2 �N .

Then, ym :=
P

�2�m
�� solves the differential equation _y = y(M +R), where

Mnm = M̂nm

X
�2�m

g(�; �)

independently of the choice of � 2 �n. M is a Markov generator. IfM is reversible with respect to ~� =

(~��)�2S, then M is reversible with respect to � = (�m)m2S , where �m =
P

�2�m
~�� . If M + R has

principal left eigenvector ~h = (~h�)�2S, then M + R has stationary distribution h = (hm)m2S with
hm =

P
�2�m

~h�.

Proof. For
 2 �(�1;:::;�d), we have

m(
�) = m(�) and 
(�N ) = �N ; (55)

where the first identity is obvious from (54). Equation (55) entails that


(�m) = �m; (56)

i.e.,�(�1;:::;�d) acts transitively on�m.
In order to apply Theorem 1, we have to check assumption (49). Consider therefore

P
�2�m

M�� =

M̂m(�);m

P
�2�m

g(�; �). For arbitrary
 2 �(�1;:::;�d), assumption (a) and Eq. (56) give

 (�) :=
X
�2�m

g(�; �) =
X
�2�m

g(
�; 
�)
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=
X

� 02
(�m)

g(
�; � 0) =
X

� 02�m

g(
�; � 0) =  (
�) :

Due to the transitivity of�(�1;:::;�d) on�m,  (�) is constant on the fibres�m(�). Assumption (49) is there-
fore valid, and an application of Theorem 1 then gives the desired result.

Examples of particular relevance emerge ifg is a� (�1;:::;�d)-invariantdistance, such as the Hamming dis-
tance (i.e., the number of sites at which two sequences differ). A very simple case was implicit in our example
in Section 3, where the single-step mutation model onS = f0; 1; : : : ; Ngwas interpreted in terms of a model
onf0; 1gN . Here, a site in state0 or 1 corresponds to a site whose state does or does not coincide with the
respective state of a reference sequence (sometimes called the ‘wildtype’). If the reproduction and mutation
rates only depend on the Hamming distance from the reference sequence, we are in a setting withd = 1. In
such a simple case, the reduced model is immediate. More elaborate examples will be discussed in the next
Section.

7. Applications and examples

In many examples of sequence space models, the lumping construction as described in the previous Sections
leads to an effective model to which the maximum principle of Section Section 4 may then be applied. In
particular, the following conditions are necessary for Theorem 1 to apply:

(C1) The partitionf�igdi=1 in (51) is relatively uniform, in the sense that there exist constants0 < c 6 C < 1

such that

c 6 inf
16i6d

j�ij
N

6 sup
16i6d

j�ij
N

< C

uniformly inN . (Alternatively, this may be replaced by the single, and slightly weaker, condition
lim infN!1 inf16i6d

j�ij

N
> 0; note that

P
ij�ij = N by construction.) This condition ensures that

x = i=N will become a meaningful continuous type variable forN !1.

For the following two conditions, a suitable enumeration of the elements ofS is required to ensure an ap-
propriate representation of the matricesM andR.

(C2) The functiong that occurs in the sequence space mutation matrix and is required in the lumping procedure
(see Theorem 4) decreases sufficiently fast away from the diagonal. Note that under condition (C1), for
any�; � we have that

dH(�; �) >
N

C
km(�)�m(�)k1 ;

wheredH is the Hamming distance. Thus, ifg has compact support independent ofN (as in the example
in Section 3), or if it decays sufficiently fast (e.g., exponentially) withdH, this entails the decay condition
onf in Theorem 1.

(C3) After lumping, the effective reproduction and mutation matricesR andM must lend themselves to a
continuous approximation. That is,Rm = r(m=N) +O(1=N) andMmn = s

�
m=N; n=N

�
+O(1=N)

with functionsr ands that areC b
2(D;R), where the implied constant in theO(1=N) bound is uniform

for allm andn. This entails the approximation condition onE andF in (27) and (28) that is also required
for Theorem 1.

Clearly, (C2) and (C3) stipulate that the enumeration of the types is adapted to the problem. Often the
right choice is intuitively clear, as in the examples in Section 3, and in [17]. But sometimes more thought is
required, as will be illustrated by means of a few examples and special cases below.

1. Some simplifications arise in the caseq = 2, where we now use� = f�1; 1g rather thanf0; 1g. Here,
the constraintm1

i +m
2
i = 1 can be used to reduce the number of variables per subset to one. It is con-

venient to setbi � m1
i �m2

i . Eq. (52) is then replaced by

P(�1;:::;�d)(�) =

dO
i=1

f�1;�1+
2

j�ij
; : : : ; 1� 2

j�ij
; 1g ;

and we obtain the simple formula

bi(�) =
1

j�ij
X
j2�i

�j :
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2. The cased = 1 corresponds to so-called ‘mean field models’. They have been studied in the case where
g(�; �) = 0 for dH(�; �) > 1, i.e., mutation is restricted to neighbours in sequence space (see [3,4,37,
5,21] forq = 2, and [22,17] forq = 4).

3. A special type of models that falls into the above class is related to fitness landscapes based on Hopfield
Hamiltonians. These are special cases of spin-glass models [31] that were originally motivated by neu-
ral networks, then became prototype models for random interactions in statistical physics, and were later
also used as tunably rugged fitness landscapes in biology [30,35]. We adopt from [6] the lumping proce-
dure for the caseq = 2 (the general settingq > 2 can be found in [18]). We consider the sequence space
S = �N = f�1; 1gN . A Hopfield Hamiltonian is constructed by choosing at randomM independent
elements�1; : : : ; �M from�N . Given such a choice, one defines

HN (�; �) :=
1

N

MX
�=1

NX
i;j=1

�i�j�
�
i �

�
j = N

MX
�=1

�
!�(�)

�2
;

where

!�(�) :=
1

N

NX
i=1

�i�
�
i =

1

N
h�; ��i :

It is convenient to associate with the collection of row vectors� � theM�N matrix� = (�
�
i )

16�6M
16i6N . We

denote by�� the rows and by�i the columns of this matrix. A partition�1; : : : ; �d with d = 2M is now
obtained as follows. Lete1; : : : ; ed

�
ek = (e

�
k )

1��6M
�

denote an enumeration of allM -dimensional
column vectors with entries�1. Then we set

�k := fi 2 � j �i = ekg :
This results in

!�(�) =
1

N

dX
k=1

e
�
k

X
i2�k

�i =
1

N

dX
k=1

j�kje�kbk(�) ;

and so

HN (�; �) = N

NX
�=1

dX
k;`=1

e
�
ke

�
` j�kjj�`jbk(�)b`(�)

is a function ofbi(�). Thus, if we consider reproduction and mutation rates of the form

M�� = �
�
HN (�; �); HN (�; �)

�
g(�; �) ;

R� = �
�
HN (�; �)

�
;

with a nonnegative function� and any real function�, we may apply Theorem 4 to derive the effective
dynamics with lumping according to the values ofb i(�). In particular, the choice�(x) = x gives the
familiar Hopfield fitness landscape, and�(x) � 1 along withg(�; �) = � for dH(�; �) = 1, g(�; �) = 0

for dH (�; �) > 1, andg(�; �) = �2N� yields the well-known sequence space mutation model where
every site mutates independently and at the same rate� (e.g., [5]).

8. Concluding remarks

The motivation for this work came from continuous-time mutation-selection models, cf. (3) and (4). How-
ever, it should have become clear that our results are not tied to these specific models. They also hold for the
corresponding discrete-time dynamical systems, or if there is no underlying dynamics at all. Our main result
(Theorem 1) simply yields asymptotic estimates for the leading eigenvalues of large matrices that possess a
certain continuous approximation,and whose elements decay sufficiently fast away from the diagonal. These
properties are shared by many systems, in particular, by many spatially extended systems, where interactions
between distant components are weak.
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