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Abstract

We consider the problem of phase separation in eutectic alloy such e.g. SnPb. For

this we derive a phase �eld model from an atomistic point of view. We �nd the surface

energy to be anisotropic, having in general a nonlinear dependence on concentration.

We use matched asymptotic analysis to obtain a corresponding sharp interface model.

The resulting expression for the surface tension agrees with that found on the basis of

classical thermodynamics for jump conditions at singular interfaces. A boundary integral

formulation of the sharp interface model enables us to numerically describe the motion

and deformation of the binary alloy.

1 Introduction

Already in 1958 J. W. Cahn and J. E. Hilliard [1] considered the possibility of anisotropic

surface tension in a crystal lattice. This is generically the case when modelling phase separa-

tion in multi-phase systems such as binary alloys. A number of models have been developed

generalizing the Cahn-Hilliard equation to multi-component systems by introducing a vector

valued order parameter and by making some general assumptions on the form of the gradient

energy, [4], [20], [19]. Using matched asymptotic expansions, corresponding sharp-interface

models were then developed and expressions for surface tension were determined on the basis

of results by Herring on anisotropic surface energy, [11], [15].

Recently, a phase �eld model for the description and simulation of coarsening processes occuring

in binary alloys, that are caused by di�usion in local inhomogeneous stress �elds, has been

formulated by W. Dreyer and W.H. M�uller, [5]. There, the model is applied to the eutectic

solder alloy consisting of lead and tin. Figure 1 shows a typical morphology that developed

from an initially �ne mix of alternating layers of lead-rich and tin-rich regions after 20 hours

of slow cooling. The regions are resolved on a �m -scale. This coarsening process is initiated

by di�usion subjected to the e�ects of anisotropic surface tension and of thermo-mechanical

stress �elds. Here, the symmetry of the crystal lattices in the two phases is tetragonal and

face-centered-cubic in the lead-rich and tin-rich phase, respectively.

Figure 1: Lead rich (dark) lamellae
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We consider coarsening processes that may be subjected to external thermomechanical loads.

The given temperature T is assumed to be uniform in space. In this case the morphology and

its evolution is described by the �elds

ui(t;X) � displacement, leading to the strain "ij =
1

2

�
@ui

@Xj

+
@uj

@Xi

�
;

c(t;X) � mass concentration (e.g. tin), : (1.1)

Here t denotes the time and X = (X1; X2; X3) are the Lagrange coordinates with respect to

a cartesian frame of reference of the material particles of the alloy, which are the smallest

volumes units that can be resolved on the considered space scale. The motion of a particle

with coordinates X is given by the function x = �(t;X), which give the actual coordinates

x = (x1; x2; x3) of the particle at time t. Its displacement is ui = �i�Xi. The objective of the

phase �eld model is the determination of the �elds (1.1). Sometimes it is useful to refer the

�elds to the actual coordinates. This can be done by the de�nitions

~c(t;x) = c(t;��1(t;x)) ; and ~ui(t;x) = ui(t;�
�1(t;x)) : (1.2)

The �eld equations for the displacement and the concentration rely on the quasistatic momen-

tum balance and on the conservation law for the content of one of the two constituents of the

binary alloy.

In part I of this study we assume that the displacement �eld is given, so that we only need the

conservation law

�0
@c

@t
+
@Jk

@Xk

= 0: (1.3)

Here, we use the Einstein summation convention which will be frequently used throughout the

paper. The constant �0 denotes the mass density of the reference state, which is here given by

a homogeneous phase mixture at the eutectic composition, and Jk are the components of the

di�usion 
ux.

The conservation law (1.3) becomes a �eld equation for the concentration if we relate the

di�usion 
ux to the concentration by a constitutive law that we determine as follows. In the

appendix of [5], Dreyer & M�uller have exploited the second law of thermodynamics relying on

the assumption that the speci�c free energy,  , is given by a function of the type

 =  ̂(T; c;
@c

@Xi

;
@
2
c

@Xi@Xj

; "ij); (1.4)

and they choose Joule/kg as the unit of  . In [7] Dreyer & M�uller start their reasonings of

the form (1.4) on the atomistic scale of a binary alloy in order to derive the function (1.4)

explicitely and to exhibit its physical content. In Section 2 of this paper we will give a short

survey on the main points of the derivation. Furthermore Dreyer & M�uller showed in [5] that

in accordance with the second law of thermodynamics, the di�usion 
ux Jk may be related to

the speci�c free energy by the constitutive law

Jk = �
Bkl

T

@�

@Xl

with � =
@ 

@c
�

@

@Xm

(
@ 

@(@c=@Xm)
) +

@

@Xm@Xn

(
@
2
 

@(@2c=(@Xm@Xn))
); (1.5)

2



which generalizes the well known di�usion law according to Fick. The newly introduced quan-

tities Bkl are the components of the mobility matrix, which can be related to the matrix of

di�usion coeÆcients.

The idea we pursue in this article is to form the free energy density  of the two-phase mixture

by interpolation within the interfacial region of the two phases, and use this for the derivation of

the di�usion 
ux for the binary alloy. The resulting model shows that when mechanical e�ects

are neglected the coeÆcients of the surface tension terms introduce some anisotropy which is

due to the concentration dependence of the coeÆcients. This e�ect is the main focus of Part I

of this study. Hence, here the only �eld equation will be the di�usion equation. In Part II we

will discuss the contributions of mechanical e�ects to anisotropy.

In the next section we will �rst begin with a presentation of the Helmholtz free energy, composed

of the potential energy between particles and the entropic part and derive expressions for the

surface tension coeÆcients. The corresponding coeÆcients in the expression for the di�usion


ux is then found via the mean �eld limit In section 3 we use matched asymptotic analysis

to derive the corresponding sharp interface model. Interestingly, the expression for the surface

tension that results for the sharp interface limit allows only twofold symmetry if mechanical

e�ects are neglected. In section 4 it is shown how the same expression can be found from classical

thermodynamics arguments based on the derivation of jump conditions at free boundaries.

Finally, in section 5 we derive a boundary integral formulation for the sharp interface model

that enables us to employ the non-sti� numerical method, due to [13], for our numerical solution

to the problem.

2 Atomistic modeling of phase �eld systems

2.1 The free energy function for the phase mixture

In this section we establish the constitutive law for the free energy density from an atomistic

point of view. To this end we consider separately the two phases, we will call �-phase and

�-phase, of the two-phase mixture and calculate at �rst their individual speci�c free energy

densities  � and  �. In the second step we form the free energy densitiy of the two-phase

mixture by interpolation within the interfacial region according to

 = u � + (1� u) �; with u =

�
1

0
for

X 2 � -phase

X 2 � -phase
(2.1)

where u is the shape function indicating the phase that occupies the location X.

We may relate the shape function to the concentration �eld by

u (t;X) =
c
� (T )� c (t;X)

c� (T )� c� (T )
; (2.2)

where c� (T ) and c� (T ) refer to the equilibrium concentration of the � -phase and � -phase,

respectively. Thus the shape function may change continuously in the interfacial region from

0 to 1. There remains the derivation of the free energy functions  � and  � for the individual

phases.
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2.2 The free energy functions for the individual phases � and �

We consider a body that consists exclusively of the pure phase 
, where 
 may generically rep-

resent the phase � or �, respectively. The body consists of a crystal lattice, whose symmetry is

given, and the lattice sites are randomly occupied by A-type and B-type atoms. We decompose

the total free energy of the body into its energetic and its entropic part and write

	
 = U
 � TS
: (2.3)

U
 and S
 denote the internal energy and the entropy of the body, which now will be determined

successively.

The internal energy can be decomposed into a thermal part, U
(T ), which does not interest

us at this point, and the potential part, Upot, which is due to the interaction energy between

all particles. For simplicity, we assume central forces to act between the atoms a and b,

fa; bg 2 f1; 2; :::Ng, and we write

U
jpot = �
(x
1
i ; :::; x

N
i ) =

1

2

X
a;b

'
ab

 (r

ab) with r
ab = jxb � x

aj: (2.4)

where the 3N-tupel (x1i ; :::; x
N
i ) contains the current positions of the atoms. While central force

potentials are best suited to explore the key ideas and the atomistic origin of the various con-

tributions appearing in the di�usion 
ux of phase �eld models, we note that they are in general

not appropriate to describe the behaviour of crystal lattices and may lead to some unrealistic

results such as the so-called Cauchy paradox, [14]. In [6] some of the resulting shortcomings

are discussed and in [7] this approach has been generalized by using EAM potentials, so that

realistic properties of the constitutive law for the di�usion 
ux are reproduced.

We introduce the microscopic displacements

�
a
i = x

a
i �X

a
i (2.5)

in order to substitute the current positions by the Lagrange positions of the atoms. These

substitutions take care of terms up to second order in the displacements, resulting in a linear

theory of elasticity.

The case T = 0. In this paragraph we establish the expansion of �
 at T = 0. In our

derivation we introduce the e�ects of thermal expansion and other eigenstrains only when

taking the mean �eld limit which simpli�es the calculation considerably. The justi�cation for

this procedure is given in [14]. At �rst we obtain from (2.4)

U
jpot = �
(x
1
i ; :::; x

N
i ) = �
(X

1
i +�

1
i ; :::; X

N
i +�

N
i ) = �
(X

1
i ; :::; X

N
i )+

1

2

X
a;b

@
2�
(X

1
i ; :::; X

N
i )

@Xa
k@X

b
l

�
a
k�

b
l :

(2.6)

The �rst derivative does not appear here because at T = 0 the potential energy assumes

its minimum. Next, we note that there are three di�erent potential functions, viz. 'AA

 for
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AA�interactions, 'BB

 for BB�interactions and 'AB


 for AB�interactions. The introduction
of the particle concentration operator

ŷ(a) =

�
0

1
if

a indicates an A {type atom

a indicates an B {type atom
; (2.7)

permits us to represent a generic potential 'ab

 by

'
ab

 = (1� ŷ(a))(1� ŷ(b))'AA


 + ŷ(a)ŷ(b)'BB

 + ((1� ŷ(a))ŷ(b) + (1� ŷ(b))ŷ(a))'AB


 : (2.8)

This representation will be introduced now in both terms of (2.6). As a consequence herewith

there appear new quantities, which are de�ned as

'
(�
ab) = '

AB

 (�ab)�

1

2
('AA


 (�ab)+'AB

 (�ab)); ~'
(�

ab) =
1

2
('BB


 (�ab)�'AA

 (�ab)); (2.9)

where �ab denote the magnitude of the reference distance between atoms a and b. The �rst

sum in equ. (2.6) can now be rewritten as

�
(X
1
i ; :::; X

N
i ) =

1

2

X
a;b

'
ab

 (�

ab) =

X
a;b

(
1

2
'
AA

 (�ab) + ŷ(a)(1� ŷ(b))'
(�

ab) +
1

2
(ŷ(a) + ŷ(b)) ~'
(�

ab); (2.10)

and the second sum in equ. (2.6) results in a similliar manner.

Next we carry out the mean �eld limit, where quantities that describe the state of an individual

atom are replaced by their corresponding mean values and which are assumed to vary slowly

in time and space. A detailed discussion on various aspects of the mean �eld limit are found to

be in [10], [14] and [8]. Regarding the atomistic quantities appearing in this paper all authors

agree to de�ne the mean �eld by rules that read

(i) substitute the particle operator, which can only assume the values 0 or 1, by the particle

concentration, which may change continuously between 0 and 1:

ŷ(a)! y(t; Xa) � y(t;X)

ŷ(b)! y(t; Xa +�ab) � y(t;X) +
@y(t;X)

@Xk

�ab
k +

@
2
y(t;X)

@Xk@Xl

�ab
k �

ab
l ; (2.11)

and

(ii) substitute the atomic displacement by the mean displacement:

�
a
i ! ui(t; X

a) � ui(t;X)

�
b
i ! ui(t; X

a +�ab) � ui(t;X) +
@ui(t;X)

@Xk

�ab
k : (2.12)
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Finally we collect all appearing terms and obtain three di�erent contributions to the potential

part of the total free energy of the pure phase 
 2 f�; �g:

U
jpot =
X
a

( AA

 +  

~'

 y +  

'

 y(1� y)�

(a
'


jkl
y �

1

2
a
~'


jkl
+ (A

'


jklmnop
y �

1

2
A

~'


jklmnop
)"mn"op)

@
2
y

@Xk@Xl

+ (2.13)

1

2
(AAA


jmnop + A
~'


jmnopy + A
'


jmnop)"mn"op):

In here, the dependence on the concentration and the strain is explicit and the newly introduced

coeÆcients are constants which can be calculated from the given interaction potentials. Their

de�nitions are given in appendix B. The �rst line of (2.13) gives the classical local contribution

and its third term is the energy of mixing. The �rst two terms of the second line describes the

nonlocal interactions. Its �rst two terms depend on the concentration and are related to the

classical Cahn-Hilliard model, see [1]. Note that �rst gradients of the atomic concentration,

@y=@X
k, do not appear in the representation (2.13) which is due to our restriction to crystal

lattices which have either tetragonal or cubic symmetry. Finally, the third line gives the purely

elastic part of the potential energy, and the bracket in front of "mn"op is the sti�ness matrix,

which, however, turns out to depend concentration.

The case T > 0. For T > 0 there results in particular a competition of the energy of mixing

and the entropy. In a phase 
 with a disordered distribution of the A-type and B-type atoms

over the lattice sites, the entropy S
 is given by

S
 = �k
X
a

(y Log(y) + (1� y) Log(1� y)): (2.14)

Herein k is the Boltzmann constant. If the coeÆcient  '

 in (2.13) is positive, the energy

of mixing and the entropy may combine so that the local part of the free energy becomes a

nonconex function.

Next, we discuss further e�ects which are induced for T > 0. These are eigenstresses as a

consequence of eigenstrains, and the most prominent representative is the eigenstrain due to

thermal expansion. Other eigenstrains are due to point defects, dislocations and mis�t strain.

The latter arises for example during phase transitions if the new phase needs more space than

the old one. All these e�ects are described by eigenstrains that have the generic form

"
�


jmn = "
�


jmn(T; c): (2.15)

Eigenstrains can be incorporated into the model, i.e into the equation (2.13) by the substitution

"mn ! ("mn � "
�


jmn): (2.16)
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Suppressing its thermal part, we obtain the total free energy for a pure phase 
:

	
 =
X
a

( AA

 +  

~'

 y +  

'

 y(1� y)�

(a
'


jkly �
1

2
a
~'


jkl + (A
'


jklmnopy �
1

2
A

~'


jklmnop)("mn � "
�


jmn)("op � "
�


jop))
@
2
y

@Xk@Xl

+

1

2
(AAA


jmnop + A
~'


jmnopy + A
'


jmnop)("mn � "
�


jmn)("op � "
�


jop)+ (2.17)

kT

X
a

(y Log(y) + (1� y) Log(1� y))):

Recall that we need to know the free energy as a function of the mass concentration c rather

than a function on the particle concentration y. Both quantities are related to each other by

the equation

y =
MAc

MB � (MB �MA)c
; (2.18)

where MA and MB are the molecular weights of the constituents A and B, respectively.

2.3 The speci�c free energy and the di�usion 
ux of the phase mix-

ture

In (2.17) we may read o� the speci�c free energy  
 of the pure generic phase 
. We consider

one mole, and abbreviate each term of the sum in (2.17) by ~ 
ja, with  
 = NA=M(c) ~ 
ja,

where NA = 6:023� 1023 particles=mole is the Avogadro number. We recall the interpolation

(2.1) and obtain the speci�c free energy of the phase mixture, viz.

 =
NA

M(c)

�
u(c) ~ �ja + (1� u(c)) ~ �ja

�
; (2.19)

where

M(c) =
MAMB

MB � (MB �MA)c
; (2.20)

is the mean molecular weight of the binary mixture. There results a function of the type

 =  0(c; "rs)� ajl(c; "rs)
@
2
c

@Xj@Xl

+ bjl(c; "rs)
@c

@Xj

@c

@Xl

: (2.21)

The identi�cation of the local part of the speci�c free energy  0 and the matrix functions ajl and

bjl is done after carrying out the necessary di�erentiations in order to transfer the y dependent

functions ~ �ja and ~ �ja into functions of the mass concentration c. This calculation is easy but

lengthy and left to the interested reader.

Finally, we use the constitutive law (2.1) for the calulation of the di�usion 
ux. We abbreviate

Ajl = ajl + bjl and obtain an expression of the following type

Jk =�
Bki

T

@

@Xi

�
@ 0(c; "rs)

@c
� 2Ajl(c; "rs)

@
2
c

@Xj@Xl

�
@Ajl(c; "rs)

@c

@c

@Xj

@c

@Xl

� 2
@Ajl(c; "rs)

@"mn

@c

@Xj

@"mn

@Xl

�
@
2
ajl(c; "rs)

@"mn@"op

@"op

@Xj

@"mn

@Xl

�
@ajl(c; "rs)

@"mn

@
2
"mn

@Xj@Xl

�
(2.22)
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Figure 2:

3 Sharp-Interface limit

For the rest of this study we neglect all mechanical e�ects. Thus the Lagrange coordinates

coincide with the actual coordinates x. Furthemore we assume the mobility matrix and tem-

perature to be given constants and Bki = BÆki. We substitute the resulting expression for the

di�usion 
ux into the conservation equation (1.3) and transform the the equation to the shape

function variable u(t;x). We nondimensionalize via

xi = L~xi t = !~t  = � F (u) ; (3.1)

and obtain after dropping the ` ~ ' for the governing equation

ut = 4� ; (3.2)

where

� = F
0(u)� "

2

�
2Akl(u)

@
2
u

@xk@xl
+ A

0

kl(u)
@u

@xk

@u

@xl

�
(3.3)

in a domain 
 = 
+ [ 
� with

"
2 =

B!

�TL2
and ! =

�T (c� � c�)
2

B � 
; (3.4)

where �T is the constant temperature. The gradient energy coeÆcients Akl(u) are in general

nonlinear functions of u(t;x), where we abreviated Akl(c(u)) by Akl(u) with c(u) = c
� ��

c
� � c

�
�
u(t;x). Here, ` 0 ` denotes the derivative with respect to u. The free energy F (u) has

a form of a double-well potential, see �g. 2. On the boundary @


n � r� = 0 ; n � ru = 0 on @
 : (3.5)

Solutions of this problem reach phase equilibrium after some time of O(1). Near phase equi-

librium, a solution has developed an internal boundary layer structure of O("), approaching

sharp interfaces �i of the appearing precipitates, as " ! 0, see �g. 3. The dynamics of the
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Ω +

Ω−Ο(ε)

Γk

Figure 3: Sketch of sharp interface

precipitates evolves then on the slow time-scale � = "t and the governing equation describing

this is

"u� = 4� (3.6)

where � is given by (3.3).

The solution to the corresponding internal boundary layer problem will yield the boundary

condition for the "outer problem", i.e. in the region of 
 outside that boundary layer.

3.1 Outer Problem

Let u have the asymptotic expansion

u(�;x; ") = uo(�;x) + "u1(�;x) + "
2
u2(�;x) +O("3) : (3.7)

Correspondingly we can develop � as

�(�;x; ") = �o(�;x) + "�1(�;x) + "
2
�2(�;x) +O("3) : (3.8)

Substitution into (3.2) we obtain together with (3.3) for the leading order problem

0 = 4�o = 4F 0(uo) : (3.9)

The O(") problem is
@uo

@�
= 4�1 = 4(F 00(uo)u1) ; (3.10)

and for the O("2) we obtain

@u1

@�
= 4�2 = 4

�
F
00(uo)u2 +

1

2
F
000(uo)u

2
1 � 2Akl(~uo)

@
2~uo

@xk@xl
� A

0

kl(~uo)
@~uo

@xk

@~uo

@Xl

�
(3.11)

plus corresponding boundary conditions on @
. The boundary conditions on �k will be obtained

via matching to the solution of the 'inner' problem valid in the vicinity of the interface �i.
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3.2 Inner Problem and Matching

We consider the 2D situation, where x = (x1; x2) = (x; y). Let r(�; s) = (r1(�; s); r2(�; s)) be a

parametrization of the curve �k, where s denotes arclength. Then

x(�; s; z) = r(�; s) + " z �(�; s) (3.12)

de�nes the boundary layer with z being the boundary layer or 'inner' variable, see �g. 4.

The normal �(�; s) = (�r2s(�; s); r1s(�; s)) points inside the precipitate and the tangential

t(�; s) = (r1s(�; s); r2s(�; s)) points into the counter-clockwise direction.

Making use of appendix A we can expand the gradient energy part in boundary-layer coordi-

nates as follows

2Akl(u)
@
2
u

@xk@xl
+ A

0

kl(u)
@u

@xk

@u

@xl
= "

�2
g(~u; ~u�k ; ~u�k�l) + "

�1
h(~u; ~u�k ; ~u�k�l) + j(~u; ~u�k; ~u�k�l) ;

(3.13)

where �k; �l 2 fs; zg and

g(~u; ~u�k ; ~u�k�l) = 2�A�y~uzz + �A0�y~u2z ; (3.14)

h(~u; ~u�k ; ~u�k�l) = �2 � tAty~uz + 2 (tA�y + �Aty)~usz + (tA0�y + �A0
t
y)~us~uz ; (3.15)

j(~u; ~u�k ; ~u�k�l) = 2 tAty~uss + 2 � (tA0�y + �A0
t
y)~us + tAt

y~u2s + z � h(~u; ~u�k; ~u�k�l) (3.16)

with

A(~u) =

�
A11(~u) A12(~u)

A21(~u) A22(~u)

�
; (3.17)

and the superscript y denotes the transpose of a vector. From this we obtain

4� = "
�2 [F 0(~u)� g(~u; ~u�k; ~u�k�l)]zz � "

�1
�
hzz(~u; ~u�k ; ~u�k�l)� � [F 0(~u)� g(~u; ~u�k ; ~u�k�l)]z

�
�jzz(~u; ~u�k; ~u�k�l)� �hz(~u; ~u�k ; ~u�k�l) + [F 0(~u)� g(~u; ~u�k; ~u�k�l)]ss
�z�2 [F 0(~u)� g(~u; ~u�k; ~u�k�l)]z +O(") (3.18)

Let the quantities u and � have the inner expansions

~u(�; s; z) = ~uo(�; s; z) + "~u1(�; s; z) + "
2~u2(�; s; z) +O("3) ; (3.19)

~�(�; s; z) = ~�o(�; s; z) + "~�1(�; s; z) + "
2~�2(�; s; z) +O("3) : (3.20)

The function F (~u) can be expanded as

F
0(~u) = F

0(~uo) + " ~u1F
00(~uo) + "

2

�
1

2
~u21F

000(~uo) + ~u2F
00(~uo)

�
; (3.21)

and A(~u) can be expanded similarly.

Then, using appendix A and by (3.18) the leading order inner (O("�2)) problem is

~�ozz = [F 0(~uo)� g(~uo; ~uo �k ; ~uo �k�l)]zz = 0 ; (3.22)

10
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so that

~�o(�; r; z) = ao(�; r) z + bo(�; r) : (3.23)

Recall that the leading order outer problem for � is

4��o = 0 in 
�
;

n � r�
�

o = 0 on @
�
; (3.24)

4�+o = 0 in 
+
;

where ��o and �+o denote the chemical potential in the matrix and the precipitate, respectively.

Both problems have to be joined by a condition on the interface �k of the precipitate. This

will be provided by matching with the inner solution. For this we express the outer solution in

inner coordinates and reexpand�
�
�

o + "�
�

1 + "�
�

2 +O("3)
�
(�; r + "z�)

= �
�

o (�; r) + "
�
�
�

1 (�; r) + z � � r
x
�
�

o (�; r)
�

(3.25)

+"2
�
�
�

2 (�; r) + z � � rx �
�

1 (�; r) +
z
2

2
�H(��o

�
�; r)

�
�T

�
+O("3) ;

where

H(w) :=

�
wxx wxy

wyx wyy

�
: (3.26)

Matching to leading order then requires

�
�

o (�; r) = lim
z!�1

~�o(�; r; z) (3.27)

as "! 0. Therefore ao(�; r) = 0 and ��o (�; r) = b0(�; r).

Furthermore, from the ordinary di�erential equation for uo in z,�
2�A(~uo)�

y
�
~uo zz +

�
�A0(~uo)�

y
�
~u2o z = F

0(~uo)� bo(�; r) ; (3.28)

11



we �nd

1

2

d

dz

��
2�A(~uo)�

y
�
~u2o z
�

=
��
2�A(~uo)�

y
�
~uo zz +

�
�A0(~uo)�

y
�
~uo z
�
~u2o z

= (F 0(~uo)� bo(�; r)) ~uo z : (3.29)

This yields, after we integrate from z = +1 to z = �1 and observe that ~uo z ! 0 as z ! �1,

the solvability condition

Z u+

u
�

F
0(~uo)� bo(�; r) d~uo = 0 with F

0(u�) = bo : (3.30)

From phase plane analysis we infer that there is a unique constant bo satisfying (3.30). Finally,

the uniqueness of solution to the problem

4��o = 0 in 
�
;

n � r�
�

o = 0 on @
�
; (3.31)

�
�

o = bo on �k ;

4�+o = 0 in 
+
;

ensures that �o = const. in all of 
.

To order O("�1) we obtain for the inner problem

0 = �hzz(~uo; ~uo �k ; ~uo �k�l) + ��o z +
�
F
00(~uo)~u1 � 2�A(~uo)�

y~u1 zz

�2�A0(~uo)~u1�
y~uo zz � 2�A0�y~uo z~u1 z + �A00(~uo)~u1�

y~u2o z
�
zz

= �hzz(~uo; ~uo �k ; ~uo �k�l) + ��o z +

�
lim
"!0

d

d "
(F 0(~u)� g(~u; ~u�k; ~u�k�l))

�
zz

: (3.32)

Note, ~�o is constant so that �~�o z = 0 and the right hand side of (3.32) is equal to ~�1 zz. Hence,

~�1(�; r; z) = a1(�; r) z + b1(�; r) : (3.33)

Moreover, since �o is constant, matching to next order yields

�
�

1 (�; r) = lim
z!�1

~�1(�; r; z) : (3.34)

Hence, a1(�; r) = 0 and ~�1 = b1(�; r) is independent of z and

~�1(�; r) = �h(~uo; ~uo �k ; ~uo �k�l) + lim
"!0

d

d"
(F 0(~u)� g(~u; ~u�k ; ~u�k�l)) : (3.35)

Note now, that

@

@s

��
tA�y + �Aty

�
~u2o z
�

=
�
tA�y + �Aty

�
2~uo z~uo sz +

�
tA

0�y + �A0�y
�
~uo s~u

2
o z

�2�
�
tAt

y � �A�y
�
~u2o z : (3.36)

12



This implies

~uo z ~�1(�; r) = 2 ��A�y~u2o z �
@

@s

��
tA�y + �Aty

�
~u2o z
�

+~uo z lim
"!0

d

d"
(F 0(~u)� g(~u; ~u�k ; ~u�k�l)) : (3.37)

The condition joining the two outer problems for �1 is obtained now by integrating (3.37) from

z = �1 to z = +1. First we observe that the third term on the right hand side vanishes. For

this recall that

~uo z lim
"!0

d

d"
(F 0(~u)� g(~u; ~u�k ; ~u�k�l)) = F

00(~uo)~uo z~u1 � 2�A�y~u1 zz~uo z � �A00�y~u1~u
3
o z

�2�A0�y~u2o z~u1 z � 2�A0�y~u1~uo z~uo zz (3.38)

and note that (3.28) implies

F
00(~uo)~uo z~u1 = 2�A0�y~u1~uo z~uo zz + 2�A�y~u1~uo zzz

+�A00�y~u1~u
3
o z + 2�A0�y~u1~uo z~uo zz : (3.39)

Hence

~uo z lim
"!0

d

d"
(F 0(~u)� g(~u; ~u�k ; ~u�k�l)) =

�
2�A�y (~u1~uo zz � ~u1 z~uo z)

�
z

(3.40)

the integral over which from z = �1 to z = +1 vanishes since ~uo z; ~uo zz ! 0 for z ! �1.

For the integral of the two other terms on the right hand side, we de�ne

G(~uo) =

Z ~uo

u
�

F
0(v)� bo dv (3.41)

and observe that from (3.28)

~uo z =

r
G(~uo)

�A�y
(3.42)

so that the integral of (3.37) can be written

[u�] ~�1(�; r) = 2�

Z u+

u
�

p
�A�yG(v) dv �

@

@s

Z u+

u
�

�
tA�y + �Aty

�r G(v)

�A�y
dv (3.43)

This can also be written, after di�erentiation with respect to s, as

~�1(�; r) =
�

[u�]

 
2

Z u+

u
�

tAt
y

r
G(v)

�A�y
dv �

1

2

Z u+

u
�

�
tA�y + �Aty

�2s G(v)

(�A�y)3
dv

!
: (3.44)

By the matching condition (3.34) this equals �1(�; r). Given F (u) and A(u) it represents the

chemical potential along the interface �k of a precipitate. This leads to the sharp interface

model

4��1 = 0 in 
�
; (3.45)

n � r�
�

1 = 0 on @
�
; (3.46)

�
�

1 = ~�1(�; r) ; (3.47)

4�+1 = 0 in 
+
: (3.48)

13



In order to determine the velocity of the sharp interface we have to continue the matching to

higher order. To order O(1) the inner problem reads

�V � ~uo z = �jzz(~uo; ~uo �k ; ~uo �k�l)� �hz(~uo; ~uo �k ; ~uo �k�l) + �o ss � z��o z

� lim
"!0

d

d "
(hzz(~u; ~u�k; ~u�k�l)� � [F 0(~u)� g(~u)]z) + lim

"!0

d
2

d "2
[F 0(~u)� g(~u)]zz ; (3.49)

where V � = x� � �. Again, since �o is constant, we have

�V � ~uo z = ~�2 zz � �

�
h(~uo; ~uo �k ; ~uo �k�l)� lim

"!0

d

d "
(F 0(~u)� g(~u; ~u�k; ~u�k�l))

�
z

= ~�2 zz � �~�1 z : (3.50)

Since ~�1 is independent of z, we simply have

�V � ~uo z = ~�2 zz : (3.51)

We integrate (3.51) once with respect to z and use the matching condition for ~�2 z to obtain

for z ! �1
lim

z!�1

~�2 z = � � rx�
�

1 (�; r) : (3.52)

The z2-term in (3.25) vanishes since �o is constant. Hence, we obtain for the interfacial speed

V
� = �

[� � rx�
�

1 (�; r)]

[u�]
(3.53)

3.3 The Cahn-Ho�mann law for concentration dependent surface

energy

We also obtain for a concentration dependent surface energy a Cahn-Ho�mann law, [2], [3],

[11]. To this end we de�ne

rs = (cos �(�; s); sin �(�; s)) ; (3.54)

where �(�; s) is the angle of the tangent at a point on �k to the x-axis. In terms of this

coordinate we have �
�A�y

�
��
= 2

�
tAt

y � �A�y
�
: (3.55)

Using this we can derive

2

�q
(�A�y)�� +

p
(�A�y)

�
= 2

tAt
y

p
�A�y

�
1

2

�
tA�y + �Aty

�2
(�A�y)

�3=2
; (3.56)

so that

�1(�; r) =
�

[u�]
(� + ���) ; (3.57)

where the surface tension � is de�ned as

� = 2

Z u+

u
�

p
�A�yG(v) dv : (3.58)
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At this point it is interesting to observe that the expression for the surface tension � allows at

most two-fold symmetry. This is in contrast to previous theories, e.g. [12] etc., where it was

assumed that the surface tension re
ects the symmetry of the underlying crystal lattice and

could in principle have higher symmetry. Our analysis shows that in fact higher symmetries

of the surface tension enter only through mechanical e�ects, which is shown in Part II of this

study.

3.4 Generalization to 3D

The sharp interface limit implies in �rst and second order the conditions (3.30) and (3.43), re-

spectively. The condition (3.30) yields the equilibrium concentrations according to the common

tangent construction, which describes the jump conditions if the curvature of the interface is

ignored. The condition (3.43) takes care of curvature and yields the corrections to the plane

interface case. Up to now we considered exclusively a phase mixture in 2D with interfaces

as 1D objects. While the common tangent construction is not in
uenced by this restriction,

the condition (3.43) is. A generalization to the case of a phase mixture in 3D with interfaces

as 2D surfaces can be carried out along similar strategies. In this case the interfaces are de-

scribed by two Gaussian parameters U�, � 2 f1; 2g and the function r(�; U1
; U

2) gives the

location of the surface points. The surface is equipped with a unit normal �, two tangent

vectors t�, a metric, g��, and a Gaussian curvature tensor, b��. The mean curvature is de-

�ned by �M = (1=2) g��
b��. All these quantities can be calulated from the surface function

r(�; U1
; U

2).

The corresponding expression to (3.43) reads

[u�]�1 = 2��M + (�
1

2
�
�);�; (3.59)

where the semicolon indicates the covariant derivative, and with

� = 2

u+Z
u�

p
�A�yG(v)dv; �� = 2

u+Z
u�

(�At
y

� + t�A�
y)

r
G(v)

�A�y
dv: (3.60)

4 Jump conditions for a binary mixture according to

classical thermodynamics

The sharp interface limit from section 3 reveals jump conditions at the interface between the

two coexisting phases. Jump conditions, however, can also be obtained from classical ther-

modynamics that models the interfaces from the very beginning on as singular surfaces [9].

Here, we consider classical thermodynamics of a binary disordered mixture that may consist

of two coexisting phases � and �, and we ignore mechanical stress �elds in the bulk. In this

case the variables are the temperature T and the partial mass densities �A and �B of the two
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constituents A and B. The speci�c free energy density is given by a function of the type

 =  ̂(T; �A; �B); and �
A =

@� ̂

@�A
and �

B =
@� ̂

@�B
(4.1)

are the chemical potentials of the constituents, see e.g. [17]. Herein � = �
A + �

B denotes the

mass density of the mixture.

It is useful to change the variables �A; �B according to

(�A; �B)! (�; c = �
B
=�) (4.2)

We write

 ̂(T; �A; �B) = ~ (T; �; c); and p = �
2@�

~ 

@�
(4.3)

de�nes the pressure. Next we calculate the chemical potentials from the function ~ . There

results

�
A =  +

p

�
� c ~ 0 and �

B =  +
p

�
+ (1� c) ~ 0 with ~ 0 =

@ ~ 

@c
: (4.4)

Note that there holds

� � �
B � �

A = ~ 0: (4.5)

The jump conditions at the interface are derived in classical thermodynamics by means of

generic balance equations [9]. Denoting the limits of a generic quantity g that approach the

interface from the �-phase and �-phase, respectively, by g� and g�, the jump conditions read

�
A
� � �

A
� = 0; �

B
� � �

B
� = 0 and p� � p� = S

��
b�� + S

�
;�: (4.6)

The newly introduced quantities are the tangential surface stress, S��, the normal surface

stress, S�, and the semicolon indicates the covariant derivative.

Thermodynamics of interfaces relates the surface stresses S��and S� to the free energy density,

 s, of the interface. Under the assumptions, that

(i) T� = T� � T , (ii)  s may depend on T , �i and g��

there holds as a consequence of the second law of thermodynamics

S
�� =  sg

�� +
1

2

@ s

@g��

and S
� = �g��

�
i
�

@ s

@�i
; (4.7)

see [9] for details. The �rst contribution of S�� leads in (4.6)3 to the classical capillary force

which is proportional to the mean curvature �M = (1=2) g��
b��. The metric dependence of

the interfacial free energy describes elastic e�ects of the interface and the normal surface stress,

given by (4.7)2 which is related to the Ho�mann-Cahn vector.

Next we will evaluate the jump condition (4.6). At �rst we write the conditions (4.6)1;2 more

explicit:

~ 0�(T; ��; c�) =
~ 0�(T; ��; c�) � � and (c� � c�)� = ~ � � ~ � +

p�

��
�
p�

��
: (4.8)
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Let us assume for simplicity �� � �� � �, and let c� 0 , c� 0
be the solution of

~ 0�(T; �; c�) =
~ 0�(T; �; c�) and (c� � c�)� = ~ � � ~ �; (4.9)

which describes the common tangent construction, also called Maxwell construction. We con-

clude that the common tangent construction only holds if

(i) p� = p� � p0 and (ii) �� = �� � �0.

Note at this point that condition (i) is well-known, but the necessity of the second condition is

in general not noted. In the following we will take the condition (ii) for granted. Note that in

the derivation of the sharp interface limit from the reduced phase �eld model we also did not

consider the variation of the total density of the binary mixture. Furthermore, note that this

variation is related to the trace of the mechanical strain, which will be included in Part II of

this study.

We proceed to exploit the jump conditions (4.6). To this end we make the Ansatz

c� = c� 0
+ c� 1

; c� = c� 0 + c� 1
; p� = p� 0

+ p� 1
; p� = p� 0 + p� 1 ; � = �0 + �1 (4.10)

and exploit the jump condition (4.8)1 under the assumption that quantities with index 1 are

small corrections to the corresponding quantities with index 0. There results

�0 = ~ 0�(T; �0; c� 0
) = ~ 0�(T; �0; c� 0); �1 = ~ 00�(T; �0; c� 0

)c� 1
= ~ 00�(T; �0; c� 0)c� 1

; (4.11)

while the conditions (4.8)2 and (4.6)2 imply

(c� 0
� c� 0

)�1 =
1

�0
(S��

b�� + S
�
;�): (4.12)

Let us now ignore elastic e�ects of the interface so that the right hand side of (4.12) can be

rewritten as

(c� 0 � c� 0
)�1 =

1

�0
(2 s�M + (�g��

�
i
�

@ s

@�i
);�): (4.13)

A comparison of (4.13) with the corresponding result (3.59), that we have obtained from the

phase �eld model, suggests to identi�y

 s = �: (4.14)

In this case the de�nitions (3.60) imply that the interfacial free energy density has the following

properties

�
i@ s

@�i
=  s and �

i
�

@ s

@�i
=

1

2
��: (4.15)

The result (4.13) of classical thermodynamics can thus be written

�o(c� 0 � c� 0
)�1 = 2��M + (�

1

2
�
�);� : (4.16)

This resultis in agreement with (3.59) developed from the phase �eld model.
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5 Numerical methods

For our numerical treatment we follow [12] and transform the sharp interface model (3.45){

(3.48), (3.53) into a boundary integral formulation. Note, that the sharp interface model

describes mass di�usion in the matrix and mass di�usion in the precipitates connected by the

common boundary condition (3.47). Here, we make the simplifying assumption that di�usion

in the precipitates can be neglected, i.e. we treat only the one-sided model

4��1 = 0 in 
� (5.1)

n � r�
�

1 = 0 on @
� (5.2)

�
�

1 = ~�1 on � (5.3)

and

[u�]V � = � � r�
�

1 on � (5.4)

and drop the superscript ( { ) from now on. We further assume that @
 has been shifted to

in�nity and replace the local condition

n � r�1 = 0 by the condition of no 
ux in the far �eld lim
R
1
!1

Z
n � r�1 = 0 : (5.5)

In what follows, we note that the tangential vector t to the boundary of a precipitate always

points into the mathematically positive direction, and � always points to the left, i.e. inside

the precipitate.

We want a boundary integral representation for the solution of

4�1 = 0 in 
�

by setting �1 = Re (	(z)) z = x + iy ; z 2 
� (5.6)

where

	(z) =

NX
k=1

Ak ln(z �Mk) +
1

2�i

Z
�

�(�)

� � z
d� +

1

2�

Z
�(�)d� (5.7)

where Ak 2 R, � 2 C and the complex number Mk 2 
k, being the interior of �k, where

� :=
SN

k=1 �k. The �rst term on the r.h.s. represents the contribution of the 2D-precipitates,

the second term is the analytical part for z 2 
� and the third part is a constant correction if

	 6! 0 for z !1. As has been shown by Mikhlin [16] this representation is unique for given

zk. Furthermore, it is shown in [16], that for z ! ~z 2 �

Re

0
@ lim

z!~z

z2

�

	

1
A = �

1

2
�(~z) +

NX
k=1

Ak ln(~z �Mk) +
1

2�
=
Z
�

�(�)

� � z
d� +

1

2�

Z
�(�)d�

= �1j� (5.8)

i.e. for �1 on � . Substitution of (5.6), (5.7) into (5.5) yields

NX
k=1

Ak = 0 : (5.9)
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Note, that the l.h.s. of (5.8) is an integral operator on � with kernel of dim = N � 1 so that

we have N � 1 solvability conditions for the r.h.s. of (5.8). Together with (5.9) this will �x the

Ak, so that we can �nd the corresponding �. In order to obtain uniqueness one has to impose

the constraints (see again [16]) Z
�k

�(�) d� = 0: (5.10)

Now we can determine �1 on � and hence r�1 which allows us to calculate V � = � � r�1.

Note, that knowledge of the normal velocity is suÆcient to evolve the interface. For the numer-

ical implementation we use a parametrization zk(�; �) for each �k, where � 2 [0; 2�]. These

parameter functions are evolved according to

dzk

d�
= V

�

k �k + V
t

k tk : (5.11)

where �k and tk denote the normal and tangent vectors w.r.t. the k-th precipitate. The tan-

gential component V t

k of dzk=d� remains arbitrary and a special choice of the parametrization

for the boundaries �k will be used to simplify the numerical implementation. Here we follow

[13] for the choice of the coordinate system, where �k is the angle of the tangent vector at

points on �k w.r.t. the x-axis and Lk denotes the length of the corresponding interface. The

components of zk(�; �) are then replaced by the coordinates sk � and �k through

sk � = jzkj and (cos �k(�; �); sin �k(�; �)) =
(Re (zk);=(zk))

sk �
(5.12)

so that the evolution equations

@sk �

@�
= V

t

k � � �k �V
�

k and
@�k

@�
=
V
�

k � + V
t

k �k �

sk �
: (5.13)

are obtained. Note here, the index k refers to the k-th precipitate, while the index � denotes

partial derivative w.r.t. the parameter �. Then the special choice of

V
t

k (�; �) =

Z �

0

�k �0 V
�

k d�
0 �

�

2�

Z 2�

0

�k �0 V
�

k d�
0 (5.14)

yields the equal arclength parametrization

sk � =
Lk(�)

2�
; for all � (5.15)

and hence the simpler ODE-PDE system

@Lk

@�
= �

Z 2�

0

�k �0 V
�

k d�
0 and

@�k

@�
=

2�

Lk

�
V
�

k � + �k � V
t

k

�
: (5.16)

In summary, the complete boundary integral formulation for the evolution of the precipitates
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is:

�
1

2
�k(�; �) +

1

2�

NX
l=1

Z 2�

0

�l(�
0
; �) =

�
zl �0(�

0)

zl(�0)� zl(�)

�
d�

0 +
1

Lk

NX
l=1

Z 2�

0

�l(�
0
; �) d�0

+

NX
l=1

Al ln(zl(�)�Ml) = �1j� ; (5.17)

Z 2�

0

�k(�
0
; �) d�0 = 0 k = 1; : : : ; N � 1 ; (5.18)

V
�

k (�; �) = �
1

Lk

NX
l=1

Z 2�

0

�l �0(�
0
; �) Re

�
zl �(�)

zl(�0)� zl(�)

�
d�

0
; (5.19)

together with (5.9), (5.14) and (5.16).

Now, onsider �k � in in the second equation of (5.16). It gets another derivative in the �rst

equation of (5.16) and another one in (5.17), since in �, s� coordinates the curvature in �1j� is

expressed as � = ��=s�. Hence, there are three derivatives. Such high derivatives in an evolution

equation will lead to numerically sti� problems (the stability constraint e.g. 4t < O ((4x)3)
leads to prohibitive time stepping). However, the advantage of the above formulation is that

the evolution equation can for each k be written as

@�

@�
=

�
2�

L

�3

��H [����] +N(�; �) (5.20)

where

�� =
1

[u�]

Z 2�

0

� d� : (5.21)

The �rst term of (5.20) becomes in Fourier space

�
�
2�

L

�3

jjj3 � (5.22)

which is the sti�est term and will be treated implicitely. However, in this form it is linear and

diagonal in Fourier space and hence one only has to solve a diagonal system. The remaining

complicated nonlinear expression N(�; �) can be treated explicitely. We use a Pseudo-spectral

method (using FFT) in space, and Leap-Frog for the explicit and Crank-Nicholson for the

implicit time integration. The integration of the L� ODE is done with an Adams-Bashforth

integrator. Equations (5.17), (5.18), (5.19) and (5.9) yield the 	 and Ak. They represent a

linear system and is solved iteratively using GMRES.

5.1 Examples

We are interested here in some �rst characteristic features of the in
uence of anisotropic surface

tension on the dynamics of coarsening. This will be extended to include elastic e�ects in Part

II.
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For the numerical simulations we use for A(~u) the linearly interpolating expression

A(~u) =

�
a
� 0

0 a
�

�
~u+

�
a
�
1 0

0 a
�
2

�
(1� ~u) ; (5.23)

where the �-matrix corresponds to a cubic symmetry and the �-matrix to a tetragonal sym-

metry, frequently occuring in binary alloys, see e.g. [5]. For the con�gurational part of the free

energy we choose a fourth order polynomial, i.e. F 0(~uo) = ~uo(~uo � 1=2)(~uo � 1) so that b0 = 0,

[u�o ] = 1 and G(v) = 1=4v2(v�1)2. With this choice we obtain the following explicit expression

for �:

� =
p
a�

4

105 p3

�
(1� p)3=2(4� p� 3p2)� 4 + 7p

�
; (5.24)

where p = q + Æ sin2 � with q =
a
� � a

�
1

a�
; Æ =

a
�
2 � a

�
1

a�
: (5.25)

For all simulations in the following three �gures we let q = 0:4 and Æ = 0:1. For the initial

conditions we always choose a pair of circles, one with center at the origin and of radiusR = 0:13

and the other one with center shifted by d > 2:01R from the origin and having 1% larger radius.

We are interested in the e�ect of anisotropic surface tension and distance of the precipitates on

the coarsening rate and their shape.

In the �rst �gure 5 we see the change in area for two precipitates, intially of circular shape

(solid line), where the center of the second one is shifted by d = 5:2 to the right and having 1%

larger radius. In this �gure we do not show the middle portion 0:2 < x < 5 to better focus on

the shape of the precipitates. For both precipitates, the growing (right) and the shrinking (left)

one, coarsening proceeds by quickly assuming and retaining almost equilibrium shape (dotted

lines), which can be found analytically as the stationary solution of (5.17){(5.19), (5.9), (5.14)

and (5.16), for a single precipitate

r1 stat =

Z s

0

cos � ds =

Z �

0

cos �

�s
d� = �

1

C
(� sin � + �� cos �) ;

r2 stat =

Z s

0

sin � ds =

Z �

0

sin �

�s
d� =

1

C
(� cos � � �� sin �) (5.26)

with scaling factor C. In �gure 6 the center of second precipitate is shifted only by d = 0:325 to

the right. We see that the in
uence of di�usion dominates the shape of the precipitates. Only for

very small precipiates is the equilibrium shape attained, i.e. when surface tension dominates, as

seen for the smallest precipiate on the left. In the �nal �gure we show the in
uence of distance

of the precipitates on the coarsening rate, which is smaller for larger distances. Additionally,

we performed a second set of simulations, where the center of the second precipitate had been

placed a distance d above the origin instead to the right. While the in
uence of the distance on

the shape is analogous to the previous examples, we also notice a dependence of the coarsening

rate on the orientation of the precipitates with respect to each other. Figure 7 shows the area

of the precipitates minus their initial area for three pairs initially with distance d = 0:325 (left),

d = 0:65 (middle) and d = 5:2 (right). The solid lines represent pairs of precipitates, where

the center of the second one is placed to the right of the origin, as in the previous �gures, and
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Figure 5: Two evolving precipitates with centers initially d = 5:2 apart (solid line). Middle

portion 0:2 < x < 5:2 not shown.
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Figure 6: Two evolving precipitates with centers initially d = 0:325 apart.
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Figure 7: Change in area for two precipitates, placed next to each other (solid line) and over

each other (dotted line).

the dotted lines represent those, where the center of the second precipitate is placed above the

origin. We see that the e�ect of anisotropic surface tension on the coarsening is felt largely

for nearby particles. Furthermore, we see a tendency that coarsening proceeds faster when the

points of higher curvature are closer.
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A Transformations

Suppose ~w is a quantity de�ned in the inner coordinates (s; z; �). Then its derivatives are

related to the derivatives of the corresponding quantity w in outer coordinates via the invertible

transformation matrix

M =

0
@ 0

Q 0

x� y� 1

1
A ; where Q =

�
xs ys

xz yz

�
(A.1)

by 0
@ ~ws

~wz

~w�

1
A =M

0
@ wx

wy

w�

1
A (A.2)

Since s is arclength

r
2
1s + r

2
2s = 1 ; r1sr1ss + r2sr2ss = 0 ; �(s; �) = r1sr2ss � r2sr1ss (A.3)

and

ts = �� ; �s = ��t (A.4)

so that

r1ss = ��r2s ; r2ss = �r1s (A.5)

Hence,

xs = (1� "�)t ; xz = "� ; detQ = "(1� " z �) : (A.6)

Now we can express the quantity w in the outer variables in terms of the inner variables by0
@ wx

wy

w�

1
A =

0
@ 0

Q�1

0

�x� �Q�1 1

1
A
0
@ ~ws

~wz

~w�

1
A =

0
@ r1s(1 + "z�) �"�1r2s 0

r2s(1 + "z�) "
�1
r1s 0

�V t(1 + "z�) �"�1V � 1

1
A
0
@ ~ws

~wz

~w�

1
A ; (A.7)

where we have used the approximation 1=(1 � "z�) = 1 + "z� + O("2), and where we denote

the tangential and normal velocity by

V
t = x� � t ; V

� = x� � � ; (A.8)

respectively.

The higher derivatives then transform as follows:

wxx = "
�2
r
2
2s ~wzz � "

�1
�
�r

2
1s ~wz + 2r1sr2s ~wsz

�
+ r

2
1s ~wss

�2�r1sr2s ~ws � z�
�
�r

2
1s ~wz + 2r1sr2s ~wsz

�
(A.9)

wyy = "
�2
r
2
1s ~wzz � "

�1
�
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2
2s ~wz � 2r1sr2s ~wsz

�
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2
2s ~wss
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(A.10)

wxy = �"�2r1sr2s ~wzz � "
�1
�
�r1sr2s ~wz +

�
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2
2s � r

2
1s

�
~wsz

�
+ r1sr2s ~wss

��
�
r
2
2s � r

2
1s

�
~ws � z�

�
�r1sr2s ~wz +

�
r
2
2s � r

2
1s

�
~wsz

�
(A.11)

4w = "
�2 ~wzz � "

�1
� ~wz + ~wss � z�

2 ~wz (A.12)
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B Higher gradient coeÆcients

In this appendix we relate the coeÆcients, which appear in Eq. (2.13), to the three pair

potentials 'AA

 , 'BB


 , 'AB

 and to the combinations (2.17), respectively. Recall the de�nitions

�ab
i = X

b
i �X

a
i , �

ab = jXb
i �X

a
i j and let us furthermore de�ne Ni = �ab

i =�
ab.

The coeÆcients determining the local part of the free energy read

 
AA

 =

1

2

X
b

'
AA

 (�ab);  

~'

 =

1

2

X
b

~'
(�
ab);  

'

 =

1

2

X
b

'
(�
ab): (B.1)

The higher gradient coeÆcients, that we also call extended Cahn-Hilliard coeÆcients, read

a
'


jkl
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1

2

X
b

(�ab)2'
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ab)NkNl; a

~'


jkl
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1

2

X
b

(�ab)2 ~'
(�
ab)NkNl; (B.2)

and

A
'


jklmnop =
1

2

X
b

(�ab)4
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2
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(�

ab)

@�ab
m@�

ab
o

NkNlNnNp; A
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1

2

X
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(�
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m@�

ab
o

NkNlNnNp:

(B.3)

Finally there are the coeÆcients which determine the elastic sti�ness matrix, and these are

A
AA

jmnop =

X
b

(�ab)2
@
2
'
AA

 (�ab)

@�ab
m@�

ab
o

NkNl; A
'


jmnop
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@�ab
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jmnop =
X
b

(�ab)2
@
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(�

ab)

@�ab
m@�

ab
o

NkNl: (B.4)

We conclude that all the constitutive law of the phase �eld model from the above can be de-

termined from three pair potential function. How these functions can be �tted to experimental

data is described in [6].
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